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Abstract. Dynamic networks of personal computers are characterized by sudden, unexpected failures of 
computational nodes, as well as the addition of new computers at any given moment. This paper presents a new agent-
oriented system for distributed computing, named ADiS, specifically designed for operating in these kinds of 
environments. The system relies on the agent technology in order to adapt to dynamic changes in a computational net-
work. Originally envisioned as a distributed system for distance matrix calculations, ADiS has recently been redesigned 
as a general-purpose, extensible architecture for arbitrary computing in a distributed environment. Experimental results 
demonstrate that the usage of ADiS has a significant positive impact onto the execution time of lengthy processes. 
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1. Introduction 
A time-series is a chronologically ordered data 

sequence, recording states of an observed 
phenomenon over a period of time. Time-series data 
arise from and are used in many different fields of 
applications including finance, medicine, and various 
domains of science. The increasing need for applying 
time-series in order to solve various problems led to 
an explosive growth of interest in different research 
areas, such as classification, clustering, prediction, 
anomaly detection, indexing, and pattern discovery [7, 
10, 14, 18]. All of these tasks rely on determining the 
similarity between the studied time-series. The chosen 
similarity measure needs to reflect the underlying 
(dis)similarity of the data represented by the time-
series [8, 14]. 

Time-series analysis often requires a re-use of 
similarity values between the same set of series. In 
case of long time-series and/or similarity measures, it 
is very helpful to save the similarity values between 
time-series, and thus speed up the experiments. 
Similarities between the time-series of a dataset are 
kept in the form of a distance matrix where the 
element at (𝑖, 𝑗) contains the distance between the 𝑖-th 
and the 𝑗-th time-series from the set. 

Calculating the distance matrix itself is often a 
very time-consuming process. Our Department has 

several computer centers which could be used to 
distribute distance matrix calculations, and thus speed 
up the process significantly. However, the computers 
are being used for practical exercises and assignments 
in a number of computer science courses, and are 
otherwise freely available to students, for their 
personal use. A computer that is performing distance 
matrix calculations should therefore stop and free its 
resources as soon as occupied by a student. 

In this paper, a novel, agent-based system for 
distributed computing is proposed. One of the main 
motivations for developing this new system, named 
Agent-based Distributed computing System (ADiS), 
was to speed-up the lengthy distance matrix 
calculation processes using an existing hardware 
infrastructure of personal computers. However, the 
system is also designed as extensible and is not limited 
to distance matrix calculations; new plug-ins can be 
added dynamically to support any form of distributed 
computations. 

ADiS primary targets institutions and users who 
cannot afford high performance grid systems. It brings 
efficient load-balancing and job-distribution architec-
ture to environments equipped with (possibly low-
end) personal computers. 

One of the key features of ADiS is adaptivity to 
dynamic changes in a computational network. 
Dynamic changes assume that existing computers 



Agent-Based Distributed Computing for Dynamic Networks 

89 

might fail and disappear suddenly, while new 
computers might be added at any time. ADiS relies on 
the concepts of the agent technology to detect these 
changes in a timely manner, and adapt its functioning 
accordingly. 

The original idea for ADiS was presented in [22], 
while the core algorithms were developed earlier 
[20, 21], with the aim of adding fault-tolerance to our 
multi-agent framework XJAF [23]. The system has 
since been transformed into a general-purpose 
solution. Its algorithms have been optimized in order 
to reduce the overall network traffic and improve the 
process of job sharing, while the whole architecture 
has been experimentally validated, as shown later. 

The rest of the paper is organized as follows. 
Section 2 presents the work related to agent-based 
distributed computing and dynamic network manage-
ment. Section 3 outlines the architecture of ADiS and 
its core components in greater details. Experimental 
validation of the proposed system is given in 
Section 4. Finally, general conclusions and future 
research directions are presented in Section 5. 

2. Related work 
For most of its functionality, ADiS employs so-

called system-level agents [25]. System-level agents 
bring high flexibility to the system, because new 
functionalities can be easily added in form of new 
agents. When used for network management, system-
level agents have additional important benefits, such 
as dynamic network building and maintenance, 
efficient discovery of faulty network nodes, and 
remote maintenance features [12, 20, 21, 33]. 

In ADiS, the heartbeat connection is a core tool for 
propagating information across the network. 
Distributed ADiS nodes are actually organized into a 
regular graph, and the applied process of information 
spreading is based on the concept of graph infection 
[9, 11, 34]. A nice property of graph infection 
algorithms is that the data propagation time 
boundaries (both minimum and maximum) can be 
determined mathematically. This means that the 
efficiency of the data propagation process 
implemented in ADiS can be easily evaluated. An 
additional feature specific to ADiS is the way in which 
the network is established and used, with the goal of 
minimizing the overall network traffic. 

A large part of scientific research related to agent-
based load-balancing techniques is focused on grid 
computing; see e.g. [3, 6, 26, 31]. Instead, ADiS is 
well-suited for dynamic environments comprised of 
heterogeneous, often low- end personal computers. It 
brings efficient distributed computing to users who 
cannot afford high-performance grid systems. 

Agent mobility has often been exploited as the 
main tool for load-distribution. The Ripple load 
balancing technique presented in [32] is based on a 
credit value assigned to each computer in a network. 
Any imbalance in the credit values dispatches mobile 

agents, which transfer computational tasks from 
computers with higher to computers with lower 
values, trying to achieve the initial balance. In [19], a 
set of divisible tasks is assigned to a network of 
computational nodes. A set of mobile agents is then 
dispatched, each carrying a single task in search for 
the best possible node. Therefore, the proposed load-
balancing algorithm is focused on finding an optimum 
dispersion of agents. Although this algorithm is very 
well analyzed and shown to always maximize the use 
of available resources, it is limited by two 
requirements: each task has to be divisible into 
equally-sized sub-tasks, and the computation grid 
needs to be (performance-wise) homogeneous. 

Instead of mobile, ADiS relies on stationary agents, 
in order to avoid the network and computational 
overhead often associated with agent mobility. It also 
makes no presumptions on the size of (sub-)tasks and 
operates in truly heterogeneous environments. But, 
more importantly, none of these systems deals with the 
discovery of failed and newly available computers to 
the extent implemented in ADiS. 

Correct ordering of events is a key requirement of 
any distributed system. The use of logical clocks for 
event ordering, i.e. Lamport timestamps, has initially 
been proposed in [17]. Vector clocks [13] build on the 
concept of Lamport timestamps by supporting an 
arbitrary partial order of events. For dynamic systems, 
an Interval Tree Clocks algorithm has been proposed 
[2]. It is a relatively complex, but practical 
mechanism, that allows a completely decentralized 
assignment of IDs for newly created processes, and is 
efficiently adapted to the number of processes in the 
system. 

ADiS combines the simplicity of Lamport 
timestamps with the graph infection- based 
propagation algorithm. Because ADiS manages 
physical computers, it does not require an ID 
generation mechanism. Instead, it relies on the com-
puter's IP or MAC address for identification. Global 
state of the system can be collected at any computer in 
the system, and it is kept in a correct state by the 
propagation algorithm. To deal with dynamic 
properties, ADiS introduces the concept of persistent 
Lamport timestamps. If a computer is rebooted, its 
logical clock needs to continue increasing from the 
last known value. This feature is crucial, because each 
change it the computer's state needs to be associated 
with a greater timestamp than the previous one. To 
simplify the development, the computer's (physical) 
clock is used to simulate persistence, but, in general, a 
persistent counter could easily be implemented. 

The analysis of existing research reveals that the 
majority of systems are focused on load-balancing. 
According to our knowledge, ADiS is the only agent- 
based architecture that provides each of its computers 
with a correct overview of the overall network state, 
and does so in an efficient manner. 
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3. ADiS architecture 
ADiS is a general-purpose software system for dis-

tributed computing, specifically designed for dynamic 
networks. A high-level overview of its building blocks 
is shown in Fig. 1. Core functionalities of the propo-
sed system can be summarized as follows: 

• Dynamic network management. ADiS incorporates 
a special type of a software agent, named HBAgent 
(HeartBeat Agent), in order to detect dynamic 
changes in a computational network, and maintain 
the correct overview of the network state. Because 
of these functionalities, HBAgent is one of the 
most important components of the system. 

• Dynamic distribution of computational jobs. When 
a computer with sufficient processing resources is 
detected, running ADiS instances will be asked to 
share part(s) of their pending jobs and transfer 
them to the target computer. In this process, the 
central role is played by JobManager. The mana-
ger monitors the resource consumption in its host 
computer, as well as the availability of other 
computers in the network. 

• Extensibility. ADiS can be extended with new 
forms of computational agents (CAgent), software 
agents that perform the actual computations on the 

host computer. A specialization of this agent 
named DIMAGAgent, designed for calculating 
distant matrices, is presented later in Section 4. 
Life-cycles of CAgents are controlled by 
JobManager. 

• Remote administration. ADiS can be accessed 
remotely by system administrators, in order to, for 
example, inspect the execution progress of existing 
jobs, or to specify new jobs. It exposes ADiSNode, 
a top-level Remote Method Invocation (RMI) 
service [29] with a well-defined interface. 

For its functioning, JobManager partly relies on 
the low-level PDModule component. PDModule is the 
only platform-dependent component of ADiS. It uses 
the operating system's API for resource monitoring, 
idle input detection, etc. When, for example, it detects 
that the host computer has been idle for a period of 
time, PDModule spawns a new ADiS instance, which 
then joins the existing computational network. 
Similarly, if it detects some (mouse or keyboard) input 
from the user, PDModule will instantly kill the 
running ADiS process in order to release the 
computer's resource as soon as possible. 

A more detailed insight into the functioning of 
ADiS and its central components is given in the 
following sub-sections. 

 

 
Figure 1. Architectural overview of ADiS

3.1. Managing dynamic networks 

One of the core ADiS functionalities is the 
detection of changes in a computational network. 
Changes include the addition of new computers and 
unexpected unavailability of others. A correct and 
timely insight into the overall network state is crucial 
for the optimum job-sharing strategy. The dynamic 
network management is performed by a reactive, 
stationary agent named HBAgent. The agent is initially 
responsible for registering its host computer with an 
existing computational network. Then, it continuously 
monitors the overall network state, detecting any 
changes and signalling them to other agents. 

There is a single instance of HBAgent in each 
computer that should become a part of the computa-
tional network. The instance if pre-configured with a 
list of potential neighbors, i.e. computers it should try 
to connect to during startup. All running HBAgents 
belong to a specially designed heartbeat connection. 
The connection is based on pings, signals that agents 
emit to each other in order to signify their presence 
and availability. Pings are emitted at regular time 
intervals; if an agent does not generate any pings 
within a certain time threshold, or if it fails to respond 
to an external ping, it is assumed to have become 
unavailable. 

Each HBAgent keeps a list of every computer in 
the network, including its own host. An element of the 



Agent-Based Distributed Computing for Dynamic Networks 

91 

list is a record describing the agent's view of the 
corresponding computer's state. The state includes: 

• Network address (also used as an identifier) 
• Availability (i.e. alive or dead) 
• List of assigned computational jobs 
• An auto-generated timestamp in which the state 

was perceived 

The heartbeat connections are maintained using 
the following algorithm. When emitting a ping to 
HBAgent 𝐻𝑗 , HBAgent 𝐻𝑖  serializes its list of all 
computers and includes it in the ping. Upon receiving 
the ping, 𝐻𝑗  compares this information with its own 
list. During the comparison, it relies on timestamps for 
determining the correct state of a computer. If, for 
example, 𝐻𝑖  thinks a computer is dead, while 𝐻𝑗 
thinks the computer is alive, the correct state is the 
one with a later timestamp. Any new information 
contained in the ping is incorporated in the 𝐻𝑗 's list. In 
a response to the ping, 𝐻𝑗  includes any new 
information 𝐻𝑖  should incorporate in its own list. The 
response includes an updated state of at least one 
computer - the 𝐻𝑗 's host. The updated state includes 
the latest timestamp at a minimum, and, optionally, a 
new list of assigned computational jobs. Listing 1 
shows the implementation of the ping handler method, 
demonstrating the given algorithm. 

Listing 1. Implementation of the ping handler 

void onPing (NeighborList other, 
NeighborList delta) { 

// check availability of system's 
resources , etc. updateMyState () ; 
// calculate the delta for each 
neighbor 
for (Neighbor node : neighbors) { 
int n = other.indexOf(node) ; 
// if not in his list , or mine has 
a greater timestamp... 
if ((n = -1) 
||(node.getTimestamp()> 
other.get(n).getTimestamp()))delta
.add(node);} 

// save his list locally 
// (operates similarly as the for–
each loop above) neighbors . addAll ( 
other ) ; } 

 
In any multi-agent system [5], it is necessary to 

optimize the exchange of messages, since it often 
represents a performance bottleneck [1]. Therefore, 
the heartbeat connection is organized in special way. 
An agent first sorts its list of all computers according 
to their network addresses. Given that its position in 
the list is 𝑖 , the agent establishes a direct heartbeat 
connection (i.e. exchanges pings) only with agents 
𝐻𝑖−1 and 𝐻𝑖+1 (more precisely, it establishes a direct 
heartbeat connection with first alive agents 𝐻𝑖−𝑝  and 
𝐻𝑖+𝑞, 𝑝, 𝑞 > 0). 

If during the exchange of pings the agent 
𝐻𝑖  detects that, for example, its direct heartbeat 
neighbor 𝐻𝑖+1 has become unavailable, it will update 

the corresponding record in its own list, setting the 
availability to dead and the new timestamp to the old 
timestamp plus an 𝜖. Similarly, 𝐻𝑖+2, as the right-side 
heartbeat neighbor of 𝐻𝑖+1  performs the same set of 
steps. Because it has been updated, the new state of 
𝐻𝑖+1  is included in pings signalled by both 𝐻𝑖  and 
𝐻𝑖+2  and subsequently propagated to all computers. 
Simultaneously, 𝐻𝑖  and 𝐻𝑖+2  become new heartbeat 
neighbors. 

HBAgent is based on a mobile ConnectionAgent 
originally proposed in [20, 21]. Whereas Connection-
Agent was specialized for maintaining a fault-tolerant 
network of multi-agent systems, HBAgent is a more 
generalized solution, designed for general-purpose 
computational networks. Rather than mobile, 
HBAgent has been designed as a stationary agent, in 
order to reduce the network and computational 
overhead of agent mobility. Finally, HBAgent utilizes 
a new, custom serialization scheme and socket-based 
programming, which has a significant effect on 
reducing the network bandwidth required by pings, as 
discussed later. 

3.2. Runtime job sharing 

As noted earlier, one of the main design goals for 
ADiS is extensibility. New CAgents can be added to 
the system as needed, even at runtime, through a 
dynamically-loaded configuration file. 

The system defines two base classes that need to 
be extended for each concrete computational agent: 

1. CAgent - Represents all computational 
agents. The two of its most important 
methods are shown in Listing 2. 

2. JobDesc - Description of a job that the 
computational agent supports. Additionally, 
each job has a global identifier (an UUID) 
automatically assigned to it. 

When the heartbeat connection reveals that there is 
a remote computer with sufficient processing 
resources, a local CAgent is asked to share a part of its 
current job. It is up to the concrete CAgent 
implementation to determine how the job is actually 
divided into sub-jobs and shared. The shared part will 
be transferred to the remote computer, which may still 
refuse to accept it if, for example, it has accepted 
another job in the meantime. 

Listing 2. Methods of the core JobSharingI interface for 
sharing jobs with distributed computational agents 

public interface JobSharingI { 
// asks the agent to share (a part 
of) its current job 
JobDesc share () ; 
// informs the agent that the 
previously shared job has been 
// accepted for processing by 
another CAgent 
void jobAccepted (JobDesc jobDesc);} 
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If the remote CAgent accepts the job, the local 
CAgent will be informed through its jobAccepted() 
method. At the same time, the local HBAgent 
remembers (sub-)jobs that were delegated to the 
remote computer. This information is propagated 
through the heartbeat connection (initially, by the local 
and remote HBAgents) so that every HBAgent knows 
which jobs are processed in every other computer. In 
case of a computer failure, any HBAgent can take over 
its jobs (by convention, it is its right-side heartbeat 
neighbor). 

There are two main ways of saving computational 
results. They can either be propagated through the 
heartbeat connection, just like any other information, 
or stored directly on a file server. The first approach is 
well-suited for a completely distributed system, and 
has the advantage of being more flexible (e.g. the 
computational results can be collected at any 
computer). However, it has a disadvantage of 
generating more network traffic. The second approach 
uses far less traffic, but is inflexible, in a sense that the 
file server must not fail. 

ADiS supports both approaches. If a file server is 
specified in a configuration file, computational results 
will be sent directly there. Otherwise, they will be 
incorporated into pings of the heartbeat connection to 
be propagated across the computational network. The 
system defines a RMI interface that should be 
implemented by a file server. 

3.3. Analysis of the heartbeat connection 

Several steps have been taken to reduce the overall 
network traffic generated by pings. A custom 
(de)serialization scheme has been implemented to 
eliminate the metadata used by the Java Serialization 
API. Socket-based programming has been used 
instead of, for example, much simpler RMI, in order 
to, again, avoid the metadata overhead associated with 
each RMI call. However, the most important 
optimization factor lays in the organizational structure 
of the heartbeat connection. 

As noted, each HBAgent sends pings to its 
heartbeat neighbors at regular time intervals, in order 

to signify its presence in the network. Besides the 
special organizational structure of the heartbeat 
connection, several additional steps have been taken in 
order to reduce the overall network traffic generated 
by pings. 

A custom serialization scheme has been 
implemented, in place of the Java Serialization API. 
Using the new scheme, the size of an entire ping 
(which incorporates information about all neighbors) 
is 1 + 19 ∗ 𝑛  bytes, where 𝑛 > 1  is the number of 
computers in the network. On the other hand, Java 
Serialization API requires 644 + 67 ∗ 𝑛, 𝑛 > 1 bytes 
per ping. Fig. 2 shows the relation of ping sizes to the 
number of computers in the network, for both ADiS 
and Java serialization schemes. As it can be 
concluded, the new serialization scheme reduces the 
network traffic significantly. 

Another very important factor of the heartbeat 
connection is the rate in which pings are generated 
(i.e. the heartbeat rate). The higher the rate, the faster 
HBAgents become aware of the changes in the 
network, but also more, possibly unnecessary, network 
traffic is generated. To help determine an opti¬mum 
heartbeat rate, a series of tests were performed. 

Fig. 3 shows the amount of network traffic (per 
computer, per second) generated by different ping 
intervals (4, 8, 16, and 32 seconds) and for different 
network sizes (4, 8, and 16 computers). The given 
values were obtained by using NetworkTrafficView, a 
free network monitoring tool [24]. Therefore, the 
results include the real TCP packet sizes, and not just 
the amount of data a HBAgent reads from or writes to 
a socket. As expected, when the ping interval doubles 
(e.g. from every 8 to every 16 seconds), the network 
traffic is halved. 

Next, the correlation of ping intervals and the time 
needed to distribute a piece of information across all 
computers in a network is analyzed. After the network 
has been established, an integer value is sent to a 
randomly selected HBAgent. From then on, the value 
is propagated only through the heartbeat connection. 
The experiment is finished once each HBAgent reports 
to have received the value. 

 
Figure 2. Relation of ping sizes to the number of computers in the network, for both custom serialization  

scheme used in ADiS, and Java Serialization API 
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Figure 3. The amount of network traffic (per computer, per second) generated by different ping intervals  

and for different network sizes 

As noted earlier in Section 2, this data propagation 
algorithm actually belongs to the class of graphs 
infection algorithms, which have been extensively 
studied. It has been shown in [34] that for a 𝑘-regular 
graph with 𝑛 nodes, the upper bound for the number 
of pings needed to spread an information from one 
computer to all others is set to: 

�log𝜆(𝑘) 𝑛� + 3, 𝜆(𝑘) = 𝑘+�𝑘2+4
2

 (1) 

However, in the propagation algorithm used in 
[34], at ping 𝑝𝑡  each even computer 𝐻2𝑖  sends a 
message to 𝐻2𝑖+1, and at ping number 𝑝𝑡+1, each odd 
computer 𝐻2𝑖+1  sends a message back to 𝐻2𝑖 , 𝑖 ≥ 0. 
In the HBAgent's heartbeat connection, at each ping 
the computer 𝐻2𝑖  sends a message to 𝐻2𝑖+1  and then 
receives a message back from 𝐻2𝑖+1. This means that 
the HBAgent's heartbeat connection needs only half 
the number of pings required by the algorithm de-
scribed in [34]. Given this analysis, and the fact that 
the HBAgent's heartbeat connection is a 2-regular 
graph, the upper bound for the number of pings 
needed to spread an information across the entire 
computational network becomes: 

�
log1+√2 𝑛+3

2
�. (2) 

Fig. 4 outlines this upper bound, the worst possible 
values for the time needed to spread an information 
across the computational network for different ping 
intervals (4, 8, 16, and 32 seconds) and for different 
network sizes. Actual experimental results are shown 
in Fig. 5. They validate the upper bound for the ping, 
but also reveal that the average time is significantly 
shorter. 

These two sets of information, along with the 
amount of network traffic shown in Fig. 3, can be used 
for determining the optimum heartbeat rate. More 
concretely, a ping interval in the range of 16 to 32 
seconds results in good data propagation times, while 
generating low amount of network traffic even for a 
large number of computers. 

4. Practical application of ADiS 
ADiS has been practically employed in an 

automatic distribution of distance matrix calculations 
for time-series analysis. The main motivation, as 
described earlier, is to shorten the time needed to

 

 
Figure 4. The upper bound for the time needed to spread an information across all computers in a network,  

for different ping intervals and network sizes 
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Figure 5. Experimentally evaluated times needed to spread an information across all computers in a network,  

for different ping intervals and network sizes 

populate a distance matrix. The experiment presented 
in this section will demonstrate the runtime efficiency 
of ADiS in shortening the time of lengthy calculation 
processes. 

4.1. DIMAGAgent 

To enable distributed distance matrix calculations 
in ADiS, a new computational agent, named 
DIMAGAgent, has been developed. The agent is a 
simple wrapper around an existing DIMAG (Distance 
Matrix Generator). An important feature of the 
DIMAG component is its ability to split the problem 
of generating a matrix into a number of 
(approximately) equal parts, and later merge the 
resulting partial matrices into the final output. DIMAG 
generates the distance matrices using Framework for 
Analysis and Prediction (FAP), a free, platform-
independent open-source library that encompasses 
several important algorithms for different temporal 
data-mining and time-series analysis tasks [16]. 

DIMAGAgent's job consists of one or more 
instructions, each of which contains the following 
information: 

• Input dataset name 
• Name of the similarity measure 
• The total number of parts to split the distance 

matrix into 
• Index of the part that needs to be calculated by this 

instruction 
• Required matrix type, i.e. diagonal or full 
• A similarity-dependent set of parameters 

Therefore, each instruction is used to calculate a 
single part of the matrix. The job-sharing algorithm is 
executed as described earlier. When an available 
computer is detected and a DIMAGAgent receives the 
share request, it splits its own set of instructions into 
two distinct parts. One part is kept locally, while the 
other is marked as shared and sent to the remote 
computer. If the remote computer accepts these 
instructions, only then does the local DIMAGAgent 
exclude them from its job. 

4.2. Experimental results and analysis 

In the world of speech recognition, the Dynamic 
Time Warping (DTW ) distance measure has long been 
a very well known technique. Two decades ago, it was 
introduced to the world of data mining in order to 
overcome some limi-tations of the Euclidean 
distance [4]. Since then, it has been successfully used 
for dealing with time-series in various fields, 
including medicine, engineering, bioinformatics, 
etc. [27]. 

DTW relies on dynamic programming and requires 
the comparison of each element of one time series 
with each element of the other one. This makes the 
calculation quite slow, and has some limitations 
regarding large datasets. One way to accelerate the 
computation is to narrow the search path in the matrix 
using global constraints. For example, the Sakoe-
Chiba band [30] narrows the warping window around 
the diagonal of the matrix using a constant range 𝑟. 

Distance matrices used in the presented 
experiment were based on the DTW distance measure, 
constrained by the Sakoe-Chiba band with the 
constant range 𝑟  set to 10. All datasets used in the 
experiment were provided by UCR Time Series 
Repository [15], which includes the majority of all 
publicly available, labelled time-series datasets in the 
world. The actual datasets used include: 

• 50words [28] 
• FaceAll [35] 
• Symbols 
• Haptics 

The main purpose of the experiment was to 
determine the efficiency of the heartbeat connection 
and job sharing algorithms implemented in ADiS. The 
system, along with DIMAGAgent, was deployed onto 
a number of low-end computers, all featuring the same 
hardware components: an AMD Sempron 2800+ 
processor running at 1.61 GHz with 512 MB of RAM. 
The operating system used was Microsoft Windows XP 
Professional with Service Pack 3. 



Agent-Based Distributed Computing for Dynamic Networks 

95 

 
Figure 6. Results of the experimental evaluation of ADiS in distributing the distance matrix calculation process,  

for different datasets and varying number of computers 

The heartbeat rate was set to 8 seconds. A separate 
computer was set up to act as a file server. 
Additionally, this computer hosted the ADiS Remote 
Manager application, used by the system 
administrator for sending new jobs to the running 
ADiS instances, as well as for monitoring the overall 
state of the distributed system. 

Fig. 6 shows the experimental results. For each of 
the four datasets, it outlines the total time needed to 
compute the distance matrix by distributing it on 1, 2, 
4, and 8 computers, respectively. To make the results 
more comparable, DIMAG was manually executed as 
a stand-alone application for each of the dataset, and 
the execution time was measured. In Fig. 6, these 
measurements are marked as "0 computers". 
Therefore, the difference between "0 computers" and 
"1 computer" is used to determine the overhead of 
using ADiS. 

The overall results are very encouraging. They 
demonstrate that ADiS operates very well, and that 
each instance is able to efficiently detect available 
neighbors and share a part of its current job. Distance 
matrix calculation times converge uniformly as the 
number of computer increases, regardless of the 
dataset used. The results also demonstrate that there is 
a minimal overhead of using ADiS, i.e. that a single 
computer running ADiS operates as well as a stand-
along DIMAG component. 

Undoubtedly, the maximum number of computers 
used in the experiment is very small when compared 
to modern distributed (especially, grid) systems. 
However, the purpose of this experiment was mainly 
to test the runtime efficiency of ADiS, as well as to 
demonstrate the convergence of calculation times. In 
practice, the maximum number of computers in a 
network is not limited by any factor. 

5. Conclusions and future work 
This paper proposes a new agent-oriented system 

for distributed computing, named ADiS, specifically 
designed to operate in dynamic environments. 

Initially, ADiS has been envisioned as a system for 
distributing the process of distance matrix calculations 
in the scientific field of time-series analysis. However, 
it has since been extended to serve as a general-
purpose architecture for distributed computing. 

The two main characteristics of ADiS can be 
summarized as follows: 

• Adaptivity to changes in dynamic networks. ADiS 
relies on the agent technology to observe changes 
in a computational network and adapt its behavior 
accordingly. 

• Extensibility. The system has a well-defined plug-
in architecture, where plug-ins are used to perform 
arbitrary calculations and rely on ADiS for job 
distribution. 
Instead of many existing systems that target high-

performance grid systems, 
ADiS is aimed at users and institutions that are 

limited to networks of (possibly low-end) personal 
computers. 

A lot of effort has been put into optimizing the 
overall network traffic used by the system itself. As 
demonstrated, the custom organization of the heartbeat 
connection and a new serialization scheme result in a 
significant reduction of the network bandwidth 
requirements. 

The architecture has been experimentally validated 
as a framework for distributed distance matrix 
calculations. The experiments have shown that there is 
a significant positive impact of using ADiS: distance 
matrix calculation times converge uniformly as the 
number of computer increases, regardless of the 
dataset used. 

Future research directions will be aimed at 
optimizing the network requirements of ADiS event 
further. The system will be extended with a possibility 
of handling failed connections between computers as 
well. 

In the long run, ADiS needs to be extended with 
more advanced load-distribution and job-sharing 
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algorithms. This will be a non-trivial task, due to the 
use of plug-ins as custom computational entities. 
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