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Abstract. The main aim of this paper is to apply variable length lossless code on output points of the two-dimen-
sional vector quantizer for Laplacian source. This problem is not yet solved in the literature. In this paper two-dimen-
sional quantizer is designed using Helmert transform and its optimization is done. New lossless code is introduced. It is 
very simple but very close to the ideal code since it gives the bit-rate very close to the entropy. It is applied on the two-
dimensional quantizer. It is shown that our two-dimensional quantizer can achieve the same performances as scalar 
uniform and nonuniform quantizers, but using much smaller number of points per dimension. Therefore, two-dimen-
sional quantizer has smaller execution complexity. 
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1. Introduction 

Quantization is very important step in the process 
of analog to digital conversion. Quantization is used in 
almost all modern telecommunication systems. Good 
choice of quantizer can increase signal quality and 
decrease bit-rate.  

Quantizers can be scalar and vector. Design of 
some types of scalar quantizers were analyzed in [1, 2, 
3]. Vector quantizers give better performances (higher 
signal-to-quantization noise ratio (SQNR) for the same 
bit-rate) compared to scalar quantizers, since they 
have a higher degree of freedom for choosing the re-
construction values and the decision regions [4]. But, 
vector quantizers are, in general case, more complex 
than scalar quantizers, and their complexity increases 
with increase of quantizer dimension [4]. Two-dimen-
sional quantizers are the simplest, and therefore the 
most often used vector quantizers.  

Lossless compression codes can be used for coding 
of symbols of discrete sources, decreasing bit-rate. 
Representation points of quantizer can be considered 
as symbols of discrete source, and therefore they can 
be coded with lossless codes. Huffman code is the 
most popular lossless code [5, 6, 7, 8, 9]. But, the 
complexity of Huffman code drastically increases 
when the number of symbols increases, since it is 
needed to form code tree in coder, as well as in de-
coder. Also, probability for each symbol has to be 
calculated. Because of that, Huffman code is inap-
plicable for sources with large number of symbols. 
Huffman code can be used for coding of levels of 

scalar quantizer, if the number of levels is not too 
large (for example, few tens). But, the number of 
points of two-dimensional quantizers can be very 
large. Because of that, Huffman code is practically 
inapplicable for scalar quantizers with large number of 
levels and for two-dimensional quantizers.  

A simple lossless code was proposed in [10] and it 
was applied on scalar, but not on vector quantizers. 
Another important lossless code is Golomb-Rice code. 
It is much simpler for realization than Huffman code, 
since this code is computed with a few logical 
operations and there is no need to form code tree [11, 
12, 13]. This feature is especially important for the 
decoder, which has to be simple and fast. It was 
proved that Golomb-Rice code is especially suitable 
for Laplacian source. Due to all these facts, Golomb-
Rice code is included in many modern compression 
standards, such as JPEG-LS [14], MPEG-4 ALS (Au-
dio Lossless Coding) [15], and CCSDS (Consultative 
Committee for Space Data Systems) recommendation 
for lossless data compression [16]. Also, Golomb-Rice 
code can be used for compression of test data [17]. 
Golomb-Rice code was applied on scalar quantizer in 
[18, 19]. But, application of Golomb-Rice code on 
vector quantizers has not been analized by now, as we 
know. So, we can conclude that application of lossless 
code on vector quantizer is an open problem, not yet 
solved in the literature. In this paper we propose a 
solution for this problem. 

The main aim of this paper is application of 
lossless code for coding representation points of two-
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dimensional quantizer. Firstly, design of two-dimen-
sional quantizer is done for memoryless Laplacian 
source, using Helmert transform [20]. The quantizer is 
designed in the way that one coordinate (denoted with 
r) is quantized using hybrid quantizer (combination of 
uniform and nonuniform quantizers) and the other 
coordinate (denoted with u) is quantized using uni-
form quantizer. It is proved in this paper that hybrid 
quantizer is the best solution for r coordinate, better 
than uniform and nonuniform quantizers. The comp-
lexity of the hybrid quantizer is between complexities 
of the uniform and the nonuniform quantizers.  Quan-
tizer’s cells are placed in concentric rectangular rings. 
Optimization of the number of cells in each ring is 
done. After that, a new lossless code is defined. This 
lossless code is a modification of Golomb-Rice code, 
but it is more flexible than Golomb-Rice code. Our 
code gives the bit-rate which is very close to the 
entropy of the source. The main advantage of our 
lossless code is its simplicity. It is drastically simpler 
than Huffman code since there is no need to form a 
code tree and also there is no need to calculate 
probabilities of representation points. Therefore, the 
lossless code can be very easily applied on two-di-
mensional quantizers with large number of points. It is 
shown in the paper that two-dimensional quantizer 
with variable length codewords can achieve much 
better performances, compared to scalar uniform and 
nonuniform quantizers, using the same number of 
points per dimension (or, in other words, our model 
can achieve the same performances using much 
smaller number of points per dimension). For 
example, our model can satisfy the G.712 standard 
using in average 92 points per dimension, which is 
much smaller compared to 128 points needed for 
scalar nonuniform quantizer or 256 points needed for 
scalar uniform quantizer. Therefore, our model has 
smaller execution complexity, and it is faster.  

This paper is organized as follows. In Section 2, 
design of two-dimensional quantizer is described 
using Helmert transform, expressions for distortion 
are derived, optimal numbers of cells in rings are 
calculated and the lossless code is described. Section 3 
gives some numerical results. In Section 4, some addi-
tional explanations are given and execution comp-
lexity of our model is discussed. Section 5 concludes 
the paper. 

2.  Design of the two-dimensional quantizer 
with the lossless code 

2.1. Helmert transform 

The 2-D (two-dimensional) probability density 
function for independent identically distributed La-
place random variables (source) with zero mean and 
the unity variance is given as 

 212

2
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)( xxef x , (1) 

where  is the source vector with elements  and 

. To simplify the vector quantizer, the Helmert 

transform [20] is applied on the source vector. This 
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Effect of Helmert transform is rotation of the coor-
dinate system for 45 degrees clockwise, i.e.  

coordinate system is obtained by rotation of (  

coordinate system for 45 degrees clockwise. This is 
shown in Figure 2.  
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Figure 1. Quadrants in the domain (left) and areas 

in the  domain (right) 
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The probability density function defined with (1), 
in  domain becomes  ),( ur

reurf 2

2

1
),(  . (4) 

Probability density function for r  coordinate is  
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Figure 2. Due to Helmert transform,  coordinate 

system is obtained by rotation of  coordinate 

system for 45 degrees clockwise 
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2.2. Two-dimensional (2D) quantizer 

Now, we will define two-dimensional quantizer in 
 domain. The total number of cells of that quan-

tizer is N. For 

),( ur

r  coordinate, hybrid quantizer will be 
applied. For u  coordinate, uniform quantizer will be 
applied.  

Quantization of r coordinate. As it was said, 
hybrid quantizer is used for quantization of r  
coordinate. This hybrid quantizer is combination of a 

uniform and a nonuniform companding quantizers. *r  
denotes the value of r  coordinate which is the border 
between uniform and nonuniform quantizers. Uniform 
quantizer consists of  levels for 1L r  coordinate. Thre-

sholds for this uniform quantizer are denoted by 

1,...,0, Liri   and they can be calculated as 
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For  defined with (5), compression function 
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where  is exponential integral 

function, which is very suitable for numerical 
computation. Nonuniform companding quantizer has 

 levels. Thresholds for this nonuniform quantizer 
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There are totally 21 LL   levels for r  coordinate. 

Each level for r  coordinate makes one ring in two-
dimensional plane. Therefore, we have totally 21 LL   

concentric rings. The area which consists of the first 
 rings (where 1L r  coordinate is uniformly quantized) 

is called uniform part of 2D quantizer, and the area 
which consists of  rings where 2L r  coordinate is non-

uniformly quantized is called nonuniform part of 2D 
quantizer.  

Quantization of  coordinate. Inside each ring, 
uniform quantization of  u coordinate is done. On the 
i-th ring we have  levels for u  coordinate,  

in each of four areas. Thresholds for u  coordinate on 

u

iM 4/iM
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the i-th ring ( ) are denoted by 

 and representation levels are 

denoted by . For rings 
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Within each cell  there is one representation 

point . There are four overload cells which 

are presented in Figure 3 (down). Within each of these 
four overload cells there is one representation point, 
which will be defined later. The total number of 
quantization cells of two-dimensional quantizer is 

denoted with .  is the total 

number of cells in the uniform part, and 

 is the total number of cells in the 

nonuniform part. Additional four cells in the expres-
sion for  are overload cells.    
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2.3. Distortion 

The total distortion  consists of three parts, i.e., 
.  is distortion in the first 

 rings where cells are bounded;  is 

distortion in the ( )-th ring, where cells are 

unbounded;  is distortion in four overload cells. 

This is shown in Figure 4. All these distortions 
( , ,  and ) are distortions per dimension. 

Usually, for vector quantization, distortion is given per 
dimension, to simplify comparison of performances of 
vector quantizers with different dimensions. 

Distortion  is given with the following expression: 
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Figure 3. Rectangular cells on the i-th ring,  ,...,1i

121  LL (up); unbounded rectangular cells and four 

overload cells on the ( )-th ring (down) 21 LL 

The factor 1/2 at the beginning of the expression 
(12) means that  is distortion per dimension. After 
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For  defined with (10), we obtain: iu
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Finally, after basic integration, the following expres-
sion is obtained: 
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Previous expression (15) can be written as 

, where (*) 

denotes the expression under summation in (15).  
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12D  represents distortion in rings ,...,11 L  

;  and defined with (8) and (9) should 

be used in calculation of .  
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is obtained: 
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21212121 11 LLLLLLLL mrmr .(18) 

The overload distortion  represents distortion 

in four overload cells. In each overload cell there is 
one representation point. To minimize distortion, this 
representation point should be placed on the bisector 
of the overload cell. Therefore, values of r and u 
coordinates of the representation point are equal and 
denoted with c. The overload distortion  can be 

calculated as , where  

3D

half
3D

3D

3 8D  half
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     
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 121 121

22

2

1

2

1

LL LLr

r

ru

re cu 2cr dudr  repre-

sents distortion in the half of the one overload cell. 
This is shown in Figure 5.  
 

(c,c)

Dhalf
3

representation
point

 

Figure 5. One overload cell with the representation point 
placed on the bisector of the overload cell 

After integration, it is obtained that  


  

 
1

2
1

2
3 2121

121 2
4

7
LLLL

r
rreD LL      

          . (19) 1
2

21
22  LLcrcc

Minimizing , 3D 0222 1
3

21





LLrc
c

D
, we 

obtain the optimal value for parameter c 

121
1  LLrc . (20) 

Changing this into (20), we obtain the following 
expression for the overload distortion 

121
2

3 4

3  LLreD . (21) 

The total distortion D is equal to the sum of 
expressions (15), (18) and (21). Signal-to-quantization 
noise ratio (SQNR), for unit variance, is defined as: 

D
SQNR

1
log10]dB[ 10 . (22) 
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2.4. Optimal number of cells on rings 

In this subsection, optimal values of the number of 
cells on each ring, denoted with 21,...,1, LLiM i 

1
1

1

NM
L

i
i 



, 

will be found, in the way to minimize distortion D. 

Two condition must be fulfilled:  and 

. So, minimization of D with these 

constraints should be done, and this will be done using 
the technique of Lagrange multipliers. Firstly, we 
define function J in the following way:  

42
1

21

1





NM

LL

Li
i

,)4(
21

1

1

1
22

1
11









































LL

Li
i

L

i
i

NM

NMDJ





  (23) 

where 1  and 2  are Lagrange multipliers. Now, 

minimization of J will be done. 

For   it is valid that  1,...,1, LiM i 
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From (24) it follows that 
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Changing these values in the condition , 

it is obtained that  
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Changing this in expression (25), we obtain 
expressions for the optimal values of the numbers of 
cells in rings in the uniform part: 
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For  it is valid that 1,...,1, 211  LLLiM i













2
12

2 
iii M

D

M

D

M

J

    0
3

4
2

223
13

1  


 ii rr
ii

i

eerr
M

. (28) 

From the previous expression it follows that  
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It follows that  
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Changing expressions (29) and (31) into condition 

, it is obtained that  
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Changing this into (29) and (31), we obtain 
optimal values of cells number for rings in the 
nonuniform part:  

,

2)(

))(4(

3 2

1
3 22

1

1
1

3 22
12

121

21

1
21

1

1






























 LLjj

ii

r

LL
rr

LL

Lj
jj

rr
ii

i

ereerr

eerrN
M

    

1,...,1 211  LLLi , (33) 
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2.5.  Regions making and modification of the 
number of cells 

Lossless code will be applied for coding repre-
sentation points of our two-dimensional quantizer. 
This lossless code will be described in Subsection 2.6. 
In this subsection some preparations for the 
application of the lossless code will be done. To apply 
the lossless code, we should make regions. Inside 
uniform part of the two-dimensional quantizer (the 
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first rings), we make LS1L  k/1  regio

c

ns, by joining 

k  conse utive rings in one region. It is valid that the 
i -th region ( i ,..1 nsists of rings 

. The whole nonuniform 

part (with rings and  cells) is one, the (

S., ) co

ik

2N

ki )1(,1 

2L

k)1i( ,...,2
1S

1

)-

th region. Four overload cells also belong to the 
( )-th region. Therefore, we have totally 1S S

k
jM

1

 
regions. ,  denotes the number of cells 

in the -th region. It is valid that  for 

, where are given with (27). Also, it is 

valid that .  

iQ 1i

S
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1,..., S
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



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ij
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i 

 To apply the lossless code, one condition should 
be fulfilled: the number of cells within each region 

must be a power of two, i.e.  ;1,...,1,2  SiQ i
i



i . Firstly, we will consider regions in the 

uniform part. For  given with (27), this condition 

is not satisfied in general case. Therefore, we should 
modify the number of cells in regions in the uniform 

part. With ]  is denoted the nearest 

number of  which is the power of two. [x] is the 

nearest integer of the real number x. Now, instead of 

 cells, each region in the uniform part has *
iQ  ce  

Since the number of cells in regions is modified, the 
number of cells in rings also should be modified. The 
modified number of cells in the j -th ring, which is in 

the i -th region, is , 

; . So, inside the -th 

region, the total number of cells is changed by 
*  cells, and this change is equally distributed 

on all  rings inside this region, i.e., the number of 
cells in each ring in this region is changed by 

. It is valid that .  The 

modified number of cells within the uniform part is 

. So, on the beginning of the design 

process the cells number in the uniform part was set to 
the initial value . This initial value  is chosen to 

achieve required performances (for example, if the 
G.712 standard should be satisfied, SNR higher that 34 
dB should be achieved).  But during the design 
process this initial value is modified, and we obtain 
new number of cells in the uniform part, denoted with 

* . *  is usually very close to the initial value .  
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Since the whole nonuniform part is one region, the 
number of cells in the nonuniform part must be a 
power of two. If the initial number of cells  is not a 

power of two, it should be changed with * , the 

nearest integer to  which is a power of two. So, 

. Then, modified numbers of cells in rings 

in the nonuniform part are , 

2N

N 2

2N

2L

*
2

*
1 NQS 

1 ,...,1Lj
2

*
22

* /)( LNNMM jj 

1L  .  

Now, modified values , *
jM 21,...,1 LLj 

1

i

 

should be used in expressions (15) and (18), instead of 
initial values . iM

2.6.  Lossless code with the variable length 
codewords 

In this section the lossless code will be described. 
As it was said, we have  regions. Within the i-th 

region there are  representation points (one point 

in each cell). One index 

S
*
iQ

  ( ) can be 

assigned to each point in the i-th region. Points are 
coded with codewords using the following coding 
rule: 

10 *  ii Q

11Rule 1). Point from the i-th region, (  Si ) 
with index i  is coded with codeword , 

where  is the natural binary code of the index 

 
*

2log1

...01...1
iQi

xx



2log

...x

i

*
iQ

x

 . All points within one region are coded with 

codewords with the same lengths .  *
2log ii Qil 

i

This lossless code is a modification of Golomb-
Rice code. In Golomb-Rice code [8] numbers of cells 
in each region should be the same, i.e. 

** . In our code, numbers of cells in 

different regions can be mutually different. Therefore, 
our code is more flexible than Golomb-Rice code and 
there are more possibilities to obtain required per-
formances by adjusting the number of cells in regions.  

1S2
*
1  QQ ...  Q

Now, we will explain how to assign index   to 

points in some region. Let’s consider the i-th 
( Si 1 ) region in the uniform part. In this region 
there are k rings: ikki ,...,1)1(  . Index assignment 

procedure is defined with the following three rules: 
Rule 2). Rings are coded in increasing order, i.e. 

ring 1)1(  ki  is coded firstly, after that ring 

2)1(  ki

(M

2)1(  kiM

1*
2)1(  kiM

2)1(

,…, and finally ring ik . This means that 

the first *  indexes ( ) are 

assigned to the points in the ring ; the next 
*  indexes (   

) are assigned to the points in the ring 

1)1  ki 10 *
1)1(   kii M

1)1(  ki

 
*

1)1(
*

1)1( kiiki MM 

 ki

1*  ii Q

;…; the last  indexes (  

) are assigned to the points in the ring 

*
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
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*
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k

j
jkiM
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Rule 3). Within each ring, points from Area 1 are 
coded firstly, after that points from Area 2, after that 
points from Area 3 and finally from Area 4. For 
example, in the ring 1)1(  ki , indexes  i0

 i2/

 

 are assigned to the points in Area 1, 

indexes  to the 

points in Area 2, indexes  

 to the points in Area 3 and indexes 

 to the points in Area 

4. Using this rule, information about the area where 
some point belongs is included in index (and therefore 
in the codeword) and there is no need to transmit 
additional information about the area. Based on the 
received codeword, receiver can determine to which 
area this point belongs. Recall that the receiver must 
know information about the area for calculation of the 
inverse Helmert transform (see Subsection 2.1.).  

14/*
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 kiM *
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14/3 *
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i 3M

12/1 k

 kiM *
1)1(

Rules 2) and 3) can be joined in the following rule: 
Rule 2-3). Indexes which are assigned to the 

points in the i-th region, in the  ring, in the 

m-th area ( ; ; 4 ) should 

satisfy the following condition: 
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Rule 4). Within each area in some ring, order of 
the points is defined with increase of the u coordinate. 
This means that within each area in some ring, the 
smallest index is assigned to the point with the smal-
lest u coordinate and the highest index is assigned to 
the point with the highest u coordinate.  

Now we will consider assignment of index i  in 

the nonuniform part. Index i  can take values 

. In the nonuniform region, rules 1), 3) 

and 4) are the same as for the uniform part. Rule 2) 
should be slightly modified, and it will be denoted as 
Rule 2’). 

10 *
2  Ni

Rule 2’). Rings are coded in increasing order, i.e. 
ring  is coded firstly, after that ring 11 L 21 L ,…, 

and finally ring . The highest four indexes 

(  ) are assigned to 

the four overload representation points.  
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For the nonuniform part, rules 2’) and 3) also can 
be joined in one rule: 

Rule 2’-3). Indexes which are assigned to the 
points in the -th region, in the  ring, in 

the m-th area (
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the following condition: 
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Decoding process in the receiver. There is a 
decoder for lossless code in receiver. This decoder re-
ceives codewords, and it should decide which repre-
sentation points were coded with these codewords. 
The decoder has to know the following parame-
ters: , , k, , . 

This requires some memory space, but this memory 
space is very small (1kbit is enough in the most cases, 
which is not a problem in today electronic systems). 

Since , we can store 

1L

Q

2L

i
* 

),...,1 21 LL 

2   instead of , to 

save the memory space. Decoder uses Rules 1), 2-3), 
2’-3) and 4) in the decoding process.  

*
iQ

Decoding process is very simple. Decoder receives 
bit-stream and it should start with decoding process, 
i.e. it should decode the first codeword. Suppose that 
decoder knows which bit is the beginning of the first 
codeword. But, decoder does not know the length of 
the codeword (since it is variable). Decoder starts 
decoding of the codeword by counting consecutive 1’s 
on the beginning of the codeword, until the first 0. 
This number of consecutive 1’s is denoted with z, and 
decoder knows (using Rule 1) that . It follows 
that the region i where the point belongs is  

1 iz
1 zi . 

Knowing i, decoder reads from its memory parameter 

 and calculates the length of the codeword as 

. Now, decoder knows where the end 

of the codeword is and where the next codeword 

begins. The last  bits of the codeword is the 

natural binary code of the index 

*
iQ

il  *
i

*
2log iQ

2log Qi 

i , and converting 

this natural binary code into integer, the index i  is 

obtained. Knowing the index i  and reading 

parameters  from its memory, 

decoder can apply Rule 2-3) if  or Rule 2’-3) 
if 

)2L
Si 1

,...,1( 1
* Lii M

1 Si . In that way, the ring and the area where 
the point belongs are determined. Then, using Rule 4) 
decoder can determine which point within this area 
was coded with this codeword. Decoding of the first 
codeword is finished and decoder continues to decode 
the next codewords in the same way.  
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2.7. Bit-rate 

The bit rate R is defined as  





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1 S

i
ii PlR [bits/sample]. (37) 

The factor ½ means that R is bit-rate per 

dimension.  is the length of the 

codewords in the i-th region.  is the probability of 

the i-th region, and it is defined with the following 
expression 
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For defined with (4), expression (38) be-

comes 
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3. Numerical results 

In this section some numerical results for our two-
dimensional quantizer will be given. We will present 
two examples. 

Example 1. Let’s consider two-dimensional quantizer 

with parameters: , , 92161 N 11
2 2N 641 L , 

, . The optimal value for 162 L 8k *r  is chosen 

to optimize performances. For this example, the 

optimal value is . Using expressions (22) and 
(37), it is obtained that  and 

 bits/sample. Entropy is 

5.4* r
dB 

04276.6
2462.34SNR

08946.6R H

ip

2N

2N

 
bits/sample (entropy is calculated using well-known 
expression  where  represents 

point’s probability, and summation is done over all 
points). This quantizer is designed to satisfy the G.712 
standard. The modified number of points in the 

uniform part is . Since  is a power of 

two, there is no need to modify the number of points 

in the nonuniform part, i.e. .  


i

p ip )/1(log2

8444*
1 

*
2N

i

N



Simulation in MATLAB for this example is done 
for memoryless Laplacian source. Results of the 
simulation are:  and dB2447.34SNR 0435.6R  
bits/sample. We can see that simulation and theoretical 
results are very close (almost identical). In that way, 

correctness of the theory developed in Section 2 is 
proven.  
The average number of points which is used during 

the quantizer’s work is *
21

*
11 )1( NPNPN SS    

(explanation – cells in the uniform and in the 
nonuniform part are not used simultaneously; instead 
of that, in one moment only cells in the nonuniform 
part are used with probability  given with (39), or 

only cells in the uniform part are used with the 
probability 

1SP

11  SP ). For the aim of comparison with 

scalar quantizers, we can define equivalent scalar 
quantizer of our vector quantizer, whose the average 
number of points used during quantizer’s work is 

NN av   (measured in points per dimension).  

shows the execution complexity (complexity of 
execution of coding and decoding algorithm), which is 
very important for the speed of the execution. For this 
example it is obtain that  points. So, our 

model can satisfy the G.712 standard with 92 points 
per dimension in average. It is known [1] that scalar 
uniform quantizer can satisfy the G.712 standard using 
256 points and scalar nonuniform quantizer using 128 
points during the process of execution. So, we can 
conclude that our model can satisfy the G.712 standard 
using much smaller number of points per dimension 
during the execution process, compared to scalar 
uniform and nonuniform quantizers. Therefore, the 
time that is needed for coding and decoding process is 
shorther.  

avN

92N av

Example 2. In this example, we will consider the two-
dimensional quantizer with the following parameters: 

2561 N , 642 N , , , 81 L 42 L 2k
*

. For 

these parameters, the optimal value for r  is 

. It is obtained that , 8.2* r

7586.3

dB2187.19SNR

R

,11{

 bits/sample and H  bits/sample. 
Since this quantizer has small number of rings, the 
design process will be described in more details. In the 
uniform part we have 8 rings. Using expression (27), 
we calculate numbers of points in these rings: 

678.3

}32,36,38,39,39,35,26iM . Now, we join two 

successive rings ( 2k
}68,77,

) into one region with 
74,37{iQ

,32{* iQ

224*
1 N

points. Now, we modify numbers 

of points in regions to obtain the power of two: 

. The modified numbers of points 

in rings are: . The 

modified number of points in the uniform part is 

. In the nonuniform part we have four rings 

with 

}64,64,

{* iM

,16,16,20{

64

}32,32,32,32,36,28,24,

}8

8

iM points and four overload 

points. Since  is a power of two, there is no need 

to modify the number of points in the nonuniform 
part. Here it is valid that  points per dimen-

sion. It is known [1] that scalar uniform quantizer with 
16 points (i.e. bit-rate of 4 bits/sample) gives 

2N

15avN
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96.15SNR

2561 N

dB and scalar nonuniform quantizer with 
16 points gives dB. So, our model gives 
much better performances using smaller number of 
points per dimension, compared to scalar uniform and 
nonuniform quantizers.  

13.18SNR

1 L

*

From these examples we can also conclude that the 
lossless code is very efficient, since the bit-rate R is 
very close to the entropy H, i.e. the lossless code is 
very close to the ideal code.  

4. Discussion  

In this section we will give some additional 
explanations and remarks about our model.  

1) Why a hybrid quantizer is used for r coordinate 
quantization? As it was said, hybrid quantizer is a 
combination of uniform and nonuniform quantizers. 
Both of them have some good characteristics. Uniform 
quantizer is very suitable to use together with lossless 
code, giving small bit-rate. Nonuniform quantizer 
gives higher SNR. Hybrid quantizer joins good charac-
teristics of both uniform and nonuniform quantizers. 
Now, two examples will be given (the first where only 
uniform quantizer is used for r coordinate and the 
second where only nonuniform quantizer is used for r 
coordinate), and comparison with Example 2 (where 
hybrid quantizer is used for r coordinate) will be done.  

Example 3. Two-dimensional quantizer where only 
uniform quantizer is used for r coordinate, with 

 points and  rings. In this case 

optimal range of the uniform quantizer is . 
Since there is no nonuniform quantizer in the outer 

part, when 

8

6* r

rr   we have overload distortion. It is 
obtained that  and  

bits/sample. These results can be compared with 
results of Example 2 (where hybrid quantizer for r 
coordinate was used) We can see that the bit-rate is 
almost the same, but SNR is much higher (for 5 dB) 
when hybrid quantizer for r coordinate is used. 
Therefore, hybrid quantizer for r coordinate is better 
than uniform quantizer.  

dB2018.14SNR

dB R

6991.3R

Example 4. Two-dimensional quantizer with 256 
points and 16 rings, where only nonuniform quantizer 
is used for r coordinate. Performances are: 

 and  bits/sample. We 

can see (from Example 2) that when hybrid quantizer 
is used for r coordinate, almost the same SNR is 
achieved with smaller (for 0.47 bits/sample) bit-rate R. 
Therefore, hybrid quantizer for r coordinate is better 
than nonuniform quantizer.  

1085.19SNR 222.4

 So, we can conclude that hybrid quantizer is the 
best solution for quantization of r coordinate.  

2) Execution complexity. It was shown in Section 3 
that our model can achieve the same performances 
using smaller number of points per dimension, com-
pared to scalar uniform and nonuniform quantizers. 

This means that our model has low execution 
complexity. Now, we will further analyze execution 
complexity of the model, which is equal to the sum of 
the execution complexity of the two-dimensional 
quantizer and of the lossless coder.  

2a) Execution complexity of the two-dimensional 
quantizer. It is well known that execution complexity 
of nonuniform quantizer is much higher than that of 
the uniform quantizer. As it was said, u coordinate is 
quantized with uniform quantizer, which is simple. r 
coordinate is quantized with hybrid quantizer, which is 
the combination of uniform quantizer (which is 
simple) and nonuniform quantizer. This nonuniform 
quantizer has small number of levels (equal to ). 

Furthermore, this nonuniform quantizer is very rarely 
used, since it is placed in the outer part of the two-
dimensional plane (for high r), which has very small 
probability. The great majority of input vectors (r, u) 
belong to the uniform part, and then two-dimensional 
quantizer can be realized as combination of two uni-
form quantizers (one for r and one for u coordinate), 
which is simple. So, we can conclude that nonuniform 
quantizer for r coordinate does not increase execution 
complexity of two-dimensional quantizer significantly.  

2L

To better explain this, the quantizer from Example 
1 (from Section 3) will be considered. r coordinate is 
quantized using uniform quantizer with  le-

vels and nonuniform quantizer with  levels. 

Probability of the nonuniform part is . 

Now, we will determine how much levels are needed 
for the uniform quantizer for u coordinate. When we 
know the ring and the area where some point belongs, 
uniform quantization for u coordinate should be done 
only within this area in this ring. So, if the point 
belongs to the i-th ring, the number of levels of the 
uniform quantizer is equal to the optimal number of 

points in that area, which is equal to M , and it 

varies from one ring to another. For this example, the 

maximal value of  is 65. Therefore, the uni-

form quantizer for u coordinate should have maximum 
65 levels, but for the most rings this number is 
smaller. Finally, we can conclude that: in 99.877 % 
cases, the two-dimensional quantizer is a combination 
of two uniform quantizers (one with 64 levels for r 
coordinate and one with maximum 65 levels for u 
coordinate); in 0.123 % cases the two-dimensional 
quantizer is a combination of one nonuniform 
quantizer with 16 levels (for r coordinate) and one 
uniform quantizer with maximum 65 levels (for u 
coordinate). Therefore, the execution complexity of 
this two-dimensional quantizer is smaller compared to 
scalar uniform quantizer with 256 levels or scalar 
nonuniform quantizer with 128 levels, which can 
achieve the same quality (defined with the G.712 
standard). 

641 L

16
0.0012341 1 

4/*
i

2L

SP

4/*
iM

2b) Execution complexity of the lossless code. The 
most often used lossless code is Huffman code. But, 
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the complexity of Huffman code is very high, since 
code tree should be made during the coding process 
(in transmitter) as well as during the decoding process 
(in receiver). Because of that, Huffman code is 
suitable only for discrete sources with small number 
of symbols. Huffman code can be used for coding of 
output levels of scalar quantizer if the number of le-
vels is not too high. But, the number of representation 
points for two-dimensional quantizers can be very 
large. Huffman code is not suitable to be used in 
combination with two-dimensional quantizers.  

Lossless code described in this paper is very 
simple and it can be very easily applied for coding 
points of two-dimensional quantizers. For this code 
there is no need to make a code tree. Coding and 
decoding processes are very simple – they include 
counting of 1’s and conversion of index i  into 

natural binary code (and reverse). This code is a 
modification of Golomb-Rice code. It is well known 
that Golomb-Rice code is much simpler than Huffman 
code [11].  

Huffman code also needs knowledge about prob-
abilities of every point. Since we have large number of 
points in two-dimensional quantizer, calculation of 
these probabilities is very difficult. Our lossless code 
does not require knowledge of points’ probabilities. 
This is another reason why our lossless code is much 
simpler than Huffman code.  

It was shown in Section 3 that our lossless code, 
although very simple, is very efficient, since it gives 
the bit-rate R very close to the entropy H.  

We proved that both the two-dimensional quantizer 
and the lossless coder have low execution complexity, 
therefore the total execution complexity of our model 
is low.   

5. Conclusion 

In this paper, one solution was given for the 
problem which had not been considered in literature: 
application of the lossless code on output levels of the 
two-dimensional quantizer. Huffman code is inapplic-
able for this problem because it is too complex. De-
sign of the two-dimensional quantizer was done using 
Helmert transform, and optimization of the number of 
cells on rings was done. New lossless code was 
introduced and applied on the two-dimensional quan-
tizer. It is very simple, but it was shown that it is very 
close to the ideal code, since the bit-rate is very close 
to the entropy. Simulation in MATLAB was done and 
theoretic results were proved. It was shown that our 
two-dimensional model had smaller execution comp-
lexity than scalar uniform and nonuniform quantizers, 
i.e. it could achieve the same performances using 
much smaller number of points per dimension and 
faster.   
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