
88

ISSN 1392–124X (print), ISSN 2335–884X (online) INFORMATION TECHNOLOGY AND CONTROL, 2014, T. 43, Nr. 1

Agent-Based Distributed Computing for Dynamic Networks

Dejan Mitrović1, Mirjana Ivanović1, Zoltan Geler2
1Department of Mathematics and Informatics, Faculty of Sciences,

University of Novi Sad, Serbia
e-mail: dejan@dmi.uns.ac.rs, mirag@dmi.uns.ac.rs

2Faculty of Philosophy, University of Novi Sad, Serbia
e-mail: gellerz@gmail.com

 http://dx.doi.org/10.5755/j01.itc.43.1.4588

Abstract. Dynamic networks of personal computers are characterized by sudden, unexpected failures of
computational nodes, as well as the addition of new computers at any given moment. This paper presents a new agent-
oriented system for distributed computing, named ADiS, specifically designed for operating in these kinds of
environments. The system relies on the agent technology in order to adapt to dynamic changes in a computational net-
work. Originally envisioned as a distributed system for distance matrix calculations, ADiS has recently been redesigned
as a general-purpose, extensible architecture for arbitrary computing in a distributed environment. Experimental results
demonstrate that the usage of ADiS has a significant positive impact onto the execution time of lengthy processes.

Keywords: software agents; distributed computing; dynamic networks; time-series analysis.

1. Introduction
A time-series is a chronologically ordered data

sequence, recording states of an observed
phenomenon over a period of time. Time-series data
arise from and are used in many different fields of
applications including finance, medicine, and various
domains of science. The increasing need for applying
time-series in order to solve various problems led to
an explosive growth of interest in different research
areas, such as classification, clustering, prediction,
anomaly detection, indexing, and pattern discovery [7,
10, 14, 18]. All of these tasks rely on determining the
similarity between the studied time-series. The chosen
similarity measure needs to reflect the underlying
(dis)similarity of the data represented by the time-
series [8, 14].

Time-series analysis often requires a re-use of
similarity values between the same set of series. In
case of long time-series and/or similarity measures, it
is very helpful to save the similarity values between
time-series, and thus speed up the experiments.
Similarities between the time-series of a dataset are
kept in the form of a distance matrix where the
element at (𝑖, 𝑗) contains the distance between the 𝑖-th
and the 𝑗-th time-series from the set.

Calculating the distance matrix itself is often a
very time-consuming process. Our Department has

several computer centers which could be used to
distribute distance matrix calculations, and thus speed
up the process significantly. However, the computers
are being used for practical exercises and assignments
in a number of computer science courses, and are
otherwise freely available to students, for their
personal use. A computer that is performing distance
matrix calculations should therefore stop and free its
resources as soon as occupied by a student.

In this paper, a novel, agent-based system for
distributed computing is proposed. One of the main
motivations for developing this new system, named
Agent-based Distributed computing System (ADiS),
was to speed-up the lengthy distance matrix
calculation processes using an existing hardware
infrastructure of personal computers. However, the
system is also designed as extensible and is not limited
to distance matrix calculations; new plug-ins can be
added dynamically to support any form of distributed
computations.

ADiS primary targets institutions and users who
cannot afford high performance grid systems. It brings
efficient load-balancing and job-distribution architec-
ture to environments equipped with (possibly low-
end) personal computers.

One of the key features of ADiS is adaptivity to
dynamic changes in a computational network.
Dynamic changes assume that existing computers

Agent-Based Distributed Computing for Dynamic Networks

89

might fail and disappear suddenly, while new
computers might be added at any time. ADiS relies on
the concepts of the agent technology to detect these
changes in a timely manner, and adapt its functioning
accordingly.

The original idea for ADiS was presented in [22],
while the core algorithms were developed earlier
[20, 21], with the aim of adding fault-tolerance to our
multi-agent framework XJAF [23]. The system has
since been transformed into a general-purpose
solution. Its algorithms have been optimized in order
to reduce the overall network traffic and improve the
process of job sharing, while the whole architecture
has been experimentally validated, as shown later.

The rest of the paper is organized as follows.
Section 2 presents the work related to agent-based
distributed computing and dynamic network manage-
ment. Section 3 outlines the architecture of ADiS and
its core components in greater details. Experimental
validation of the proposed system is given in
Section 4. Finally, general conclusions and future
research directions are presented in Section 5.

2. Related work
For most of its functionality, ADiS employs so-

called system-level agents [25]. System-level agents
bring high flexibility to the system, because new
functionalities can be easily added in form of new
agents. When used for network management, system-
level agents have additional important benefits, such
as dynamic network building and maintenance,
efficient discovery of faulty network nodes, and
remote maintenance features [12, 20, 21, 33].

In ADiS, the heartbeat connection is a core tool for
propagating information across the network.
Distributed ADiS nodes are actually organized into a
regular graph, and the applied process of information
spreading is based on the concept of graph infection
[9, 11, 34]. A nice property of graph infection
algorithms is that the data propagation time
boundaries (both minimum and maximum) can be
determined mathematically. This means that the
efficiency of the data propagation process
implemented in ADiS can be easily evaluated. An
additional feature specific to ADiS is the way in which
the network is established and used, with the goal of
minimizing the overall network traffic.

A large part of scientific research related to agent-
based load-balancing techniques is focused on grid
computing; see e.g. [3, 6, 26, 31]. Instead, ADiS is
well-suited for dynamic environments comprised of
heterogeneous, often low- end personal computers. It
brings efficient distributed computing to users who
cannot afford high-performance grid systems.

Agent mobility has often been exploited as the
main tool for load-distribution. The Ripple load
balancing technique presented in [32] is based on a
credit value assigned to each computer in a network.
Any imbalance in the credit values dispatches mobile

agents, which transfer computational tasks from
computers with higher to computers with lower
values, trying to achieve the initial balance. In [19], a
set of divisible tasks is assigned to a network of
computational nodes. A set of mobile agents is then
dispatched, each carrying a single task in search for
the best possible node. Therefore, the proposed load-
balancing algorithm is focused on finding an optimum
dispersion of agents. Although this algorithm is very
well analyzed and shown to always maximize the use
of available resources, it is limited by two
requirements: each task has to be divisible into
equally-sized sub-tasks, and the computation grid
needs to be (performance-wise) homogeneous.

Instead of mobile, ADiS relies on stationary agents,
in order to avoid the network and computational
overhead often associated with agent mobility. It also
makes no presumptions on the size of (sub-)tasks and
operates in truly heterogeneous environments. But,
more importantly, none of these systems deals with the
discovery of failed and newly available computers to
the extent implemented in ADiS.

Correct ordering of events is a key requirement of
any distributed system. The use of logical clocks for
event ordering, i.e. Lamport timestamps, has initially
been proposed in [17]. Vector clocks [13] build on the
concept of Lamport timestamps by supporting an
arbitrary partial order of events. For dynamic systems,
an Interval Tree Clocks algorithm has been proposed
[2]. It is a relatively complex, but practical
mechanism, that allows a completely decentralized
assignment of IDs for newly created processes, and is
efficiently adapted to the number of processes in the
system.

ADiS combines the simplicity of Lamport
timestamps with the graph infection- based
propagation algorithm. Because ADiS manages
physical computers, it does not require an ID
generation mechanism. Instead, it relies on the com-
puter's IP or MAC address for identification. Global
state of the system can be collected at any computer in
the system, and it is kept in a correct state by the
propagation algorithm. To deal with dynamic
properties, ADiS introduces the concept of persistent
Lamport timestamps. If a computer is rebooted, its
logical clock needs to continue increasing from the
last known value. This feature is crucial, because each
change it the computer's state needs to be associated
with a greater timestamp than the previous one. To
simplify the development, the computer's (physical)
clock is used to simulate persistence, but, in general, a
persistent counter could easily be implemented.

The analysis of existing research reveals that the
majority of systems are focused on load-balancing.
According to our knowledge, ADiS is the only agent-
based architecture that provides each of its computers
with a correct overview of the overall network state,
and does so in an efficient manner.

D. Mitrović, M. Ivanović, Z. Geler

90

3. ADiS architecture
ADiS is a general-purpose software system for dis-

tributed computing, specifically designed for dynamic
networks. A high-level overview of its building blocks
is shown in Fig. 1. Core functionalities of the propo-
sed system can be summarized as follows:

• Dynamic network management. ADiS incorporates
a special type of a software agent, named HBAgent
(HeartBeat Agent), in order to detect dynamic
changes in a computational network, and maintain
the correct overview of the network state. Because
of these functionalities, HBAgent is one of the
most important components of the system.

• Dynamic distribution of computational jobs. When
a computer with sufficient processing resources is
detected, running ADiS instances will be asked to
share part(s) of their pending jobs and transfer
them to the target computer. In this process, the
central role is played by JobManager. The mana-
ger monitors the resource consumption in its host
computer, as well as the availability of other
computers in the network.

• Extensibility. ADiS can be extended with new
forms of computational agents (CAgent), software
agents that perform the actual computations on the

host computer. A specialization of this agent
named DIMAGAgent, designed for calculating
distant matrices, is presented later in Section 4.
Life-cycles of CAgents are controlled by
JobManager.

• Remote administration. ADiS can be accessed
remotely by system administrators, in order to, for
example, inspect the execution progress of existing
jobs, or to specify new jobs. It exposes ADiSNode,
a top-level Remote Method Invocation (RMI)
service [29] with a well-defined interface.

For its functioning, JobManager partly relies on
the low-level PDModule component. PDModule is the
only platform-dependent component of ADiS. It uses
the operating system's API for resource monitoring,
idle input detection, etc. When, for example, it detects
that the host computer has been idle for a period of
time, PDModule spawns a new ADiS instance, which
then joins the existing computational network.
Similarly, if it detects some (mouse or keyboard) input
from the user, PDModule will instantly kill the
running ADiS process in order to release the
computer's resource as soon as possible.

A more detailed insight into the functioning of
ADiS and its central components is given in the
following sub-sections.

Figure 1. Architectural overview of ADiS

3.1. Managing dynamic networks

One of the core ADiS functionalities is the
detection of changes in a computational network.
Changes include the addition of new computers and
unexpected unavailability of others. A correct and
timely insight into the overall network state is crucial
for the optimum job-sharing strategy. The dynamic
network management is performed by a reactive,
stationary agent named HBAgent. The agent is initially
responsible for registering its host computer with an
existing computational network. Then, it continuously
monitors the overall network state, detecting any
changes and signalling them to other agents.

There is a single instance of HBAgent in each
computer that should become a part of the computa-
tional network. The instance if pre-configured with a
list of potential neighbors, i.e. computers it should try
to connect to during startup. All running HBAgents
belong to a specially designed heartbeat connection.
The connection is based on pings, signals that agents
emit to each other in order to signify their presence
and availability. Pings are emitted at regular time
intervals; if an agent does not generate any pings
within a certain time threshold, or if it fails to respond
to an external ping, it is assumed to have become
unavailable.

Each HBAgent keeps a list of every computer in
the network, including its own host. An element of the

Agent-Based Distributed Computing for Dynamic Networks

91

list is a record describing the agent's view of the
corresponding computer's state. The state includes:

• Network address (also used as an identifier)
• Availability (i.e. alive or dead)
• List of assigned computational jobs
• An auto-generated timestamp in which the state

was perceived

The heartbeat connections are maintained using
the following algorithm. When emitting a ping to
HBAgent 𝐻𝑗 , HBAgent 𝐻𝑖 serializes its list of all
computers and includes it in the ping. Upon receiving
the ping, 𝐻𝑗 compares this information with its own
list. During the comparison, it relies on timestamps for
determining the correct state of a computer. If, for
example, 𝐻𝑖 thinks a computer is dead, while 𝐻𝑗
thinks the computer is alive, the correct state is the
one with a later timestamp. Any new information
contained in the ping is incorporated in the 𝐻𝑗 's list. In
a response to the ping, 𝐻𝑗 includes any new
information 𝐻𝑖 should incorporate in its own list. The
response includes an updated state of at least one
computer - the 𝐻𝑗 's host. The updated state includes
the latest timestamp at a minimum, and, optionally, a
new list of assigned computational jobs. Listing 1
shows the implementation of the ping handler method,
demonstrating the given algorithm.

Listing 1. Implementation of the ping handler

void onPing (NeighborList other,
NeighborList delta) {

// check availability of system's
resources , etc. updateMyState () ;
// calculate the delta for each
neighbor
for (Neighbor node : neighbors) {
int n = other.indexOf(node) ;
// if not in his list , or mine has
a greater timestamp...
if ((n = -1)
||(node.getTimestamp()>
other.get(n).getTimestamp()))delta
.add(node);}

// save his list locally
// (operates similarly as the for–
each loop above) neighbors . addAll (
other) ; }

In any multi-agent system [5], it is necessary to

optimize the exchange of messages, since it often
represents a performance bottleneck [1]. Therefore,
the heartbeat connection is organized in special way.
An agent first sorts its list of all computers according
to their network addresses. Given that its position in
the list is 𝑖 , the agent establishes a direct heartbeat
connection (i.e. exchanges pings) only with agents
𝐻𝑖−1 and 𝐻𝑖+1 (more precisely, it establishes a direct
heartbeat connection with first alive agents 𝐻𝑖−𝑝 and
𝐻𝑖+𝑞, 𝑝, 𝑞 > 0).

If during the exchange of pings the agent
𝐻𝑖 detects that, for example, its direct heartbeat
neighbor 𝐻𝑖+1 has become unavailable, it will update

the corresponding record in its own list, setting the
availability to dead and the new timestamp to the old
timestamp plus an 𝜖. Similarly, 𝐻𝑖+2, as the right-side
heartbeat neighbor of 𝐻𝑖+1 performs the same set of
steps. Because it has been updated, the new state of
𝐻𝑖+1 is included in pings signalled by both 𝐻𝑖 and
𝐻𝑖+2 and subsequently propagated to all computers.
Simultaneously, 𝐻𝑖 and 𝐻𝑖+2 become new heartbeat
neighbors.

HBAgent is based on a mobile ConnectionAgent
originally proposed in [20, 21]. Whereas Connection-
Agent was specialized for maintaining a fault-tolerant
network of multi-agent systems, HBAgent is a more
generalized solution, designed for general-purpose
computational networks. Rather than mobile,
HBAgent has been designed as a stationary agent, in
order to reduce the network and computational
overhead of agent mobility. Finally, HBAgent utilizes
a new, custom serialization scheme and socket-based
programming, which has a significant effect on
reducing the network bandwidth required by pings, as
discussed later.

3.2. Runtime job sharing

As noted earlier, one of the main design goals for
ADiS is extensibility. New CAgents can be added to
the system as needed, even at runtime, through a
dynamically-loaded configuration file.

The system defines two base classes that need to
be extended for each concrete computational agent:

1. CAgent - Represents all computational
agents. The two of its most important
methods are shown in Listing 2.

2. JobDesc - Description of a job that the
computational agent supports. Additionally,
each job has a global identifier (an UUID)
automatically assigned to it.

When the heartbeat connection reveals that there is
a remote computer with sufficient processing
resources, a local CAgent is asked to share a part of its
current job. It is up to the concrete CAgent
implementation to determine how the job is actually
divided into sub-jobs and shared. The shared part will
be transferred to the remote computer, which may still
refuse to accept it if, for example, it has accepted
another job in the meantime.

Listing 2. Methods of the core JobSharingI interface for
sharing jobs with distributed computational agents

public interface JobSharingI {
// asks the agent to share (a part
of) its current job
JobDesc share () ;
// informs the agent that the
previously shared job has been
// accepted for processing by
another CAgent
void jobAccepted (JobDesc jobDesc);}

D. Mitrović, M. Ivanović, Z. Geler

92

If the remote CAgent accepts the job, the local
CAgent will be informed through its jobAccepted()
method. At the same time, the local HBAgent
remembers (sub-)jobs that were delegated to the
remote computer. This information is propagated
through the heartbeat connection (initially, by the local
and remote HBAgents) so that every HBAgent knows
which jobs are processed in every other computer. In
case of a computer failure, any HBAgent can take over
its jobs (by convention, it is its right-side heartbeat
neighbor).

There are two main ways of saving computational
results. They can either be propagated through the
heartbeat connection, just like any other information,
or stored directly on a file server. The first approach is
well-suited for a completely distributed system, and
has the advantage of being more flexible (e.g. the
computational results can be collected at any
computer). However, it has a disadvantage of
generating more network traffic. The second approach
uses far less traffic, but is inflexible, in a sense that the
file server must not fail.

ADiS supports both approaches. If a file server is
specified in a configuration file, computational results
will be sent directly there. Otherwise, they will be
incorporated into pings of the heartbeat connection to
be propagated across the computational network. The
system defines a RMI interface that should be
implemented by a file server.

3.3. Analysis of the heartbeat connection

Several steps have been taken to reduce the overall
network traffic generated by pings. A custom
(de)serialization scheme has been implemented to
eliminate the metadata used by the Java Serialization
API. Socket-based programming has been used
instead of, for example, much simpler RMI, in order
to, again, avoid the metadata overhead associated with
each RMI call. However, the most important
optimization factor lays in the organizational structure
of the heartbeat connection.

As noted, each HBAgent sends pings to its
heartbeat neighbors at regular time intervals, in order

to signify its presence in the network. Besides the
special organizational structure of the heartbeat
connection, several additional steps have been taken in
order to reduce the overall network traffic generated
by pings.

A custom serialization scheme has been
implemented, in place of the Java Serialization API.
Using the new scheme, the size of an entire ping
(which incorporates information about all neighbors)
is 1 + 19 ∗ 𝑛 bytes, where 𝑛 > 1 is the number of
computers in the network. On the other hand, Java
Serialization API requires 644 + 67 ∗ 𝑛, 𝑛 > 1 bytes
per ping. Fig. 2 shows the relation of ping sizes to the
number of computers in the network, for both ADiS
and Java serialization schemes. As it can be
concluded, the new serialization scheme reduces the
network traffic significantly.

Another very important factor of the heartbeat
connection is the rate in which pings are generated
(i.e. the heartbeat rate). The higher the rate, the faster
HBAgents become aware of the changes in the
network, but also more, possibly unnecessary, network
traffic is generated. To help determine an opti¬mum
heartbeat rate, a series of tests were performed.

Fig. 3 shows the amount of network traffic (per
computer, per second) generated by different ping
intervals (4, 8, 16, and 32 seconds) and for different
network sizes (4, 8, and 16 computers). The given
values were obtained by using NetworkTrafficView, a
free network monitoring tool [24]. Therefore, the
results include the real TCP packet sizes, and not just
the amount of data a HBAgent reads from or writes to
a socket. As expected, when the ping interval doubles
(e.g. from every 8 to every 16 seconds), the network
traffic is halved.

Next, the correlation of ping intervals and the time
needed to distribute a piece of information across all
computers in a network is analyzed. After the network
has been established, an integer value is sent to a
randomly selected HBAgent. From then on, the value
is propagated only through the heartbeat connection.
The experiment is finished once each HBAgent reports
to have received the value.

Figure 2. Relation of ping sizes to the number of computers in the network, for both custom serialization

scheme used in ADiS, and Java Serialization API

Agent-Based Distributed Computing for Dynamic Networks

93

Figure 3. The amount of network traffic (per computer, per second) generated by different ping intervals

and for different network sizes

As noted earlier in Section 2, this data propagation
algorithm actually belongs to the class of graphs
infection algorithms, which have been extensively
studied. It has been shown in [34] that for a 𝑘-regular
graph with 𝑛 nodes, the upper bound for the number
of pings needed to spread an information from one
computer to all others is set to:

�log𝜆(𝑘) 𝑛� + 3, 𝜆(𝑘) = 𝑘+�𝑘2+4
2

 (1)

However, in the propagation algorithm used in
[34], at ping 𝑝𝑡 each even computer 𝐻2𝑖 sends a
message to 𝐻2𝑖+1, and at ping number 𝑝𝑡+1, each odd
computer 𝐻2𝑖+1 sends a message back to 𝐻2𝑖 , 𝑖 ≥ 0.
In the HBAgent's heartbeat connection, at each ping
the computer 𝐻2𝑖 sends a message to 𝐻2𝑖+1 and then
receives a message back from 𝐻2𝑖+1. This means that
the HBAgent's heartbeat connection needs only half
the number of pings required by the algorithm de-
scribed in [34]. Given this analysis, and the fact that
the HBAgent's heartbeat connection is a 2-regular
graph, the upper bound for the number of pings
needed to spread an information across the entire
computational network becomes:

�
log1+√2 𝑛+3

2
�. (2)

Fig. 4 outlines this upper bound, the worst possible
values for the time needed to spread an information
across the computational network for different ping
intervals (4, 8, 16, and 32 seconds) and for different
network sizes. Actual experimental results are shown
in Fig. 5. They validate the upper bound for the ping,
but also reveal that the average time is significantly
shorter.

These two sets of information, along with the
amount of network traffic shown in Fig. 3, can be used
for determining the optimum heartbeat rate. More
concretely, a ping interval in the range of 16 to 32
seconds results in good data propagation times, while
generating low amount of network traffic even for a
large number of computers.

4. Practical application of ADiS
ADiS has been practically employed in an

automatic distribution of distance matrix calculations
for time-series analysis. The main motivation, as
described earlier, is to shorten the time needed to

Figure 4. The upper bound for the time needed to spread an information across all computers in a network,

for different ping intervals and network sizes

D. Mitrović, M. Ivanović, Z. Geler

94

Figure 5. Experimentally evaluated times needed to spread an information across all computers in a network,

for different ping intervals and network sizes

populate a distance matrix. The experiment presented
in this section will demonstrate the runtime efficiency
of ADiS in shortening the time of lengthy calculation
processes.

4.1. DIMAGAgent

To enable distributed distance matrix calculations
in ADiS, a new computational agent, named
DIMAGAgent, has been developed. The agent is a
simple wrapper around an existing DIMAG (Distance
Matrix Generator). An important feature of the
DIMAG component is its ability to split the problem
of generating a matrix into a number of
(approximately) equal parts, and later merge the
resulting partial matrices into the final output. DIMAG
generates the distance matrices using Framework for
Analysis and Prediction (FAP), a free, platform-
independent open-source library that encompasses
several important algorithms for different temporal
data-mining and time-series analysis tasks [16].

DIMAGAgent's job consists of one or more
instructions, each of which contains the following
information:

• Input dataset name
• Name of the similarity measure
• The total number of parts to split the distance

matrix into
• Index of the part that needs to be calculated by this

instruction
• Required matrix type, i.e. diagonal or full
• A similarity-dependent set of parameters

Therefore, each instruction is used to calculate a
single part of the matrix. The job-sharing algorithm is
executed as described earlier. When an available
computer is detected and a DIMAGAgent receives the
share request, it splits its own set of instructions into
two distinct parts. One part is kept locally, while the
other is marked as shared and sent to the remote
computer. If the remote computer accepts these
instructions, only then does the local DIMAGAgent
exclude them from its job.

4.2. Experimental results and analysis

In the world of speech recognition, the Dynamic
Time Warping (DTW) distance measure has long been
a very well known technique. Two decades ago, it was
introduced to the world of data mining in order to
overcome some limi-tations of the Euclidean
distance [4]. Since then, it has been successfully used
for dealing with time-series in various fields,
including medicine, engineering, bioinformatics,
etc. [27].

DTW relies on dynamic programming and requires
the comparison of each element of one time series
with each element of the other one. This makes the
calculation quite slow, and has some limitations
regarding large datasets. One way to accelerate the
computation is to narrow the search path in the matrix
using global constraints. For example, the Sakoe-
Chiba band [30] narrows the warping window around
the diagonal of the matrix using a constant range 𝑟.

Distance matrices used in the presented
experiment were based on the DTW distance measure,
constrained by the Sakoe-Chiba band with the
constant range 𝑟 set to 10. All datasets used in the
experiment were provided by UCR Time Series
Repository [15], which includes the majority of all
publicly available, labelled time-series datasets in the
world. The actual datasets used include:

• 50words [28]
• FaceAll [35]
• Symbols
• Haptics

The main purpose of the experiment was to
determine the efficiency of the heartbeat connection
and job sharing algorithms implemented in ADiS. The
system, along with DIMAGAgent, was deployed onto
a number of low-end computers, all featuring the same
hardware components: an AMD Sempron 2800+
processor running at 1.61 GHz with 512 MB of RAM.
The operating system used was Microsoft Windows XP
Professional with Service Pack 3.

Agent-Based Distributed Computing for Dynamic Networks

95

Figure 6. Results of the experimental evaluation of ADiS in distributing the distance matrix calculation process,

for different datasets and varying number of computers

The heartbeat rate was set to 8 seconds. A separate
computer was set up to act as a file server.
Additionally, this computer hosted the ADiS Remote
Manager application, used by the system
administrator for sending new jobs to the running
ADiS instances, as well as for monitoring the overall
state of the distributed system.

Fig. 6 shows the experimental results. For each of
the four datasets, it outlines the total time needed to
compute the distance matrix by distributing it on 1, 2,
4, and 8 computers, respectively. To make the results
more comparable, DIMAG was manually executed as
a stand-alone application for each of the dataset, and
the execution time was measured. In Fig. 6, these
measurements are marked as "0 computers".
Therefore, the difference between "0 computers" and
"1 computer" is used to determine the overhead of
using ADiS.

The overall results are very encouraging. They
demonstrate that ADiS operates very well, and that
each instance is able to efficiently detect available
neighbors and share a part of its current job. Distance
matrix calculation times converge uniformly as the
number of computer increases, regardless of the
dataset used. The results also demonstrate that there is
a minimal overhead of using ADiS, i.e. that a single
computer running ADiS operates as well as a stand-
along DIMAG component.

Undoubtedly, the maximum number of computers
used in the experiment is very small when compared
to modern distributed (especially, grid) systems.
However, the purpose of this experiment was mainly
to test the runtime efficiency of ADiS, as well as to
demonstrate the convergence of calculation times. In
practice, the maximum number of computers in a
network is not limited by any factor.

5. Conclusions and future work
This paper proposes a new agent-oriented system

for distributed computing, named ADiS, specifically
designed to operate in dynamic environments.

Initially, ADiS has been envisioned as a system for
distributing the process of distance matrix calculations
in the scientific field of time-series analysis. However,
it has since been extended to serve as a general-
purpose architecture for distributed computing.

The two main characteristics of ADiS can be
summarized as follows:

• Adaptivity to changes in dynamic networks. ADiS
relies on the agent technology to observe changes
in a computational network and adapt its behavior
accordingly.

• Extensibility. The system has a well-defined plug-
in architecture, where plug-ins are used to perform
arbitrary calculations and rely on ADiS for job
distribution.
Instead of many existing systems that target high-

performance grid systems,
ADiS is aimed at users and institutions that are

limited to networks of (possibly low-end) personal
computers.

A lot of effort has been put into optimizing the
overall network traffic used by the system itself. As
demonstrated, the custom organization of the heartbeat
connection and a new serialization scheme result in a
significant reduction of the network bandwidth
requirements.

The architecture has been experimentally validated
as a framework for distributed distance matrix
calculations. The experiments have shown that there is
a significant positive impact of using ADiS: distance
matrix calculation times converge uniformly as the
number of computer increases, regardless of the
dataset used.

Future research directions will be aimed at
optimizing the network requirements of ADiS event
further. The system will be extended with a possibility
of handling failed connections between computers as
well.

In the long run, ADiS needs to be extended with
more advanced load-distribution and job-sharing

D. Mitrović, M. Ivanović, Z. Geler

96

algorithms. This will be a non-trivial task, due to the
use of plug-ins as custom computational entities.

Acknowledgments
This work was partially supported by the Ministry

of Education, Science and Technological Development
of the Republic of Serbia, through project no.
OI174023: "Intelligent techniques and their
integration into wide-spectrum decision support."

References
[1] J. M. Alberola, J. M. Such, V. Botti, A. Espinosa,

A. Garcia-Fornes. A scalable multiagent platform for
large systems. Computer Science and Information
Systems, January 2013, Vol. 10, No. 1, 51−77.

[2] P. S. Almeida, C. Baquero, V. Fonte. Interval tree
clocks: a logical clock for dynamic systems. In:
Proceedings of the 12th International Conference on
Principles of Distributed Systems, OPODIS ’08,
Springer-Verlag, Berlin, Heidelberg, 2008,
pp. 259−274. http://dx.doi.org/10.1007/978-3-540-
92221-6_18.

[3] T. E. Athanaileas, N. D. Tselikas, G. V. Tsoulos,
D. I. Kaklamani. An agent-based framework for
integrating mobility into grid services. In: Proceedings
of the 1st international conference on MOBILe Wire-
less MiddleWARE, Operating Systems, and Applica-
tions MOBILWARE '08, ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications
Engineering), ICST, Brussels, Belgium, 2007,
pp. 31:1−31:6. http://dl.acm.org/citation.cfm?id=13614
92.1361531.

[4] D. Berndt, J. Clifford. Using dynamic time warping
to find patterns in time series. In: AAAI-94 workshop
on knowledge discovery in databases, 1994,
pp. 229−248.

[5] C. Bădică, Z. Budimac, H. D. Burkhard,
M. Ivanović. Software agents: Languages, tools,
platforms. Computer Science and Information Systems,
2011, Vol. 8, No. 2, 255−298.

[6] J. Cao, D. P. Spooner, S. A. Jarvis, G. R. Nudd.
Grid load balancing using intelligent agents. Future
Gener. Comput. Syst., 2005, Vol. 21, No. 1, 135–149.
http://dx.doi.org/10.1016/j.future.2004.09.032.

[7] G. Das, D. Gunopulos. Time series similarity and
indexing. In: Time series similarity and indexing,
Lawrence Erlbaum Associates, Inc., 2003, 279-304.

[8] G. Das, D. Gunopulos, H. Mannila. Finding similar
time series. In: J. Komorowski, J. Zytkow (eds.),
Principles of Data Mining and Knowledge Discovery,
Lecture Notes in Computer Science, Springer Berlin /
Heidelberg, 1997, Vol. 1263, 88–100. http://dx.doi.
org/10.1007/3-540-63223-9_109.

[9] T. Dimitriou, S. Nikoletseas, P. Spirakis. Analysis of
the information propagation time among mobile hosts.
In: Nikolaidis, I., Barbeau, M., Kranakis, E. (eds.), Ad-
Hoc, Mobile, and Wireless Networks, Lecture Notes in
Computer Science, Springer Berlin/Heidelberg, 2004,
Vol. 3158, 630–630.

[10] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang,
E. Keogh. Querying and mining of time series data:
experimental comparison of representations and

distance measures. In: Proc. VLDB Endow., August
2008, Vol. 1, No. 2, pp. 1542–1552. http://dx.doi.org/
10.1145/1454159.1454226.

[11] M. Draief, A. Ganesh. A random walk model for
infection on graphs: spread of epidemics & rumours
with mobile agents. Discrete Event Dynamic Systems,
March 2011, Vol. 21, No. 1, 41–61. http://dx.doi.org/
10.1007/s10626-010-0092-5.

[12] T. C. Du, E. Y. Li, A. P. Chang. Mobile agents in
distributed network management. Communications of
the ACM, 2003, Vol. 7, Nr. 46, 127–132.

[13] C. J. Fidge. Timestamps in message-passing systems
that preserve the partial ordering. In: Proceedings of
the 11th Australian Computer Science Conference,
1988, Vol. 10, No. 1, 5666. http://sky.scitech.qut.edu.
au/~fidgec/Publications/fidge88a.pdf.

[14] J. Han, M . Kamber. Data mining: concepts and
techniques. Morgan Kaufmann Publishers, 2005.

[15] E. Keigh, X . Xi, L. Wei, C. Ratanamahatana.
The UCR time series classification/clustering page.
2006. www.cs.ucr.edu/~eamonn/time_series_data.

[16] V. Kurbalija, M. Radovanović, Z. Geler,
M. Ivanović. A framework for time-series analysis. In:
Proceedings of the 14th international conference on
Artificial intelligence: methodology, systems, and
applications, AIMSA’10, Springer-Verlag, Berlin,
Heidelberg, 2010, pp. 42–51. http://dl.acm.org/
citation.cfm?id=1885962.1885968.

[17] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Commun. ACM, July 1978,
Vol. 21, No. 7, 558–565. http://doi.acm.org/10.1145/
359545.359563.

[18] S. Laxman, P. Sastry. A survey of temporal data
mining. Sadhana 31, 2006, 173–198. http://dx.doi.org/
10.1007/BF02719780.

[19] J. Liu, X. Jin, Y. Wang. Agent-based load balancing
on homogeneous minigrids: macroscopic modeling and
characterization. IEEE Transactions on parallel and
distributed systems, 2005, Vol. 16, No. 7, 586–598.

[20] D. Mitrović, Z. Budimac, M. Ivanović,
M. Vidaković. Improving fault-tolerance of distributed
multi-agent systems with mobile network-management
agents. In: Proceedings of the International
Multiconference on Computer Science and Information
Technology, October 2010, Vol. 5, pp. 217–222.

[21] D. Mitrović, Z. Budimac, M. Ivanović,
M. Vidaković. Agent-based approaches to managing
fault-tolerant networks of distributed multi-agent
systems. Multiagent and Grid Systems, December
2011, Vol. 7, No. 6, 203–218.

[22] D. Mitrović, Z. Geler, M. Ivanović. Distributed
distance matrix generator based on agents. In:
Proceedings of the 2nd International Conference on
Web Intelligence, Mining and Semantics WIMS 2012,
p. Article 40, ACM, New York, NY, USA, 2012.

[23] D. Mitrović, M. Ivanović, Z. Budimac,
M. Vidaković. Supporting heterogeneous agent
mobility with ALAS. Computer Science and
Information Systems, 2012, Vol. 9, No. 3, 1203−1229.

[24] http://www.nirsoft.net/utils/network_traffic_view.html,
2012.

[25] T. R. Payne, M. Paolucci, R. Singh, K. Sycara.
Facilitating message exchange through middle agents.
In: Proceedings of the first international joint
conference on Autonomous agents and multiagent
systems: part 2., 2002, pp. 561–562.

Agent-Based Distributed Computing for Dynamic Networks

97

[26] M. Pipattanasomporn, H. Feroze, S. Rahman.
Multi-agent systems in a distributed smart grid: design
and implementation. In: Proc. IEEE PES 2009 Power
Systems Conference and Exposition, PSCE’09, 2009,
pp. 1–8.

[27] C. A. Ratanamahatana, E. Keogh. Three myths
about dynamic time warping. In: Proceedings of SIAM
International Conference on Data Mining (SDM ’05),
2005, pp. 506–510.

[28] T. Rath, R. Manmatha. Word image matching using
dynamic time warping. In: Proceedings of the IEEE
Computer Society Conference on Computer Vision and
Pattern Recognition, 2003, Vol. 2, 521–527.

[29] http://www.oracle.com/technetwork/java/javase/tech/in
dex-jsp-136424.html, 2012.

[30] H. Sakoe, S. Chiba. Dynamic programming algorithm
optimization for spoken word recognition. In:
Readings in speech recognition, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1990,
pp. 159–165. http://dl.acm.org/citation.cfm?id=10823
5.108244.

[31] M. A. Salehi, H. Deldari. A novel load balancing
method in an agent-based grid. In: IEEE International
Conference on Computing and Informatics, ICOCI
2006, pp. 1-6.

[32] P. K. Sinha, S. R. Dhore. Multi-agent optimized load
balancing using spanning tree for mobile services.
International Journal of Computer Applications, 2010,
Vol. 1, No. 6, 35–42.

[33] R. Stephan, P. Ray, N. Paramesh. Network
management platform based on mobile agents.
International Journal of Network Management, 2004,
Vol. 14, No. 1, 59-73.

[34] V. S. Sunderam, P. Winkler. Fast information
sharing in a complete network. Discrete Appl. Math.,
February 1993, Vol. 42, No. 1, 75-86,
http://dx.doi.org/10.1016/0166-218X(93)90180-V

[35] L. Wei, E. Keogh. Semi-supervised time series
classification. In: Proceedings of the 12th ACM
SIGKDD international conference on Knowledge
discovery and data mining KDD’06, ACM, New York,
NY, 2006, pp. 748-753.

Received June 2013.

