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Abstract. Even though the agent-oriented paradigm (AOP) has lost some of its charm in the past couple of years, the 
agent community is still active and a large variety of real world applications have been developed lately. Ranging from 
web applications to mobile applications, the paradigm has shown it is a viable choice. From an overview of these 
applications Jason seems to be the most widely used AOP language. But, while the core foundation of Jason, the 
Belief-Desire-Intention (BDI) theory, has gotten a lot of attention over the years, the language is still lacking with 
respect to some practical aspects such as concurrent programming. In this paper we propose a design for an extension 
to Jason that makes concurrent programming easier with the aid of promises. The proposed extension is based on a 
monadic characterisation of promises which makes it possible to express concurrent flows in a more natural way. It 
also avoids the inversion of control problem inherent when programming with callbacks. We also take into account 
some of the drawbacks of our proposed approach and investigate some possible solutions. 
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1. Introduction 
Despite its relatively long history (when compared 

to the entire history of computer science), the agent 
oriented paradigm has not succeeded in gaining wide 
traction. While the promise it makes is compelling—
greater productivity and a gentle learning curve for 
novices—it still did not spark practitioners’ interest. 
We believe that this is partly due to the agent 
community’s failure to cater to more pragmatic 
needs. 

While there are plenty of formal models of agency 
and multi agent systems to choose from, things are 
somewhat bleaker when it comes to tooling, and here 
we are referring especially to agent oriented 
programming languages (AOPLs) [2]. Programming 
languages are tools, and the agent community also 
needs to develop tools to implement the formal models 
it conceives. 

Recently, the situation has started to change 
somewhat, and the interest in AOPLs seems to be on an 
ascending trend with new proposals for AOPLs [12, 
25]. Also, real world applications have been developed 
using already established languages. More specifically 
the Jason language [4] has been used to develop 
applications ranging from web applications [19] to 
mobile applications [26], thus establishing it is a 
viable choice. But, while the core foundation of Jason, 
the Belief-Desire-Intention (BDI) theory, has gotten a 

lot of attention over the years, the language is still 
lacking with respect to some practical aspects. 
Concurrent programming is an example of a domain 
in which improving the existing solution would be 
more than welcomed. By making concurrent 
computation easier to express in agent languages, a 
whole new area of applications would open up for 
AOP, from scientific applications like massively 
parallel simulations to financial applications like high 
frequency trading [27]. We believe that by addressing 
more pragmatic issues, the agent community has a 
chance to get noticed by a broader audience. 

In this paper we propose a dialect of Jason that 
makes concurrent programming easier by using the 
concept of promises introduced by Friedman and Wise 
in [9]. Promises are objects that represent the (yet 
unknown) result of an ongoing computa- tion which is 
executing concurrently with other computations in the 
system. Promises can have callbacks attached which 
will be called when the value of the promise becomes 
available (i.e. the promise gets resolved). Later, 
languages like E1 and Alice ML2 adopted the concept 
and popularised it [18, 1]. The proposed extension 
makes it possible to express concurrent flows in a 
more natural way. At the moment of writing this paper, 

                                                           
1 http://www.erights.org 
2 http://www.ps.uni-saarland.de/alice 
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the monadic model for promises (see Section 3 and 
Section 4) is implemented in Java and we are working 
toward integrating it with the Jason interpreter3 . 

Our investigation of concurrency in AOPLs was 
prompted (and is part of) a larger research project 
concerning the development of a dynamic negotiation 
mechanism and an accompanying framework [22]. We 
decided to use Jason for implementing an initial 
prototype, but given the distributed nature of our 
framework we were soon faced with some of Jason’s 
limitations whose nature we will illustrate in Section 2. 
While this work does not focus on distributed systems, 
concurrency is inherently present in such scenarios, so 
tackling this problem, even in the context of single 
agents or many agents running on the same machine, 
will benefit them as well. 

The solution we propose avoids the transformation 
of the program into explicit continuation passing style 
(CPS) [29] inherent when using promises. We also 
take into account some of the drawbacks of our 
proposed approach and investigate some possible 
solutions. 

This paper is structured as follows: in Section 2 
we illustrate the problem we are addressing by means 
of a simple example which we will come back to in 
later sections. In Sections 3 and 4 we present the main 
aspects of our approach. We further discuss related 
works and the implications of the proposed approach 
in Sections 5 and 6, and sketch possible solutions. We 
conclude in Section 7, where we present some possible 
directions for future iterations of this approach. In 
Appendix A, we show the formal definition of a 
simplified monad, and, finally, in Appendix B we 
prove that the simplified promise monad respects the 
monadic laws. 

2. Background 
In this section we are going to briefly introduce 

the syntax of Jason and a working example which we 
will use throughout the rest of the paper. 

2.1. Brief overview of Jason 

A program is made out of three sections: beliefs, 
rules and plans. Beliefs and rules are very similar to 
facts and rules in Prolog with one syntactic difference: 
& replaces, in conjunctions. Goals are introduced by 
the ! operator4 . Plans, which follow the generic 
form triggering_event : context <- 
body., are intended to handle goals. Triggering 
events match goals and message. The only relevant 
triggering events used in this paper are goal addition 
and message arrival, denoted by atoms with the +! and 

                                                           
3 The source for the monadic model can be found at 
https://dl.dropboxusercontent.com/u/3240227/Async.zip. 
4 To be precise the ! introduces achievement goals, Jason also has 
test goals introduced by the ? operator, but they are not relevant for 
the purpose of this paper. 

the + prefixes. The belief base can be manipulated with 
the aid of the + and - operators, in the body of the plan. 
They add, and delete respectively, a belief from the 
belief base5. 

One last piece of information needed to 
understand the examples used in this paper is related 
to Jason’s use of internal actions. They allow the 
extension of the Jason interpreter by using Java. 
Internal actions are qualified by their package name 
(like in Java, e.g. package.internal_action). 
Actions pre-defined by the Jason distribution don’t 
have a package name, but they retain the leading 
period (e.g..send). For further details we direct the 
interested readers to [5]. 

2.2. Problem formulation and a running example 

We will employ a simple scenario which involves 
a single agent working with two social networks: 
Facebook and Twitter. Its job is to correlate wall posts 
and tweets for the user 6. Since both operations can 
have considerable delays it would be desirable to run 
both of them concurrently, and not to block the agent 
while doing so. 

A straight forward implementation in Jason would 
involve two additional agents —facebook_client 
and twitter_client—which act as clients for 
the social networks. In this setup, the main agent 
would send a message to each of the client agents to 
fetch the relevant data7. While this obeys both previous 
requirements, it does so at an added cost for the 
programmer: manually synchronising the responses 
from the clients. Fig. 1 shows a possible 
implementation of this approach. 

Because we need the responses from two 
concurrently running operations to continue, and 
because we don’t know in which order the agent we 
will receive them, we use the knowledge base for 
synchronisation: when the response from one client 
has arrived, we store it in the knowledge base and test 
if the other client has already sent its response. Only 
when both clients are done, the main agent can go on 
with its computation. In this scheme the 
synchronisation is scattered in three different places: 
the event handlers for the client responses 
(+wall_posts and +tweets), the plan for 
processing the data (+!correlate),  and the belief 
base. Fig. 2 illustrates the interactions between the 
agents in this approach. 

                                                           
5 Since these operations usually come in pairs, a deletion followed 
by an addition, Jason offers the shortcut operator -+ for this purpose. 
6 While admittedly synthetic, there is no reason why this example 
could not be scaled to multiple (eventually distributed) agents. Also, 
while in this example we use agents as simple reactive entities, this is 
not a limitation of the proposed approach, but a consequence of our 
desire to keep the example simple 
7 Note that for the rest of this paper we assume the presence of two 
user-define internal actions, facebook.get_wall_posts and 
twitter.get_tweets, which allow agents to interface with 
the social networks. 
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!start. 
+!start 

<- .send(facebook_client, tell, 
get_wall_posts); 
.send(twitter_client, tell, 
get_tweets). 
 

+!correlate 
: have_wall_posts(Posts) & 

have_tweets(Tweets) 
<-... 

 
+wall_posts(Posts) 
<- +have_wall_posts(Posts); 

!correlate. 
 

+tweets(Tweets) 
<- +have_tweets(Tweets); 

!correlate. 

// Facebook client 
 
+get_wall_posts[source(A)] 

<- facebook.get_wall_posts(WallPosts); 
.send(A, tell, WallPosts). 

 
// Twitter client 
 
+get_tweets[source(A)] 

<- twitter.get_tweets(Tweets); 
.send(A, tell, Tweets).

Figure 1. Main agent and clients

 
Figure 2. Interactions between the three agents in the 

straight forward implementation 

While this technique leads to the desired behavior, 
it is not optimal for a couple of reasons: 

1. It splits the logic of the program over several 
execution units – in our case the logic really 
belongs to the main agent, but it is split over 
the main agent, and the Facebook and Twitter 
client agents – which makes it hard to have a 
global view of the program behavior, 
especially for more complex scenarios, e.g. 
where the client agents need access to the 
belief base of the main agent; 

2. It uses one client agent for each such request 
which leads to inefficient and hard to manage 
programs. While several strategies are 
possible – starting all the client agents up-
front, dynamically creating and destroying 
them, or managing a pool of such agents – 
none of them is optimal, the first two because 
of the cost of running extra agents, and the 
third because of the extra complexity involved 
in managing a pool of client agents; and 

3. It does not scale: having to manually store the 
responses of clients as beliefs for many 
asynchronous requests and synchronising 
them by hand is a tedious and error prone 
task and it leads to mostly duplicate code for 
handling asynchronous responses (e.g. 
+wall_posts, +tweets). 

It is clear that if we want a scalable solution we 
need to look for an alternative approach. 

3. Monadic Foundations for Promises 
While most implementations of promises follow 

some common principles, there is no agreed upon 
definition of what a promise is. With the recent advent 
of functional programming there has been a rising 
interest in using category theoretic concepts, with 
monads being probably the most prominent example 
[20]. Using monads to give structure to promises seems 
promising in the light of projects such the computation 
expressions in F# [30], the C# asynchronous model 
[17], and Scala promises [13]. Before we go on any 
further we must first briefly introduce monads. 

3.1. Monads 

Monads are structures that represent generic 
computations. They are usually defined as triples 
composed of a type constructor with two associated 
operations called unit (or return) and bind (often 
written as the infix operator  >>=). 

The type constructor defines the monadic type, 
which is the type of the values that will be 
used/threaded throughout the computation—e.g. 
promises. The unit operation is used to build simple 
computations in the given monad. It takes an ordinary 
value— e.g. an integer, a string—and “lifts” it in the 
monad. The bind operator precisely defines how 
operations belonging to that computation can be 
combined. 

In order for such a structure to be proper monad 
the operations must obey three laws, known as, the 
monadic laws [32]. These laws guarantee that by 
combining two valid computations in the given monad 
we obtain another valid computation. 

3.2. The Promise monad 

We will next have another look at promises and try 
to see how they form a monad. Promises abstract over
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!start. 
 
+!start <- !social_plan. 
 
+!social_plan[context(promise)] 

<- facebook.get_wall_posts(Posts); 
 twitter.get_tweets(Tweets); 
 !correlate. 
 

!start. 
 
+!start 

<- !promise.run(social_plan). 
 
+!social_plan 

<- promise.bind(  
 facebook.get_wall_posts, cont1). 
 
+!cont1(WallPosts) 

<- promise.bind( 
 twitter.get_tweets, cont2). 

 
+!cont2(Tweets) <- !correlate.

Figure 3. A plan in the promise monad (left) and its hypothetical translation using the operations  
in the promise monad explicitly (right)

the duration of a computation, denoting a value that 
will be available at a later time. As we said earlier, the 
value of a promise can be observed by attaching a 
callback to the promise. When the promise gets 
resolved, the callback gets invoked. 

The callback is the main component that allows 
abstracting over time, since it encapsulates the future 
behaviour of the computation. This hints to a possible 
shift in our view of promises: instead of looking at 
promises as containers of (yet unavailable) values we 
can look at them as computations that when given a 
callback will (eventually) invoke it in a context where 
the value of the promise is available. 

A more formal definition of the Promise monad 
triple is available in Appendix A, and proofs that it 
obeys the monadic laws can be found in Appendix B. 
This is no surprise, since the monad for simplified 
promises that we have defined is actually the 
Continuation Passing Style (CPS) monad [8] in 
disguise. This is indeed consistent with our earlier 
intuition that promises will continue a computation 
when the value of the promise becomes available. 

Having promises form a monad opens up some 
interesting options for both the syntax—F#’s 
computational expressions or Haskell’s do notation 
[24]— and semantics—monads can be easily 
composed in a series of interesting ways—of the 
language. We will further explore the implications on 
the design of our solution in Section 4. 

4. Implicit Promises 
Monads have been called “programmable 

semicolons” because of the syntactic sugar that they 
have associated in Haskell, the do notation [24]. The 
notation allows the code to have an imperative feel, 
while still being declarative in nature. 

We will employ a similar scheme in our dialect, by 
specifying the context in which a plan is going to be 
executed via annotations. This will allow the 
programmer to write code in a style that is natural, 
while allowing the compiler to rewrite the code in 
order to do the appropriate plumbing. This approach is 

meant to address the inherent inversion of control8 that 
arises in concurrent scenarios (see Section 2). 

Fig. 3 (left) illustrates our approach. The plan 
social_plan is annotated as executing in the 
promise context. This changes the semantics of the 
actions inside the plan, making them behave as promise 
computations instead of regular Jason code. 

In order to implement this solution we can employ 
an approach similar to the one used by the F# 
language 9   for its asynchronous computation 
expressions [31]. The compiler performs a rewriting 
transformation that transforms the code in Fig. 3 (left) 
into code similar to the one in fig. 3 (right). While this 
technique suffices in the case of F# thanks to its 
support for anonymous functions that close over 
variables in their scope (closures), their lack in Jason 
means that we have to perform an additional 
transformation, lambda lifting [14]. This 
transformation identifies the variables that a closure 
would capture and transforms the closure in a top 
level function with an extra parameter for each 
captured variable. Using these techniques, the code in 
Fig. 3 (left) would be rewritten to look like the one in 
Fig. 3 (right) (modulo some identifiers which would 
have to be generated by the compiler). 

5. Proposal Analysis 
The main drawback of our approach is that plans 

cannot mix computations from different monads. A 
more accurate description would be that actions from 
different monads cannot be composed in the same plan, 
but they are free to invoke plans defined in different 
monads, as long as they define an appropriate 
invocation mechanism. Because the compiler knows 
the context in which the plan computations have to run 
in, it can emit the call to the correct run operation. It 

                                                           
8 Linear control flow is replaced by a scheme where each function 
call (or predicate/plan) receives an additional functional argument, 
its “continuation”, which is called instead of normally returning a 
value. 
9 http://research.microsoft.com/en-
us/um/cambridge/projects/fsharp/ 
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remains to be seen if this will be flexible enough for 
real world applications. 

Another drawback is that the belief base of an 
agent represents its global shared state. This is not a 
problem with regular Jason agents because the 
interpreter serialises access to the belief base, but, by 
using external mechanisms to execute actions 
concurrently this mechanism can be circumvented. 
This can lead to the typical problems associated with 
concurrency, e.g. race conditions and deadlocks. This 
is illustrated by the code in Fig. 4. Suppose this 
code is part of an agent in charge of running a 
coffee machine. When the user sends a request, the 
agent displays a message to the user and starts making 
the coffee at the same time. 

 

+user_request(make_coffee)[context
(promise)] 

<- lcd.display("Preparing 
coffee"); 

-+state(making_coffee); 

!make_coffee. 

Figure 4. Dangers of global shared state 

The key point here is the change in the belief base 
-+state(making_coffee). This removes any 
old belief for state, and adds a new one with the 
argument making_coffee.  If another concurrently 
running computation were to change the state at the 
same time, the belief base might be left in an 
inconsistent state, a classic example of a race 
condition. 

There are a couple of alternatives to address this 
issue: 

• Based on the insight that not all the plans need all 
the beliefs, we could change the language to 
introduce local plan beliefs. This is the approach 
taken by the SimpAL language [25]. While this is 
an interesting approach for structuring an agent, 
we feel it would be a disruptive change for the 
Jason language; 

• Software Transactional Memory (STM) is a 
synchronisation mechanism akin to transactions 
in databases [28]. It is an interesting alternative as 
it is only a infrastructure change, so it would not 
surface in the language syntax. But STM has the 
drawback that the performance of the application 
may suffer; and 

• Represent the internal state of the agent as 
synchronised mutable variables as found in 
Concurrent Haskell10 [15], which in turn are based 
on M-Structures as presented in [3]. 

6. Related Works 
In [21] we proposed two solutions: the first 

involving explicit promises, and the second that 
                                                           
10 http://www.haskell.org/haskellwiki/GHC/Concurrency 

proposed some changes to the Jason syntax and 
semantics to accom- modate implicit promises. We 
clearly analysed in [21] why the former is far from 
ideal in the context of Jason. Briefly, the lack of 
anonymous plans in Jason would make the solution 
cumbersome to use, and it would still lead to inversion 
of control, because promises’ callbacks are defined as 
separate plans. The latter proposal was an attempt to 
address this shortcoming by adding support in the 
language for promises. 

Very briefly, it proposed the introduction of a 
promise composition operator ||, and special treatment 
of the semicolon operator in the interpreter, in order to 
capture the continuation of the plan and set it as the 
promise callback (for an in-depth discussion of the 
proposed solution cf. [21]). While the proposal was a 
step in the right direction, it was rather ad hoc, and its 
interaction with the core language semantics was not 
clear. The solution proposed in this paper is aimed at 
addressing these ambiguities. 

By defining promises as a monad we can take 
advantage of the monadic prop- erties mentioned 
earlier. The most important is that composing 
promises now has a clear semantics. A nice side 
effect of promises being a monad is that we do not 
need a special operator for composing promises, we 
can use the semicolon. This is thanks to the fact that 
we use the contest annotation to specify exactly 
the type of computations that can be used in a plan. 
This is a both a blessing and a curse. The downside of 
running all the computations in a plan inside one 
monad is that mixing computations is not 
straightforward. Indeed, this was the exact reason why 
the semantics proposed in our previous paper was not 
clear. Monad transformers are one possible solution 
to the monad composition problem [16]. Our language 
is not expressive enough to allow defining monad 
transformers, and for now, we have decided that this is 
an acceptable compromise. 

The mechanism proposed for setting plan contexts 
is not limited to the promise monad. In fact it is 
similar to the do notation from Haskell. As long as 
appropriate definitions of the unit and bind operators 
are available, the context can be used to run plan 
computations in any monad. This might prove to be an 
interesting mechanism of experimentation with 
language features, as many computations can be 
expressed as monads. We will not explore this 
direction further in this paper. 

Finally, the monad presented in Section 3.2 is a 
simplified version of a promise monad. It does not 
handle failure, which is an important and extensive 
issue in itself. We will address this issue in future 
research. 

A recent effort to address similar issues is the one 
proposed by Ricci et al. in [25]. While partially 
targeting the same problems as our own work, the 
solution proposed by [25] takes a different approach 
when it comes to concurrency—the simpAL language 
proposed by the authors uses the Agents & Artifacts 
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model [23]. While superficially similar, the two 
approaches are fundamentally different. simpAL uses 
artifacts for coordination, which are passive entities 
external to the agent. Agents can subscribe to artifacts 
in order to be notified of changes in the artifact’s 
state. Such notifications are handled by using a form of 
callback with some syntactic sugar, similar to how the 
E language handles promises. Thus, the flow of the 
agent depends (at least partially) on outside entities 
(i.e. artifacts) leading to some degree to the problem 
we are trying to avoid, inversion of control. 

Another early (and interesting) example of an 
agent oriented programming lan- guage featuring 
concurrent computation is Go! [6], which has 
unfortunately mostly gone unnoticed by the 
community. The model proposed for Go! is closer to 
our own, with multiple threads of control servicing 
the same agent. Synchronisation is achieved by using 
an intra-agent tuple space. This is similar to the 
approach used by Concurrent Haskell (see the end of 
Section 5). 

7. Conclusion and Future Work 
In this paper we presented the proposal for a non-

intrusive extension for concurrent computations in 
Jason using a monad for structuring promises. 

Being able to easily compose asynchronous 
computations offers a big advantage for real world 
scenarios where agents need to use resource that imply 
latencies, e.g. web services. 

The immediate next action is to integrate the 
implementation of the monadic model in Java with the 
Jason interpreter. 

Once the integration is done, an interesting 
direction will be to further investigate the semantics of 
promises in the context of Jason. More specifically, 
working towards a promise monad that can gracefully 
handle failure is an important direction. 

A related direction is that of finding a 
synchronisation scheme for the belief base. While 
orthogonal to the promise model, this is an important 
aspect nevertheless. 

Finally it would be interesting to investigate other 
asynchronous control constructs based on promises. 
Some interesting work has already been done for other 
languages like E and Scala11. 
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Appendix A: The Definition of the Promise Monad 
A promise for a value of type α is a function which receives a handler that can be called with the value of the 

promise, and it produces a value of type β12. The type constructor for the Promise monad, Mpromise , is defined as: 
Mpromise = (α → β) → β 
The unit operation takes a value and returns a promise that will pass the value as an argument to the promise’s 

handler13: 
unitpromise  = λx. λk. k x (1) 

 
                                                           
12 We use the standard notation for function types, where α → β is the type of a function taking an argument of type α and return a value of type 
β. 
13 We use the standard notation of lambda calculus [7]—functions are introduced by the λ operator which binds a variable in the scope of its body 
expression, e.g. λvar. body. Function application is denoted by juxtaposition. We use parenthesis for clarity. 
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The bind operation takes a promise and a continuation of the promise, and returns a promise that will invoke the 
continuation in a context where the result of the promise is available: 

bindpromise  = λm. λk. λc. run m (λx. run (k x) c)(2) 
where run : Mpromise α → (α → β) → β is a function that executes a promise with the given callback—in our case it is 
equivalent to function application. 

Appendix B: Proofs 
In order for any triple made out of a type constructor and the bind and unit operations to form a valid monad, it has to 
obey three laws: left identity, right identity, and associativity [32]. We will use equational reasoning [10, 11] to 
prove that this is the case for the Promise monad.  

Left identity: unit x   =  f  ≡  f  x 
Proof  (Left identity). 
unit x = f ≡ (λ f1 . f1  x)   =  f by (1) 

≡ λ f2 . (λ f1 . f1  x) (λy. ( f y) f2 ) by (2) 
≡ λ f2 . ( f x) f2 β-reduction 

≡ f  x η-conversion 

Right identity: m   =  unit ≡  m 
Proof  (Right identity). 
m = unit ≡ m   = (λx. λ f . f  x) by (1) 

≡ λ f1 . m (λy. ((λx. λ f . f  x) y) f1 )m by (2) 
≡ λ f1 . m (λx. (λ f . f  x) f1 ) β-reduction 
≡ λ f1 . m (λx. f1  x) β-reduction 

≡ λ f1 . m f1 η-conversion 
≡ m η-conversion 

Associativity: (m   =  f )   = g ≡  m   =  (λx. ( f x   =  g)) 
 

Proof  (Associativity). 
m =  (λx.( f x   =  g)) ≡ m   = (λx. λ f1 . ( f x) (λy. (g y) f1 )) by (2) 

≡ λ f2 . m (λz. ((λx. λ f1 . ( f x) (λy. (g y) f1 )) z) f2 ) by (2) 

≡ λ f2 . m (λz. (λ f1 . ( f z) (λy. (g y) f1 )) f2 ) β-reduction 
≡ λ f2 . m (λz. ( f z) (λy. (g y) f2 )) β-reduction 
≡ λ f2 . (λ f1 . m (λz. ( f z) f1 )) (λy. (g y) f2 ) η-conversion 
≡ λ f1 . m (λz. ( f z) f1 ))   =  g by (2) 

≡ (m   =  f )   = g by (2) 

 

 


