
98 

ISSN 1392–124X (print), ISSN 2335–884X (online) INFORMATION TECHNOLOGY AND CONTROL, 2014, T. 43, Nr. 1 

Neuroevolution Based Multi-Agent System with Ontology Based Template 
Creation for Micromanagement in Real-Time Strategy Games 

Iuhasz Gabriel, Viorel Negru, Daniela Zaharie 

West Univeristy of Timisoara, 
Timisoara, Romania 

e-mail: iuhasz.gabriel@info.uvt.ro, vnegrul@info.uvt.ro, dzaharie@info.uvt.ro 

  http://dx.doi.org/10.5755/j01.itc.43.1.4600 

Abstract. This paper presents a multi-agent system that handles unit micromanagement using online machine 
learning in real time strategy games. We used rtNEAT algorithm in order to obtain customized neural network 
topologies, thus avoiding to complex network architecture. We use an ontology based template to create suitable input 
and outputs for unit agents enabling them to cooperate and form teams for their mutual benefit and eliminating 
communication overhead. The AI system was implemented using the JADE framework and the BWAPI handled 
communication between our system and the game. We have chosen Starcraft as a testbed. As a baseline we compared 
the in game AI as well as several other AI solutions that use adaptive mechanisms. 
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1. Introduction 
Real-time strategy (RTS) games are games where a 

player has to engage in real time actions. The 
objective of these games is to achieve either military 
or territorial superiority over opponent factions. Each 
player has the capability tobuild structures, collect 
resources and build or train military units as well as 
non-combat utilitarian units. By using the utility units 
to collect resources players can expand their base and 
create additional units. These units can then be 
commanded to attack opponent armies or bases. 

Video games and in particular RTS games have 
gained popularity as testing platforms for novel 
machine learning and AI methods for real world 
systems [22]. This is largely thanks to the fact that 
most games are populated by intelli-gent entities that 
can be considered agents that accomplish a series of 
finite and clear goals in real time stochastic 
environments using incomplete information. This 
makes games an ideal platform for obtaining high 
quality behaviours from agents as well as groups of 
coordination behaviours using machine learning 
techniques [2]. 

Most games have complex non-linear relationship 
between environment and the agents that interact with 
it. This makes neural networks a prime candidate for 
adaptive game AI systems [24]. However the game 
industry is reluctant to use machine learning 
techniques in commercial titles beause of the 

perceived high cost in both knowledge acquisition and 
agent coordination. One other major downside is the 
fact that no guaranties can be made to overall system 
performance with current learning methods. Some 
games have been released which do use some form of 
adaptation mechanism as their core gameplay 
mechanic. One good example are the games from the 
Black & White series published by Lion Head studios 
in 2001 [19]. The goal of the game is to train a 
creature using reinforcement learning techniques.It is 
prone to learn less than optimal behaviours. 

Modern games use non-adaptive techniques in 
their AI systems. These techniques have one major 
disadvantage as once a weakness is discovered it can 
be exploited repeatedly thus ruining gameplay [29]. A 
good RTS AI system must be able to adapt during 
gameplay (online). This adaptation is manly focused 
on the adaptation to the opponents behaviours in a 
complex partially observable game environment 
where there is little time for optimization. To 
accomplish this goal of real time learning, many 
techniques have been proposed and one of the most 
promising is Neuroevolution of Augmenting 
Topologies (NEAT) proposed by Stanley [26]. 

NEAT is used to evolve and train NN 
automatically. Evolution adjusts both the connection 
weights and the topology of the NN. It can add or 
remove connections and neurons to the NN topology 
as well as modify the network connection weights. A 
real - time version of NEAT called rtNEAT has been 
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created and used in a proof of concept game called 
NERO [25]. The goal in NERO is to deploy agents in 
a training environment where they are trained in some 
desired tactics and then are pitted against enemy 
agents to see how well they have been trained. 

Game AI development is not an easy task and 
requires a lot of research and development. Usually 
the development of the main game engine and that of 
the AI subsystems is done at the same time. This is 
usually a good approach however during the latter 
stages of development any changes to the core 
gameplay mechanics have a catastrophic effect on AI 
systems based on non-adaptive techniques. It is also 
important to note that game AI is not reused. By 
establishing a MAS that is able to adapt to new 
situations in real time not only aids gameplay but also 
reusability. In order to facilitate interoperability and 
reusability formalizing ontologines are needed. In this 
paper we focus on a simple unit template ontology 
that is used to create starting topologies for our NN 
trained with rtNEAT. 

In this paper we developed a multi-agent system 
(MAS) that is able to adapt and learn on-line using 
rtNEAT. Each unit will be controlled by a NN which 
will then adapt themselves automatically to different 
unit types and tactics. We used the RTS StarCraft 
developed by Blizzard Entertainment for our 
experiments. Starcraft is well suited for our task 
because it is used in many competitions and in some 
countries such as South Korea it is considered a 
national sport. Also there are a number of 
competitions aimed to test AI systems against each 
other1. In StarCraft the single objective given to the 
player is to destroy all opponents. In order to 
accomplish this objective numerous tasks must be 
completed such as gathering resources, creating 
structures, training units and attacking the enemy. 
These tasks are the bare minimum of what is 
necessary to accomplish the main objective. 
Additional tasks can be performed in order to gain an 
advantage over the enemy such as scouting and 
research. In Starcraft there are three distinct races; 
protoss, Terran, Zerg. In contrast to other RTS games 
these races have radically different play styles and at 
the same time they are equally matched. 

This paper is an extended version of a paper in 
which further details are given for the MAS that 
handles unit micromanagement and is able to 
adapt/learn during game play. To achieve this, we 
adapted the rtNEAT algorithm in order to obtain tailor 
made NN topologies thus eliminating overcomplexi-
fication by manual design. Also by defining internal 
and external inputs for each agent we managed to 
create independent agents that are able to cooperate 
and form teams for their mutual benefit and at the 
same time eliminate unnecessary communication 
overhead. The MAS was implemented using Java 
Agent DEvelopment Framework (JADE) and the 

                                                           
1 http://eis.ucsc.edu/StarCraftAICompetition 

BWAPI to interface with the game itself. We used an 
ontology based template to create the initial NN 
topology. More details are presented in Section 3. We 
used as a baseline the in game AI and also tested it 
against other adapting AI systems in order to compare 
their performance against our system. The experi-
mental setup as well as the results are presented in 
Section 4, while the conclusions and future work are 
presented in Sections 5 and 6. 

2. Related work 
Current video games are ideal platforms to test 

novel AI techniques. RTS games are particularly 
interesting because they provide several challenges: 
adversarial real-time planning, decision making under 
uncertainty, opponent modeling (learning), spatial 
temporal reasoning, resource management, 
collaboration, pathfinding [3]. They also poses an 
extremely complex environment which according to 
the classification given by Russell and Norvig [20] is: 
partially observable, deterministic, sequential, 
dynamic and continuous. RTS games have a massive 
state space. When comparing it to chess which has 
according to [21] a state-space estimated to 1043 a RTS 
game has 1011500 according to [1]. Also, the number of 
actions available to the player is also superior in the 
case of RTS as it has approximately 1 million possible 
actions while chess has only 30. 

Until recently the main stream game AI system 
used traditional static techniques such as Finite 
StateMachines (FSM), Decision Trees etc. Because 
these techniques lack the ability to adapt they are 
easily defeated after the player learns each method 
idiosyncrasies. Researchers are starting to focus more 
and more on machine learning techniques in order to 
make game AI more challenging by making it less 
predictable. 

Static techniques have one major drawback: they 
become predictable after a relatively short amount of 
time but also they are extremely hard to maintain and 
debug when they are used to model more complex 
behaviors. For example, FSMs use transitions to 
determine when to switch states. These transitions as 
well as the number of states (𝑠) grow exponentially 
with the number of events (𝑒): 𝑠 = 2𝑒 , consequently 
increasing the number of transitions or arcs (𝑎) even 
faster: 𝑎 = 𝑠2. 

Rule-base Systems are brittle and inflexible as 
when faced with a problem that is out of bounds with 
their knowledge base, they can not cope as they are 
unable to rely on past experience to select a similar 
rule or update their rule base. Similarly to FSMs, 
expert knowledge is used in their creation which, once 
in place, can not be modified and requires substantial 
effort to maintain and debug. Some techniques are 
ubiquitous such as the A* algorithm commonly used 
for path-finding and FSM for decision making. These 
two techniques make up more than 2/3 of current 
game AI systems [32]. 
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In RTS games, computational intelligence has been 
applied to tactics using Monte Carlo [4] planning and 
strategy selection using NEAT [9]. 

Cognitive architecture is designed for developing 
mechanisms that highlight human cognition and 
provides the framework necessary for integrating 
heterogeneous competences and are also able to 
reason about multiple goals [11]. It also focuses on 
performing evaluation at the system level [12] and 
also uses means-ends analysis when confronted with 
new problems. However it lacks inherent capabilities 
for solving some fundamental game AI problems such 
as low level decision making (micromanagement). 

SOAR is one of the best known examples of a 
cognitive architecture and features multitasking as 
well as planning capabilities, it performs state 
abstractions and employs a learning mechanism called 
chunking. This is, in fact, a caching mechanism and is 
used to intermix learning and problem solving [12]. 

Goal-driven autonomy (GDA) model was designed 
in order to handle unanticipated failures during plan 
execution in complex, dynamic environments [1]. 
GDA uses a conceptual model that enables agents to 
detect, and reason about unanticipated events. One of 
its more interesting features is the fact that it contains 
several components and interfaces between these 
components. It leaves the implementation details 
unrestricted. This model has been used for RTS games 
by [15]. Also some ML techniques such as reinforce-
ment learning have been used in [8]. 

Reactive planning systems have been used to 
create autonomous software agents for a number of 
years [14]. Their main design feature is the fact that no 
apriori planning is done and actions are selected at 
every instant. This enables these types of systems to 
handle meta-game concepts such as novel game 
strategies. Systems that use reactive planning are 
particularly adept at handling real-time events in 
dynamic environments such as tasks that require real-
time actions. The main strength when it comes to 
game AI is the ability to enact incomplete plans while 
pursuing goal-directed tasks [18, 10]. 

Case-based reasoning is a methodology that 
enables the creation of systems that learn from prior 
experience [17]. It has been applied to solve some 
particular problems in RTS games such as strategic 
and tactic selection [5] as well as micromanagement 
[28]. It is important to note that because of the 
extremely challenging environment and challenge 
RTS games pose to AI researcher, a number of 
competitions are held in order to test AI systems 
against each other. One prime example is the 
competition held during the AIIDE conference for 
which the BWAPI was developed. 

We should also note that some interesting solutions 
to RTS learning AI problem have been proposed 
during the AIIDE conferences StarCraft competition2. 
During this competition AI systems play against each 
                                                           
2 AIIDE 2012 StarCraft Competition - http://tinyurl.com/cv2e2af 

other in a tournament style competition. There are 2 
classes of competition. The first is a full AI vs AI 
competition where the systems play the game from the 
beginning until one of them loses. The second one 
focuses on unit micromanagement where the systems 
only play set piece battles. 

The overall winner of the 2010 competition was 
the Overmind agent created by a team from Berkeley 
University. It used a shallow planner to enforce 
resource constraints and tech progression. It also used 
a potential field whose parameters were tweaked by 
reinforcement learning 3 . Another noteworthy agent 
from this competition is the EISBOT developed by 
Weber, Mateas and Jhala from the University of Santa 
Cruz. They used Goal-Driven Autonomy conceptual 
model [30]. However this system doesn't deal 
explicitly with the problem of micromanagement 
instead implementing static methods that the Starcraft 
gaming community identified [31]. 

Nova 4  was developed by Alberto Uriarte from 
Technical University Barcelona. It uses a plethora of 
AI techniques such as: potential fields, FSM, flocking 
etc. The most important contribution of this system is 
the micromanagement subsystem which creates micro 
agents for each game unit which are then coordinated 
by squad agents. These agent types use FSM for their 
decision making. 

Our system uses the rtNEAT algorithm to evolve 
the NN that handles each game units microma-
nagement. In most RTS game such as Starcraft the 
number of commands issued to units during a battle is 
directly proportional to the chance of winning [13]. 
By using an ontology based template for NN starting 
topology that enable us to evolve tailor made NN for 
unit micromanagement we show that our MAS is a 
good starting point to create a fully operational AI 
system that incorporates online machine learning 
techniques. 

3. MAS architecture 

3.1 The RTS micromanagement domain 

In RTS games there are three layers of abstraction 
when it comes to behavior: high, medium and low. 
There is the strategic layer in which, as its name 
implies, the overall strategy is being planned. In this 
layer we decide if we want to focus on defense, 
offense, economy, research or which enemy to attack 
first. The second layer is the tactical layer. When the 
overall strategy has been decided upon, then this layer 
handles the planning of attacks and defense. This layer 
handles terrain analysis, army movement etc. The 
third and last layer is the micromanaging layer. 

RTS players issue movement or attack commands 
in order to increase individual unit effectiveness 

                                                           
3 Overmind winner of AIIDE 2010 StarCraft Competition - 
http://tinyurl.com/6lhur6b 
4 NOVA STARCRAFT AI - http://nova.wolfwork.com/ 
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during combat. By issuing these commands the player 
can in effect override the default low-level behavior of 
a unit. When a military unit receives a command to 
attack a particular location by default, it will attack the 
first enemy unit it comes into range. This type of 
behavior can lead to ineffective unit performance be-
cause of target selection lack of inter agent 
coordination and damage avoidance. A human expert 
level player will manually select the targets for each 
unit to engage. This technique enables units to focus 
fire on specific targets, which reduces the enemy unit 
effectiveness. We can also prioritize specific types of 
units or even issue fast movement commands. By 
using this technique we can force the enemy either to 
engage new targets or to pursuit. It is easy to see that 
by micro-managing unit actions we can increase the 
effectiveness of a squad or individual unit. 

Being a highly reactive process, micromanagement 
requires a lot of actions to be performed in a short 
amount of time. Expert human player can manage up 
to 300 actions every minute [31]. A direct correlation 
has been shown between the number of actions a 
player is capable of executing and the number of 
victories5. 

3.2. rtNEAT 

NEAT was developed by Stanley and Miikulainen 
[27]. It evolves both the connection weights and the 
topology of the NN. This in contrast with other 
genetic algorithms which are only used to evolve 
connection weights the topology being designed by 
human hands. The designing of a NN topology, 
namely the distribution of hidden neurons into hidden 
layers, is extremely difficult to do as a NN is 
considered to be a black box. There are three 
important contributions of NEAT to other methods 
based on Topology and Weight Evolving Artificial 
Neural Networks (TWEANN): crossover between 
different topologies, protection of structural innova-
tion using speciation and minimizing dimensio-
nality[16]. 

The real time variant of NEAT (rtNEAT) is largely 
the same but because it would be too costly to replace 
the whole population in real time members of the 
population are constantly evaluated and are replaced 
in the population by creating a new individual after a 
certain number of game ticks or if the unit that is 
represented by a member of the population dies [26]. 

NEAT and the real time variant rtNEAT has been 
used in different AI problems with great success and is 
able to solve highly complex problems [27]. We used 
this algorithm in our system as decision making 
mechanism for each game unit. A problem of NN is 
that as we start to add more neurons to their topology 
the amount of neural computation also increases. By 
using rtNEAT to evolve the NN topology we eliminate 
this problem and are able to use NN topologies tailor 
made to the given task of unit micromanagement. 
                                                           
5 StarCraft AI script selection - http://tiny.cc/loeuew 

Building an ontology or any knowledge systems 
entails the creation of an abstraction model of the 
target domain. Ontologies are defined as an explicit 
specification of conceptualization [7]. They can be 
used for knowledge acquisition, knowledge exchange, 
knowledge-system design, domain-theory develop-
ment among many others. Description logics (DL) are 
a set of formal languages that are typically used for 
formalizing ontologies. One of the main benefits of 
DLs is that they automatically check the consistency 
of the ontology and that they classify new concepts 
and instances. We used the Protégé ontology editor 
and knowledge acquisition systems in order to create 
our unit templates [6]. Modern video games have a 
wide array of game units with different roles in the 
core gameplay. At first, it may seem that creating 
templates for each unit type in all game genres is a 
monumental task but in reality unit types follow well 
established archetypes. For example, most unit types 
fall into two categories when it comes to their attack 
range: melee and ranged. By exploiting this fact we 
can easily create a game unit taxonomy that can be 
mapped with relative easy to different game genres. 
Protégé comes with reasoners that can make 
inferences that assist in the unit template creation. We 
used the Pellet reasoner [23]. 

3.3 MAS agents 

We created a multi-agent system (MAS) that uses 
neu- roevolution to evolve and/or adapt during game 
play, meaning unit interaction. It is able to use each 
unit to its full potential thus maximizing battle 
performance. Each unit uses as its decision making 
technique a neural network evolved using rtNEAT. In 
fact, we can consider that the input values of these 
networks will be used to create a tactical analysis and 
the output will represent the result of this analysis. 
Some of rtNEATs characteristics have influenced the 
design of our system. As this algorithm needs a 
starting topology to which it complexifies, we 
generate this starting minimal topology using a unit 
template based on querying our unit ontology. 

Our system has 3 types of agents; Abstractor, 
Spawn and Unit. The Abstractor agent handles all 
external environmental percepts and has a role in 
agent initialization. The Spawn agent handles unit 
creation and evaluation. The process of selecting the 
best performing phenotypes from the population and 
the creation of offspring from them is the main goal of 
this agent. In order to evaluate the population this 
agent will receive from the Abstractor evaluation data 
regarding the performance of each member from the 
population. Unit agents represent a particular unit 
from the game environment. They are initialized by 
the Spawn agent and have to register with the 
Abstractor agent in order to receive external 
environment data. We will present each agent type and 
function in more detail below as well as in Fig. 3. 

The tasks a game AI has to accomplish can be split 
up into three levels of abstraction. These layers have a 
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hierarchic structure based on the inherent tasks in the 
video game domain. 

The first level deals with high level thinking and 
planning, in essence it has the highest level of 
abstraction and deals with strategic decision making. 
In this level of abstraction most if not all agents can be 
considered proactive agents being able to run 
autonomously. It is important to note that the mean 
planning time for this level is 3 minutes. 

The second level of abstraction handles tactical 
planning and decision making. One example of such 
planning is group movement and in some cases terrain 
analysis and even opponent modeling. Tasks and 
agents inherent to this level can be split into 2 
categories: proactive agents which handle longer term 
planning and reactive agents which receive and 
efficiently process data and return the results. Because 
reactive agents run in a stateless manner they are 
highly scalable. 

The third and last level of abstraction is that of 
microman-agement or reactive control whose main 
goal is to maximize unit utility. Because of the fine 
grained nature of the task the mean execution time in 
this level is under 1 second. 

Not all game AIs need all three levels in order to 
play an effective game, the decision for this being 
based on the game genre. Racing games need only the 
micromanagement layer while strategy games need all 
three. As stated before, we focus on the micromana-
gement layer. The abstractor agent has a larger role as 
it will also be the main source of percepts for the rest 
of the layer. 

Abstractor Agent 
Abstractor agent is the central agent in the system. 

It will handle almost all of environmental percepts. 
These percepts will be processed using influence maps 
as well as terrain analysis. This agent will send this 
processed information to all other agents present in the 
system which require environmental information. Also 
it is important to note that not all information handled 
by this agent is needed for other agents to perform 
their functionalities. Event handling is needed to filter 
what information is sent to every agent. In order to 
facilitate this event handling all agents which want to 
receive a specific environmental percepts will have to 
register to the abstractor agent in order to receive the 
requested percepts information. For instance, if a Unit 
agent wants to receive information concerning enemy 
strength in its immediate vicinity, it registers with the 
abstractor agent which then sends the required 
information to it. 

Agents that form the system also receive 
initialization information from this agent. When the 
Spawn agent is first initialized it needs to know how 
many and what type of agents there are in the 
environment in order to create the appropriate Unit 
agent. This agent creates and handles a database of 
past environmental data. This was used for MAS fine-

tuning and will be used in future extension of our 
system by other agents. 

Spawn Agent 
The Spawn agent handles unit agent creation, 

evaluation and evolution. It has a cardinality of 1, and 
by this we mean that there will be one such agent per 
system. As its name implies it will create and initialize 
unit agents. This initialization process consists in 
creating the initial ANN topology consisting in a fully 
connected feed forward neural network. 

As we can see in Fig. 1 there are 13 input nodes 
and 3 output nodes. There are 2 types of inputs: 
internal and external. Internal inputs are  𝑅1 — 𝑅6 , 
which represent unit sensors. These are placed on the 
unit agent as seen in Fig. 2. They are internal because 
this information is not received from the abstractor 
agent as this information is extremely critical to unit 
agent capability to perform its assigned task. This 
eliminates significant communication overhead 
between the unit agents and the abstractor agent. With 
the help of these sensors unit agents will be able to 
sense enemy units as well as environmental obstacles 
and hazards. The unit sensors take values in [−1, 0) if 
an environmental obstacle is detected and (0,1] if an 
enemy unit is detected. The bigger the value the closer 
the enemy unit is to that unit sensor. 

 

 
Figure 1. Starting Unit Agent Neural Network Topology 

 

 
Figure 2. Unit Agent Sensory Field 

Also there are two more internal inputs 𝐼𝑛 and 𝑇1. 
𝐼𝑛 signals the range to the closest enemy unit. It can 
have values in the range [−1,1]. If an enemy is within 
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firing range, the biggest value is assigned. 𝑇1 
represents unit type. There are only two unit types 
which we considered during micromanagement. 

There are: melee and ranged units. Melee units 
will have the value of −1 and ranged units will have 
+1. Melee units are close combat units, their firing 
range being zero as they have to get up close to enemy 
units in order to attack them. Ranged units, on the 
other hand, don't have this limitation thus having a 
tactical advantage that in an ideal scenario can be 
exploited by our system. 

External inputs consist of the following values 𝑇2, 
𝐹𝑛 , 𝐹𝑞 , 𝐸𝑛 , 𝐸𝑞 . These inputs are received from the 
abstractor agent and are sent to every registered unit 
agent. 𝑇2  represents unit type, the only difference 
being that they represent the enemy units type that is 
the closest to the current unit agent. 𝐹𝑛 represents the 
current number of friendly units present in the 
immediate vicinity while 𝐸𝑛 represents the number of 
enemy units. 

𝐹𝑞 represents the quality of the enemy units. This 
refers to the relative strength of these units. For 
example, in chess some pieces have a higher value, the 
queen has a higher value then the knight. This is the 
same in the case of most modern games. Although we 
should note that this value is relative. By this we mean 
the intransitive superiority problem which states no 
clear superiority based only on unit type and ca-
pabilities. There is always a unit type or tactic that 
nullifies the advantages or even the capabilities of a 
particular unit. 𝐸𝑞  input is the quality of enemy units 
and is similar to the 𝐹𝑞 and how it is assigned. For the 
purpose of this micro-managing MAS layer, we 
created only a limited ontology in order to identify 
melee and ranged unit weaknesses. 

It also receives abstracted environmental data from 
the abstractor agent an it will use this information in 
the evaluation process . This process entails gathering 
information about the performance of the unit agents. 
This information will be then incorporated in the 
evaluation function. 

As we mentioned above, we have 3 output neurons 
which, in fact, will represent the decisions the neural 
network has made based on its inputs. The first output 
is 𝐴/𝑅  which represents whether the agent should 
advance or retreat. 𝐹𝐹/𝐹𝐹  represents if the agent 
should move right or left. And the last output 𝐹𝑖 
represents if the agent should engage the enemy. If the 
values are in the range of [0,1], the unit will attack and 
in the [−1,0) range the unit will retreat. It is the same 
in the case of the left and right action outputs. 

Because rtNEAT continuously evaluates agent 
performance the Spawn agent will receive evaluation 
information for each agent present in the environment 
until the game timer runs out or the unit agent dies in 
battle. The game timer is a governing principle of 
rtNEAT and is calculated based on equation (2). 

The evaluation data the Spawn agent needs are as 
follows: Nk, D D ,  D T , SURVIVE. Nk represents the 

number of enemy units killed (from 0 to 24 units), D D  
represents the total damage done to the enemy while 
D T  represents the damage taken from enemy units. 
These can be quantified quite easily as they are 
intrinsically represented by integer values. The main 
problem is that SURVIVE is a boolean value as it can 
be only true or false. We decided to give it a numerical 
value of 40 for evaluation purposes. The variable 𝐴𝐴 
is the aggressivity coefficient. In testing, it is set to 18 
thus rewarding an aggressive style of play. 
Equation (1) describes the function used to compute 
the fitness value: 

𝑓𝑒  =  𝑁𝑘  +  𝐴𝐴(𝐷𝐷
𝐷𝑇

)  +  𝑆𝑆𝑅𝑆𝐼𝑆𝐸. (1) 

After the evaluation is done and the best and worst 
performing unit agents from the population are 
identified the evolution process starts. We select the 
best performing unit agents to replace either the worst 
performing agent from the population or to replace a 
killed unit. We use elitism to protect the best 
performing agents to a certain extent as to ensure a 
stable performance level during game play. This is 
done by rtNEAT but we also created a Phenotype 
database which saves unit agents that perform beyond 
a certain threshold. This means that although the 
phenotype might be killed of by rtNEAT we still have 
a copy of it that can be used to bootstrap the 
population if evolution doesn't deliver any meaningful 
progress or even suffers from overfit- ting or gets 
stuck in a local maxima. 

As we can see in [16], rtNEAT has a number of 
parameters that can be adjusted to better perform in its 
given task. It is important to note that NNs perform 
extremely well if they have a clearly defined task to 
perform. Also if a problem can be easily solved using 
a discrete series of steps and the problem to be solved 
is static, a NN approach to solving these types of 
problems is ill advised. 

We can see a list of all the relevant parameters in 
Table 1. We should note that not all parameters are 
listed, and that the rest of the parameters were left at 
their default values during the experimental run. We 
used two sets of values because of the need for fast 
evolution during the initial phases of the experiment 
which will be further detailed in section 4. There are a 
total of 9 relevant parameters for our system. The 
compatibility threshold (𝛿𝑡 ) is the distance measure 
between species and is used in speciation and can be 
used to ensure that the desired number of species is 
maintained by raising or lowering its value thus 
making the inclusion into a species less or more likely. 
The inter species mating is the likelyhood that 
members from different species will recombine. The 
recurrent connection parameter sets the likelihood of 
recurrent connections being added during mutation. 
Parameter 𝑃  represents the total population, 𝑚 
represents the minimum time alive for any member of 
the population measured in game ticks. In the case of 
StarCraft 1tick ≃ 40ms. While add node and add link 
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represent the likelihood that a new node or link will be 
added to the topology. 

Table 1. rtNEAT Parameters 

Parameter Value 1 Value 2 

𝛿𝑡 [3.7-4.3] [3.7-4.3] 
Inter Species Mating 0.004 0.001 
Recurrent Connection 0.009 0.007 

Number of Species 3 3 

𝑃 12 12 

𝐼 0.5 0.5 

𝑚 400 500 
add node 0.05 0.04 
add link 0.03 0.02 

 
As was shown in [26, 25], if members of the 

population are removed too frequently from the 
population, then they will not evolve to their full 
potential and conversely if they are removed too 
frequently, then evolution slows down thus the law of 
eligibility was formulated: 

𝑛 = 𝑚
|𝑃|𝑛

. (2) 

From this law of eligibility, we can formulate how 
many game ticks (𝑛)  should elapse between 
replacements. In the case of our system 𝑛1 = 66.7 and 
𝑛2 = 83.3 . The 𝑛1  value is used during the initial 
phase of the experiment while 𝑛2  for the later part. 
Also we divide by 100 the evaluation function 𝑓𝑒  in 
order to ensure that it takes values in the range [−1,1]. 

Unit Agents 
Lastly unit agents represent each unit from the 

game environment. Each of these is created by the 
Spawn agent and must register with the abstractor 
agent. As we mentioned before, each unit agent will 
represent a particular unit from the game environment. 
Each unit is also initialized by the Spawn agent. 
Because in a dynamic system such as modern games 
there are potentially hundreds even thousands of units 
in the environment at any given time it initially seems 
a poor design decision to create units for each of them. 
However there are two good reasons that we chose to 
create so many unit agents. 

First we only have a maximum of 200 units in 
Starcraft RTS. Most other genres of games use even 
less units. First Person Shooters (FPS) use only about 
20-30 units at any given time. So even a moderate 
computing system could handle this amount of agents. 
Also most units like resource gathering units don't 
require specialized unit agents as they perform their 
task automatically and most battles don't include the 
entire army at the systems disposal so just a fraction of 
unit agents will be actively evaluated and controlled. 

On the other hand, because of the parallel nature of 
MAS we can deploy some of the more resource 
consuming agents on different computing nodes or 

even on a cloud computing platform. Thus we could 
have an extremely powerful computing backbone to 
accomplish all the analysis and decision making in our 
MAS. 

 
Figure 3. Ontology Outline 

Unit Template Usage 
Our ontology consists of two main classes: 

GameObjects and ObjectProperties. As we are 
currently only interested in game units the 
GameObject class consists only of melee and ranged 
unit subclasses. The ObjectProperties class is the 
superclass for all the properties each unit can have. As 
an example we take two units, a zealot which is a 
melee unit and a dragoon which is a ranged unit. 
Fig. 3 represents the basic template ontology. We can 
see that we have a number of object properties which 
we use to create our starting topology. In Table 2 we 
see what each object property defines. By querying the 
ontology we get that the zealot unit is a melee unit 
with ground attack and no special ability. 

Table 2. Object Properties 

Property Function 

hasMovement Defines the standard movement range of 
untis 

hasRange Defines range of weapons as well as sight 
hasAbility Defines if the unit has special abilities 

hasOffensive Defines what target the unit can attack 
hasDefensive Defines the overall health of the unit 

4. Experiments 
Implementation 

Because most of the current commercial games are 
closed source users cannot directly create AI systems 
for these games, external third party tools are used 
instead to inject the custom AI into them. In the case 
of StarCraft there is the BWAPI that enables users to 
inject their custom AI into the game. It was developed 
in C++ but extensions that allow users to use it for 
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other languages have been implemented. We used the 
ProxyBot extension written for Java. BWAPI splits the 
game into 5 basic objects: game, player, unit, bullet, 
force. 

The game object holds all information about the 
current game state. The player object holds 
information that the player would have during game 
play. Unit object represent the pieces in the game like 
units and resources. Bullet objects represents 
projectiles from ranged units. The force object 
represents a collection of players attempting a singular 
objective. 

The MAS itself is created using JADE where the 
abstractor agent is mapped to a GameObject which 
helps the system to keep track of what it is doing as 
well as GameUpda- teObject which updates the 
environment state. Because of the three databases 
present in our system we use the JADE DataStore 
ability. In later versions of our system we will create a 
different database implementation but as our system 
does not produce a large amount of data this setup has 
proved adequate. 

Also all behaviors from the systems agent, as seen 
in Fig. 4, are threaded behaviors because the three 
communication protocols (sdRegData, sdUinitEval, 
sdUinitEvol) are not synchronized and can operate 
independently. 

As an example protocol we have Fig. 5. 
representing sdEVALDATA. This protocol handles the 
external data necessary for Unit agent evaluation. The 
INFORM EVAL-DATA message loops until the game 
instance ends or a fatal failure has occurred. 
CONFIRM EVALDATA is sent only once the first 
iteration of INFORM EVALDATA is sent. This is 
done in order to ensure that the message has been 
received. The messages INFORM CORRUPT and 
INCOMPLETE are sent when data are incomplete or 
are in an inconsistent state. Resend REVAL DATA 
resends the last message before one of the two 
exception messages has been received. 

It should be also noted that the population used by 
rt-NEAT is stored in the Phenotype Data Base (DB) in 
XML format. Once a new NN topology has been 
evolved the XML will be loaded using the TopLoad 
Java object into the appropriate Unit agent. 

 
Figure 4. Systems Architecture 

 
Figure 5. Diagram of sdEVALDATA Protocol 

Experimental setup 
We used the tier 1 tournament arena maps from the 

AIIDE StarCraft competition. These maps have a 
simple square shape to best highlight micro-
management abilities. There are 2 phases in our 
experiment to best test our systems learning 
capabilities. We chose as our two unit types from the 
Protoss race: Zealot for the melee unit and Dragoon 
for the ranged unit. 

During the first phase our systems performance 
was evaluated against the built in AI system of the 
game. In Star- Craft the AI is represented by a script 
loaded at the beginning of the game. For each of the 3 
races there exist 2 scripts6. These scripts are extremely 
predictable once the player played against them for a 
limited amount of time. We ran 300 matches of 12 
versus 12 ranged units where one group was 
controlled by our MAS while the other group by the 
standard (vanilla) AI. The match starts with all 12 
units in the environment. In order to win a match our 
system has to deplete the enemy AIs reinforcement. 
Each player has 100 units in reserve, once a unit dies a 
new one is created from the reserves. Other 300 games 
were run where instead of ranged units melee units 
were used. This setup was chosen because of the 
inherent difference in play style of the two unit types 
will help in the testing of the adaptive capability of 
our system. The fitness is calculated based on 
equation (1). 

During the first phase the ranged unit versus melee 
unit experiments where also done. During the first 300 
games our MAS played as the ranged units and for the 
second 300 games it played as the melee units. 
Because the melee units have a tactical disadvantage 
against the ranged units with this setup we wish to see 
if our system can utilize this advantage or in the case 
of the second type of matches to nullify it by efficient 
unit micromanagement. 
                                                           
6 StarCraft AI script selection - http://tiny.cc/loeuew 
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The second and last phase consists of our MAS 
against preexisting AI systems from the AIIDE 2010 
competition. We used the EISBOT and Overmind and 
played 300 matches against each one of them. We also 
used during this phase of the task the best performing 
members of the population from phase 1 to bootstrap 
the evolutionary process of phase 2. Also the rtNEAT 
was set to the second values detailed in Table 1 in 
order to ensure a more stable rate of evolution. 

There are two important facts that need to be 
mentioned. First because of a memory leak problem it 
is impossible to run more than 500 games 
consecutively. The program becomes extremely 
unstable if run for an extended period without 
restarting it. In our system we set the testing runs to no 
more than 300 consecutive games. 

The second consideration is a limitation of 
StarCraft as we need to separate instances of the game 
to run in order to test our system against other AI 
systems such as EISBOT. The two game instances 
communicate with each other through LAN 
connections. There are ways to run 2 instances of the 
game on the same computer but we used separate 
computers for each game instances. 

Results 

Phase 1 
As we mentioned before the testing platform for 

our MAS is StarCraft. It should be noted that because 
of the nature of the game, time is measured in game 
ticks as opposed to seconds. So let us consider that 1 
game tick = 40 ms. If we consider that a new unit will 
be created every 500 ticks and we have a maximum 
number of 100 units that can be created. We have 
50000 game ticks for each match which means 33 per 
game. This is, of course, the worst case scenario as 
running 300 games that last each of them 33 minutes 
would be extremely impractical. Thus we sped up the 
game with a factor of 16. It follows that on average 
300 games took 4 hours. 

As we can see from Table 3, our system can 
consistently beat the in game AI during all of the 
matches. It performs best when it can exploit the 
inherent tactical superiority of the units that are under 
its control. For example, it won 89% of the matches 
played with it controlling ranged units against melee 
units by the technique known in gaming as kitting. In 
principle this means that the range units don't sit still 
while fighting but keep moving thus being able to 
minimize the damage done by enemy melee units that 
need to get in close in order to attack. Our system won 
65% when controlling melee units against ranged 
units but considering the built in AI won only 11% of 
games when controlling the melee our system 
performed extremely well. 

Fig. 6 represents the evolution of the average 
fitness during the 300 matches. We can see that in the 
beginning the fitness values fluctuate substantially. 
This was expected because of the relatively high 
rtNeat parameter values set as seen in Table 1. After 

30 games the fitness values start to stabilize and at 
game 182 the fitness values hit a local maxima. By 
this we mean that the values stagnate in both cases 
presented in Fig. 6. It should be also noted that the 
highest fitness value achieved was 0.8 out of a 
maximum value of 1. It is extremely unlikely that 
even if we run thousands of games that any agent 
would reach that high mark nor is it necessary. At a 
fitness value of 0.5 units are sufficiently evolved to 
pose a significant challenge to players. They are 
capable of exploiting tactical weaknesses of the enemy 
in a consistent manner. 

Our system is able to rapidly learn and converge to 
a higher fitness value during a single match. In Fig. 7 
we see the evolution during a period of 3000 game 
ticks from a fitness value of 0.4 to 0.6. This means 
that in a 2 minute battle our system is able to adapt at 
a rate of 0.2 fitness points in the ideal case. On 
average the adaptation rate was 0.02 every 3000 game 
ticks. During empirical testing it was shown that the 
learning rate is fast enough to make this a viable real 
time learning technique. 
Table 3. Results for all phase 1 experimental runs - R 
represents Ranged while M represents Melee 

Type Of Game Win Average Fitness Best Fitness 

R vs R 77% 0.69 0.76 
M vs M 74% 0.65 0.7 
M vs R 65% 0.53 0.71 
R vs M 89% 0.72 0.8 

 

 
Figure 6. Best and worst experimental run - x axis 

represents the number of games while the y axis represents 
the fitness value 

 

 
Figure 7. Evolution of fitness during a single game 
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Phase 2 
During the last phase our system played against 

the standard game AI which utilized standard FSM. In 
this phase we evaluated our MAS against two more 
sophisticated AI systems EISBOT and Overmind. As 
illustrated in the results of the AIIDE 2011 
competition results7, these systems have a significant-
ly higher performance. Because of this, we changed 
the parameter setting of rtNEAT to the second values 
listed in Table 1 to ensure a more stable performance 
from the beginning of the experiment. Also we used 
the best evolved individuals from phase 1 to bootstrap 
the evolution process in this phase. This technique has 
proven to be extremely effective as the limited runs 
done with a minimal starting topology did not 
converge to a sufficiently good fitness value in a 
reasonable time. 

We ran the same types of experiments as in the 
previouse phase for EISBOT and Overmind as can be 
seen in Tables 4 and 5. Our result mimicked the ones 
from phase 1 in that our system performed at its best 
when it controlled ranged units and the worst 
performance when it commanded melee units against 
ranged units. However this is to be expected as in the 
latter scenario there is a significant tactical advantage 
on the side of the ranged units. There are two 
immediate observations that we can make. First, our 
system statistically outperformed EISBOT in unit 
micromanagement. The best win ratio of 69% was in 
the scenario in which our system had the tactical 
advantage. As before, it was able to recognize and 
utilize this. The second observation is that although 
we bootstrapped with the phase 1 best performing 
population, the average fitness has a smaller value. 
This is because the fitness function is relative to the 
performance of the enemy against which our system 
plays. 

Table 4. Results for games played against EISBOT 

Type of Game Win Average Fitness Best Fitness 

R vs R 57% 0.64 0.76 
M vs M 52% 0.63 0.73 
M vs R 51% 0.60 0.69 
R vs M 69% 0.68 0.79 

 

Table 5. Results for games played against OVER-MIND 

Type of Game Win Average Fitness Best Fitness 

R vs R 51% 0.53 0.64 
M vs M 50% 0.52 0.7 
M vs R 43% 0.5 0.6 
R vs M 61% 0.53 0.67 

 

                                                           
7 AIIDE 2011 Competition Results - http://tiny.cc/ipeuew 

We also executed experimental runs against the 
Overmind AI system. This system was the overall 
winner of the AIIDE 2010 StarCraft competition8. Our 
system was able to statistically beat Overmind in unit 
micromanaging except for the case when Overmind 
had the advantage where our system was unable to 
beat it consistently wining only 43% of the time. It 
should be noted that if more experimental runs had 
been made, than we are convinced that our system 
could consistently defeat Overmind even here. The 
only major drawback would be the amount of time 
and computational resources necessary to accomplish 
this task. 

5. Conclusions 
We designed a MAS able to handle unit 

micromanage- ment in RTS games. Also it is able to 
learn and adapt to new situations and tactics by using 
rtNEAT. It introduces a MAS designed specifically 
around neuroevolution creating agents that handle 
different steps of rtNEAT. We were able to prove that 
our MAS outperforms the standard AI found in 
StarCraft in all the experimental scenarios. 

It also enjoyed success in phase 2 when it was 
evaluated against more sophisticated AI 
implementations being able to statistically beat them 
with the exception of one scenario where it only won 
43% of the time. This however is still much better 
than the wast majority of AI implementations for 
StarCraft9. 

We also showed that rtNEAT has a learning rate 
which makes it suitable for fast adaptation in real time 
by having an average fitness gain of 0.02 per 3000 
game ticks. This rate can be adjusted either by 
optimizing rtNEAT parameters or the addition of more 
members to the population being evaluated/evolved. 
During testing we chose the population size of 12 
because of the default squad size selectable in 
StarCraft. In a typical engagement there are 2 to 3 
groups of 12 units each, so the population can be 
easily expanded thus ensuring more interaction 
between population members and the enemy that can 
be used for evaluation. 

Our system is capable of identifying and utilizing 
tactical advantages in battle as well as raising the 
utility of units that have a tactical inferiority. By the 
process of bootstrapping we can guarantee a minimum 
level of performance at the beginning of a new 
evolution cycle. 

One shortcoming of our system that has been 
observed is that there is a communication bottle neck 
when more than 150 unit agents are created and 
registered with the abstractor. This bottleneck is more 
of a technological limitation and can be easily 
avoided. We can create Unit agent only when agents 

                                                           
8 Overmind winner of AIIDE 2010 StarCraft Competition - 
http://tinyurl.com/6lhur6b 
9 AIIDE 2011 Competition Results - http://tiny.cc/ipeuew 
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are in combat because there are a limited number of 
units participating in combat at any one time. For the 
rest of the time a more traditional AI can handle unit 
movement and deployment. 

The ontology based template creation which was 
used to create starting NN topologies has proven to be 
effective. This technique could be augmented by 
adding support to automated ontology learning which 
could enable the mapping relations between unit 
types. This in turn can be used to solve intransitive 
superiority between said unit types. 

Our MAS is a good platform from which we can 
build upon and expand our system in order to build a 
complete RTS game. 

6. Future work 
In this paper we adjusted the parameters of 

rtNEAT by empirical testing although automatic 
parameter adjusting techniques can be applied to 
dynamically alter the algorithms behavior in certain 
situations. Also we used an extremely limited 
ontology to create starting NN input and outputs thus 
enabling new Unit agent types to be created as needed. 

Our MAS is focused on only one facet of RTS 
games namely micromanagement. By applying a 
bottom up design method we can build additional 
layers to handle other tasks in the game. For example, 
a tactical layer can handle terrain analysis and target 
prioritization, while a strategic layer can handle high 
level planning such as economic planning. 

Our starting topology based on a unit template 
ontology has proven effective in our experiments. One 
of the possible expansions of this idea is to create a 
generalized ontology so that many more information 
as well as inter object relationships (like the 
intransitive superiority problem) could be expressed 
using an ontology an then queried during game-play. 
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