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Abstract. Dramatic enrichment of high speed communication technology at affordable costs enabled the resolution of 

problems related to the limitations of power supply. Therefore, introduction of Smart Grid for managing highly controllable 

power grids has become indispensable. Its very important part is Distribution Management System (DMS). These 

sophisticated systems execute a large number of workflows with very high resource requirements. In this paper 

dynamic, centralized scheduling strategies for allocating DMS workflows are presented and compared. Also, a 

distributed scheduling algorithm for DMS calculation engine is developed. It is argued that minor investment in the 

resources and introduction of a hybrid scheduling algorithm leads to the significant boost of the system performance. The 

hybrid scheduling algorithm is the result of combining centralized and distributed scheduling strategies. Experimental 

study shows that considerable improvement of overall system performance is achieved by using developed algorithms for 

designing effective schedulers when make-span and workload are optimized. 
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Abbreviations: 

CB – Computing Broker 

CIM – IEC 61970-301 Common Information 

Model  

CS – Computing Service 

DAG – Directed Acyclic Graph  

DDS – Dynamic Data Service 

DMS – Distribution Management System 

DN – Distribution Network 

EMS – Energy Management System  

ESST – Earliest Successors Start Time  

GDS – Graphical Data Service  

SCADA – Supervisory Control and Data Acquisition  

SDS – Static Data Service 

SG – Smart Grid 

1. Introduction 

Considerable growth of power consumption has 

been evident in the last two decades [1]. There has 

been a substantial investment in development of systems 

for efficient use of energy, which led to reliability 

increase, power losses reduction and improvement of 

the environmental protection process. The Smart Grid 

(SG) is an universal term used to refer to this type of 

systems [2, 3]. It is a complex collection of 

applications which includes subsystems, such as: 

Supervisory Control and Data Acquisition (SCADA), 

Energy Management System (EMS), Distribution 

Management System (DMS), etc.  

The DMS [4] is a very important part of the Smart 

Grid due to its connection to almost all other subsystems. 

Representation of a distribution network (DN) with a 

specific data model allows planning, simulation and use 

of optimization procedures during the real-time control.  

Modern distribution systems may contain several 

millions of entities. Consequently, there are growing 

demands for processing large amounts of data in real-

time tasks with desired cost reduction of 

computational resources. Because of the complex 

operation, the DMS must match requirements such as 

interdependence of executing tasks (output of one task 

is the input of another), the tasks various execution 

time, the tasks priority, and the deadline constraints 

associated to some workflow (a set of tasks with 

dependencies between them must be completed within 

a certain timeframe). It is necessary to emphasize that 

the entire set of tasks is not known in advance. The 

tasks arrive dynamically during the DMS run-time 

operation, so the workflow application, which 

represents the current set of all tasks, is evolving in 

time. 
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Maximal utilization of computational resources 

and parallelization of independent data processing is 

necessary to speed up DMS operation. It is possible to 

divide model data into the groups (partitions) that are 

independent in terms of calculations [5, 6]. If these 

fragmented data are processed in parallel, the system 

performance will be considerably upgraded. Moreover, 

data import into the DMS is a critical and long-

running process. Particularly in cases of invalid 

import, the process must be repeated to ensure quality 

data. Most of the input data are not mutually 

dependent, so the parallel imports are required. 

The DMS can rely on the computational Grid 

technology [7] to store, process and analyze large 

amounts of distributed data. The Grid computing [8, 

9] has moved from academic to commercial domain. 

Different types of computing offered by the 

computational Grid provide support for a wide range 

of rich computation applications [10, 11]. The 

applications are built for biology [12], physics [13], 

astronomy [14], etc. 

The DMS must become a very powerful high-

performance, parallel and distributed application. 

Therefore, it has to assure the efficient distribution of 

tasks (which will consider all constraints) over the 

computational Grid infrastructure. 

The computational Grid workload management 

provides workflow scheduling process that assigns a 

stream of tasks to available resources in order to 

optimize various performance metrics. The scheduling 

strategy can pursue different goals: the fairness of 

workload distribution, the minimization of workflow 

execution time, the minimization of a single task 

execution time, etc. In order to provide fast and 

reliable response from the computational Grid, 

scheduling strategies have been intensively studied. 

Two types of scheduling strategies are thoroughly 

researched: static [15, 16] and dynamic [15, 17].  

A static strategy is used when complete set of tasks 

is known in advance. Thus, solid estimation of 

computation cost can be made before actual execution. 

Scheduling is done prior to the execution of any task. 

When tasks are not known prior to the execution, a 

dynamic strategy is necessary for assigning tasks to 

resources. Advantage of the dynamic over the static 

strategy is that the scheduler is aware of run-time 

behavior of the computational Grid infrastructure. It is 

useful in a system where the primary goal is 

maximizing utilization of resources, instead of 

minimizing execution time of individual task [18]. 

Since the workflow application is evolving (tasks 

dynamically arrive, so the application constantly 

changes) the dynamic scheduling strategy must be 

considered.  

Artificial intelligence, as a modern concept of 

solving various engineering problems [19, 20], 

represents a creative approach for workflow schedu-

ling. The problems of scheduling that adopt genetic 

algorithm method for workflow manipulation are 

addressed in several papers [21, 22]. Since the genetic 

algorithm is a static scheduling heuristic, it was 

necessary to make appropriate adjustments for 

problems similar to the DMS workflow scheduling. In 

[23] a dynamic scheduler based on an accommodation 

of the genetic algorithm for Smart Grid workflows is 

presented. This approach introduced a number of 

limitations related to the tasks: tasks must be 

independent of each other; they must have the same 

priority and the same execution time. The hierarchical 

neural networks approach [24] excludes the limitation 

of tasks having the same execution time, but the 

restrictions of same priority and independency of tasks 

remain. 

Faced with a variety of situations, an intelligent 

DMS environment requires complex algorithms which 

will help to manage the execution of different kinds of 

workflows. Presented scheduling algorithms consider 

characteristics of the computational Grid (number and 

quality of resources) and specific issues of submitted 

DMS workflows (various execution times, priority of 

tasks and interdependence between them).  

A hybrid algorithm is developed by crossing 

centralized and distributed scheduling. The centralized 

scheduling strategy is devoted to global workflow 

management and monitoring, while the distributed 

scheduling is adopted for resources that handle the 

same type of tasks. Each resource that is involved into 

the distributed scheduling uses smart search to find a 

partner resource to share a workload. In this way, 

resources are working cooperatively toward a 

common goal, and it is easy to include a new resource 

into the distributed scheduling without any impact on 

the operation of the centralized scheduling.  

A set of the most common DMS workflows is 

chosen to analyze usability and feasibility of 

developed schedulers in this field. Two categories of 

experiments are conducted to simulate the real-world 

DMS operation: the first category simulates data 

import into the DMS, while the second category is 

devoted to the real-time control of a DN. 

The developed schedulers are extensively tested 

and compared. The experimental studies that are 

carried out confirmed the usefulness of our schedulers 

when the make-span [25] is minimized. The make-

span of a workflow application is the time interval 

between the start time of the first task and the 

completion time of the last task. 

2. DMS architecture and computational grid 

infrastructure 

Considering the importance of reliable and 

efficient operation of the DMS (since it manages the 

power supply of millions of customers), the 

deployment of the DMS services is done using 

dedicated computational Grid resources. Figure 1 

presents the core services of the DMS software which 

are connected by peer-to-peer communication system: 

• Static Data Service (SDS) provides access to an 

electrical data model. In the core of this service is 
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a CIM [26] compliant data model which fully 

describes a power utility DN. After the initial 

import, these data change very rarely, so it is 

considered as static data. Most commonly, SDS 

relies on a relational database which is hosted on 

the current node. 

• Dynamic Data Service (DDS) caches the dynamic 

states of the devices within a DN. These data are 

usually received from SCADA system. Since the 

dynamic state of a DN changes frequently, huge 

time-series data about process variables must be 

stored. 

• Graphical Data Service (GDS) is responsible for 

maintaining visual objects that user interface is 

displaying. This enables each user only to maintain 

its current view of DN in its memory. As the user 

moves its view through the DN it can rely on the 

GDS for the additional graphical data. 

• Computing Service (CS) is burdened with the 

highest requirements. The service provides means 

for the execution of DMS functions [4]. It receives 

static and dynamic data for a part of the DN, and 

performs the requested set of calculations. In 

respect to the requirements of complicated 

calculations on large amount of data, CS is 

deployed on a node with a powerful central 

processor unit. 

Each of these services is deployed on a separate 

computational Grid node with desired characteristics. 

 

Figure 1. DMS services deployed on a Grid infrastructure 

The input data of a task need to be stored on a 

node before processing the task. Since large amount of 

data is transferred between the DMS services, a 

suitable mechanism must be used so that data 

transmission would not represent the bottleneck of the 

system. A peer-to-peer approach transfers data from a 

source node to a destination node directly, without 

involving any third-party service. It reduces 

transmission time, so it is convenient for large-scale 

data transfers. To support peer-to-peer communica-

tion, every node needs to provide both data 

management and data movement functionality. 

3. DMS workflows 

A task is defined as an atomic unit which is 

executed on a computational Grid resource, and 

workflow is a set of tasks with dependencies between 

them [27]. A workflow can be presented as a directed 

acyclic graph (DAG) [28,29]. The vertices of the 

DAG represent the tasks, while the edges are data 

dependencies between them. Each vertex can have any 

number of "parent" or "child" vertices. Input tasks of a 

workflow do not have any "parent" vertices, while 

output tasks do not have "child" vertices. A task 

becomes executable when all its dependencies are met 

(input data required by the task is available at a 

specified computational Grid resource) and it may be 

submitted for execution.  

By analyzing architecture and requirements of the 

large- scale distributed DMS, workflows can be 

presented by the following basic types:  

• Model Update is a set of tasks that needs to be 

executed when a request for the static data update 

arrives to the system (Figure 2a). Based on the 

modification of static model, it is necessary to 

update graphical model and dynamic model. This 

workflow is common during the initial data 

import, but it is rare in everyday operation of the 

system. 

• DMS Function Execution is usually triggered by 

the SCADA system (Figure 2b). When a dynamic 

state of a device occurs, the part of dynamic data 

model and correspondent static data model are 

transferred to the CS. The relevant calculations on 

data are performed and graphical data model is 

updated with results. During the everyday 

operation of the system this set of tasks is the most 

frequent.  

• Graphical View Refresh is usually executed 

periodically, or as a possible error recovery of the 

GDS (Figure 2c). The part of static data and 

correspondent dynamic data are transferred to the 

GDS and graphical data model is updated 

(refreshed). This workflow is quite rarely 

executed. 

Workload of each task can be evaluated from the 

historical data [30], and it is easy to know a 

computing capacity of a resource by knowing its 

characteristics. Therefore, an estimation of a task 

execution time is easily determined by dividing the 

workload of the task with the computing capacity of 

the resource. 

 

Figure 2. DMS workflows, a) Model Update, b) DMS 

Function Execution, c) Graphical View Refresh 
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The workflows that arrive to the system are ranked 

by the priority, and all tasks contained by a workflow 

obtain the same priority as the workflow. 

During the further analysis of the system 

operation, it becomes obvious that there are 

dependences between the entire workflows that arrive 

for execution. Figure 3a presents a typical sequence of 

workflows execution; a data import must precede the 

execution of DMS functions on the imported data. 

Figure 3b shows how a workflow application is built. 

Output tasks of the "parent" workflow become 

predecessors for the input tasks of the "child" 

workflow. 

Based on the previous discussion, the main 

properties of a task 𝑇  are: the priority – 𝑝 , the 

estimated time to execute task – 𝑡  (which corresponds 

to the estimated task workload – 𝑤 ), the execution 

node (DMS service) – in , }CS,DDS,GDS,SDS{in . 

Sets of predecessor tasks and successor tasks of the 

task 𝑇  are defined by 
iTP  and 

iTS , respectively. 

Scheduling algorithms use these properties for optimal 

allocation of resources for task execution. Optimiza-

tion goal is to rearrange incoming workflow tasks in 

order to support the priority and get maximum usage 

of all nodes, so that the make-span is minimized.

 

Figure 3. Workflows: a) dependencies and b) application 

 

Figure 4. Workflow Management System
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4. Workflow management system 

The Workflow Management System takes into 

account the dynamic nature of a real-world DMS and 

uses the computational Grid environment approach for 

detecting and responding to changes in the DMS. The 

developed framework is presented in Figure 4. It 

provides required support for the high-throughput 

scheduling process. 

The framework consists of three components: the 

Workflow Receiver, the DAG Manager, and the Task 

Scheduler.  

The Workflow Receiver accepts workflows in run 

time and validates for appropriate workflow pattern 

[27]. If a workflow is valid, it is sent to the DAG 

Manager, otherwise it is rejected. 

The DAG Manager controls the workflow 

application. The workflow application is represented 

via a DAG and it is continually evolving during the 

system operation. The DAG Manager monitors the 

incoming workflows and task completion events. 

When any of the events occur, the DAG is updated: a 

new, valid workflow is included, while the completed 

task is removed from the workflow application. The 

dependency information is updated. When the DAG 

modification is finished, determination which tasks 

have become suitable for execution based on 

dependencies in the workflow is started. The result of 

analysis is a list of executable tasks. It contains tasks 

that have no predecessors. The list of executable tasks 

is partitioned into the levels. The tasks with same 

priority are classified within the same level. The levels 

are sorted in descending order by priority and tasks 

organized in this manner are submitted for scheduling. 

The Task Scheduler is responsible for resource 

selection and mapping tasks to resources. This 

component is of the most interest in our research, 

since the decision making is done in it. The scheduler 

maintains a task queue which is constantly read. The 

tasks are independent and classified to levels by 

priority. The level by level methodology considers 

tasks at the current level. The tasks from the highest 

priority level are collected and scheduling algorithm is 

applied to determine the right time to send tasks for 

execution. After that, it is moved to a lower priority 

level, and so forth. Depending on the specific 

characteristics of the computational Grid infrastructure 

and task properties, different scheduling algorithms 

can be deployed on the Task Scheduler.  

5. Workflow application model 

As outlined above, the workflow application is 

represented with a DAG. The tasks without any 

predecessors are input tasks, while the tasks without 

any successors are output tasks (Figure 5). 

A task iT  is defined as a triple: 

intpT iiii  ),,,( , (1) 

where 𝑝  is task priority, 𝑡 is estimated time to execute 

task (corresponding the estimated task workload –𝑤 ), 

and 𝑛  is execution node (DMS service). 

The computational Grid infrastructure is fully 

connected topology in which communications are 

performed without any constraints. It is assumed that 

data transfer rates (amount of data that can be 

transferred) between nodes are known. Transfer rate 

between nodes 𝑛  and 𝑛  is denoted by 
jinnrate . 

Amount of data that needs to be transferred after 

completion of task 𝑇  and before start of task 𝑇  is 

denoted by 
jiTTdata . Finally, communication time 

cost of edge (𝑖, 𝑗) is defined as: 

ji

ji

jTiT

nn

TT

rate

data
c  . (2) 

 

Figure 5. Workflow application model 

Let us define 𝑠𝑡  
 and 𝑐𝑡  

 as start time and 

completion time of a task 𝑇 , respectively, and 
innt  as 

the earliest available time of a node 𝑛 . To determine 

when the task 𝑇  has become eligible for execution all 

predecessors of that task must be scheduled: 










 ijTiTj

iTj
i nT

PT
T ntcctst },{maxmax , (3) 

where 
iTP  is a set of predecessor tasks of task 𝑇 . The 

completion time 
iTct  is calculated as the sum of 

iTst  

and the estimated execution time 𝑡  of task 𝑇 : 

iTiT tstct
i

 . (4) 

The make-span of the workflow application is time 

period taken from the start of the application, up until 

all outputs are available: 

}{max
i

i

T
OutputsT

ctmakespan


 . (5) 

𝑂𝑢𝑡𝑝𝑢𝑡𝑠 is the set of output tasks. The optimization 

goal is to assign tasks to the computational Grid 

resources to minimize the make-span. 

http://www.merriam-webster.com/dictionary/continually
http://www.merriam-webster.com/dictionary/methodology
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6. Centralized scheduling architecture 

As the set of workflows that should be executed on 

the computational Grid is not known in advance, but 

workflows arrive continuously, all information 

regarding the tasks is not entirely known before 

execution time. Therefore, scheduling decisions must 

be made on the fly, and the dynamic scheduling 

algorithms are necessary. The Task Scheduler contains 

executable, independent tasks categorized by priority 

levels. The scheduling algorithms consider tasks level 

by level, starting from the level with the highest 

priority. 

1. Earliest successors start time algorithm (ESSTA) 

The algorithm is based on the idea of primary 

scheduling tasks that will lead to the possibility of 

executing all its successors in the shortest period of time. 

The question that is answered is: which of the executable 

tasks need to be completed to enable scheduling of all its 

successors as soon as possible? 

The 𝑠𝑢𝑐𝑐𝑠𝑡   is defined as estimated time when all 

the successors of a task 𝑇  are ready for the execution: 

}{max
jTiT

iTj
ii

cctsuccst
ST

TT


 . (6) 

The algorithm considers all unmapped tasks within 

a priority level during each scheduling decision. It 

schedules tasks in order that changes the node 

availability status. Listing 1 shows the pseudo code 

for EEST algorithm: 

for all ( velssPiorityLesortedTaskvelpriorityLe  ) 

while ( velpriorityLeT  is not scheduled) 

uesomeMaxValmumsuccstMini   

emptyTaskutetaskToExec   

0index  

for all ( velpriorityLeTi  )  

compute 
iTsuccst  

if ( mumsuccstMinisuccst
iT  ) 

iTsuccstmumsuccstMini   

iTutetaskToExec   

iindex   

end if  

end for all 

schedule utetaskToExec  

remove utetaskToExec  from 

velpriorityLe  

update 
indexnnt  

end while 

end for all 

Listing 1. Earliest successors start time algorithm 

The algorithm schedules a set of independent tasks 

iteratively. For each iteration, it computes succst  for 

every task. A task having minimum succst value is 

chosen to be scheduled first and it is assigned to the 

appropriate resource. The expectation is that a smaller 

make-span can be obtained if tasks assigned to 

resources allow their successors to enter the scheduling 

process more quickly.  

2. Critical path algorithm (CPA) 

The algorithm relies on the concept of the 

workflow application critical path [31, 32]. The 

critical path approach aims to determine the longest of 

all execution paths from the beginning to the end in a 

DAG. It answers the question: which tasks have the 

most impact on the overall execution time? The 

algorithm captures tasks (within the priority level) that 

block the most time-consuming activities in the 

workflow application and schedule them earliest to 

minimize execution time for entire DAG.  

The tasks within the same priority level are 

ordered by their rank (critical path value). The rank of 

output tasks corresponds to their execution time: 

i

OutputsT

T trank
i

i




 . (7) 

The ranks of other tasks are calculated recursively: 

}{max
jjTiT

iTj
i T

ST
iT rankctrank 



, (8) 

where 𝑆  
 is the set of all successors of the task 𝑇 . A 

task with higher rank value is given earlier execution 

time. The pseudo code for critical path algorithm is 

presented in Listing 2: 

for all ( velssPiorityLesortedTaskvelpriorityLe  ) 

while ( velpriorityLeT  is not scheduled) 

0mrankMaximu  

emptyTaskutetaskToExec   

0index  

for all ( velpriorityLeTi  )  

compute 
iTrank  

if ( mrankMaximurank
iT  ) 

iTrankmrankMaximu   

iTutetaskToExec   

iindex   

end if 

end for all 

schedule utetaskToExec  

remove utetaskToExec  from 

velpriorityLe  

update 
indexnnt  

end while 

end for all 

Listing 2. Critical path algorithm 
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3. Experiments and results 

A distributed testing environment based on the 

proposed architecture is developed to simulate the 

real-world DMS operation. Intel Core i3 (3.30 GHz) 

microprocessors are assigned to each node and 

computer devoted to workflow management. All 

software components are implemented in .NET 4.0 

framework. Performed experiments are classified into 

two categories: data import and real-time control.  

The first set of experiments simulates data import 

into the system. This kind of work is usually done 

offline, before real-time control of a DN starts. The 

workflow application is designed only of Model 

Update workflows. Number of workflows (Nw) that 

dynamically arrive for execution varies depending on 

the number of entities which have to be imported into 

the system. The number of entities is within the range 

from a few thousands to several millions; therefore, it 

is used between ten and a thousand workflows in our 

experiments. Table 1 and Figure 6 summarize results 

of scheduling comparison.  

The second set of experiments is devoted to the 

simulation of real-time control of a DN. The workflow 

application is composed of all three types of 

workflows. The DMS Function Execution is the most 

common and represents more than 70% of all 

workflows that arrive for execution. The Model 

Update workflow type makes about 20% of the 

workflow application, while the Graphical View 

Refresh type is the rarest (up to 10%). Similar to the 

first set of experiments, it is used between ten and a 

thousand workflows. Obtained results are presented in 

Table 2 and Figure 7. 

All experiments examine the effect of make-span 

changes. The developed algorithms are compared to 

the sequential approach of task manipulation. As 

expected, by introducing parallelization of tasks and 

dynamic schedulers into the operation of a large scale 

DMS, the essential improvement of computational 

resources exploitation is provided. 

 

Table 1. Workflows execution time – DMS data import 

Nw 
No optimization 

(sequential 

execution) [s] 

ESSTA [s] CPA [s] 

10   45.70 25.50 25.44 

50   228.72 108.53 107.23 

100   456.52 208.54 206.50 

250   1154.37 522.77 513.87 

500   2288.11 1048.65 1026.14 

1000   4572.27 2075.71 2050.68 

 

 

Figure 6. DMS data import - Workflows execution 

Table 2. Workflows execution time – DMS real-time control 

Nw 
No optimization 

(sequential 

execution) [s] 

ESSTA [s] CPA [s] 

10   62.03 36.89 34.05 

50   310.35 148.01 146.33 

100   618.62 293.37 288.58 

250   1546.19 729.05 723.41 

500   3093.00 1452.24 1442.90 

1000   6192.01 2906.62 2881.85 

 

 

Figure 7. DMS real-time control - Workflows execution 
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Based on illustrated experimental results the 

following can be noted: 

• The CPA based scheduler outperforms the ESSTA 

solution. Explanation for this phenomenon can be 

found in fact that the CPA considers all execution 

paths, while the ESSTA analyzes only a close 

environment of a task in the DAG. 

• The scheduling brings more benefits if there are 

more tasks to rearrange.  

• The performance of the system improves with 

increase of the number of workflows. 

7. Hybrid scheduling architecture 

During the real-time system operation, DMS 

Function Execution is by far the most frequent type of 

workflow that arrives for execution. Taking into 

account the processing of large amount of data within 

this workflow type, the computing node (CS, Figure 

1) is heavily loaded. Therefore, it represents the 

bottleneck of the system. Introduction of additional 

computing nodes into the computational Grid 

infrastructure would allow the possibility of 

supplementary workload distribution.  

Figure 8 presents the improvement of 

computational Grid infrastructure for developed 

hybrid scheduling algorithm. More advanced 

computing engine includes multiple computing nodes 

and establishes the Computing Broker (CB) node. The 

computing nodes implement a distributed scheduling 

algorithm [33], while the CB represents a mediator 

between them and the other parts of the system. The 

Workflow Management System schedules computing 

tasks and data needed for their execution to the CB. 

When a computing node adopts a task, it takes data 

contained by the CB and executes expected 

calculation. After completing the task, the computing 

node transfers results to the CB, which forwards them 

to the appropriate node and notifies the Workflow 

Management System of the task completion. 

 

 

Figure 8. Grid infrastructure for hybrid scheduling 

1. Distributed scheduling algorithm  

The main aim of distributed computing is to 

achieve parallelism through the workload distribution 

and obtain better execution time. Capabilities of the 

computing nodes may be different because of their 

heterogeneous computation power. In order to 

efficiently use computing nodes it is necessary to 

assign workload proportionally to their computation 

power. With the purpose of simplifying the 

explanation of our solutions, the distributed dynamic 

algorithm is presented for the computing nodes with 

homogeneous computation power. It is very easy to 

adapt it to a set of computing nodes with various 

computation capacities. 

The workload of a node in  is defined as 
innw . 𝑁𝐶 

is the set of all computing nodes within a 

computational Grid infrastructure. Its cardinality is 

denoted by 𝑁 . The purpose of scheduling process is 

to make workload distribution system converge 

towards the desired workload distribution: 

NCnnwnw ini
 , . (9) 

nw  is the workload that every computing node should 

receive. Because the system is assembled of the 

computing nodes with homogeneous computation 

power, nw  is defined as: 

c

NCn

n

N

nw

nw i

i


 . (10) 

The distributed dynamic algorithm is run during 

the tasks execution and allows us to adapt workload 

distribution as the executions proceed. It is based on 

the physical phenomenon of diffusion. The iterative 

diffusion algorithm makes decisions about workload 

balancing at the iteration ℎ  by using the workload 

information of the previous iteration ℎ − 1  [34]. At 

iteration ℎ the workload of a node 𝑛  is represented as 
h
ni

nw . According to the diffusion iterative algorithm 

the computing node in  exchanges the portion of 

workload h
n

h
n ji

nwnw   with a computing node 

𝑛  at each iterative step. Parameter 𝛼 determines how 

much of workload difference will be exchanged and 

depends on the considered problem [34,35]. Workload 

transformation of the computing node in  is described 

by the following equations: 




 

NCn

h
n

h
n

h
n

h
n

j
ijii

nwnwnwnw ][ 111  , (11) 




 

NCn

h
n

h
nc

h
n

j
jii

nwnwNnw 11]1[  . (12) 

Completion of algorithm is related to the 

possibility to lead any initial workload distribution to 

the workload balanced state. The quality of obtained 
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workload balance is presented by some norm, for 

example quadratic 




NCn

n

i

i
nwnw 2][ . In [34] it is 

proved that this algorithm converges towards the 

uniform workload distribution. 

2. Accommodation of distributed scheduling 

algorithm  

As explained above, in distributed algorithm it is 

assumed that it is possible to exchange any portion of 

workload between nodes. That is, the workload 

portion is a continuous value. In practice, the situation 

is somewhat different. A set of tasks is assigned to 

each computing node. It is possible to distribute only 

complete tasks between nodes, so the portion of 

workload for exchange takes discrete values. Parameter 

  determines the amount of workload exchange, and 

consequently the algorithm convergence speed and 

quality. To achieve the highest possible workload sharing 

between nodes, the parameter 𝛼  is set to 1 / 2 (𝛼 =
1/ 2). 

inTC is defined as a set of computing tasks that are 

assigned to the computing node 𝑛  and whose 

execution didn’t start. 
jinnnw  is the maximum 

amount of workload that the computing node 𝑛  can 

exchange with a computing node 𝑛 : 

][
jiji nnnn nwnwnw  . (13) 

jinnTC  is a subset of tasks adopted by the 

computing node 𝑛  (subset of 
inTC ) for which the 

overall sum of workloads has a maximum value:  


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jninkinjnin TCT
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TCPowTC

w


 )(

max , (14) 

but with a constraint that the overall sum of workloads 

does not exceed 
jinnnw : 

ji

jnink

nn

TCT

k nww 






. (15) 

)(
inTCPow  represents the power set of 

inTC (the 

set of all subsets of 
inTC including the empty set).  

If 
h

nn ji
  is determined as the portion of workload 

that will be exchanged between nodes 𝑛  and 𝑛  at the 

iterative step ℎ, then evolution of the computing nodes 

workload is calculated according to the following rules: 
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nn jiji
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n jijj
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The algorithm is completed when workload is 

balanced in such a manner that there is no need for 

further exchange. This is achieved when 
h

nn ji
TC  

becomes an empty set of tasks for every possible 

combination (𝑖, 𝑗) . This is equivalent to 

),(,0 jih
nn ji

 . Listing 3 clarifies the algorithm 

for distributed scheduling: 

while( truefinished  ) 

// assuming that algorithm is finished 

truefinished   

for all ( NCni  ) 

for all ( NCn j  ) 

compute
jinnnw   

determine 
jinnTC  

if (
jinnTC not empty) 

compute
jinn  

jiii nnnn nwnw   

jijj nnnn nwnw   

jiii nnnn TCTCTC \  

jijj nnnn TCTCTC   

// algorithm is not finished 

falsefinished   

end if 

end for all 

end for all 

end while 

Listing 3. Distributed scheduling algorithm 

It should be emphasized that the tasks are 

organized by priority within each computing node, so 

the tasks that are more important are executed first. 

 

3. Experiments and results 

Since the computing nodes do not participate in 

data import, experiments are devoted to the simulation 
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of the DMS real-time control of a DN. The Task 

Scheduler operates according to the critical path 

algorithm, while the computing nodes use the 

distributed algorithm for redistributing computing 

workload. The same set of tests for examination of 

centralized scheduling algorithms is used.  

In the first experiment, the computing engine 

contains three computing nodes. Table 3 presents the 

results of scheduling comparison. 

Table 3. Workflows execution time – Hybrid scheduling 

Nw ESSTA [s] CPA [s] 
Hybrid 

scheduling [s] 

10   36.89   34.05 27.87   

50   148.01   146.33   84.75   

100   293.37   288.58   155.26   

250   729.05   723.41   371.45   

500   1452.24   1442.90   732.15   

1000   2906.62   2881.85   1445.92   

 

The quality of results produced by the hybrid 

scheduler is compared to the results reported for the 

centralized scheduling algorithms (Figure 9). 

 

Figure 9. DMS real-time control – Hybrid scheduling 

workflows execution 

The experimental study leads to the following 

conclusions: 

• The hybrid scheduling algorithm significantly 

outperforms previous (centralized) solutions. 

• The performance (specifically, the speed) increases 

by increasing the number of workflows. 

• A minor investment into the computational Grid 

resources and deployment of the hybrid scheduling 

architecture solves computing bottleneck of the 

large scale DMS.  

• Introduction of the dynamic hybrid scheduler into 

the task scheduling process provides considerable 

improvement of resources exploitation which 

results in better performance of the entire system. 

The second experiment is devoted to dependency 

between the system performance and a number of 

computing nodes within the computing engine. Table 

4 and Fig. 10 present the acquired results. 

Table 4. Workflows execution time – Hybrid scheduling with 

different number of computing nodes 

 Workflows execution time [s] 

Nw   
Nc 3 4 5 7 10 

10 27.87 26.56 26.17 26.13 25.84 

50 84.75 81.38 81.07 80.25 80.85 

100 155.26 145.18 141.65 141.18 141.10 

250 371.45 348.65 345.05 346.14 346.19 

500 732.15 699.94 692.40 689.89 687.37 

1000 1445.92 1389.95 1379.16 1374.87 1369.84 

 

 

Figure 10. DMS real-time control – Hybrid scheduling 

workflows execution with different number of computing 

nodes 

According to the experimental results, it is 

concluded:  

• By increasing the number of the computing nodes 

the system performance increases, but progression 

is not proportional to the number of computing 

nodes. 

• After reaching a certain number of the computing 

nodes the saturation occurs. 

0

500

1000

1500

2000

2500

3000

10 50 100 250 500 1000

E
x
e
c
u

ti
o

n
 t

im
e
 [

s]
 

Number of workflows 

DMS real-time control - Hybrid scheduing: 

workflows execution time  

ESSTA CPA Hybrid algorithm

0

200

400

600

800

1000

1200

1400

10 50 100 250 500 1000

E
x
e
c
u

ti
o

n
 t

im
e
 [

s]
 

Number of workflows 

DMS real-time control – Hybrid 

scheduling: workflows execution time 

3 computing nodes 4 computing nodes
5 computing nodes 7 computing nodes
10 computing nodes



Workflow Management System for DMS 

383 

• Investment into the computing engine is justified 

only if there is significant boost of the system 

performance. 

8. Conclusion 

The suggested Workflow Management System 

considers dynamic nature of the large scale DMS and 

supports high-throughput scheduling. Different 

dynamic scheduling strategies which maintain 

workflows priority and dependency have been 

developed and discussed. 

Two centralized strategies for maximizing system 

utilization are developed: the earliest successors start 

time and the critical path algorithms. By engaging 

these algorithms, the crucial progress in the 

computational resources utilization is produced. 

Experimental studies presented usefulness of these 

algorithms. The studies show a slight advantage of the 

critical path algorithm. The advantage of the 

centralized strategies is easy implementation, 

however, they lack scalability.  

Further analysis of the DMS operation in real-time 

control mode revealed that it is necessary to provide 

additional support to heavily loaded computing node. 

Suggested solution provides an advanced computing 

engine with multiple computing nodes which 

implement the designed distributed workload 

balancing. In this way, the hybrid scheduling 

architecture is achieved. The aim of presented 

experimental study is to reveal effectiveness of the 

hybrid based scheduling. The performance analysis 

shows that this approach significantly reduces the total 

execution time and boosts the performance of the 

whole system. 
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Appendix – Example of distributed scheduling 

A simplified example of a workload distribution is 

introduced in this section. Workload of a computing 

task is represented via an integer value. Execution did 

not start for any of the tasks. The computing engine 

includes three computing nodes; total workload of the 

first node is 14, 10 of the second node, and 4 of the 

third (Fig. 11). The parameter 𝛼  is set to 1 / 2 (𝛼 =
1/ 2). 

 

4 3 3 2 2  = 14

4 3 2 1  = 10

2 2  = 4

 n1 : 

 n2 : 

 n3 : 
 

Figure 11. Initial workload state of the computing nodes 

The first iteration starts with transferring tasks 

form node 𝑛  to other nodes. Maximum allowed 

amount of workload that may be transferred is 

calculated, but actual workload portion for exchange 

is based on the set of tasks which are located at the 

first node. Fig. 12 shows the exchange of a task 

between nodes 𝑛  and 𝑛 , and the resulting values of 

total workload for nodes. 
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Figure 12. Transferring task with workload value equal 2 

from node 1n  to node 2n  

Similarly, the workload exchange takes place 

between nodes 𝑛  and 𝑛 : when values 13nw  and 

13  are determined, a task is transferred (Fig. 13).  
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Figure 13. Transferring task with workload value equal 4 

from node 1n  to node 3n   
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Fig. 14 presents the new distribution of workload 

after tasks are transferred from node 𝑛  to other nodes. 
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Figure 14. Workload state of the computing nodes after 

transmission of tasks form node 𝑛  at the first iteration 

The next step at the first iteration is the workload 

exchange between node 𝑛  and remaining nodes. The 

exchange starts with node 𝑛  (Fig. 15). 
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Figure 15. Transferring task with workload value equal 2 

from node 𝑛  to node 𝑛  

The principle is the same as for the previous step 

(Fig. 16). 
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Figure 16. Transferring task with workload value equal 1 

from node 2n  to node 3n  

Fig. 17 presents the new distribution of workload 

after tasks are transferred from node 𝑛  to other nodes. 
 

3 3 2  = 10

4 3  = 9

2 2  = 9

 n1 : 

 n2 : 

 n3 : 4

2

2

1
 

Figure 17. Workload state of the computing nodes after 

transmission of tasks form node n
2
 

The workload of node 𝑛  is less or equal than the 

workload of remaining nodes, therefore there will be no 

workload sharing. 
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The second iteration begins the same as the first, by 

exchanging the workload of node 𝑛  with other nodes. 

The workload difference is not big enough, so there is no 

exchange. 
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The amount of workload at node 𝑛  is also not big 

enough to make an exchange with other nodes. 
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The same situation applies to node𝑛 . 
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Since the completion condition is met: 

   3,2,13,2,1),,(,0  jiji
jinn ,  

the distribution of workload is completed. Fig. 17 

presents the final distribution of workload (tasks). 


