
373

ISSN 1392 – 124X, ISSN 2335 – 884X (online) INFORMATION TECHNOLOGY AND CONTROL, 2013, Vol.42, No.4

Workflow Management System for DMS

Nemanja Nedić
1
, Goran Švenda

2

Faculty of Technical Sciences, University of Novi Sad,

Novi Sad, Serbia

e-mail:
1
nemanja.nedic@schneider-electric-dms.com,

2
svenda@uns.ac.rs

 http://dx.doi.org/10.5755/j01.itc.42.4.

Abstract. Dramatic enrichment of high speed communication technology at affordable costs enabled the resolution of

problems related to the limitations of power supply. Therefore, introduction of Smart Grid for managing highly controllable

power grids has become indispensable. Its very important part is Distribution Management System (DMS). These

sophisticated systems execute a large number of workflows with very high resource requirements. In this paper

dynamic, centralized scheduling strategies for allocating DMS workflows are presented and compared. Also, a

distributed scheduling algorithm for DMS calculation engine is developed. It is argued that minor investment in the

resources and introduction of a hybrid scheduling algorithm leads to the significant boost of the system performance. The

hybrid scheduling algorithm is the result of combining centralized and distributed scheduling strategies. Experimental

study shows that considerable improvement of overall system performance is achieved by using developed algorithms for

designing effective schedulers when make-span and workload are optimized.

Keywords: Smart Grid; Distribution Management System; Workflow Management System; Scheduling; Grid

Computing; DAG.

Abbreviations:

CB – Computing Broker

CIM – IEC 61970-301 Common Information

Model

CS – Computing Service

DAG – Directed Acyclic Graph

DDS – Dynamic Data Service

DMS – Distribution Management System

DN – Distribution Network

EMS – Energy Management System

ESST – Earliest Successors Start Time

GDS – Graphical Data Service

SCADA – Supervisory Control and Data Acquisition

SDS – Static Data Service

SG – Smart Grid

1. Introduction

Considerable growth of power consumption has

been evident in the last two decades [1]. There has

been a substantial investment in development of systems

for efficient use of energy, which led to reliability

increase, power losses reduction and improvement of

the environmental protection process. The Smart Grid

(SG) is an universal term used to refer to this type of

systems [2, 3]. It is a complex collection of

applications which includes subsystems, such as:

Supervisory Control and Data Acquisition (SCADA),

Energy Management System (EMS), Distribution

Management System (DMS), etc.

The DMS [4] is a very important part of the Smart

Grid due to its connection to almost all other subsystems.

Representation of a distribution network (DN) with a

specific data model allows planning, simulation and use

of optimization procedures during the real-time control.

Modern distribution systems may contain several

millions of entities. Consequently, there are growing

demands for processing large amounts of data in real-

time tasks with desired cost reduction of

computational resources. Because of the complex

operation, the DMS must match requirements such as

interdependence of executing tasks (output of one task

is the input of another), the tasks various execution

time, the tasks priority, and the deadline constraints

associated to some workflow (a set of tasks with

dependencies between them must be completed within

a certain timeframe). It is necessary to emphasize that

the entire set of tasks is not known in advance. The

tasks arrive dynamically during the DMS run-time

operation, so the workflow application, which

represents the current set of all tasks, is evolving in

time.

N. Nedić, G. Švenda

374

Maximal utilization of computational resources

and parallelization of independent data processing is

necessary to speed up DMS operation. It is possible to

divide model data into the groups (partitions) that are

independent in terms of calculations [5, 6]. If these

fragmented data are processed in parallel, the system

performance will be considerably upgraded. Moreover,

data import into the DMS is a critical and long-

running process. Particularly in cases of invalid

import, the process must be repeated to ensure quality

data. Most of the input data are not mutually

dependent, so the parallel imports are required.

The DMS can rely on the computational Grid

technology [7] to store, process and analyze large

amounts of distributed data. The Grid computing [8,

9] has moved from academic to commercial domain.

Different types of computing offered by the

computational Grid provide support for a wide range

of rich computation applications [10, 11]. The

applications are built for biology [12], physics [13],

astronomy [14], etc.

The DMS must become a very powerful high-

performance, parallel and distributed application.

Therefore, it has to assure the efficient distribution of

tasks (which will consider all constraints) over the

computational Grid infrastructure.

The computational Grid workload management

provides workflow scheduling process that assigns a

stream of tasks to available resources in order to

optimize various performance metrics. The scheduling

strategy can pursue different goals: the fairness of

workload distribution, the minimization of workflow

execution time, the minimization of a single task

execution time, etc. In order to provide fast and

reliable response from the computational Grid,

scheduling strategies have been intensively studied.

Two types of scheduling strategies are thoroughly

researched: static [15, 16] and dynamic [15, 17].

A static strategy is used when complete set of tasks

is known in advance. Thus, solid estimation of

computation cost can be made before actual execution.

Scheduling is done prior to the execution of any task.

When tasks are not known prior to the execution, a

dynamic strategy is necessary for assigning tasks to

resources. Advantage of the dynamic over the static

strategy is that the scheduler is aware of run-time

behavior of the computational Grid infrastructure. It is

useful in a system where the primary goal is

maximizing utilization of resources, instead of

minimizing execution time of individual task [18].

Since the workflow application is evolving (tasks

dynamically arrive, so the application constantly

changes) the dynamic scheduling strategy must be

considered.

Artificial intelligence, as a modern concept of

solving various engineering problems [19, 20],

represents a creative approach for workflow schedu-

ling. The problems of scheduling that adopt genetic

algorithm method for workflow manipulation are

addressed in several papers [21, 22]. Since the genetic

algorithm is a static scheduling heuristic, it was

necessary to make appropriate adjustments for

problems similar to the DMS workflow scheduling. In

[23] a dynamic scheduler based on an accommodation

of the genetic algorithm for Smart Grid workflows is

presented. This approach introduced a number of

limitations related to the tasks: tasks must be

independent of each other; they must have the same

priority and the same execution time. The hierarchical

neural networks approach [24] excludes the limitation

of tasks having the same execution time, but the

restrictions of same priority and independency of tasks

remain.

Faced with a variety of situations, an intelligent

DMS environment requires complex algorithms which

will help to manage the execution of different kinds of

workflows. Presented scheduling algorithms consider

characteristics of the computational Grid (number and

quality of resources) and specific issues of submitted

DMS workflows (various execution times, priority of

tasks and interdependence between them).

A hybrid algorithm is developed by crossing

centralized and distributed scheduling. The centralized

scheduling strategy is devoted to global workflow

management and monitoring, while the distributed

scheduling is adopted for resources that handle the

same type of tasks. Each resource that is involved into

the distributed scheduling uses smart search to find a

partner resource to share a workload. In this way,

resources are working cooperatively toward a

common goal, and it is easy to include a new resource

into the distributed scheduling without any impact on

the operation of the centralized scheduling.

A set of the most common DMS workflows is

chosen to analyze usability and feasibility of

developed schedulers in this field. Two categories of

experiments are conducted to simulate the real-world

DMS operation: the first category simulates data

import into the DMS, while the second category is

devoted to the real-time control of a DN.

The developed schedulers are extensively tested

and compared. The experimental studies that are

carried out confirmed the usefulness of our schedulers

when the make-span [25] is minimized. The make-

span of a workflow application is the time interval

between the start time of the first task and the

completion time of the last task.

2. DMS architecture and computational grid

infrastructure

Considering the importance of reliable and

efficient operation of the DMS (since it manages the

power supply of millions of customers), the

deployment of the DMS services is done using

dedicated computational Grid resources. Figure 1

presents the core services of the DMS software which

are connected by peer-to-peer communication system:

• Static Data Service (SDS) provides access to an

electrical data model. In the core of this service is

Workflow Management System for DMS

375

a CIM [26] compliant data model which fully

describes a power utility DN. After the initial

import, these data change very rarely, so it is

considered as static data. Most commonly, SDS

relies on a relational database which is hosted on

the current node.

• Dynamic Data Service (DDS) caches the dynamic

states of the devices within a DN. These data are

usually received from SCADA system. Since the

dynamic state of a DN changes frequently, huge

time-series data about process variables must be

stored.

• Graphical Data Service (GDS) is responsible for

maintaining visual objects that user interface is

displaying. This enables each user only to maintain

its current view of DN in its memory. As the user

moves its view through the DN it can rely on the

GDS for the additional graphical data.

• Computing Service (CS) is burdened with the

highest requirements. The service provides means

for the execution of DMS functions [4]. It receives

static and dynamic data for a part of the DN, and

performs the requested set of calculations. In

respect to the requirements of complicated

calculations on large amount of data, CS is

deployed on a node with a powerful central

processor unit.

Each of these services is deployed on a separate

computational Grid node with desired characteristics.

Figure 1. DMS services deployed on a Grid infrastructure

The input data of a task need to be stored on a

node before processing the task. Since large amount of

data is transferred between the DMS services, a

suitable mechanism must be used so that data

transmission would not represent the bottleneck of the

system. A peer-to-peer approach transfers data from a

source node to a destination node directly, without

involving any third-party service. It reduces

transmission time, so it is convenient for large-scale

data transfers. To support peer-to-peer communica-

tion, every node needs to provide both data

management and data movement functionality.

3. DMS workflows

A task is defined as an atomic unit which is

executed on a computational Grid resource, and

workflow is a set of tasks with dependencies between

them [27]. A workflow can be presented as a directed

acyclic graph (DAG) [28,29]. The vertices of the

DAG represent the tasks, while the edges are data

dependencies between them. Each vertex can have any

number of "parent" or "child" vertices. Input tasks of a

workflow do not have any "parent" vertices, while

output tasks do not have "child" vertices. A task

becomes executable when all its dependencies are met

(input data required by the task is available at a

specified computational Grid resource) and it may be

submitted for execution.

By analyzing architecture and requirements of the

large- scale distributed DMS, workflows can be

presented by the following basic types:

• Model Update is a set of tasks that needs to be

executed when a request for the static data update

arrives to the system (Figure 2a). Based on the

modification of static model, it is necessary to

update graphical model and dynamic model. This

workflow is common during the initial data

import, but it is rare in everyday operation of the

system.

• DMS Function Execution is usually triggered by

the SCADA system (Figure 2b). When a dynamic

state of a device occurs, the part of dynamic data

model and correspondent static data model are

transferred to the CS. The relevant calculations on

data are performed and graphical data model is

updated with results. During the everyday

operation of the system this set of tasks is the most

frequent.

• Graphical View Refresh is usually executed

periodically, or as a possible error recovery of the

GDS (Figure 2c). The part of static data and

correspondent dynamic data are transferred to the

GDS and graphical data model is updated

(refreshed). This workflow is quite rarely

executed.

Workload of each task can be evaluated from the

historical data [30], and it is easy to know a

computing capacity of a resource by knowing its

characteristics. Therefore, an estimation of a task

execution time is easily determined by dividing the

workload of the task with the computing capacity of

the resource.

Figure 2. DMS workflows, a) Model Update, b) DMS

Function Execution, c) Graphical View Refresh

N. Nedić, G. Švenda

376

The workflows that arrive to the system are ranked

by the priority, and all tasks contained by a workflow

obtain the same priority as the workflow.

During the further analysis of the system

operation, it becomes obvious that there are

dependences between the entire workflows that arrive

for execution. Figure 3a presents a typical sequence of

workflows execution; a data import must precede the

execution of DMS functions on the imported data.

Figure 3b shows how a workflow application is built.

Output tasks of the "parent" workflow become

predecessors for the input tasks of the "child"

workflow.

Based on the previous discussion, the main

properties of a task 𝑇 are: the priority – 𝑝 , the

estimated time to execute task – 𝑡 (which corresponds

to the estimated task workload – 𝑤), the execution

node (DMS service) – in , }CS,DDS,GDS,SDS{in .

Sets of predecessor tasks and successor tasks of the

task 𝑇 are defined by
iTP and

iTS , respectively.

Scheduling algorithms use these properties for optimal

allocation of resources for task execution. Optimiza-

tion goal is to rearrange incoming workflow tasks in

order to support the priority and get maximum usage

of all nodes, so that the make-span is minimized.

Figure 3. Workflows: a) dependencies and b) application

Figure 4. Workflow Management System

Workflow Management System for DMS

377

4. Workflow management system

The Workflow Management System takes into

account the dynamic nature of a real-world DMS and

uses the computational Grid environment approach for

detecting and responding to changes in the DMS. The

developed framework is presented in Figure 4. It

provides required support for the high-throughput

scheduling process.

The framework consists of three components: the

Workflow Receiver, the DAG Manager, and the Task

Scheduler.

The Workflow Receiver accepts workflows in run

time and validates for appropriate workflow pattern

[27]. If a workflow is valid, it is sent to the DAG

Manager, otherwise it is rejected.

The DAG Manager controls the workflow

application. The workflow application is represented

via a DAG and it is continually evolving during the

system operation. The DAG Manager monitors the

incoming workflows and task completion events.

When any of the events occur, the DAG is updated: a

new, valid workflow is included, while the completed

task is removed from the workflow application. The

dependency information is updated. When the DAG

modification is finished, determination which tasks

have become suitable for execution based on

dependencies in the workflow is started. The result of

analysis is a list of executable tasks. It contains tasks

that have no predecessors. The list of executable tasks

is partitioned into the levels. The tasks with same

priority are classified within the same level. The levels

are sorted in descending order by priority and tasks

organized in this manner are submitted for scheduling.

The Task Scheduler is responsible for resource

selection and mapping tasks to resources. This

component is of the most interest in our research,

since the decision making is done in it. The scheduler

maintains a task queue which is constantly read. The

tasks are independent and classified to levels by

priority. The level by level methodology considers

tasks at the current level. The tasks from the highest

priority level are collected and scheduling algorithm is

applied to determine the right time to send tasks for

execution. After that, it is moved to a lower priority

level, and so forth. Depending on the specific

characteristics of the computational Grid infrastructure

and task properties, different scheduling algorithms

can be deployed on the Task Scheduler.

5. Workflow application model

As outlined above, the workflow application is

represented with a DAG. The tasks without any

predecessors are input tasks, while the tasks without

any successors are output tasks (Figure 5).

A task iT is defined as a triple:

intpT iiii ),,,(, (1)

where 𝑝 is task priority, 𝑡 is estimated time to execute

task (corresponding the estimated task workload –𝑤),

and 𝑛 is execution node (DMS service).

The computational Grid infrastructure is fully

connected topology in which communications are

performed without any constraints. It is assumed that

data transfer rates (amount of data that can be

transferred) between nodes are known. Transfer rate

between nodes 𝑛 and 𝑛 is denoted by
jinnrate .

Amount of data that needs to be transferred after

completion of task 𝑇 and before start of task 𝑇 is

denoted by
jiTTdata . Finally, communication time

cost of edge (𝑖, 𝑗) is defined as:

ji

ji

jTiT

nn

TT

rate

data
c  . (2)

Figure 5. Workflow application model

Let us define 𝑠𝑡
 and 𝑐𝑡

 as start time and

completion time of a task 𝑇 , respectively, and
innt as

the earliest available time of a node 𝑛 . To determine

when the task 𝑇 has become eligible for execution all

predecessors of that task must be scheduled:










 ijTiTj

iTj
i nT

PT
T ntcctst },{maxmax , (3)

where
iTP is a set of predecessor tasks of task 𝑇 . The

completion time
iTct is calculated as the sum of

iTst

and the estimated execution time 𝑡 of task 𝑇 :

iTiT tstct
i

 . (4)

The make-span of the workflow application is time

period taken from the start of the application, up until

all outputs are available:

}{max
i

i

T
OutputsT

ctmakespan


 . (5)

𝑂𝑢𝑡𝑝𝑢𝑡𝑠 is the set of output tasks. The optimization

goal is to assign tasks to the computational Grid

resources to minimize the make-span.

http://www.merriam-webster.com/dictionary/continually
http://www.merriam-webster.com/dictionary/methodology

N. Nedić, G. Švenda

378

6. Centralized scheduling architecture

As the set of workflows that should be executed on

the computational Grid is not known in advance, but

workflows arrive continuously, all information

regarding the tasks is not entirely known before

execution time. Therefore, scheduling decisions must

be made on the fly, and the dynamic scheduling

algorithms are necessary. The Task Scheduler contains

executable, independent tasks categorized by priority

levels. The scheduling algorithms consider tasks level

by level, starting from the level with the highest

priority.

1. Earliest successors start time algorithm (ESSTA)

The algorithm is based on the idea of primary

scheduling tasks that will lead to the possibility of

executing all its successors in the shortest period of time.

The question that is answered is: which of the executable

tasks need to be completed to enable scheduling of all its

successors as soon as possible?

The 𝑠𝑢𝑐𝑐𝑠𝑡 is defined as estimated time when all

the successors of a task 𝑇 are ready for the execution:

}{max
jTiT

iTj
ii

cctsuccst
ST

TT


 . (6)

The algorithm considers all unmapped tasks within

a priority level during each scheduling decision. It

schedules tasks in order that changes the node

availability status. Listing 1 shows the pseudo code

for EEST algorithm:

for all (velssPiorityLesortedTaskvelpriorityLe )

while (velpriorityLeT  is not scheduled)

uesomeMaxValmumsuccstMini 

emptyTaskutetaskToExec 

0index

for all (velpriorityLeTi )

compute
iTsuccst

if (mumsuccstMinisuccst
iT )

iTsuccstmumsuccstMini 

iTutetaskToExec 

iindex 

end if

end for all

schedule utetaskToExec

remove utetaskToExec from

velpriorityLe

update
indexnnt

end while

end for all

Listing 1. Earliest successors start time algorithm

The algorithm schedules a set of independent tasks

iteratively. For each iteration, it computes succst for

every task. A task having minimum succst value is

chosen to be scheduled first and it is assigned to the

appropriate resource. The expectation is that a smaller

make-span can be obtained if tasks assigned to

resources allow their successors to enter the scheduling

process more quickly.

2. Critical path algorithm (CPA)

The algorithm relies on the concept of the

workflow application critical path [31, 32]. The

critical path approach aims to determine the longest of

all execution paths from the beginning to the end in a

DAG. It answers the question: which tasks have the

most impact on the overall execution time? The

algorithm captures tasks (within the priority level) that

block the most time-consuming activities in the

workflow application and schedule them earliest to

minimize execution time for entire DAG.

The tasks within the same priority level are

ordered by their rank (critical path value). The rank of

output tasks corresponds to their execution time:

i

OutputsT

T trank
i

i




 . (7)

The ranks of other tasks are calculated recursively:

}{max
jjTiT

iTj
i T

ST
iT rankctrank 



, (8)

where 𝑆
 is the set of all successors of the task 𝑇 . A

task with higher rank value is given earlier execution

time. The pseudo code for critical path algorithm is

presented in Listing 2:

for all (velssPiorityLesortedTaskvelpriorityLe )

while (velpriorityLeT  is not scheduled)

0mrankMaximu

emptyTaskutetaskToExec 

0index

for all (velpriorityLeTi )

compute
iTrank

if (mrankMaximurank
iT )

iTrankmrankMaximu 

iTutetaskToExec 

iindex 

end if

end for all

schedule utetaskToExec

remove utetaskToExec from

velpriorityLe

update
indexnnt

end while

end for all

Listing 2. Critical path algorithm

Workflow Management System for DMS

379

3. Experiments and results

A distributed testing environment based on the

proposed architecture is developed to simulate the

real-world DMS operation. Intel Core i3 (3.30 GHz)

microprocessors are assigned to each node and

computer devoted to workflow management. All

software components are implemented in .NET 4.0

framework. Performed experiments are classified into

two categories: data import and real-time control.

The first set of experiments simulates data import

into the system. This kind of work is usually done

offline, before real-time control of a DN starts. The

workflow application is designed only of Model

Update workflows. Number of workflows (Nw) that

dynamically arrive for execution varies depending on

the number of entities which have to be imported into

the system. The number of entities is within the range

from a few thousands to several millions; therefore, it

is used between ten and a thousand workflows in our

experiments. Table 1 and Figure 6 summarize results

of scheduling comparison.

The second set of experiments is devoted to the

simulation of real-time control of a DN. The workflow

application is composed of all three types of

workflows. The DMS Function Execution is the most

common and represents more than 70% of all

workflows that arrive for execution. The Model

Update workflow type makes about 20% of the

workflow application, while the Graphical View

Refresh type is the rarest (up to 10%). Similar to the

first set of experiments, it is used between ten and a

thousand workflows. Obtained results are presented in

Table 2 and Figure 7.

All experiments examine the effect of make-span

changes. The developed algorithms are compared to

the sequential approach of task manipulation. As

expected, by introducing parallelization of tasks and

dynamic schedulers into the operation of a large scale

DMS, the essential improvement of computational

resources exploitation is provided.

Table 1. Workflows execution time – DMS data import

Nw
No optimization

(sequential

execution) [s]

ESSTA [s] CPA [s]

10 45.70 25.50 25.44

50 228.72 108.53 107.23

100 456.52 208.54 206.50

250 1154.37 522.77 513.87

500 2288.11 1048.65 1026.14

1000 4572.27 2075.71 2050.68

Figure 6. DMS data import - Workflows execution

Table 2. Workflows execution time – DMS real-time control

Nw
No optimization

(sequential

execution) [s]

ESSTA [s] CPA [s]

10 62.03 36.89 34.05

50 310.35 148.01 146.33

100 618.62 293.37 288.58

250 1546.19 729.05 723.41

500 3093.00 1452.24 1442.90

1000 6192.01 2906.62 2881.85

Figure 7. DMS real-time control - Workflows execution

0

500

1000

1500

2000

2500

3000

3500

4000

4500

10 50 100 250 500 1000

E
x
e
c
u

ti
o

n
 t

im
e
 [

s]

Number of workflows

DMS Data import - Workflows execution

time

No optimization ESSTA CPA

0

1000

2000

3000

4000

5000

6000

10 50 100 250 500 1000

E
x
e
c
u

ti
o

n
 t

im
e
 [

s]

Number of workflows

DMS real-time control - Workflows

execution time

No optimization ESSTA CPA

N. Nedić, G. Švenda

380

Based on illustrated experimental results the

following can be noted:

• The CPA based scheduler outperforms the ESSTA

solution. Explanation for this phenomenon can be

found in fact that the CPA considers all execution

paths, while the ESSTA analyzes only a close

environment of a task in the DAG.

• The scheduling brings more benefits if there are

more tasks to rearrange.

• The performance of the system improves with

increase of the number of workflows.

7. Hybrid scheduling architecture

During the real-time system operation, DMS

Function Execution is by far the most frequent type of

workflow that arrives for execution. Taking into

account the processing of large amount of data within

this workflow type, the computing node (CS, Figure

1) is heavily loaded. Therefore, it represents the

bottleneck of the system. Introduction of additional

computing nodes into the computational Grid

infrastructure would allow the possibility of

supplementary workload distribution.

Figure 8 presents the improvement of

computational Grid infrastructure for developed

hybrid scheduling algorithm. More advanced

computing engine includes multiple computing nodes

and establishes the Computing Broker (CB) node. The

computing nodes implement a distributed scheduling

algorithm [33], while the CB represents a mediator

between them and the other parts of the system. The

Workflow Management System schedules computing

tasks and data needed for their execution to the CB.

When a computing node adopts a task, it takes data

contained by the CB and executes expected

calculation. After completing the task, the computing

node transfers results to the CB, which forwards them

to the appropriate node and notifies the Workflow

Management System of the task completion.

Figure 8. Grid infrastructure for hybrid scheduling

1. Distributed scheduling algorithm

The main aim of distributed computing is to

achieve parallelism through the workload distribution

and obtain better execution time. Capabilities of the

computing nodes may be different because of their

heterogeneous computation power. In order to

efficiently use computing nodes it is necessary to

assign workload proportionally to their computation

power. With the purpose of simplifying the

explanation of our solutions, the distributed dynamic

algorithm is presented for the computing nodes with

homogeneous computation power. It is very easy to

adapt it to a set of computing nodes with various

computation capacities.

The workload of a node in is defined as
innw . 𝑁𝐶

is the set of all computing nodes within a

computational Grid infrastructure. Its cardinality is

denoted by 𝑁 . The purpose of scheduling process is

to make workload distribution system converge

towards the desired workload distribution:

NCnnwnw ini
 , . (9)

nw is the workload that every computing node should

receive. Because the system is assembled of the

computing nodes with homogeneous computation

power, nw is defined as:

c

NCn

n

N

nw

nw i

i


 . (10)

The distributed dynamic algorithm is run during

the tasks execution and allows us to adapt workload

distribution as the executions proceed. It is based on

the physical phenomenon of diffusion. The iterative

diffusion algorithm makes decisions about workload

balancing at the iteration ℎ by using the workload

information of the previous iteration ℎ − 1 [34]. At

iteration ℎ the workload of a node 𝑛 is represented as
h
ni

nw . According to the diffusion iterative algorithm

the computing node in exchanges the portion of

workload h
n

h
n ji

nwnw  with a computing node

𝑛 at each iterative step. Parameter 𝛼 determines how

much of workload difference will be exchanged and

depends on the considered problem [34,35]. Workload

transformation of the computing node in is described

by the following equations:




 

NCn

h
n

h
n

h
n

h
n

j
ijii

nwnwnwnw][111  , (11)




 

NCn

h
n

h
nc

h
n

j
jii

nwnwNnw 11]1[ . (12)

Completion of algorithm is related to the

possibility to lead any initial workload distribution to

the workload balanced state. The quality of obtained

Workflow Management System for DMS

381

workload balance is presented by some norm, for

example quadratic 




NCn

n

i

i
nwnw 2][. In [34] it is

proved that this algorithm converges towards the

uniform workload distribution.

2. Accommodation of distributed scheduling

algorithm

As explained above, in distributed algorithm it is

assumed that it is possible to exchange any portion of

workload between nodes. That is, the workload

portion is a continuous value. In practice, the situation

is somewhat different. A set of tasks is assigned to

each computing node. It is possible to distribute only

complete tasks between nodes, so the portion of

workload for exchange takes discrete values. Parameter

 determines the amount of workload exchange, and

consequently the algorithm convergence speed and

quality. To achieve the highest possible workload sharing

between nodes, the parameter 𝛼 is set to 1 / 2 (𝛼 =
1/ 2).

inTC is defined as a set of computing tasks that are

assigned to the computing node 𝑛 and whose

execution didn’t start.
jinnnw is the maximum

amount of workload that the computing node 𝑛 can

exchange with a computing node 𝑛 :

][
jiji nnnn nwnwnw  . (13)

jinnTC is a subset of tasks adopted by the

computing node 𝑛 (subset of
inTC) for which the

overall sum of workloads has a maximum value:





















jninkinjnin TCT

k
TCPowTC

w


)(

max , (14)

but with a constraint that the overall sum of workloads

does not exceed
jinnnw :

ji

jnink

nn

TCT

k nww 






. (15)

)(
inTCPow represents the power set of

inTC (the

set of all subsets of
inTC including the empty set).

If
h

nn ji
 is determined as the portion of workload

that will be exchanged between nodes 𝑛 and 𝑛 at the

iterative step ℎ, then evolution of the computing nodes

workload is calculated according to the following rules:

][111   h
n

h
n

h
nn jiji

nwnwnw  (16)

111

1

, 



  


h

TCT

k
h
n

h

jnin
h

jnin
k

ijnin
nwwTCTC 



 (17)




 
1

1

h

jnink

ji

TCT

k
h

nn
w



 (18)

11   h
nn

h
n

h
n jiii

nwnw  (19)

11   h
nn

h
n

h
n jijj

nwnw  (20)

11 \  hh
n

h
n

jninii
TCTCTC  (21)

11  h
nn

h
n

h
n jijj

TCTCTC  (22)

The algorithm is completed when workload is

balanced in such a manner that there is no need for

further exchange. This is achieved when
h

nn ji
TC

becomes an empty set of tasks for every possible

combination (𝑖, 𝑗) . This is equivalent to

),(,0 jih
nn ji

 . Listing 3 clarifies the algorithm

for distributed scheduling:

while(truefinished )

// assuming that algorithm is finished

truefinished 

for all (NCni )

for all (NCn j )

compute
jinnnw

determine
jinnTC

if (
jinnTC not empty)

compute
jinn

jiii nnnn nwnw 

jijj nnnn nwnw 

jiii nnnn TCTCTC \

jijj nnnn TCTCTC 

// algorithm is not finished

falsefinished 

end if

end for all

end for all

end while

Listing 3. Distributed scheduling algorithm

It should be emphasized that the tasks are

organized by priority within each computing node, so

the tasks that are more important are executed first.

3. Experiments and results

Since the computing nodes do not participate in

data import, experiments are devoted to the simulation

N. Nedić, G. Švenda

382

of the DMS real-time control of a DN. The Task

Scheduler operates according to the critical path

algorithm, while the computing nodes use the

distributed algorithm for redistributing computing

workload. The same set of tests for examination of

centralized scheduling algorithms is used.

In the first experiment, the computing engine

contains three computing nodes. Table 3 presents the

results of scheduling comparison.

Table 3. Workflows execution time – Hybrid scheduling

Nw ESSTA [s] CPA [s]
Hybrid

scheduling [s]

10 36.89 34.05 27.87

50 148.01 146.33 84.75

100 293.37 288.58 155.26

250 729.05 723.41 371.45

500 1452.24 1442.90 732.15

1000 2906.62 2881.85 1445.92

The quality of results produced by the hybrid

scheduler is compared to the results reported for the

centralized scheduling algorithms (Figure 9).

Figure 9. DMS real-time control – Hybrid scheduling

workflows execution

The experimental study leads to the following

conclusions:

• The hybrid scheduling algorithm significantly

outperforms previous (centralized) solutions.

• The performance (specifically, the speed) increases

by increasing the number of workflows.

• A minor investment into the computational Grid

resources and deployment of the hybrid scheduling

architecture solves computing bottleneck of the

large scale DMS.

• Introduction of the dynamic hybrid scheduler into

the task scheduling process provides considerable

improvement of resources exploitation which

results in better performance of the entire system.

The second experiment is devoted to dependency

between the system performance and a number of

computing nodes within the computing engine. Table

4 and Fig. 10 present the acquired results.

Table 4. Workflows execution time – Hybrid scheduling with

different number of computing nodes

 Workflows execution time [s]

Nw
Nc 3 4 5 7 10

10 27.87 26.56 26.17 26.13 25.84

50 84.75 81.38 81.07 80.25 80.85

100 155.26 145.18 141.65 141.18 141.10

250 371.45 348.65 345.05 346.14 346.19

500 732.15 699.94 692.40 689.89 687.37

1000 1445.92 1389.95 1379.16 1374.87 1369.84

Figure 10. DMS real-time control – Hybrid scheduling

workflows execution with different number of computing

nodes

According to the experimental results, it is

concluded:

• By increasing the number of the computing nodes

the system performance increases, but progression

is not proportional to the number of computing

nodes.

• After reaching a certain number of the computing

nodes the saturation occurs.

0

500

1000

1500

2000

2500

3000

10 50 100 250 500 1000

E
x
e
c
u

ti
o

n
 t

im
e
 [

s]

Number of workflows

DMS real-time control - Hybrid scheduing:

workflows execution time

ESSTA CPA Hybrid algorithm

0

200

400

600

800

1000

1200

1400

10 50 100 250 500 1000

E
x
e
c
u

ti
o

n
 t

im
e
 [

s]

Number of workflows

DMS real-time control – Hybrid

scheduling: workflows execution time

3 computing nodes 4 computing nodes
5 computing nodes 7 computing nodes
10 computing nodes

Workflow Management System for DMS

383

• Investment into the computing engine is justified

only if there is significant boost of the system

performance.

8. Conclusion

The suggested Workflow Management System

considers dynamic nature of the large scale DMS and

supports high-throughput scheduling. Different

dynamic scheduling strategies which maintain

workflows priority and dependency have been

developed and discussed.

Two centralized strategies for maximizing system

utilization are developed: the earliest successors start

time and the critical path algorithms. By engaging

these algorithms, the crucial progress in the

computational resources utilization is produced.

Experimental studies presented usefulness of these

algorithms. The studies show a slight advantage of the

critical path algorithm. The advantage of the

centralized strategies is easy implementation,

however, they lack scalability.

Further analysis of the DMS operation in real-time

control mode revealed that it is necessary to provide

additional support to heavily loaded computing node.

Suggested solution provides an advanced computing

engine with multiple computing nodes which

implement the designed distributed workload

balancing. In this way, the hybrid scheduling

architecture is achieved. The aim of presented

experimental study is to reveal effectiveness of the

hybrid based scheduling. The performance analysis

shows that this approach significantly reduces the total

execution time and boosts the performance of the

whole system.

References

[1] F. P. Sionsansi. Smart Grid: Integrating Renewable,

Distributed & Efficient Energy. Academic Press, 2011.

[2] E. Santacana, G. Rackliffe, L. Tang, X. Feng.
Getting Smart. IEEE Power and Energy Magazine,

2010, Vol. 8, No. 2, 41-48.

[3] A. Bose. Smart transmission grid applications and their

supporting infrastructure. IEEE Trans. on Smart Grid,

2010, Vol. 1, No. 1, 11-19.

[4] D. S. Popović. Power applications: A cherry on the top

of the DMS cake, DA/DSM DistribuTECH Europe,

Vienna, Austria, 2000.

[5] D. Capko, A. Erdeljan, M. Popovic, G. Svenda. An

optimal initial partitioning of large data model in

utility management systems. Advances in Electrical

and Computer Engineering, 2011, Vol. 11, No. 4,

4146.

[6] D. Capko, A. Erdeljan, S. Vukmirovic, I. Lendak. A

hybrid genetic algorithm for partitioning of data model

in distribution management systems. Information

Technology and Control, 2011, Vol. 40, No. 4,

316322.

[7] I. Foster, C. Kesselman, S. Tuecke. The anatomy of

the grid: enabling scalable virtual organization.

International Journal of Supercomputer Applications,

2001, Vol. 15, No. 3, 200-222.

[8] A. Kaceniauskas, R. Pacevic, A. Bugajev,

T. Katkevicius. Efficient visualization by using

Paraview software on Baltic grid. Information

Technology and Control, 2010, Vol. 39, No. 2,

pp. 108-115.

[9] A. Kaceniauskas. Solution and analysis of CFD

applications by using grid infrastructure. Information

Technology and Control, 2010, Vol. 39, No. 4,

284290.

[10] D. Abramson et al. Deploying scientific applications

to the PRAGMA grid testbed: strategies and lessons.

In: Sixth IEEE International Symposium on Cluster

Computing and the Grid, Washington, DC, USA,

2006, pp. 241-248.

[11] G. Allen et al. GridLab: enabling applications on the

Grid. In: GRID ’02: Third International Workshop on

Grid Computing, London, UK, 2002, pp. 39-45.

[12] E. Deelmana et al. Pegasus: mapping scientific

workflows onto the grid. In: 2-nd European Across

Grids Conference, Nicosia, Cyprus, 2004, pp. 11-20.

[13] E. Deelman et al. GriPhyN and LIGO, building a

virtual data grid for gravitational wave scientists. In:

11-th Intl. Symposium on High Performance

Distributed Computing, Edinburgh, Scotland, 2002,

pp. 225-234.

[14] G. B. Berriman et al. Montage: a grid enabled image

mosaic service for the national virtual observatory. In:

Astronomical Data Analysis Software and Systems

XIII, Strasbourg, France, 2003, pp. 593-596.

[15] H. J. Siegel, S. Ali. Techniques for mapping tasks to

machines in heterogeneous computing systems.

Journal of Systems Architecture, 2000, Vol. 46,

627639.

[16] T. D. Braun et al. A comparison study of static

mapping heuristics for a class of meta-tasks on

heterogeneous computing systems. In: Heterogeneous

Computing Workshop, San Juan, Puerto Rico, 1999,

pp. 15-29.

[17] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen,

R. F. Freund. Dynamic mapping of a class of

independent tasks onto heterogeneous computing

systems. Journal of Parallel and Distributed

Computing, 1999, Vol. 59. No. 2, 107131.

[18] H. A. James. Scheduling in Metacomputing Systems,

Ph.D. Thesis. The Department Of Computer Science,

University of Adelaide, Australia, 1999.

[19] A. Gokhan Ak, G. Cansever, A. Delibasi. Robot

trajectory tracking with adaptive RBFNN-based fuzzy

sliding mode control. Information Technology and

Control, 2011, Vol. 40, No. 2, 151156.

[20] A. Kuczapski, M. V. Micea, L. A. Maniu,

V. I. Cretu. Efficient generation of near optimal initial

populations to enhance genetic algorithms for job-shop

scheduling. Information Technology and Control,

2010, Vol. 39, No. 1, 32-37.

[21] V. Di Martino, M. Mililotti. Sub optimal scheduling

in a grid using genetic algorithms. Parallel Computing,

2004, Vol. 30, 553-565.

[22] U. Fissgus. Scheduling using genetic algorithms. In:

20th IEEE International Conference on Distributed

Computing Systems, Taipei, Taiwan, 2000,

pp. 662699.

N. Nedić, G. Švenda

384

[23] N. Nedic, S. Vukmirovic, A. Erdeljan, L. Imre,

D. Capko. A genetic algorithm approach for utility

management system workflow scheduling. Information

Technology and Control, 2010, Vol. 39, No. 4,

310316.

[24] S. Vukmirovic, A. Erdeljan, I. Lendak, D. Capko,

N. Nedic. Optimization of workflow scheduling in

Utility Management System with hierarchical neural

network. International Journal of Computational

Intelligence Systems, 2011, Vol. 4, No. 4, 672-679.

[25] M. Iverson, F. Ozguner. Dynamic, competitive

scheduling of multiple DAGs in a distributed

heterogeneous environment. In: Heterogeneous

Computing Workshop, Orlando, Florida, USA, 1998,

pp. 70-78.

[26] IEC 61970 Energy management system application

program interface (EMS-API) – Part 301: Common

Information Model (CIM) Base, IEC, Edition 2.0,

2007.

[27] W. M. P. van der Aalst, A. H. M. ter Hofstede,

B. Kiepuszewski, A. P. Barros. Workflow patterns.

Technical Report, Eindhoven University of

Technology, 2000.

[28] R. Sakellariou, H. Zhao. A low-cost rescheduling

policy for efficient mapping of workflows on grid

systems. Scientific Programming, 2004, Vol. 12,

No. 4, 253-262.

[29] T. Tannenbaum, D. Wright, K. Miller, M. Livny.
Condor: a distributed job scheduler, Beowulf cluster

computing with Linux. The MIT Press, MA, USA,

2002.

[30] S. Hotovy. Workload evolution on the Cornell theory

center IBM SP2. In: Workshop on Job Scheduling

Strategies for Parallel Processing, Honolulu, Hawaii,

USA, 1996, pp. 27-40.

[31] H. Topcuoglu, S. Hariri, M. Y. Wu. Performance-

effective and low-complexity task scheduling for

heterogeneous computing. IEEE Trans. on Parallel

and Distributed Systems, 2002, Vol. 13, No. 3,

260274.

[32] J. H. Son, M. H. Kim. Analyzing the critical path for

the well-formed workflow schema. In: International

Conference on Database Systems for Advanced

Applications, Hong Kong, China, 2001, pp. 146-147.

[33] M. Arora, S. K. Das, R. Biswas. A decentralized

scheduling and load balancing algorithm for

heterogeneous grid environments. In: International

Conference on Parallel Processing Workshops,

Vancouver, Canada, 2002, pp. 499-505.

[34] G. Cybenko. Dynamic load balancing for distributed

memory multiprocessors. Journal of Parallel and

Distributed Computing, 1989, Vol. 7, No. 2, 279-301.

[35] C. Xu, F. Lau. Optimal parameters for load balancing

with the diffusion method in mesh networks. Parallel

Processing Letters, 1994, Vol. 4, No. 2, 139-147.

Received June 2013.

Appendix – Example of distributed scheduling

A simplified example of a workload distribution is

introduced in this section. Workload of a computing

task is represented via an integer value. Execution did

not start for any of the tasks. The computing engine

includes three computing nodes; total workload of the

first node is 14, 10 of the second node, and 4 of the

third (Fig. 11). The parameter 𝛼 is set to 1 / 2 (𝛼 =
1/ 2).

4 3 3 2 2 = 14

4 3 2 1 = 10

2 2 = 4

 n1 :

 n2 :

 n3 :

Figure 11. Initial workload state of the computing nodes

The first iteration starts with transferring tasks

form node 𝑛 to other nodes. Maximum allowed

amount of workload that may be transferred is

calculated, but actual workload portion for exchange

is based on the set of tasks which are located at the

first node. Fig. 12 shows the exchange of a task

between nodes 𝑛 and 𝑛 , and the resulting values of

total workload for nodes.

  210145.01

21


nn
nw

21

21


nn


4 3 3 2 2

4 3 2

 n1 :

 n2 : 2 1 = 12

 = 12

Figure 12. Transferring task with workload value equal 2

from node 1n to node 2n

Similarly, the workload exchange takes place

between nodes 𝑛 and 𝑛 : when values 13nw and

13 are determined, a task is transferred (Fig. 13).

  44125.01

31


nn
nw

41

31


nn


4 3 3 2

2 2 = 8

 n1 :

 n3 :

 = 8

4

Figure 13. Transferring task with workload value equal 4

from node 1n to node 3n

Workflow Management System for DMS

385

Fig. 14 presents the new distribution of workload

after tasks are transferred from node 𝑛 to other nodes.

3 3 2 = 8

4 3 2 1 = 12

2 2 = 8

 n1 :

 n2 :

 n3 : 4

2

Figure 14. Workload state of the computing nodes after

transmission of tasks form node 𝑛 at the first iteration

The next step at the first iteration is the workload

exchange between node 𝑛 and remaining nodes. The

exchange starts with node 𝑛 (Fig. 15).

  28125.01

12


nn
nw

21

12


nn


3 3 2 = 10

4 3 2 1 = 10

 n1 :

 n2 : 2

2

Figure 15. Transferring task with workload value equal 2

from node 𝑛 to node 𝑛

The principle is the same as for the previous step

(Fig. 16).

  18105.01

32


nn
nw

11

32


nn


4 3 1 = 9

2 2 = 9

 n2 :

 n3 : 4

2

1

Figure 16. Transferring task with workload value equal 1

from node 2n to node 3n

Fig. 17 presents the new distribution of workload

after tasks are transferred from node 𝑛 to other nodes.

3 3 2 = 10

4 3 = 9

2 2 = 9

 n1 :

 n2 :

 n3 : 4

2

2

1

Figure 17. Workload state of the computing nodes after

transmission of tasks form node n
2

The workload of node 𝑛 is less or equal than the

workload of remaining nodes, therefore there will be no

workload sharing.

  01095.01

13


nn
nw

01

13


nn


  0995.01

23


nn
nw

01

23


nn


The second iteration begins the same as the first, by

exchanging the workload of node 𝑛 with other nodes.

The workload difference is not big enough, so there is no

exchange.

 
2

1
9105.02

21


nn
nw

02

21


nn


 
2

1
9105.02

31


nn
nw

02

31


nn


The amount of workload at node 𝑛 is also not big

enough to make an exchange with other nodes.

  01095.02

12


nn
nw

02

12


nn


  0995.02

32


nn
nw

02

32


nn


The same situation applies to node𝑛 .

  01095.02

13


nn
nw

02

13


nn


  0995.02

23


nn
nw

02

23


nn


Since the completion condition is met:

   3,2,13,2,1),,(,0  jiji
jinn ,

the distribution of workload is completed. Fig. 17

presents the final distribution of workload (tasks).

