
98

ISSN 1392–124X (print), ISSN 2335–884X (online) INFORMATION TECHNOLOGY AND CONTROL, 2014, T. 43, Nr. 1

Neuroevolution Based Multi-Agent System with Ontology Based Template
Creation for Micromanagement in Real-Time Strategy Games

Iuhasz Gabriel, Viorel Negru, Daniela Zaharie

West Univeristy of Timisoara,
Timisoara, Romania

e-mail: iuhasz.gabriel@info.uvt.ro, vnegrul@info.uvt.ro, dzaharie@info.uvt.ro

 http://dx.doi.org/10.5755/j01.itc.43.1.4600

Abstract. This paper presents a multi-agent system that handles unit micromanagement using online machine
learning in real time strategy games. We used rtNEAT algorithm in order to obtain customized neural network
topologies, thus avoiding to complex network architecture. We use an ontology based template to create suitable input
and outputs for unit agents enabling them to cooperate and form teams for their mutual benefit and eliminating
communication overhead. The AI system was implemented using the JADE framework and the BWAPI handled
communication between our system and the game. We have chosen Starcraft as a testbed. As a baseline we compared
the in game AI as well as several other AI solutions that use adaptive mechanisms.

Keywords: multi-agent systems; machine learning; real time games; neu-ral networks; neuroevolution; ontology.

1. Introduction
Real-time strategy (RTS) games are games where a

player has to engage in real time actions. The
objective of these games is to achieve either military
or territorial superiority over opponent factions. Each
player has the capability tobuild structures, collect
resources and build or train military units as well as
non-combat utilitarian units. By using the utility units
to collect resources players can expand their base and
create additional units. These units can then be
commanded to attack opponent armies or bases.

Video games and in particular RTS games have
gained popularity as testing platforms for novel
machine learning and AI methods for real world
systems [22]. This is largely thanks to the fact that
most games are populated by intelli-gent entities that
can be considered agents that accomplish a series of
finite and clear goals in real time stochastic
environments using incomplete information. This
makes games an ideal platform for obtaining high
quality behaviours from agents as well as groups of
coordination behaviours using machine learning
techniques [2].

Most games have complex non-linear relationship
between environment and the agents that interact with
it. This makes neural networks a prime candidate for
adaptive game AI systems [24]. However the game
industry is reluctant to use machine learning
techniques in commercial titles beause of the

perceived high cost in both knowledge acquisition and
agent coordination. One other major downside is the
fact that no guaranties can be made to overall system
performance with current learning methods. Some
games have been released which do use some form of
adaptation mechanism as their core gameplay
mechanic. One good example are the games from the
Black & White series published by Lion Head studios
in 2001 [19]. The goal of the game is to train a
creature using reinforcement learning techniques.It is
prone to learn less than optimal behaviours.

Modern games use non-adaptive techniques in
their AI systems. These techniques have one major
disadvantage as once a weakness is discovered it can
be exploited repeatedly thus ruining gameplay [29]. A
good RTS AI system must be able to adapt during
gameplay (online). This adaptation is manly focused
on the adaptation to the opponents behaviours in a
complex partially observable game environment
where there is little time for optimization. To
accomplish this goal of real time learning, many
techniques have been proposed and one of the most
promising is Neuroevolution of Augmenting
Topologies (NEAT) proposed by Stanley [26].

NEAT is used to evolve and train NN
automatically. Evolution adjusts both the connection
weights and the topology of the NN. It can add or
remove connections and neurons to the NN topology
as well as modify the network connection weights. A
real - time version of NEAT called rtNEAT has been

Neuroevolution Based Multi-Agent System with Ontology Based Template Creation for Micromanagement in Real-
Time Strategy Games

99

created and used in a proof of concept game called
NERO [25]. The goal in NERO is to deploy agents in
a training environment where they are trained in some
desired tactics and then are pitted against enemy
agents to see how well they have been trained.

Game AI development is not an easy task and
requires a lot of research and development. Usually
the development of the main game engine and that of
the AI subsystems is done at the same time. This is
usually a good approach however during the latter
stages of development any changes to the core
gameplay mechanics have a catastrophic effect on AI
systems based on non-adaptive techniques. It is also
important to note that game AI is not reused. By
establishing a MAS that is able to adapt to new
situations in real time not only aids gameplay but also
reusability. In order to facilitate interoperability and
reusability formalizing ontologines are needed. In this
paper we focus on a simple unit template ontology
that is used to create starting topologies for our NN
trained with rtNEAT.

In this paper we developed a multi-agent system
(MAS) that is able to adapt and learn on-line using
rtNEAT. Each unit will be controlled by a NN which
will then adapt themselves automatically to different
unit types and tactics. We used the RTS StarCraft
developed by Blizzard Entertainment for our
experiments. Starcraft is well suited for our task
because it is used in many competitions and in some
countries such as South Korea it is considered a
national sport. Also there are a number of
competitions aimed to test AI systems against each
other1. In StarCraft the single objective given to the
player is to destroy all opponents. In order to
accomplish this objective numerous tasks must be
completed such as gathering resources, creating
structures, training units and attacking the enemy.
These tasks are the bare minimum of what is
necessary to accomplish the main objective.
Additional tasks can be performed in order to gain an
advantage over the enemy such as scouting and
research. In Starcraft there are three distinct races;
protoss, Terran, Zerg. In contrast to other RTS games
these races have radically different play styles and at
the same time they are equally matched.

This paper is an extended version of a paper in
which further details are given for the MAS that
handles unit micromanagement and is able to
adapt/learn during game play. To achieve this, we
adapted the rtNEAT algorithm in order to obtain tailor
made NN topologies thus eliminating overcomplexi-
fication by manual design. Also by defining internal
and external inputs for each agent we managed to
create independent agents that are able to cooperate
and form teams for their mutual benefit and at the
same time eliminate unnecessary communication
overhead. The MAS was implemented using Java
Agent DEvelopment Framework (JADE) and the

1 http://eis.ucsc.edu/StarCraftAICompetition

BWAPI to interface with the game itself. We used an
ontology based template to create the initial NN
topology. More details are presented in Section 3. We
used as a baseline the in game AI and also tested it
against other adapting AI systems in order to compare
their performance against our system. The experi-
mental setup as well as the results are presented in
Section 4, while the conclusions and future work are
presented in Sections 5 and 6.

2. Related work
Current video games are ideal platforms to test

novel AI techniques. RTS games are particularly
interesting because they provide several challenges:
adversarial real-time planning, decision making under
uncertainty, opponent modeling (learning), spatial
temporal reasoning, resource management,
collaboration, pathfinding [3]. They also poses an
extremely complex environment which according to
the classification given by Russell and Norvig [20] is:
partially observable, deterministic, sequential,
dynamic and continuous. RTS games have a massive
state space. When comparing it to chess which has
according to [21] a state-space estimated to 1043 a RTS
game has 1011500 according to [1]. Also, the number of
actions available to the player is also superior in the
case of RTS as it has approximately 1 million possible
actions while chess has only 30.

Until recently the main stream game AI system
used traditional static techniques such as Finite
StateMachines (FSM), Decision Trees etc. Because
these techniques lack the ability to adapt they are
easily defeated after the player learns each method
idiosyncrasies. Researchers are starting to focus more
and more on machine learning techniques in order to
make game AI more challenging by making it less
predictable.

Static techniques have one major drawback: they
become predictable after a relatively short amount of
time but also they are extremely hard to maintain and
debug when they are used to model more complex
behaviors. For example, FSMs use transitions to
determine when to switch states. These transitions as
well as the number of states (𝑠) grow exponentially
with the number of events (𝑒): 𝑠 = 2𝑒 , consequently
increasing the number of transitions or arcs (𝑎) even
faster: 𝑎 = 𝑠2.

Rule-base Systems are brittle and inflexible as
when faced with a problem that is out of bounds with
their knowledge base, they can not cope as they are
unable to rely on past experience to select a similar
rule or update their rule base. Similarly to FSMs,
expert knowledge is used in their creation which, once
in place, can not be modified and requires substantial
effort to maintain and debug. Some techniques are
ubiquitous such as the A* algorithm commonly used
for path-finding and FSM for decision making. These
two techniques make up more than 2/3 of current
game AI systems [32].

I. Gabriel, V.Negru, D. Zaharie

100

In RTS games, computational intelligence has been
applied to tactics using Monte Carlo [4] planning and
strategy selection using NEAT [9].

Cognitive architecture is designed for developing
mechanisms that highlight human cognition and
provides the framework necessary for integrating
heterogeneous competences and are also able to
reason about multiple goals [11]. It also focuses on
performing evaluation at the system level [12] and
also uses means-ends analysis when confronted with
new problems. However it lacks inherent capabilities
for solving some fundamental game AI problems such
as low level decision making (micromanagement).

SOAR is one of the best known examples of a
cognitive architecture and features multitasking as
well as planning capabilities, it performs state
abstractions and employs a learning mechanism called
chunking. This is, in fact, a caching mechanism and is
used to intermix learning and problem solving [12].

Goal-driven autonomy (GDA) model was designed
in order to handle unanticipated failures during plan
execution in complex, dynamic environments [1].
GDA uses a conceptual model that enables agents to
detect, and reason about unanticipated events. One of
its more interesting features is the fact that it contains
several components and interfaces between these
components. It leaves the implementation details
unrestricted. This model has been used for RTS games
by [15]. Also some ML techniques such as reinforce-
ment learning have been used in [8].

Reactive planning systems have been used to
create autonomous software agents for a number of
years [14]. Their main design feature is the fact that no
apriori planning is done and actions are selected at
every instant. This enables these types of systems to
handle meta-game concepts such as novel game
strategies. Systems that use reactive planning are
particularly adept at handling real-time events in
dynamic environments such as tasks that require real-
time actions. The main strength when it comes to
game AI is the ability to enact incomplete plans while
pursuing goal-directed tasks [18, 10].

Case-based reasoning is a methodology that
enables the creation of systems that learn from prior
experience [17]. It has been applied to solve some
particular problems in RTS games such as strategic
and tactic selection [5] as well as micromanagement
[28]. It is important to note that because of the
extremely challenging environment and challenge
RTS games pose to AI researcher, a number of
competitions are held in order to test AI systems
against each other. One prime example is the
competition held during the AIIDE conference for
which the BWAPI was developed.

We should also note that some interesting solutions
to RTS learning AI problem have been proposed
during the AIIDE conferences StarCraft competition2.
During this competition AI systems play against each

2 AIIDE 2012 StarCraft Competition - http://tinyurl.com/cv2e2af

other in a tournament style competition. There are 2
classes of competition. The first is a full AI vs AI
competition where the systems play the game from the
beginning until one of them loses. The second one
focuses on unit micromanagement where the systems
only play set piece battles.

The overall winner of the 2010 competition was
the Overmind agent created by a team from Berkeley
University. It used a shallow planner to enforce
resource constraints and tech progression. It also used
a potential field whose parameters were tweaked by
reinforcement learning 3 . Another noteworthy agent
from this competition is the EISBOT developed by
Weber, Mateas and Jhala from the University of Santa
Cruz. They used Goal-Driven Autonomy conceptual
model [30]. However this system doesn't deal
explicitly with the problem of micromanagement
instead implementing static methods that the Starcraft
gaming community identified [31].

Nova 4 was developed by Alberto Uriarte from
Technical University Barcelona. It uses a plethora of
AI techniques such as: potential fields, FSM, flocking
etc. The most important contribution of this system is
the micromanagement subsystem which creates micro
agents for each game unit which are then coordinated
by squad agents. These agent types use FSM for their
decision making.

Our system uses the rtNEAT algorithm to evolve
the NN that handles each game units microma-
nagement. In most RTS game such as Starcraft the
number of commands issued to units during a battle is
directly proportional to the chance of winning [13].
By using an ontology based template for NN starting
topology that enable us to evolve tailor made NN for
unit micromanagement we show that our MAS is a
good starting point to create a fully operational AI
system that incorporates online machine learning
techniques.

3. MAS architecture

3.1 The RTS micromanagement domain

In RTS games there are three layers of abstraction
when it comes to behavior: high, medium and low.
There is the strategic layer in which, as its name
implies, the overall strategy is being planned. In this
layer we decide if we want to focus on defense,
offense, economy, research or which enemy to attack
first. The second layer is the tactical layer. When the
overall strategy has been decided upon, then this layer
handles the planning of attacks and defense. This layer
handles terrain analysis, army movement etc. The
third and last layer is the micromanaging layer.

RTS players issue movement or attack commands
in order to increase individual unit effectiveness

3 Overmind winner of AIIDE 2010 StarCraft Competition -
http://tinyurl.com/6lhur6b
4 NOVA STARCRAFT AI - http://nova.wolfwork.com/

Neuroevolution Based Multi-Agent System with Ontology Based Template Creation for Micromanagement in Real-
Time Strategy Games

101

during combat. By issuing these commands the player
can in effect override the default low-level behavior of
a unit. When a military unit receives a command to
attack a particular location by default, it will attack the
first enemy unit it comes into range. This type of
behavior can lead to ineffective unit performance be-
cause of target selection lack of inter agent
coordination and damage avoidance. A human expert
level player will manually select the targets for each
unit to engage. This technique enables units to focus
fire on specific targets, which reduces the enemy unit
effectiveness. We can also prioritize specific types of
units or even issue fast movement commands. By
using this technique we can force the enemy either to
engage new targets or to pursuit. It is easy to see that
by micro-managing unit actions we can increase the
effectiveness of a squad or individual unit.

Being a highly reactive process, micromanagement
requires a lot of actions to be performed in a short
amount of time. Expert human player can manage up
to 300 actions every minute [31]. A direct correlation
has been shown between the number of actions a
player is capable of executing and the number of
victories5.

3.2. rtNEAT

NEAT was developed by Stanley and Miikulainen
[27]. It evolves both the connection weights and the
topology of the NN. This in contrast with other
genetic algorithms which are only used to evolve
connection weights the topology being designed by
human hands. The designing of a NN topology,
namely the distribution of hidden neurons into hidden
layers, is extremely difficult to do as a NN is
considered to be a black box. There are three
important contributions of NEAT to other methods
based on Topology and Weight Evolving Artificial
Neural Networks (TWEANN): crossover between
different topologies, protection of structural innova-
tion using speciation and minimizing dimensio-
nality[16].

The real time variant of NEAT (rtNEAT) is largely
the same but because it would be too costly to replace
the whole population in real time members of the
population are constantly evaluated and are replaced
in the population by creating a new individual after a
certain number of game ticks or if the unit that is
represented by a member of the population dies [26].

NEAT and the real time variant rtNEAT has been
used in different AI problems with great success and is
able to solve highly complex problems [27]. We used
this algorithm in our system as decision making
mechanism for each game unit. A problem of NN is
that as we start to add more neurons to their topology
the amount of neural computation also increases. By
using rtNEAT to evolve the NN topology we eliminate
this problem and are able to use NN topologies tailor
made to the given task of unit micromanagement.

5 StarCraft AI script selection - http://tiny.cc/loeuew

Building an ontology or any knowledge systems
entails the creation of an abstraction model of the
target domain. Ontologies are defined as an explicit
specification of conceptualization [7]. They can be
used for knowledge acquisition, knowledge exchange,
knowledge-system design, domain-theory develop-
ment among many others. Description logics (DL) are
a set of formal languages that are typically used for
formalizing ontologies. One of the main benefits of
DLs is that they automatically check the consistency
of the ontology and that they classify new concepts
and instances. We used the Protégé ontology editor
and knowledge acquisition systems in order to create
our unit templates [6]. Modern video games have a
wide array of game units with different roles in the
core gameplay. At first, it may seem that creating
templates for each unit type in all game genres is a
monumental task but in reality unit types follow well
established archetypes. For example, most unit types
fall into two categories when it comes to their attack
range: melee and ranged. By exploiting this fact we
can easily create a game unit taxonomy that can be
mapped with relative easy to different game genres.
Protégé comes with reasoners that can make
inferences that assist in the unit template creation. We
used the Pellet reasoner [23].

3.3 MAS agents

We created a multi-agent system (MAS) that uses
neu- roevolution to evolve and/or adapt during game
play, meaning unit interaction. It is able to use each
unit to its full potential thus maximizing battle
performance. Each unit uses as its decision making
technique a neural network evolved using rtNEAT. In
fact, we can consider that the input values of these
networks will be used to create a tactical analysis and
the output will represent the result of this analysis.
Some of rtNEATs characteristics have influenced the
design of our system. As this algorithm needs a
starting topology to which it complexifies, we
generate this starting minimal topology using a unit
template based on querying our unit ontology.

Our system has 3 types of agents; Abstractor,
Spawn and Unit. The Abstractor agent handles all
external environmental percepts and has a role in
agent initialization. The Spawn agent handles unit
creation and evaluation. The process of selecting the
best performing phenotypes from the population and
the creation of offspring from them is the main goal of
this agent. In order to evaluate the population this
agent will receive from the Abstractor evaluation data
regarding the performance of each member from the
population. Unit agents represent a particular unit
from the game environment. They are initialized by
the Spawn agent and have to register with the
Abstractor agent in order to receive external
environment data. We will present each agent type and
function in more detail below as well as in Fig. 3.

The tasks a game AI has to accomplish can be split
up into three levels of abstraction. These layers have a

I. Gabriel, V.Negru, D. Zaharie

102

hierarchic structure based on the inherent tasks in the
video game domain.

The first level deals with high level thinking and
planning, in essence it has the highest level of
abstraction and deals with strategic decision making.
In this level of abstraction most if not all agents can be
considered proactive agents being able to run
autonomously. It is important to note that the mean
planning time for this level is 3 minutes.

The second level of abstraction handles tactical
planning and decision making. One example of such
planning is group movement and in some cases terrain
analysis and even opponent modeling. Tasks and
agents inherent to this level can be split into 2
categories: proactive agents which handle longer term
planning and reactive agents which receive and
efficiently process data and return the results. Because
reactive agents run in a stateless manner they are
highly scalable.

The third and last level of abstraction is that of
microman-agement or reactive control whose main
goal is to maximize unit utility. Because of the fine
grained nature of the task the mean execution time in
this level is under 1 second.

Not all game AIs need all three levels in order to
play an effective game, the decision for this being
based on the game genre. Racing games need only the
micromanagement layer while strategy games need all
three. As stated before, we focus on the micromana-
gement layer. The abstractor agent has a larger role as
it will also be the main source of percepts for the rest
of the layer.

Abstractor Agent
Abstractor agent is the central agent in the system.

It will handle almost all of environmental percepts.
These percepts will be processed using influence maps
as well as terrain analysis. This agent will send this
processed information to all other agents present in the
system which require environmental information. Also
it is important to note that not all information handled
by this agent is needed for other agents to perform
their functionalities. Event handling is needed to filter
what information is sent to every agent. In order to
facilitate this event handling all agents which want to
receive a specific environmental percepts will have to
register to the abstractor agent in order to receive the
requested percepts information. For instance, if a Unit
agent wants to receive information concerning enemy
strength in its immediate vicinity, it registers with the
abstractor agent which then sends the required
information to it.

Agents that form the system also receive
initialization information from this agent. When the
Spawn agent is first initialized it needs to know how
many and what type of agents there are in the
environment in order to create the appropriate Unit
agent. This agent creates and handles a database of
past environmental data. This was used for MAS fine-

tuning and will be used in future extension of our
system by other agents.

Spawn Agent
The Spawn agent handles unit agent creation,

evaluation and evolution. It has a cardinality of 1, and
by this we mean that there will be one such agent per
system. As its name implies it will create and initialize
unit agents. This initialization process consists in
creating the initial ANN topology consisting in a fully
connected feed forward neural network.

As we can see in Fig. 1 there are 13 input nodes
and 3 output nodes. There are 2 types of inputs:
internal and external. Internal inputs are 𝑅1 — 𝑅6 ,
which represent unit sensors. These are placed on the
unit agent as seen in Fig. 2. They are internal because
this information is not received from the abstractor
agent as this information is extremely critical to unit
agent capability to perform its assigned task. This
eliminates significant communication overhead
between the unit agents and the abstractor agent. With
the help of these sensors unit agents will be able to
sense enemy units as well as environmental obstacles
and hazards. The unit sensors take values in [−1, 0) if
an environmental obstacle is detected and (0,1] if an
enemy unit is detected. The bigger the value the closer
the enemy unit is to that unit sensor.

Figure 1. Starting Unit Agent Neural Network Topology

Figure 2. Unit Agent Sensory Field

Also there are two more internal inputs 𝐼𝑛 and 𝑇1.
𝐼𝑛 signals the range to the closest enemy unit. It can
have values in the range [−1,1]. If an enemy is within

Neuroevolution Based Multi-Agent System with Ontology Based Template Creation for Micromanagement in Real-
Time Strategy Games

103

firing range, the biggest value is assigned. 𝑇1
represents unit type. There are only two unit types
which we considered during micromanagement.

There are: melee and ranged units. Melee units
will have the value of −1 and ranged units will have
+1. Melee units are close combat units, their firing
range being zero as they have to get up close to enemy
units in order to attack them. Ranged units, on the
other hand, don't have this limitation thus having a
tactical advantage that in an ideal scenario can be
exploited by our system.

External inputs consist of the following values 𝑇2,
𝐹𝑛 , 𝐹𝑞 , 𝐸𝑛 , 𝐸𝑞 . These inputs are received from the
abstractor agent and are sent to every registered unit
agent. 𝑇2 represents unit type, the only difference
being that they represent the enemy units type that is
the closest to the current unit agent. 𝐹𝑛 represents the
current number of friendly units present in the
immediate vicinity while 𝐸𝑛 represents the number of
enemy units.

𝐹𝑞 represents the quality of the enemy units. This
refers to the relative strength of these units. For
example, in chess some pieces have a higher value, the
queen has a higher value then the knight. This is the
same in the case of most modern games. Although we
should note that this value is relative. By this we mean
the intransitive superiority problem which states no
clear superiority based only on unit type and ca-
pabilities. There is always a unit type or tactic that
nullifies the advantages or even the capabilities of a
particular unit. 𝐸𝑞 input is the quality of enemy units
and is similar to the 𝐹𝑞 and how it is assigned. For the
purpose of this micro-managing MAS layer, we
created only a limited ontology in order to identify
melee and ranged unit weaknesses.

It also receives abstracted environmental data from
the abstractor agent an it will use this information in
the evaluation process . This process entails gathering
information about the performance of the unit agents.
This information will be then incorporated in the
evaluation function.

As we mentioned above, we have 3 output neurons
which, in fact, will represent the decisions the neural
network has made based on its inputs. The first output
is 𝐴/𝑅 which represents whether the agent should
advance or retreat. 𝐹𝐹/𝐹𝐹 represents if the agent
should move right or left. And the last output 𝐹𝑖
represents if the agent should engage the enemy. If the
values are in the range of [0,1], the unit will attack and
in the [−1,0) range the unit will retreat. It is the same
in the case of the left and right action outputs.

Because rtNEAT continuously evaluates agent
performance the Spawn agent will receive evaluation
information for each agent present in the environment
until the game timer runs out or the unit agent dies in
battle. The game timer is a governing principle of
rtNEAT and is calculated based on equation (2).

The evaluation data the Spawn agent needs are as
follows: Nk, D D , D T , SURVIVE. Nk represents the

number of enemy units killed (from 0 to 24 units), D D
represents the total damage done to the enemy while
D T represents the damage taken from enemy units.
These can be quantified quite easily as they are
intrinsically represented by integer values. The main
problem is that SURVIVE is a boolean value as it can
be only true or false. We decided to give it a numerical
value of 40 for evaluation purposes. The variable 𝐴𝐴
is the aggressivity coefficient. In testing, it is set to 18
thus rewarding an aggressive style of play.
Equation (1) describes the function used to compute
the fitness value:

𝑓𝑒 = 𝑁𝑘 + 𝐴𝐴(𝐷𝐷
𝐷𝑇

) + 𝑆𝑆𝑅𝑆𝐼𝑆𝐸. (1)

After the evaluation is done and the best and worst
performing unit agents from the population are
identified the evolution process starts. We select the
best performing unit agents to replace either the worst
performing agent from the population or to replace a
killed unit. We use elitism to protect the best
performing agents to a certain extent as to ensure a
stable performance level during game play. This is
done by rtNEAT but we also created a Phenotype
database which saves unit agents that perform beyond
a certain threshold. This means that although the
phenotype might be killed of by rtNEAT we still have
a copy of it that can be used to bootstrap the
population if evolution doesn't deliver any meaningful
progress or even suffers from overfit- ting or gets
stuck in a local maxima.

As we can see in [16], rtNEAT has a number of
parameters that can be adjusted to better perform in its
given task. It is important to note that NNs perform
extremely well if they have a clearly defined task to
perform. Also if a problem can be easily solved using
a discrete series of steps and the problem to be solved
is static, a NN approach to solving these types of
problems is ill advised.

We can see a list of all the relevant parameters in
Table 1. We should note that not all parameters are
listed, and that the rest of the parameters were left at
their default values during the experimental run. We
used two sets of values because of the need for fast
evolution during the initial phases of the experiment
which will be further detailed in section 4. There are a
total of 9 relevant parameters for our system. The
compatibility threshold (𝛿𝑡) is the distance measure
between species and is used in speciation and can be
used to ensure that the desired number of species is
maintained by raising or lowering its value thus
making the inclusion into a species less or more likely.
The inter species mating is the likelyhood that
members from different species will recombine. The
recurrent connection parameter sets the likelihood of
recurrent connections being added during mutation.
Parameter 𝑃 represents the total population, 𝑚
represents the minimum time alive for any member of
the population measured in game ticks. In the case of
StarCraft 1tick ≃ 40ms. While add node and add link

I. Gabriel, V.Negru, D. Zaharie

104

represent the likelihood that a new node or link will be
added to the topology.

Table 1. rtNEAT Parameters

Parameter Value 1 Value 2

𝛿𝑡 [3.7-4.3] [3.7-4.3]
Inter Species Mating 0.004 0.001
Recurrent Connection 0.009 0.007

Number of Species 3 3

𝑃 12 12

𝐼 0.5 0.5

𝑚 400 500
add node 0.05 0.04
add link 0.03 0.02

As was shown in [26, 25], if members of the

population are removed too frequently from the
population, then they will not evolve to their full
potential and conversely if they are removed too
frequently, then evolution slows down thus the law of
eligibility was formulated:

𝑛 = 𝑚
|𝑃|𝑛

. (2)

From this law of eligibility, we can formulate how
many game ticks (𝑛) should elapse between
replacements. In the case of our system 𝑛1 = 66.7 and
𝑛2 = 83.3 . The 𝑛1 value is used during the initial
phase of the experiment while 𝑛2 for the later part.
Also we divide by 100 the evaluation function 𝑓𝑒 in
order to ensure that it takes values in the range [−1,1].

Unit Agents
Lastly unit agents represent each unit from the

game environment. Each of these is created by the
Spawn agent and must register with the abstractor
agent. As we mentioned before, each unit agent will
represent a particular unit from the game environment.
Each unit is also initialized by the Spawn agent.
Because in a dynamic system such as modern games
there are potentially hundreds even thousands of units
in the environment at any given time it initially seems
a poor design decision to create units for each of them.
However there are two good reasons that we chose to
create so many unit agents.

First we only have a maximum of 200 units in
Starcraft RTS. Most other genres of games use even
less units. First Person Shooters (FPS) use only about
20-30 units at any given time. So even a moderate
computing system could handle this amount of agents.
Also most units like resource gathering units don't
require specialized unit agents as they perform their
task automatically and most battles don't include the
entire army at the systems disposal so just a fraction of
unit agents will be actively evaluated and controlled.

On the other hand, because of the parallel nature of
MAS we can deploy some of the more resource
consuming agents on different computing nodes or

even on a cloud computing platform. Thus we could
have an extremely powerful computing backbone to
accomplish all the analysis and decision making in our
MAS.

Figure 3. Ontology Outline

Unit Template Usage
Our ontology consists of two main classes:

GameObjects and ObjectProperties. As we are
currently only interested in game units the
GameObject class consists only of melee and ranged
unit subclasses. The ObjectProperties class is the
superclass for all the properties each unit can have. As
an example we take two units, a zealot which is a
melee unit and a dragoon which is a ranged unit.
Fig. 3 represents the basic template ontology. We can
see that we have a number of object properties which
we use to create our starting topology. In Table 2 we
see what each object property defines. By querying the
ontology we get that the zealot unit is a melee unit
with ground attack and no special ability.

Table 2. Object Properties

Property Function

hasMovement Defines the standard movement range of
untis

hasRange Defines range of weapons as well as sight
hasAbility Defines if the unit has special abilities

hasOffensive Defines what target the unit can attack
hasDefensive Defines the overall health of the unit

4. Experiments
Implementation

Because most of the current commercial games are
closed source users cannot directly create AI systems
for these games, external third party tools are used
instead to inject the custom AI into them. In the case
of StarCraft there is the BWAPI that enables users to
inject their custom AI into the game. It was developed
in C++ but extensions that allow users to use it for

Neuroevolution Based Multi-Agent System with Ontology Based Template Creation for Micromanagement in Real-
Time Strategy Games

105

other languages have been implemented. We used the
ProxyBot extension written for Java. BWAPI splits the
game into 5 basic objects: game, player, unit, bullet,
force.

The game object holds all information about the
current game state. The player object holds
information that the player would have during game
play. Unit object represent the pieces in the game like
units and resources. Bullet objects represents
projectiles from ranged units. The force object
represents a collection of players attempting a singular
objective.

The MAS itself is created using JADE where the
abstractor agent is mapped to a GameObject which
helps the system to keep track of what it is doing as
well as GameUpda- teObject which updates the
environment state. Because of the three databases
present in our system we use the JADE DataStore
ability. In later versions of our system we will create a
different database implementation but as our system
does not produce a large amount of data this setup has
proved adequate.

Also all behaviors from the systems agent, as seen
in Fig. 4, are threaded behaviors because the three
communication protocols (sdRegData, sdUinitEval,
sdUinitEvol) are not synchronized and can operate
independently.

As an example protocol we have Fig. 5.
representing sdEVALDATA. This protocol handles the
external data necessary for Unit agent evaluation. The
INFORM EVAL-DATA message loops until the game
instance ends or a fatal failure has occurred.
CONFIRM EVALDATA is sent only once the first
iteration of INFORM EVALDATA is sent. This is
done in order to ensure that the message has been
received. The messages INFORM CORRUPT and
INCOMPLETE are sent when data are incomplete or
are in an inconsistent state. Resend REVAL DATA
resends the last message before one of the two
exception messages has been received.

It should be also noted that the population used by
rt-NEAT is stored in the Phenotype Data Base (DB) in
XML format. Once a new NN topology has been
evolved the XML will be loaded using the TopLoad
Java object into the appropriate Unit agent.

Figure 4. Systems Architecture

Figure 5. Diagram of sdEVALDATA Protocol

Experimental setup
We used the tier 1 tournament arena maps from the

AIIDE StarCraft competition. These maps have a
simple square shape to best highlight micro-
management abilities. There are 2 phases in our
experiment to best test our systems learning
capabilities. We chose as our two unit types from the
Protoss race: Zealot for the melee unit and Dragoon
for the ranged unit.

During the first phase our systems performance
was evaluated against the built in AI system of the
game. In Star- Craft the AI is represented by a script
loaded at the beginning of the game. For each of the 3
races there exist 2 scripts6. These scripts are extremely
predictable once the player played against them for a
limited amount of time. We ran 300 matches of 12
versus 12 ranged units where one group was
controlled by our MAS while the other group by the
standard (vanilla) AI. The match starts with all 12
units in the environment. In order to win a match our
system has to deplete the enemy AIs reinforcement.
Each player has 100 units in reserve, once a unit dies a
new one is created from the reserves. Other 300 games
were run where instead of ranged units melee units
were used. This setup was chosen because of the
inherent difference in play style of the two unit types
will help in the testing of the adaptive capability of
our system. The fitness is calculated based on
equation (1).

During the first phase the ranged unit versus melee
unit experiments where also done. During the first 300
games our MAS played as the ranged units and for the
second 300 games it played as the melee units.
Because the melee units have a tactical disadvantage
against the ranged units with this setup we wish to see
if our system can utilize this advantage or in the case
of the second type of matches to nullify it by efficient
unit micromanagement.

6 StarCraft AI script selection - http://tiny.cc/loeuew

I. Gabriel, V.Negru, D. Zaharie

106

The second and last phase consists of our MAS
against preexisting AI systems from the AIIDE 2010
competition. We used the EISBOT and Overmind and
played 300 matches against each one of them. We also
used during this phase of the task the best performing
members of the population from phase 1 to bootstrap
the evolutionary process of phase 2. Also the rtNEAT
was set to the second values detailed in Table 1 in
order to ensure a more stable rate of evolution.

There are two important facts that need to be
mentioned. First because of a memory leak problem it
is impossible to run more than 500 games
consecutively. The program becomes extremely
unstable if run for an extended period without
restarting it. In our system we set the testing runs to no
more than 300 consecutive games.

The second consideration is a limitation of
StarCraft as we need to separate instances of the game
to run in order to test our system against other AI
systems such as EISBOT. The two game instances
communicate with each other through LAN
connections. There are ways to run 2 instances of the
game on the same computer but we used separate
computers for each game instances.

Results

Phase 1
As we mentioned before the testing platform for

our MAS is StarCraft. It should be noted that because
of the nature of the game, time is measured in game
ticks as opposed to seconds. So let us consider that 1
game tick = 40 ms. If we consider that a new unit will
be created every 500 ticks and we have a maximum
number of 100 units that can be created. We have
50000 game ticks for each match which means 33 per
game. This is, of course, the worst case scenario as
running 300 games that last each of them 33 minutes
would be extremely impractical. Thus we sped up the
game with a factor of 16. It follows that on average
300 games took 4 hours.

As we can see from Table 3, our system can
consistently beat the in game AI during all of the
matches. It performs best when it can exploit the
inherent tactical superiority of the units that are under
its control. For example, it won 89% of the matches
played with it controlling ranged units against melee
units by the technique known in gaming as kitting. In
principle this means that the range units don't sit still
while fighting but keep moving thus being able to
minimize the damage done by enemy melee units that
need to get in close in order to attack. Our system won
65% when controlling melee units against ranged
units but considering the built in AI won only 11% of
games when controlling the melee our system
performed extremely well.

Fig. 6 represents the evolution of the average
fitness during the 300 matches. We can see that in the
beginning the fitness values fluctuate substantially.
This was expected because of the relatively high
rtNeat parameter values set as seen in Table 1. After

30 games the fitness values start to stabilize and at
game 182 the fitness values hit a local maxima. By
this we mean that the values stagnate in both cases
presented in Fig. 6. It should be also noted that the
highest fitness value achieved was 0.8 out of a
maximum value of 1. It is extremely unlikely that
even if we run thousands of games that any agent
would reach that high mark nor is it necessary. At a
fitness value of 0.5 units are sufficiently evolved to
pose a significant challenge to players. They are
capable of exploiting tactical weaknesses of the enemy
in a consistent manner.

Our system is able to rapidly learn and converge to
a higher fitness value during a single match. In Fig. 7
we see the evolution during a period of 3000 game
ticks from a fitness value of 0.4 to 0.6. This means
that in a 2 minute battle our system is able to adapt at
a rate of 0.2 fitness points in the ideal case. On
average the adaptation rate was 0.02 every 3000 game
ticks. During empirical testing it was shown that the
learning rate is fast enough to make this a viable real
time learning technique.
Table 3. Results for all phase 1 experimental runs - R
represents Ranged while M represents Melee

Type Of Game Win Average Fitness Best Fitness

R vs R 77% 0.69 0.76
M vs M 74% 0.65 0.7
M vs R 65% 0.53 0.71
R vs M 89% 0.72 0.8

Figure 6. Best and worst experimental run - x axis

represents the number of games while the y axis represents
the fitness value

Figure 7. Evolution of fitness during a single game

Neuroevolution Based Multi-Agent System with Ontology Based Template Creation for Micromanagement in Real-
Time Strategy Games

107

Phase 2
During the last phase our system played against

the standard game AI which utilized standard FSM. In
this phase we evaluated our MAS against two more
sophisticated AI systems EISBOT and Overmind. As
illustrated in the results of the AIIDE 2011
competition results7, these systems have a significant-
ly higher performance. Because of this, we changed
the parameter setting of rtNEAT to the second values
listed in Table 1 to ensure a more stable performance
from the beginning of the experiment. Also we used
the best evolved individuals from phase 1 to bootstrap
the evolution process in this phase. This technique has
proven to be extremely effective as the limited runs
done with a minimal starting topology did not
converge to a sufficiently good fitness value in a
reasonable time.

We ran the same types of experiments as in the
previouse phase for EISBOT and Overmind as can be
seen in Tables 4 and 5. Our result mimicked the ones
from phase 1 in that our system performed at its best
when it controlled ranged units and the worst
performance when it commanded melee units against
ranged units. However this is to be expected as in the
latter scenario there is a significant tactical advantage
on the side of the ranged units. There are two
immediate observations that we can make. First, our
system statistically outperformed EISBOT in unit
micromanagement. The best win ratio of 69% was in
the scenario in which our system had the tactical
advantage. As before, it was able to recognize and
utilize this. The second observation is that although
we bootstrapped with the phase 1 best performing
population, the average fitness has a smaller value.
This is because the fitness function is relative to the
performance of the enemy against which our system
plays.

Table 4. Results for games played against EISBOT

Type of Game Win Average Fitness Best Fitness

R vs R 57% 0.64 0.76
M vs M 52% 0.63 0.73
M vs R 51% 0.60 0.69
R vs M 69% 0.68 0.79

Table 5. Results for games played against OVER-MIND

Type of Game Win Average Fitness Best Fitness

R vs R 51% 0.53 0.64
M vs M 50% 0.52 0.7
M vs R 43% 0.5 0.6
R vs M 61% 0.53 0.67

7 AIIDE 2011 Competition Results - http://tiny.cc/ipeuew

We also executed experimental runs against the
Overmind AI system. This system was the overall
winner of the AIIDE 2010 StarCraft competition8. Our
system was able to statistically beat Overmind in unit
micromanaging except for the case when Overmind
had the advantage where our system was unable to
beat it consistently wining only 43% of the time. It
should be noted that if more experimental runs had
been made, than we are convinced that our system
could consistently defeat Overmind even here. The
only major drawback would be the amount of time
and computational resources necessary to accomplish
this task.

5. Conclusions
We designed a MAS able to handle unit

micromanage- ment in RTS games. Also it is able to
learn and adapt to new situations and tactics by using
rtNEAT. It introduces a MAS designed specifically
around neuroevolution creating agents that handle
different steps of rtNEAT. We were able to prove that
our MAS outperforms the standard AI found in
StarCraft in all the experimental scenarios.

It also enjoyed success in phase 2 when it was
evaluated against more sophisticated AI
implementations being able to statistically beat them
with the exception of one scenario where it only won
43% of the time. This however is still much better
than the wast majority of AI implementations for
StarCraft9.

We also showed that rtNEAT has a learning rate
which makes it suitable for fast adaptation in real time
by having an average fitness gain of 0.02 per 3000
game ticks. This rate can be adjusted either by
optimizing rtNEAT parameters or the addition of more
members to the population being evaluated/evolved.
During testing we chose the population size of 12
because of the default squad size selectable in
StarCraft. In a typical engagement there are 2 to 3
groups of 12 units each, so the population can be
easily expanded thus ensuring more interaction
between population members and the enemy that can
be used for evaluation.

Our system is capable of identifying and utilizing
tactical advantages in battle as well as raising the
utility of units that have a tactical inferiority. By the
process of bootstrapping we can guarantee a minimum
level of performance at the beginning of a new
evolution cycle.

One shortcoming of our system that has been
observed is that there is a communication bottle neck
when more than 150 unit agents are created and
registered with the abstractor. This bottleneck is more
of a technological limitation and can be easily
avoided. We can create Unit agent only when agents

8 Overmind winner of AIIDE 2010 StarCraft Competition -
http://tinyurl.com/6lhur6b
9 AIIDE 2011 Competition Results - http://tiny.cc/ipeuew

I. Gabriel, V.Negru, D. Zaharie

108

are in combat because there are a limited number of
units participating in combat at any one time. For the
rest of the time a more traditional AI can handle unit
movement and deployment.

The ontology based template creation which was
used to create starting NN topologies has proven to be
effective. This technique could be augmented by
adding support to automated ontology learning which
could enable the mapping relations between unit
types. This in turn can be used to solve intransitive
superiority between said unit types.

Our MAS is a good platform from which we can
build upon and expand our system in order to build a
complete RTS game.

6. Future work
In this paper we adjusted the parameters of

rtNEAT by empirical testing although automatic
parameter adjusting techniques can be applied to
dynamically alter the algorithms behavior in certain
situations. Also we used an extremely limited
ontology to create starting NN input and outputs thus
enabling new Unit agent types to be created as needed.

Our MAS is focused on only one facet of RTS
games namely micromanagement. By applying a
bottom up design method we can build additional
layers to handle other tasks in the game. For example,
a tactical layer can handle terrain analysis and target
prioritization, while a strategic layer can handle high
level planning such as economic planning.

Our starting topology based on a unit template
ontology has proven effective in our experiments. One
of the possible expansions of this idea is to create a
generalized ontology so that many more information
as well as inter object relationships (like the
intransitive superiority problem) could be expressed
using an ontology an then queried during game-play.

Acknowledgments
This work was partially supported by the strategic

grant POSDRU/CPP107/ DMI1.5/S/78421, Project ID
78421 (2010), co-financed by the European Social
Fund - Investing in People, within the Sectoral
Operational Programme Human Resources
Development 2007 - 2013.

References
[1] D. W. Aha, M. Molineaux, M. Ponsen. Learning to

win: case-based plan selection in a real-time strategy
game. In: Proceedings of the 6th international
conference on Case-Based Reasoning Research and
Development, ICCBR'05, Berlin, Heidelberg, 2005,
Springer-Verlag, pp. 5-20.

[2] S. C. Bakkes, P. H. Spronck, H. J. van den Herik.
Opponent modelling for case-based adaptive game
{AI}. Entertainment Computing, 2009, Vol. 1, No. 1,
27-37.

[3] M. Buro. Real-time strategy gaines: a new ai research
challenge. In: Proceedings of the 18th International
Joint Conference on Artificial intelligence, IJCAI'03,
San Francisco, CA, USA, 2003, Morgan Kaufmann
Publishers Inc., pp. 1534-1535.

[4] M. Chung, M. Buro, J. Schaeffer. Monte Carlo
planning in RTS games. CIG 2005.

[5] M. Fagan, P. Cunningham. Case-based plan
recognition in computer games. In: Proceedings of the
Fifth ICCBR, 2003, Springer, pp. 161-170.

[6] J. H. Gennari, M. A. Musen, R. W. Fergerson,
W. E. Grosso, M. Crubézy, H. Eriksson, N. F. Noy,
S. W. Tu. The evolution of protégé: an environment
for knowledge-based systems development.
International Journal of Human-Computer Studies,
2003, Vol. 58, No. 1, 89-123.

[7] T. R. Gruber. Ontolingua: A mechanism to support
portable ontologies. Tech. rep. 1992.

[8] U. Jaidee, H. Muñoz Avila, D. W. Aha. Integrated
learning for goal-driven autonomy. In: Proceedings of
the Twenty-Second international joint conference on
Artifcial Intelligence IJCAI'11, AAAI Press, 2011,
Vol. 3, pp. 2450-2455.

[9] S. H. Jang, J. W. Yoon, S. B. Cho. Optimal strategy
selection of non-player character on real time strategy
game using a speciated evolutionary algorithm. In:
Proceedings of the 5th International Conference on
Computational Intelligence and Games CIG'09,
Piscataway, NJ, USA, 2009, IEEE Press, pp. 75-79.

[10] D. P. Josyula. A unified theory of acting and agency
for a universal interfacing agent. PhD thesis. College
Park, MD, USA. 2005. AAI3202442.

[11] P. Langley, D. A. Choi. A unified cognitive
architecture for physical agents. In: Proceedings of the
21st National Conference on Artificial intelligence
AAAI'06, AAAI Press, 2006, Vol. 2, pp. 1469-1474.

[12] J. F. Lehman, J. Laird, P. A. Rosenbloom. A gentle
introduction to soar, an architecture for human
cognition. In: S. Sternberg & D. Scarborough (Eds),
Invitation to Cognitive Science, MIT Press, 1996.

[13] J. M. Lewis, P. Trinh, D. Kirsh. A corpus analysis of
strategy video game play in starcraft: Brood war. In:
Proceedings of the 33rd Annual Conference of the
Cognitive Science Society, 2011.

[14] A. B. Loyall. Believable agents: building interactive
personalities. PhD thesis. Pittsburgh, PA, USA. 1997.
AAI9813841.

[15] H. Muñoz Avila, U. Jaidee, D. W. Aha, E. Carter.
Goal-driven autonomy with case-based reasoning. In:
Proceedings of the 18th International Conference on
Case-Based Reasoning Research and Development
ICCBR'10, Berlin, Heidelberg, Springer-Verlag, 2010,
pp. 228-241.

[16] J. Olesen, G. Yannakakis, J. Hallam. Real-time
challenge balance in an RTS game using RTneat. In:
IEEE Symposium on Computational Intelligence and
Games CIG '08, 2008, pp. 87-94.

[17] S. Ontañón, K. Mishra, N. Sugandh, A. Ram.
Learning from demonstration and case-based planning
for real-time strategy games. In: B. Prasad (ed.), Soft
Computing Applications in Industry, Vol. 226 of
Studies in Fuzziness and Soft Computing, Springer
Berlin Heidelberg, 2008, 293-310.

[18] L. Pryor, G. Collins. Planning for contingencies: a
decision-based approach. AI Access Foundation,
Vol. 4, pp. 287-339.

Neuroevolution Based Multi-Agent System with Ontology Based Template Creation for Micromanagement in Real-
Time Strategy Games

109

[19] S. Rabin. AI Game Programming Wisdom. Charles
River Media, Inc., USA. 2002.

[20] S. J. Russell, P. Norvig. Artificial Intelligence: A
Modern Approach, 2 ed. Pearson Education. 2003.

[21] C. E. Shannon. Programming a computer for playing
chess. In: Computer chess compendium. Springer-
Verlag New York, Inc., USA, 1988, 2-13.

[22] A. Shantia, E. Begue, M. Wiering. Connectionist
reinforcement learning for intelligent unit micro
management in starcraft. In: The 2011 International
Joint Conference on Neural Networks (IJCNN), 2011,
pp. 1794-1801.

[23] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur,
Y. Katz. Pellet: A practical OWL-DL reasoner. Web
Semantics: Science, Services and Agents on the World
Wide Web 5, 2007, Vol. 2, 51-53.

[24] P. Spronck, S. I. Kuyper, E. Postma. Difficulty
scaling of game AI. In: Proceedings of the 5th
International Conference on Intelligent Games and
Simulation (GAME-ON 2004), 2004, pp. 33-37.

[25] K. O. Stanley, B. D. Bryant, R. Miikkulainen. Real-
time neuroevolution in the nero video game. IEEE
Trans. Evol. Comp, 2005, Vol. 9, No. 6, 653-668.

[26] K. O. Stanley, R. Miikkulainen. Efficient reinforce-
ment learning through evolving neural network
topologies. In: Proceedings of the Genetic and

Evolutionary Computation Conference GECCO '02,
San Francisco, USA, 2002, Morgan Kaufmann
Publishers Inc., pp. 569-577.

[27] K. O. Stanley, R. Miikkulainen. Competitive
coevolution through evolutionary complexification. J.
Artif. Int. Res., 2004, Vol. 21, No. 1, 63-100.

[28] T. Szczepanski, A. Aamodt. Case-based reasoning for
improved micromanagement in real-time strategy
games. In: Proceedings of the Workshop on Case-
Based Reasoning for Computer Games, 8th
International Conference on Case-Based Reasoning
ICCBR, 2009, 139-148.

[29] M. van der Heijden, S. Bakkes, P. Spronck.
Dynamic formations in real-time strategy games. CIG,
2008, 47-54.

[30] B. G. Weber, M. Mateas, A. Jhala. Applying goal-
driven autonomy to starcraft. AIIDE. 2010.

[31] B. G. Weber, M. Mateas, A. Jhala. Building human-
level ai for real-time strategy games. In: Proceedings
of the AAAI Fall Symposium on Advances in Cognitive
Systems, San Francisco, 2011, AAAI Press.

[32] S. Yildirim, S. B. Stene. A survey on the need and use
of AI in game agents. In: Proceedings of the 2008
Spring simulation multiconference SpringSim '08, San
Diego, USA, 2008, Society for Computer Simulation
International, pp. 124-131.

Received June 2013.

