
65

ISSN 1392–124X (print), ISSN 2335–884X (online) INFORMATION TECHNOLOGY AND CONTROL, 2014, T. 43, Nr. 1

Monadic Foundations for Promises in Jason

Alex Muscar, Costin Bădică

University of Craiova, Blvd. Decebal, nr. 107,
RO-200440, Craiova, Romania

e-mail: amuscar@software.ucv.ro

 http://dx.doi.org/10.5755/j01.itc.43.1.4586

Abstract. Even though the agent-oriented paradigm (AOP) has lost some of its charm in the past couple of years, the
agent community is still active and a large variety of real world applications have been developed lately. Ranging from
web applications to mobile applications, the paradigm has shown it is a viable choice. From an overview of these
applications Jason seems to be the most widely used AOP language. But, while the core foundation of Jason, the
Belief-Desire-Intention (BDI) theory, has gotten a lot of attention over the years, the language is still lacking with
respect to some practical aspects such as concurrent programming. In this paper we propose a design for an extension
to Jason that makes concurrent programming easier with the aid of promises. The proposed extension is based on a
monadic characterisation of promises which makes it possible to express concurrent flows in a more natural way. It
also avoids the inversion of control problem inherent when programming with callbacks. We also take into account
some of the drawbacks of our proposed approach and investigate some possible solutions.

Keywords: agent-oriented programming; concurrent programming; asynchronous programming; promises; monads.

1. Introduction
Despite its relatively long history (when compared

to the entire history of computer science), the agent
oriented paradigm has not succeeded in gaining wide
traction. While the promise it makes is compelling—
greater productivity and a gentle learning curve for
novices—it still did not spark practitioners’ interest.
We believe that this is partly due to the agent
community’s failure to cater to more pragmatic
needs.

While there are plenty of formal models of agency
and multi agent systems to choose from, things are
somewhat bleaker when it comes to tooling, and here
we are referring especially to agent oriented
programming languages (AOPLs) [2]. Programming
languages are tools, and the agent community also
needs to develop tools to implement the formal models
it conceives.

Recently, the situation has started to change
somewhat, and the interest in AOPLs seems to be on an
ascending trend with new proposals for AOPLs [12,
25]. Also, real world applications have been developed
using already established languages. More specifically
the Jason language [4] has been used to develop
applications ranging from web applications [19] to
mobile applications [26], thus establishing it is a
viable choice. But, while the core foundation of Jason,
the Belief-Desire-Intention (BDI) theory, has gotten a

lot of attention over the years, the language is still
lacking with respect to some practical aspects.
Concurrent programming is an example of a domain
in which improving the existing solution would be
more than welcomed. By making concurrent
computation easier to express in agent languages, a
whole new area of applications would open up for
AOP, from scientific applications like massively
parallel simulations to financial applications like high
frequency trading [27]. We believe that by addressing
more pragmatic issues, the agent community has a
chance to get noticed by a broader audience.

In this paper we propose a dialect of Jason that
makes concurrent programming easier by using the
concept of promises introduced by Friedman and Wise
in [9]. Promises are objects that represent the (yet
unknown) result of an ongoing computa- tion which is
executing concurrently with other computations in the
system. Promises can have callbacks attached which
will be called when the value of the promise becomes
available (i.e. the promise gets resolved). Later,
languages like E1 and Alice ML2 adopted the concept
and popularised it [18, 1]. The proposed extension
makes it possible to express concurrent flows in a
more natural way. At the moment of writing this paper,

1 http://www.erights.org
2 http://www.ps.uni-saarland.de/alice

A. Muscar, C. Bădică

66

the monadic model for promises (see Section 3 and
Section 4) is implemented in Java and we are working
toward integrating it with the Jason interpreter3 .

Our investigation of concurrency in AOPLs was
prompted (and is part of) a larger research project
concerning the development of a dynamic negotiation
mechanism and an accompanying framework [22]. We
decided to use Jason for implementing an initial
prototype, but given the distributed nature of our
framework we were soon faced with some of Jason’s
limitations whose nature we will illustrate in Section 2.
While this work does not focus on distributed systems,
concurrency is inherently present in such scenarios, so
tackling this problem, even in the context of single
agents or many agents running on the same machine,
will benefit them as well.

The solution we propose avoids the transformation
of the program into explicit continuation passing style
(CPS) [29] inherent when using promises. We also
take into account some of the drawbacks of our
proposed approach and investigate some possible
solutions.

This paper is structured as follows: in Section 2
we illustrate the problem we are addressing by means
of a simple example which we will come back to in
later sections. In Sections 3 and 4 we present the main
aspects of our approach. We further discuss related
works and the implications of the proposed approach
in Sections 5 and 6, and sketch possible solutions. We
conclude in Section 7, where we present some possible
directions for future iterations of this approach. In
Appendix A, we show the formal definition of a
simplified monad, and, finally, in Appendix B we
prove that the simplified promise monad respects the
monadic laws.

2. Background
In this section we are going to briefly introduce

the syntax of Jason and a working example which we
will use throughout the rest of the paper.

2.1. Brief overview of Jason

A program is made out of three sections: beliefs,
rules and plans. Beliefs and rules are very similar to
facts and rules in Prolog with one syntactic difference:
& replaces, in conjunctions. Goals are introduced by
the ! operator4 . Plans, which follow the generic
form triggering_event : context <-
body., are intended to handle goals. Triggering
events match goals and message. The only relevant
triggering events used in this paper are goal addition
and message arrival, denoted by atoms with the +! and

3 The source for the monadic model can be found at
https://dl.dropboxusercontent.com/u/3240227/Async.zip.
4 To be precise the ! introduces achievement goals, Jason also has
test goals introduced by the ? operator, but they are not relevant for
the purpose of this paper.

the + prefixes. The belief base can be manipulated with
the aid of the + and - operators, in the body of the plan.
They add, and delete respectively, a belief from the
belief base5.

One last piece of information needed to
understand the examples used in this paper is related
to Jason’s use of internal actions. They allow the
extension of the Jason interpreter by using Java.
Internal actions are qualified by their package name
(like in Java, e.g. package.internal_action).
Actions pre-defined by the Jason distribution don’t
have a package name, but they retain the leading
period (e.g..send). For further details we direct the
interested readers to [5].

2.2. Problem formulation and a running example

We will employ a simple scenario which involves
a single agent working with two social networks:
Facebook and Twitter. Its job is to correlate wall posts
and tweets for the user 6. Since both operations can
have considerable delays it would be desirable to run
both of them concurrently, and not to block the agent
while doing so.

A straight forward implementation in Jason would
involve two additional agents —facebook_client
and twitter_client—which act as clients for
the social networks. In this setup, the main agent
would send a message to each of the client agents to
fetch the relevant data7. While this obeys both previous
requirements, it does so at an added cost for the
programmer: manually synchronising the responses
from the clients. Fig. 1 shows a possible
implementation of this approach.

Because we need the responses from two
concurrently running operations to continue, and
because we don’t know in which order the agent we
will receive them, we use the knowledge base for
synchronisation: when the response from one client
has arrived, we store it in the knowledge base and test
if the other client has already sent its response. Only
when both clients are done, the main agent can go on
with its computation. In this scheme the
synchronisation is scattered in three different places:
the event handlers for the client responses
(+wall_posts and +tweets), the plan for
processing the data (+!correlate), and the belief
base. Fig. 2 illustrates the interactions between the
agents in this approach.

5 Since these operations usually come in pairs, a deletion followed
by an addition, Jason offers the shortcut operator -+ for this purpose.
6 While admittedly synthetic, there is no reason why this example
could not be scaled to multiple (eventually distributed) agents. Also,
while in this example we use agents as simple reactive entities, this is
not a limitation of the proposed approach, but a consequence of our
desire to keep the example simple
7 Note that for the rest of this paper we assume the presence of two
user-define internal actions, facebook.get_wall_posts and
twitter.get_tweets, which allow agents to interface with
the social networks.

Monadic Foundations for Promises in Jason

67

!start.
+!start

<- .send(facebook_client, tell,
get_wall_posts);
.send(twitter_client, tell,
get_tweets).

+!correlate
: have_wall_posts(Posts) &

have_tweets(Tweets)
<-...

+wall_posts(Posts)
<- +have_wall_posts(Posts);

!correlate.

+tweets(Tweets)
<- +have_tweets(Tweets);

!correlate.

// Facebook client

+get_wall_posts[source(A)]

<- facebook.get_wall_posts(WallPosts);
.send(A, tell, WallPosts).

// Twitter client

+get_tweets[source(A)]

<- twitter.get_tweets(Tweets);
.send(A, tell, Tweets).

Figure 1. Main agent and clients

Figure 2. Interactions between the three agents in the

straight forward implementation

While this technique leads to the desired behavior,
it is not optimal for a couple of reasons:

1. It splits the logic of the program over several
execution units – in our case the logic really
belongs to the main agent, but it is split over
the main agent, and the Facebook and Twitter
client agents – which makes it hard to have a
global view of the program behavior,
especially for more complex scenarios, e.g.
where the client agents need access to the
belief base of the main agent;

2. It uses one client agent for each such request
which leads to inefficient and hard to manage
programs. While several strategies are
possible – starting all the client agents up-
front, dynamically creating and destroying
them, or managing a pool of such agents –
none of them is optimal, the first two because
of the cost of running extra agents, and the
third because of the extra complexity involved
in managing a pool of client agents; and

3. It does not scale: having to manually store the
responses of clients as beliefs for many
asynchronous requests and synchronising
them by hand is a tedious and error prone
task and it leads to mostly duplicate code for
handling asynchronous responses (e.g.
+wall_posts, +tweets).

It is clear that if we want a scalable solution we
need to look for an alternative approach.

3. Monadic Foundations for Promises
While most implementations of promises follow

some common principles, there is no agreed upon
definition of what a promise is. With the recent advent
of functional programming there has been a rising
interest in using category theoretic concepts, with
monads being probably the most prominent example
[20]. Using monads to give structure to promises seems
promising in the light of projects such the computation
expressions in F# [30], the C# asynchronous model
[17], and Scala promises [13]. Before we go on any
further we must first briefly introduce monads.

3.1. Monads

Monads are structures that represent generic
computations. They are usually defined as triples
composed of a type constructor with two associated
operations called unit (or return) and bind (often
written as the infix operator >>=).

The type constructor defines the monadic type,
which is the type of the values that will be
used/threaded throughout the computation—e.g.
promises. The unit operation is used to build simple
computations in the given monad. It takes an ordinary
value— e.g. an integer, a string—and “lifts” it in the
monad. The bind operator precisely defines how
operations belonging to that computation can be
combined.

In order for such a structure to be proper monad
the operations must obey three laws, known as, the
monadic laws [32]. These laws guarantee that by
combining two valid computations in the given monad
we obtain another valid computation.

3.2. The Promise monad

We will next have another look at promises and try
to see how they form a monad. Promises abstract over

A. Muscar, C. Bădică

68

!start.

+!start <- !social_plan.

+!social_plan[context(promise)]

<- facebook.get_wall_posts(Posts);
 twitter.get_tweets(Tweets);
 !correlate.

!start.

+!start

<- !promise.run(social_plan).

+!social_plan

<- promise.bind(
 facebook.get_wall_posts, cont1).

+!cont1(WallPosts)

<- promise.bind(
 twitter.get_tweets, cont2).

+!cont2(Tweets) <- !correlate.

Figure 3. A plan in the promise monad (left) and its hypothetical translation using the operations
in the promise monad explicitly (right)

the duration of a computation, denoting a value that
will be available at a later time. As we said earlier, the
value of a promise can be observed by attaching a
callback to the promise. When the promise gets
resolved, the callback gets invoked.

The callback is the main component that allows
abstracting over time, since it encapsulates the future
behaviour of the computation. This hints to a possible
shift in our view of promises: instead of looking at
promises as containers of (yet unavailable) values we
can look at them as computations that when given a
callback will (eventually) invoke it in a context where
the value of the promise is available.

A more formal definition of the Promise monad
triple is available in Appendix A, and proofs that it
obeys the monadic laws can be found in Appendix B.
This is no surprise, since the monad for simplified
promises that we have defined is actually the
Continuation Passing Style (CPS) monad [8] in
disguise. This is indeed consistent with our earlier
intuition that promises will continue a computation
when the value of the promise becomes available.

Having promises form a monad opens up some
interesting options for both the syntax—F#’s
computational expressions or Haskell’s do notation
[24]— and semantics—monads can be easily
composed in a series of interesting ways—of the
language. We will further explore the implications on
the design of our solution in Section 4.

4. Implicit Promises
Monads have been called “programmable

semicolons” because of the syntactic sugar that they
have associated in Haskell, the do notation [24]. The
notation allows the code to have an imperative feel,
while still being declarative in nature.

We will employ a similar scheme in our dialect, by
specifying the context in which a plan is going to be
executed via annotations. This will allow the
programmer to write code in a style that is natural,
while allowing the compiler to rewrite the code in
order to do the appropriate plumbing. This approach is

meant to address the inherent inversion of control8 that
arises in concurrent scenarios (see Section 2).

Fig. 3 (left) illustrates our approach. The plan
social_plan is annotated as executing in the
promise context. This changes the semantics of the
actions inside the plan, making them behave as promise
computations instead of regular Jason code.

In order to implement this solution we can employ
an approach similar to the one used by the F#
language 9 for its asynchronous computation
expressions [31]. The compiler performs a rewriting
transformation that transforms the code in Fig. 3 (left)
into code similar to the one in fig. 3 (right). While this
technique suffices in the case of F# thanks to its
support for anonymous functions that close over
variables in their scope (closures), their lack in Jason
means that we have to perform an additional
transformation, lambda lifting [14]. This
transformation identifies the variables that a closure
would capture and transforms the closure in a top
level function with an extra parameter for each
captured variable. Using these techniques, the code in
Fig. 3 (left) would be rewritten to look like the one in
Fig. 3 (right) (modulo some identifiers which would
have to be generated by the compiler).

5. Proposal Analysis
The main drawback of our approach is that plans

cannot mix computations from different monads. A
more accurate description would be that actions from
different monads cannot be composed in the same plan,
but they are free to invoke plans defined in different
monads, as long as they define an appropriate
invocation mechanism. Because the compiler knows
the context in which the plan computations have to run
in, it can emit the call to the correct run operation. It

8 Linear control flow is replaced by a scheme where each function
call (or predicate/plan) receives an additional functional argument,
its “continuation”, which is called instead of normally returning a
value.
9 http://research.microsoft.com/en-
us/um/cambridge/projects/fsharp/

Monadic Foundations for Promises in Jason

69

remains to be seen if this will be flexible enough for
real world applications.

Another drawback is that the belief base of an
agent represents its global shared state. This is not a
problem with regular Jason agents because the
interpreter serialises access to the belief base, but, by
using external mechanisms to execute actions
concurrently this mechanism can be circumvented.
This can lead to the typical problems associated with
concurrency, e.g. race conditions and deadlocks. This
is illustrated by the code in Fig. 4. Suppose this
code is part of an agent in charge of running a
coffee machine. When the user sends a request, the
agent displays a message to the user and starts making
the coffee at the same time.

+user_request(make_coffee)[context
(promise)]

<- lcd.display("Preparing
coffee");

-+state(making_coffee);

!make_coffee.

Figure 4. Dangers of global shared state

The key point here is the change in the belief base
-+state(making_coffee). This removes any
old belief for state, and adds a new one with the
argument making_coffee. If another concurrently
running computation were to change the state at the
same time, the belief base might be left in an
inconsistent state, a classic example of a race
condition.

There are a couple of alternatives to address this
issue:

• Based on the insight that not all the plans need all
the beliefs, we could change the language to
introduce local plan beliefs. This is the approach
taken by the SimpAL language [25]. While this is
an interesting approach for structuring an agent,
we feel it would be a disruptive change for the
Jason language;

• Software Transactional Memory (STM) is a
synchronisation mechanism akin to transactions
in databases [28]. It is an interesting alternative as
it is only a infrastructure change, so it would not
surface in the language syntax. But STM has the
drawback that the performance of the application
may suffer; and

• Represent the internal state of the agent as
synchronised mutable variables as found in
Concurrent Haskell10 [15], which in turn are based
on M-Structures as presented in [3].

6. Related Works
In [21] we proposed two solutions: the first

involving explicit promises, and the second that

10 http://www.haskell.org/haskellwiki/GHC/Concurrency

proposed some changes to the Jason syntax and
semantics to accom- modate implicit promises. We
clearly analysed in [21] why the former is far from
ideal in the context of Jason. Briefly, the lack of
anonymous plans in Jason would make the solution
cumbersome to use, and it would still lead to inversion
of control, because promises’ callbacks are defined as
separate plans. The latter proposal was an attempt to
address this shortcoming by adding support in the
language for promises.

Very briefly, it proposed the introduction of a
promise composition operator ||, and special treatment
of the semicolon operator in the interpreter, in order to
capture the continuation of the plan and set it as the
promise callback (for an in-depth discussion of the
proposed solution cf. [21]). While the proposal was a
step in the right direction, it was rather ad hoc, and its
interaction with the core language semantics was not
clear. The solution proposed in this paper is aimed at
addressing these ambiguities.

By defining promises as a monad we can take
advantage of the monadic prop- erties mentioned
earlier. The most important is that composing
promises now has a clear semantics. A nice side
effect of promises being a monad is that we do not
need a special operator for composing promises, we
can use the semicolon. This is thanks to the fact that
we use the contest annotation to specify exactly
the type of computations that can be used in a plan.
This is a both a blessing and a curse. The downside of
running all the computations in a plan inside one
monad is that mixing computations is not
straightforward. Indeed, this was the exact reason why
the semantics proposed in our previous paper was not
clear. Monad transformers are one possible solution
to the monad composition problem [16]. Our language
is not expressive enough to allow defining monad
transformers, and for now, we have decided that this is
an acceptable compromise.

The mechanism proposed for setting plan contexts
is not limited to the promise monad. In fact it is
similar to the do notation from Haskell. As long as
appropriate definitions of the unit and bind operators
are available, the context can be used to run plan
computations in any monad. This might prove to be an
interesting mechanism of experimentation with
language features, as many computations can be
expressed as monads. We will not explore this
direction further in this paper.

Finally, the monad presented in Section 3.2 is a
simplified version of a promise monad. It does not
handle failure, which is an important and extensive
issue in itself. We will address this issue in future
research.

A recent effort to address similar issues is the one
proposed by Ricci et al. in [25]. While partially
targeting the same problems as our own work, the
solution proposed by [25] takes a different approach
when it comes to concurrency—the simpAL language
proposed by the authors uses the Agents & Artifacts

A. Muscar, C. Bădică

70

model [23]. While superficially similar, the two
approaches are fundamentally different. simpAL uses
artifacts for coordination, which are passive entities
external to the agent. Agents can subscribe to artifacts
in order to be notified of changes in the artifact’s
state. Such notifications are handled by using a form of
callback with some syntactic sugar, similar to how the
E language handles promises. Thus, the flow of the
agent depends (at least partially) on outside entities
(i.e. artifacts) leading to some degree to the problem
we are trying to avoid, inversion of control.

Another early (and interesting) example of an
agent oriented programming lan- guage featuring
concurrent computation is Go! [6], which has
unfortunately mostly gone unnoticed by the
community. The model proposed for Go! is closer to
our own, with multiple threads of control servicing
the same agent. Synchronisation is achieved by using
an intra-agent tuple space. This is similar to the
approach used by Concurrent Haskell (see the end of
Section 5).

7. Conclusion and Future Work
In this paper we presented the proposal for a non-

intrusive extension for concurrent computations in
Jason using a monad for structuring promises.

Being able to easily compose asynchronous
computations offers a big advantage for real world
scenarios where agents need to use resource that imply
latencies, e.g. web services.

The immediate next action is to integrate the
implementation of the monadic model in Java with the
Jason interpreter.

Once the integration is done, an interesting
direction will be to further investigate the semantics of
promises in the context of Jason. More specifically,
working towards a promise monad that can gracefully
handle failure is an important direction.

A related direction is that of finding a
synchronisation scheme for the belief base. While
orthogonal to the promise model, this is an important
aspect nevertheless.

Finally it would be interesting to investigate other
asynchronous control constructs based on promises.
Some interesting work has already been done for other
languages like E and Scala11.

Acknowledgments
This work was supported by the strategic grant

POSDRU/CPP107/DMI1.5/S/78421, Project ID 78421
(2010), co-financed by the European Social Fund
“Investing in People, within the Sectoral Operational
Programme Human Resources Development 2007”
2013.

11 http://asyncobjects.sourceforge.net/asyncscala/index.html

References
[1] D. Aspinall, I. Stark. Futures and promises in alice ml

(2008). URL
http://www.inf.ed.ac.uk/teaching/courses/apl/2010-
2011/examples/aliceml.pdf.

[2] C. Badica, Z. Budimac, H. D. Burkhard,
M. Ivanovic. Software agents: Languages, tools,
platforms. Comput. Sci. Inf. Syst., 2011, Vol. 8, No. 2,
255–298.

[3] P. S. Barth, R. S. Nikhil. Arvind: M-structures:
Extending a parallel, non-strict, functional language
with state. In: FPCA, 1991, pp. 538–568.

[4] R. H. Bordini, J . F . Hübner, R .Vieira. Jason and
the golden fleece of agent-oriented programming. In:
R.H. Bordini, M. Dastani, J. Dix, A.E. Fallah-
Seghrouchni (eds.), Multi-Agent Programming,
Multiagent Systems, Artificial Societies, and
Simulated Organizations, Springer, 2005, Vol. 15, 3–
37.

[5] R. H. Bordini, M. Wooldridge, J. F. Hübner.
Programming Multi-Agent Systems in AgentSpeak
using Jason. Wiley Series in Agent Technology, John
Wiley & Sons. 2007.

[6] K. L. Clark, F. G. McCabe. Go! – a multi-paradigm
programming language for implementing multi-
threaded agents. Annals of Mathematics and Artificial
Intelligence, 2004, 41 (2-4), 171–206.

[7] Z. Csörnyei, G. Dévai. Central European functional
programming school. An Introduction to the Lambda
Calculus. Springer-Verlag, Berlin, Heidelberg. 2008,
87–111. DOI 10.1007/978-3-540-88059-2_3. URL
http://dx.doi.org/10.1007/978-3-540-88059-2_3.

[8] A. Filinski. Representing monads. In: Proceedings of
the 21st ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, New York, NY,
USA, ACM, POPL ’94, pp. 446–457. DOI
10.1145/174675.178047. URL
http://doi.acm.org/10.1145/174675.178047.

[9] D. Friedman, D. Wise. The Impact of Applicative
Programming on Multiprocessing. Tech- nical report.
Indiana University, Bloomington. Computer Science
Department. 1976.

[10] J. Gibbons. Calculating functional programs. URL
http://www.comlab.ox.ac.uk/oucl/work/jeremy.gibbons
/publications/acmmpc-calcfp.pdf, pp. 148–203.

[11] J. Gibbons, R. Hinze. Just do it: simple monadic
equational reasoning. SIGPLAN Not., 2011, Vol. 46,
No. 9, 2–14. DOI 10.1145/2034574.2034777. URL
http://doi.acm.org/10.1145/2034574.2034777.

[12] C. V. Grigore, R. W. Collier. Af-raf: an agent-
oriented programming language with algebraic data
types. In: Proceedings of the compilation of the co-
located workshops on DSM’11, TMC’11, AGERE!’11,
AOOPES’11, NEAT’11, & VMIL’11,
SPLASH’11 Workshops, ACM, New York, USA,
2011, pp. 195–200. DOI 10.1145/2095050.2095081.
URL http://doi.acm.org/10.1145/2095050.2095081.

[13] P. Haller, A. Prokopec, H. Miller, V. Klang, R.
Kuhn, V. Jovanovic. Futures and promises. URL
http://docs.scala-lang.org/overviews/core/futures.html.

[14] T. Johnsson. Lambda lifting: transforming programs
to recursive equations. In: Proc. of a conference on
Functional programming languages and computer
architecture, New York, USA, 1985, pp. 190–203.
Springer-Verlag New York.

http://www.inf.ed.ac.uk/teaching/courses/apl/2010-2011/examples/aliceml.pdf
http://www.inf.ed.ac.uk/teaching/courses/apl/2010-2011/examples/aliceml.pdf
http://docs.scala-lang.org/overviews/core/futures.html
http://docs.scala-lang.org/overviews/core/futures.html

Monadic Foundations for Promises in Jason

71

[15] S. P. Jones. Tackling the Awkward Squad: monadic
input/output, concurrency, exceptions, and foreign-
language calls in Haskell. URL
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1
.1.36.9622. 2008.

[16] S. Liang, P. Hudak, M. Jones. Monad transformers
and modular interpreters. In: Proceedings of the 22nd
ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’95, New York, NY,
USA, 1995, pp. 333–343. DOI
10.1145/199448.199528. URL
http://doi.acm.org/10.1145/199448.199528.

[17] Microsoft: Asynchronous programming with async
and await. URL http://msdn.microsoft.com/en-
us/library/vstudio/hh191443.aspx. 2013.

[18] M. S. Miller, E. D. Tribble, J. Shapiro.
Concurrency among strangers: programming in e as
plan coordination. In: Proceedings of the 1st
international conference on Trustworthy global
computing, pp. 195–229. Springer-Verlag, Berlin,
Heidelberg. 2005.

[19] M. Minotti, G. Piancastelli, A. Ricci. Agent-oriented
programming for client-side concurrent web 2.0
applications. In: J. Cordeiro, J. Filipe, W. Aalst,
J. Mylopoulos, M. Rosemann, M.J. Shaw, C.
Szyperski (eds.), Web Information Systems and
Technologies, Lecture Notes in Business Information
Processing, Springer Berlin Heidelberg, 2010, Vol. 45,
pp. 17–29.

[20] E. Moggi. Notions of computation and monads. Inf.
Comput., 1991, Vol. 93, No. 1, 55–92.

[21] A. Muscar. Extending Jason with promises for
concurrent computation. In: G. Fortino, C. Badica, M.
Malgeri, R. Unland (eds.), Intelligent Distributed
Computing VI, Studies in Computational Intelligence,
Springer Berlin Heidelberg, 2013, Vol. 446, pp. 41–50.
DOI 10.1007/978-3-642-32524-3_7. URL
http://dx.doi.org/10.1007/978-3-642-32524-3_7.

[22] A. Muscar, C. Badica. Exploring the design space of a
declarative framework for automated negotiation:
Initial considerations. In: L.S. Iliadis, I. Maglogiannis,
H. Papadopoulos (eds.) AIAI (1), IFIP Advances in
Information and Communication Technology, Springer,
2012, Vol. 381, pp. 264–273.

[23] A. Omicini, A. Ricci, M. Viroli. Artifacts in the

A&A meta-model for multi-agent systems.
Autonomous Agents and Multi-Agent Systems, 2008,
Vol. 17, No. 3, 432–456. DOI 10.1007/s10458-008-
9053-x. URL http://dx.doi.org/10.1007/s10458-008-
9053-x.

[24] B. O’Sullivan, J. Goerzen, D. Stewart. Real World
Haskell, 1st edition. O’Reilly Media, Inc. 2008.

[25] A. Ricci, A. Santi. Designing a general-purpose
programming language based on agent- oriented
abstractions: the Simpal project. In: Proceedings of the
compilation of the co-located workshops on DSM’11,
TMC’11, AGERE!’11, AOOPES’11, NEAT’11, &
VMIL’11, SPLASH ’11 Workshops, ACM, NY, USA,
2011, pp. 159–170. DOI 10.1145/2095050.2095078.

[26] A. Santi, M. Guidi, A. Ricci. Jaca-android: An agent-
based platform for building smart mobile applications.
In: M. Dastani, A.E. Fallah-Seghrouchni, J. Hübner,
J. Leite (eds.) LADS, Lecture Notes in Computer
Science, Springer, 2010, Vol. 6822, pp. 95–114.

[27] International Organization of Securities Commissions,
T.C.: Regulatory issues raised by the impact of
technological changes on market integrity and
efficiency. Tech. rep., International Organization of
Securities Commissions. 2011. URL
.http://www.iosco.org/library/pubdocs/pdf/IOSCOPD3
54.pdf.

[28] N. Shavit, D. Touitou. Software transactional
memory. Distributed Computing, 1997, Vol. 10, No. 2,
99–116.

[29] G. J. Sussman, Jr. G.L.S.: Scheme: an interpreter for
extended lambda calculus. MIT AI Memo 349.
Massachusetts Institute of Technology, Cambridge,
Mass. 1975.

[30] D. Syme, A. Granicz, A. Cisternino. Expert F# 2.0,
1st edition. Apress, Berkely, CA, USA. 2010.

[31] D. Syme, T. Petricek, D. Lomov. The f#
asynchronous programming model. In: R. Rocha, J.
Launchbury (eds.) PADL, Lecture Notes in Computer
Science, Springer, 2011, Vol. 6539, 175–189.

[32] P. Wadler. Monads for functional programming. In:
Advanced Functional Programming, First International
Spring School on Advanced Functional Programming
Techniques-Tutorial Text, Springer-Vergal, London,
1995, 24–52. URL
http://dl.acm.org/citation.cfm?id=647698.734146.

Received June 2013.

Appendix A: The Definition of the Promise Monad
A promise for a value of type α is a function which receives a handler that can be called with the value of the

promise, and it produces a value of type β12. The type constructor for the Promise monad, Mpromise , is defined as:
Mpromise = (α → β) → β
The unit operation takes a value and returns a promise that will pass the value as an argument to the promise’s

handler13:
unitpromise = λx. λk. k x (1)

12 We use the standard notation for function types, where α → β is the type of a function taking an argument of type α and return a value of type
β.
13 We use the standard notation of lambda calculus [7]—functions are introduced by the λ operator which binds a variable in the scope of its body
expression, e.g. λvar. body. Function application is denoted by juxtaposition. We use parenthesis for clarity.

http://msdn.microsoft.com/en-us/library/vstudio/hh191443.aspx
http://msdn.microsoft.com/en-us/library/vstudio/hh191443.aspx

A. Muscar, C. Bădică

72

The bind operation takes a promise and a continuation of the promise, and returns a promise that will invoke the
continuation in a context where the result of the promise is available:

bindpromise = λm. λk. λc. run m (λx. run (k x) c)(2)
where run : Mpromise α → (α → β) → β is a function that executes a promise with the given callback—in our case it is
equivalent to function application.

Appendix B: Proofs
In order for any triple made out of a type constructor and the bind and unit operations to form a valid monad, it has to
obey three laws: left identity, right identity, and associativity [32]. We will use equational reasoning [10, 11] to
prove that this is the case for the Promise monad.

Left identity: unit x = f ≡ f x
Proof (Left identity).
unit x = f ≡ (λ f1 . f1 x) = f by (1)

≡ λ f2 . (λ f1 . f1 x) (λy. (f y) f2) by (2)
≡ λ f2 . (f x) f2 β-reduction

≡ f x η-conversion

Right identity: m = unit ≡ m
Proof (Right identity).
m = unit ≡ m = (λx. λ f . f x) by (1)

≡ λ f1 . m (λy. ((λx. λ f . f x) y) f1)m by (2)
≡ λ f1 . m (λx. (λ f . f x) f1) β-reduction
≡ λ f1 . m (λx. f1 x) β-reduction

≡ λ f1 . m f1 η-conversion
≡ m η-conversion

Associativity: (m = f) = g ≡ m = (λx. (f x = g))

Proof (Associativity).
m = (λx.(f x = g)) ≡ m = (λx. λ f1 . (f x) (λy. (g y) f1)) by (2)

≡ λ f2 . m (λz. ((λx. λ f1 . (f x) (λy. (g y) f1)) z) f2) by (2)

≡ λ f2 . m (λz. (λ f1 . (f z) (λy. (g y) f1)) f2) β-reduction
≡ λ f2 . m (λz. (f z) (λy. (g y) f2)) β-reduction
≡ λ f2 . (λ f1 . m (λz. (f z) f1)) (λy. (g y) f2) η-conversion
≡ λ f1 . m (λz. (f z) f1)) = g by (2)

≡ (m = f) = g by (2)

