
362 

ISSN 1392 – 124X, ISSN 2335 – 884X (online) INFORMATION TECHNOLOGY AND CONTROL, 2013, Vol.42, No.4 

Combining Software and Hardware Test Generation Methods  
to Verify VHDL Models 

Vacius Jusas, Tomas Neverdauskas 

Software Engineering Department, Kaunas University of Technology 
Studentu Str. 50, LT-51368, Kaunas, Lithuania 

e-mail: vacius.jusas@ktu.lt, tomas.neverdauskas@ktu.lt 

  http://dx.doi.org/10.5755/j01.itc.42.4.4261 

Abstract. Verification is an important part of the chip design process. Design is usually represented in hardware 
description language (HDL). Contemporary HDLs have constructs that are characteristic to software programs. 
Therefore, the methods to automatically generate test for software programs can be applied to generate test for HDL 
models. One of such methods is symbolic execution. We present a framework to generate test benches for HDL 
models. The framework combines the methods of symbolic execution and control flow graph, which are usually used 
in the context of software programs, with finite state machine that is characteristic for HDL models.  The framework is 
implemented in Python programming language. We experimented with ITC’99 benchmark suite and compared the 
performance of our framework with similar research. Our obtained results outperformed the results taken from similar 
research. 

Keywords: Finite state machines; control flow graphs; hardware verification; test generation. 

 

1. Introduction 
Hardware verification is the process of evaluating 

system to determine whether the products of a given 
development phase satisfy the conditions imposed at 
the start of that phase. The increasing complexity of 
hardware designs raises the need for the development 
of new techniques and methodologies that can provide 
the verification team with the means to achieve its 
goals quickly and with limited resources. Late 
detection of design errors typically results in higher 
costs due to the associated time delay as well as loss 
of production. 

With the emergence of complex high-performance 
microprocessors, functional test generation has 
become an essential verification step. With the ever-
growing demand for greater performance and faster 
time to market, coupled with the exponential growth 
in hardware size, verification has become increasingly 
difficult.  

Hardware design is usually represented in 
hardware description language (HDL). Two 
commonly used HDL are Verilog and VHDL (Very-
high-speed integrated Hardware Description 
Language). VHDL is targeted for higher level of 
design, meanwhile, Verilog – for lower level of design 
[1]. VHDL is commonly used with field-
programmable gate arrays (FPGA) to generate and 

configure logic gates. FPGA [2] emerges broad variety 
of applications and industries including such as 
medicine, defense, military, space and requiring very 
high reliability. Therefore, our research implemen-
tation targets VHDL models. 

High level description of design in VHDL uses 
operators like loop, conditional and case that are 
characteristic for software units. Therefore, the 
methods to automatically generate test for software 
programs can be applied to generate test for HDL 
models. These techniques are symbolic execution [3] 
and control flow graph (CFG) [4]. On the other hand, 
high level description of hardware is presented in the 
form of finite state machine that is characteristic for 
hardware models. We present a novel method that 
combines the symbolic execution, control flow graph 
and finite state machine into a single framework. The 
obtained results show that the method enables to 
achieve high structural coverage results. 

The paper is organized as follows. We review the 
background information in Section 2. We present the 
framework to generate test for VHDL models in 
Section 3. We provide the evaluation of the results of 
the experiment in Section 4. We finish with 
conclusions in Section 5. 



Combining Software and Hardware Test Generation Methods to Verify VHDL Models 

363 

2. Background 
A wide variety of verification technology options 

are available, broadly classified as simulation-based 
technologies, static technologies, and formal 
technologies [5]. The simulation is still the most 
widely used form of device verification: millions of 
cycles are spent during simulation running test cases. 
One of the problems of simulation is to have the test 
cases to validate the design functionalities. Many 
different approaches are used in order to generate test 
cases for design verification. 

General view of design verification process is 
presented in Fig. 1. One test bench represents many 
stimuli as they can be grouped by logical 
representation of testing context. One or more stimuli 
activate input signals in Design Under Test (DUT) per 
clock cycle. All of above are done by running 
simulation software which in case of this research is 
ModelSim Student Edition. Simulator also collects 
valuable verification data such as coverage, generates 
waveforms, etc. 

 
Figure 1. Concise description of the verification process 

Hardware designers then perform extensive 
simulations for what they call “behavioral 
verification”, an activity a software engineer might 
term “validation”, or “software testing”. Because 
VHDL is similar to a high-level programming 
language, we can apply software assurance techniques 
to a hardware design in order to identify and remove 
faults. These faults need to be detected through the use 
of test benches. Test bench automation through the 
generation of test patterns and test cases increases the 
efficiency and effectiveness of behavioral verification. 

Coverage achieved during verification is the single 
most important parameter for determining the quality 
of verification results. In conventional simulation 
based verification, coverage of a set of stimuli or 
testbench measured using various metrics such as 
code coverage, toggle coverage, FSM coverage [6]. 
Code coverage measures the fraction of statements in 
the RTL source code executed or covered while 
simulating the testbench. Since code coverage can be 
easily related to the RTL code and reporting it adds 
little overhead to simulation, it is the most popular 
coverage metric.  

2.1. VHDL Structure 

The VHDL description of the device consists of 
two parts: entity and architecture. The entity 

represents the interface of the device, and the 
architecture is used to code the functional 
implementation of the device [7]. Different levels of 
functional implementation can be used. The most 
frequently used description levels are the following: 
behavioral, register transfer level (RTL), and 
structural. The behavioral architecture body of entity 
describes its function in an abstract way and the 
concurrent statements in it are limited to process 
statements, subprogram calls and signal assignments. 
The process statements are further made up of 
sequential statements that are much like the kinds of 
statements we see in a conventional programming 
language such as statements evaluating expressions, 
statements assigning values to variables (variable-
assignment statements), conditional execution 
statements (if-then-else, case, etc.), repeated execution 
statements (loops) and subprogram calls. In addition, 
there is the signal assignment statement, which is 
unique to hardware modeling languages. This 
statement is similar to variable assignment statement, 
except that it causes the value on a signal to be 
updated at some future time. 

2.2. Finite State Machine 

Finite state machine (FSM) is based on quintuple 
[8]: N=( 𝑆, Σ, 𝑞0,𝐹, 𝛿), where 𝑆 is a finite, non-empty 
set of states, Σ  – finite, non-empty set of input 
symbols, 𝑞0  – initial state 𝑞0𝜖 𝑆 , 𝐹  – a (possible 
empty) set of final states and 𝛿 – transition function 
𝛿 ∶ 𝑆 × Σ → 𝒫(Σ). Each transition is labeled with a 
condition that needs to be satisfied for reaching next 
state. 

In VHDL, FSM represents a sequential logic 
circuit that visits states of some finite set. The process 
of visiting depends upon the values of the primary 
inputs and the previous state. The state transitions are 
synchronized by a clock. Unlike the regular sequential 
circuit, the state transition of the FSM is more 
complicated and the sequence exhibits no simple, 
regular pattern, as in a counter or shift register. 

In a synchronous FSM, the transition is controlled 
by a clock signal (mostly rising) and can occur only at 
edge of the clock. The main application of an FSM is 
to implement operations that are performed in a 
sequence of steps. A large hardware system usually 
involves complex tasks or algorithms, which can be 
expressed as a sequence of actions based on system 
status and external commands. An FSM can function 
as the control circuit (known as the control path) that 
coordinates and monitors the operations of other units 
(known as the data path) of the system. 

FSMs can also be used in many simple tasks, such 
as detecting a unique pattern from an input data stream 
[9] or generating a specific sequence of output values. 
So, it is very important part of VHDL semantics and 
can be used as main part (but not the only) for 
functional test generation. 



V. Jusas, T. Neverdauskas 

364 

In VHDL, FSMs are mainly represented as if-else 
or case-when code structures. The difference is in the 
derivation of the next-state logic, which should be 
implemented according to a state diagram. The FSM 
of B02 circuit from ITC99 benchmark suite is 
presented in Fig. 2. 

 
Figure 2. Graphical representation of FSM in B02 

The FSM is characterized by the number of states 
and the number of transitions. Detailed information on 
FSM, which was obtained for the benchmarks of 
ITC’99 suite, is presented in Table 1. Each circuit was 
evaluated and FSM, states and transitions was 
counted. The last column in Table 1 named “Paths” 
represents the total count of elementary circles [10] 
called paths. We could notice that the benchmark b13 
and b15 have four and two processes, respectively. 
Therefore, the numbers of paths are defined for every 
process separately. Not necessarily each process must 
have FSM on its own. It depends on functional 
requirements and implementation details for each 
circuit and process. FSM recognition on nested code 
structures is not supported by the algorithm. Hence, 
circuits with several processes such as b05, b12 and 
b14 still need further investigation and advancements 
in FSM extraction. 

2.3. Control flow 

In behavioral descriptions of VHDL, the main 
statement is the process statement. The process 
statement appears in the implementation part of an 
architecture statement. The body of the process 
statement includes sequential statements like those 
found in software programming languages and it can 
be implemented as control flow [11]. The architecture 
can have several processes that operate concurrently 
but in this research we use only circuits with one 
process. There is no limitation for the process count.  

In our framework, each process is treated as 
separate control flow graph  𝐺 = (𝑉,𝐸) . Each 

statement in a process is a node 𝑣 ∈ 𝑉 in the control 
flow graph and the edges 𝑒 ∈ 𝐸 represent the control 
flow among statements. We add an edge (𝑒𝑎1, 𝑒𝑎2) if 
the statement 𝑎1  is executed immediately after the 
statement 𝑎2. 

Our framework supports branch statements (Case, 
If / Else) of VHDL. For each branch, a node is 
introduced with edge connection to parent element. A 
start and an end node will be added as unique entry 
and exit points of the process. In a control flow graph 
(Fig. 3), each node represented as a rectangular block 
matches a straight-line code without any branching. 
The rectangular blocks can be used to denote either 
assignment operators or to name the branches of the 
case operator. The special block with double lines is 
used to denote the case operator. Directed edges are 
used to represent jumps in the control flow. Branch 
operations are shown as diamond. 

Table 1. FSM Metrics 

Circuit FSM 
count 

FSM 
states, S 

FSM 
transitions, δ Paths 

b01 1 8 24 24 
b02 1 7 10 5 
b03 1 3 2 1 
b04 1 2 3 1 
b05 1  5 8 3 
b06 1 7 13 7 
b07 1 7 13 4 
b08 1 4 9 3 
b09 1 4 8 4 
b10 1 11 24 10 
b11 1 9 38 7 

b13 4 8,4,4,10 10,7, 6, 90 3,4,3,
11 

b15 2 8, 10 27, 35 17,8 

 
Detailed information about each CFG of ITC’99 

benchmark suite circuits is provided in Table 2. 
Cyclomatic Complexity [12] directly measures the 
number of linearly independent paths. The number of 
concurrent statements shows count of different 
processes. The last column in Table 2 presents the 
count of different possible execution paths between 
start and end nodes. 

 
 
 
 
 
 
 
 
 
 
 
 



Combining Software and Hardware Test Generation Methods to Verify VHDL Models 

365 

Table 2. CFG Metrics 

Circuit Cyclomatic 
Complexity 

Number of 
concurrent 
processes 

Unique flows in 
CFG between 
start and end 

b01 18 1 18 
b02 12 1 12 
b03 18 1 18 
b04 13 1 40 
b05 17 3 6; 8002; 14 
b06 16 1 28 
b07 14 1 14 
b08 10 1 10 
b09 10 1 10 
b10 28 1 33 
b11 23 1 23 
b12 20 4 16; 3; 1; 104 
b13 11 5 14; 10; 9; 20; 14 
b14 163 1 20043 
b15 38 3 48; 128; 18 

 

2.4. Symbolic execution 

Symbolic execution (SE) is an extension of normal 
execution, providing the normal computations as 
special case. Computational definitions for the basic 
operators of the language are extended to accept 
symbolic inputs and produce symbolic formulas as 
output [13]. The state of a symbolically executed 
program includes the symbolic values of program 
variables, a path condition (PC) and a program 
counter, representing next statement to be executed. 
The path condition is a (quantifier-free) BOOLEAN 
formula over the symbolic inputs. It accumulates 
constraints which the inputs must satisfy in order for 
an execution to follow the particular associated path 
[14]. A symbolic execution tree characterizes the 
execution paths followed during the symbolic 
execution of a program. The nodes represent program 

states and the edges represent transitions between 
states. The main difference between CFG and 
symbolic execution is that SE produces all possible 
execution paths of program. Result of symbolic 
execution is Boolean formula that is solved with SMT 
solver to provide concrete values. 

There are many cases of using SE in software 
testing and the review paper [15] is already presented, 
but the use of SE for  hardware verification is still in 
immature state [16, 17]. Andrews et al. [16] present 
the method RUBASTEM to generate test cases for 
VHDL behavioral designs. RUBASTEM is based on 
two tools: a control flow graph generator and a data 
flow analyzer. Static analysis of VHDL code is used in 
order to determine the flow of data values through a 
program.  

Liu and Vasudevan [17] present an approach 
HYBRO to generate input vectors for Verilog RTL 
designs. HYBRO uses dynamic simulation data and 
static analysis of Verilog RTL control flow graphs. A 
concrete simulation is applied over a fixed number of 
cycles. The corresponding symbolic trace is extracted 
from the CFG with an RTL symbolic execution 
engine. 

Our approach differs from other known approaches 
[16, 17] since we used FSM in test generation process. 
The use of FSM enables to choose the exact number 
of test cycles to traverse the chosen path in the VHDL 
code. 

3. Framework 
Testbench generation framework “TestBenchGen” 

combines methods described in previous section into 
novel methodology.  Framework structure is presented 
in Fig. 4. 

All the parts of framework are implemented in 
Python programming language. Because of 
complicated structure and development complexity, 
many Open Source (OS) libraries are used. Grako (for 

 

 
Figure 3. Graphical CFG representation of B02



V. Jusas, T. Neverdauskas 

366 

 
Figure 4. “TestBenchGen” structure 

grammar compiler) is a library that takes grammars in 
a variation of Extended Backus–Naur Form (EBNF) 
as input, and outputs memoizing (Packrat) Parsing 
Expression Grammar (PEG) parsers in Python. Grako 
is different from other PEG parser generators in that 
the generated parsers use Python's very efficient 
exception-handling system to backtrack. Because of 
complicated nature of VHDL grammar, this feature is 
very useful to track and fix implementation bugs in 
parsing phase. For XML handling the cElementTree 
module is used across many parts in the framework. 
cElementTree is optimized for fast parsing and low 
memory use but also has Python backend. That allows 
rapid prototyping and fast development with quick 
analysis and traversing of XML files.  NetworkX is a 
Python library for the creation, manipulation and 
study of the structure, dynamics and functions of 
complex graph networks. It has a wide variety of 
standard graph algorithms which are well tested and 
documented. NetworkX allowed significant decrease 
in development complexity of graph traversing 
algorithms. Also NetworkX has a module for 
exporting and importing GraphViz “dot” format for 
graph visualizing and visual analysis.  Z3 is a high-
performance SMT theorem prover being developed at 
Microsoft Research. It is free for research and 
academia with public sources. Although written in 
C/C++, it has Python bindings.   

The flow of the algorithm to generate stimuli is 
presented in Fig. 5. First, all XML is loaded from 
prepared files and adequate data structures (mostly 
directed graphs with weighted edges). In FSM 
structure, Johnson's algorithm is used to find unique 
paths. In the next step, initial state 𝑞0 and next state 𝑞1 
of each path in FSM are used as two starting nodes. In 
between them, all nodes of CFG that correspond to 
both FSM states are loaded into virtual function. 
Virtual function is a transformation of VHDL code to 
Python in such way that binds all local variables, 
which exist between 𝑞0  and  𝑞1 , to this function 
parameters list. Body of virtual function consists of all 
the programming code that is provided in CFG 
between FSM states 𝑞0  and 𝑞1 . Virtual function is 
executed symbolically and concrete values are 

computed by Satisfiability Modulo Theories library 
Z3 [18]. SMT is an area of automated deduction that 
studies methods for checking the satisfiability of first-
order formulas with respect to some logical theory of 
interest. While SMT techniques have been 
traditionally used to support deductive software 
verification, we are using this for calculation of 
concrete value from SMT formula. That result is used 
to generate stimuli’s if next state of FSM does not 
exist. Otherwise, next states of FSM 𝑞1  and 𝑞2  are 
used. 
generate_stimuli: 
read vhdl xml; 
read fsm xml; 
read cfg xml; 
create graphs from xml; 
find unique paths in FSM; 
foreach path in FSM: 
if 𝑞𝑎 and 𝑞𝑎+1 in FSM exists: 
 traverse CFG between 𝑞𝑎 and 𝑞𝑎+1; 
 find all local variables; 
 create virtual function; 
 execute virtual function 
symbolically; 
 traverse symbolic execution tree; 
 find all leaf nodes; 
form SMT formula; 
 solve with z3; 
 form stimuli; 

else: 
generate whole stimuli;  

Figure 5. “TestBenchGen” test generation algorithm in 
pseudo code 

4. Evaluation 
To evaluate the generated test cases, we use three 

code coverage and two FSM coverage metrics. The 
code coverage metrics are the following: statement 
coverage, branch coverage, and focused expression 
coverage. These metrics are usually used to assess the 
test cases for software code. To evaluate the hardware 
specifics, we use the following FSM coverage metrics: 
state coverage and state transition coverage. The 
versatility of metrics allows evaluating the generated 
test cases by various aspects. 

Statement coverage measures the number of 
executable statements within the model that have been 
executed during the simulation run. In most 
verification cases, statement coverage is used as 
minimum goal [19]. 

Branch coverage [20], sometimes also referred to 
as decision coverage. This coverage metric measures 
how many times each branch in an IF or CASE 
construct was executed and it is particularly useful in 
situations where a branch does not contain any 
executable statements. 

Focused expression coverage (FEC) is a quite new 
metrics and it is still used quite rarely. FEC is a row 
based coverage metrics which emphasizes the 
contribution of each expression input to the 
expression's output value. FEC measures coverage for 



Combining Software and Hardware Test Generation Methods to Verify VHDL Models 

367 

each input of an expression. If all inputs are fully 
covered, the expression reaches 100% FEC coverage. 
In FEC, an input is considered covered only when 
other inputs are in a state that allows it to control the 
output of the expression. Further, the output must be 
observed in both 0 and 1 states while the target input 
is controlling it. If these conditions occur, the input is 
said to be fully covered. The final FEC coverage 
number is the number of fully covered inputs divided 
by the total number of inputs. 

FSM coverage shows the ability to reach all the 
states and traverse all possible states through a given 
state machine. Two types of coverage metrics for FSM 
are used: 

State coverage – all states of a FSM are visited 
during simulation. 

State transition coverage – FSM transitions among 
all states that are achievable during simulation. 

In order to evaluate the generated test cases for 
ITC’99 benchmarks ModelSim Student Edition is 
used. During this phase the coverage analysis tool 
inspects the VHDL source code to determine where 
monitor points should be inserted in order to collect 
the maximum amount of information about simulation 
activity in the design. 

Currently TestBenchGen was used to generate 
stimuli from B01 to B09 circuits. The detailed view of 
coverage metrics is presented in Table 3. 

In comparison with other quite a new work [17] 
our method outperforms it for the same ITC’99 
benchmark circuits since our method determines the 
number of test cycles for every path automatically 
using FSM information. The number of test cycles can 
be different for different paths. Meanwhile, Liu et al. 
[17] use the predefined number of test cycles. Besides, 
Liu et al. make the experiments using the different 
number of test cycles. We compare B01 and B06 
circuits as shown in Table 3. Liu et al. in both cases 
use 10 cycles.  The obtained results indicate the 
relationship of the number of test cycles to the 
coverage of test cases. 

Table 3. ITC99 detailed results 

B
en

ch
m

ar
k 

St
at

em
en

t, 
%

 

B
ra

nc
h,

 %
 

FE
C

 C
on

di
tio

n,
%

 

FS
M

 S
ta

te
, %

 

FS
M

 T
ra

ns
iti

on
, %

 

[1
7]

 S
ta

te
m

en
t, 

%
 

[1
7]

 B
ra

nc
h,

 %
 

B01 99,0 89,21 100 100 92,2 94,4 94,4 
B02 100 92,3 100 100 100 - - 
B03 100 93,04 100 100 93,04 - - 
B04 98,5 95,81 100 100 98,12 - - 
B06 99,3 95,36 100 100 91,92 93,1 94,1 
B07 99,1 90,11 100 100 89,59 - - 
B08 98,9 90,41 100 100 91,16 - - 
B09 98,5 94,47 100 100 94,63 - - 
Avg. 99,16 92,59 100 100 93,08 93,7 94,3 

 
Our presented framework leaves out a need for 

such experimentation since it determines exactly the 
needed least number of test cycles for every path 
separately. Additionally to the increased coverage, the 
presented framework ensures the lesser number of test 
cases that is an important advantage, as well. 

VHDL processes do not have complex code 
structures in evaluated ITC’99 circuits. Conditions 
and logical expressions are not a difficult task for 
symbolic execution and simulation results show high 
statement and FEC condition coverage.  

During the analysis phase, ModelSim works out 
the total number of possible branches that could be 
taken through the VHDL code construct. This value is 
then compared against the number of branches that 
were actually taken and the result expressed as a 
percentage. Branch coverage shows lower results than 
other metrics. Symbolic execution can fail provide 
information about some branches that are considered 
as special cases in hardware verification. For example, 
all of evaluated ITC’99 circuits have “reset” signal, 
which requires additional stimuli.  

For a design to have a full coverage, it is 
recommended that the FSM states would be covered 
fully (100% coverage). This recommendation is 
satisfied for all the circuits used in the experiment. 
Our method determines the number of test cycles for 
every path using FSM states. Therefore, every 
possible FSM state is analyzed and covered. 

5. Conclusions 
We presented the framework to generate test cases 

in order to verify VHDL models. The framework 
combines techniques used for software and for 
hardware models since VHDL model is represented at 
high level and it uses constructs similar to software 
programs. We combine symbolic execution and 
control flow graph, which are usually used in the 
context of software programs, with finite state 
machine that is attribute of VHDL models. Firstly, the 
framework explores the FSM of VHDL model in order 
to define the number of cycles needed to pass from the 
primary input to primary output. The number of cycles 
can be different for different paths. Then, when the 
number of test cycles for the path is determined, the 
framework solves the problems at the lower level of 
abstraction using techniques of symbolic execution 
and CFG for every test cycle separately.  

The automated determination of the number of test 
cycles is an advantage of our framework over the 
approaches that use predefined number of cycles. This 
advantage is expressed in two forms: 1) lesser number 
of test cases; 2) higher coverage of test cases. The 
reason for this is an adaptable number of test cases to 
the length of the traversable path in FSM states. 

In order to show the quality and versatility of test 
cases generated by the proposed framework we have 
used five different metrics: statement coverage, branch 



V. Jusas, T. Neverdauskas 

368 

coverage, focused expression coverage, FSM state 
coverage, and FSM state transition coverage. The first 
three metrics are usually used to measure quality of 
the test cases for software code. The last two metrics 
assess the quality of the FSM coverage. The obtained 
coverage results using the various metrics indicate 
high quality of generated test cases. 

References 
[1] L.-T. Wang, Y.-W. Chang, K.-T. Cheng. Electronic 

Design Automation: Synthesis, Design and Test. 
Morgan Kaufmann Publishers, Burlington, 2009. 

[2] U. Legat, A. Biasizzo, F. Novak. On-line self-
recovery of embedded multi-processor SOC on FPGA 
using dynamic partial reconfiguration, Information 
Technology and Control, 2012,Vol. 41, No. 2, 
116−124. 

[3] L. A. Clarke. A system to generate test data and 
symbolically execute programs. IEEE Transaction on 
Software Engineering, 1976, 215–222. 

[4] H. Zima, B. Chapman. Supercompilers for Parallel 
and Vector Computers. ACM Press, New York, NY, 
1991. 

[5] K. Batcher, C. Papachristou. Instruction 
Randomization Self Test For Processor Cores. In: 
Proceedings of the 17th IEEE VLSI Test Symposium 
(VTS’99), San Diego, CA, USA, IEEE Computer 
Society, April 25-30,1999, 34-40. 

[6] J.-Y. Jou, C. Liu. Coverage analysis techniques for 
hdl design validation. In: Proc. Asia Pacific CHip 
Design Languages, 1999,  48-55 

[7] VHDL Standard. Language reference manual, IEEE 
Std, 1988, pp. 1076-1987. 

[8] D. Lee, M. Yannakakis. Principles and methods of 
testing finite state machines-a survey. In: Proceedings 
of the IEEE, 1996,Vol. 84, pp. 1090-1123. 

[9] J. Van Lunteren. High-performance pattern-matching 
for intrusion detection. In: IEEE INFOCOM, 2006. 

[10] V. Jusas, T. Neverdauskas. FSM Based Functional 
Test Generation Framework for VHDL. In: T. Skersys, 

R. Butleris, R. Butkiene (eds.), Information and 
Software Technologies, Springer Berlin Heidelberg, 
2012, Vol. 319, 138-148. 

[11] M. Rahmouni, A. A. Jerraya. Formulation and 
evaluation of scheduling techniques for control flow 
graphs. In: Design Automation Conference, 1995, with 
EURO-VHDL, Proceedings EURO-DAC'95., 
European, 1995, pp. 386-391. 

[12] G. K. Gill, C. F. Kemerer. Cyclomatic complexity 
density and software maintenance productivity. 
Software Engineering, IEEE Transactions on, 1991, 
Vol. 17, 1284-1288 

[13] J. C. King. Symbolic execution and program testing. 
Commun. ACM, 1976, Vol. 19, 385-394. 

[14] S. Khurshid, C. Pasareanu, W. Visser. Generalized 
Symbolic Execution for Model Checking and Testing. 
Lecture Notes in Computer Science, 2003, 
Vol. 2619/2003, 553-568. 

[15] C. Cadar, P. Godefroid, S. Khurshid, 
C. S. Păsăreanu, K. Sen, N. Tillmann, W. Visser. 
Symbolic execution for software testing in practice: 
preliminary assessment. In: Proceedings of the 33rd 
International Conference on Software Engineering, 
2011, pp. 1066-1071. 

[16] A. Andrews, A. O’Fallon, T. Chen. RUBASTEM: A 
Method for Testing VHDL Behavioral Models. In: 
Proceedings of the Eighth IEEE International 
Symposium on High Assurance Systems Engineering 
(HASE’04), 25-26 March 2004, 187-196. 

[17] L. Liu, S. Vasudevan Efficient validation input 
generation in rtl by hybridized source code analysis. 
In: Design, Automation & Test in Europe Conference 
& Exhibition (DATE), 2011, 1596-1601 

[18] L. De Moura, N. Bjørner. Z3: An efficient SMT 
solver. In: Tools and Algorithms for the Construction 
and Analysis of Systems, ed: Springer, 2008, 337-340. 

[19] I. G. Harris. Fault models and test generation for 
hardware-software covalidation. Design & Test of 
Computers, IEEE, 2003, Vol. 20, 40-47. 

[20] S. Tasiran, K. Keutzer. Coverage metrics for 
functional validation of hardware designs. Design & 
Test of Computers, IEEE, 2001, Vol. 18, 36-45. 

Received April 2013. 

 


	Combining Software and Hardware Test Generation Methods  to Verify VHDL Models
	Vacius Jusas, Tomas Neverdauskas
	Software Engineering Department, Kaunas University of Technology Studentu Str. 50, LT-51368, Kaunas, Lithuania e-mail: vacius.jusas@ktu.lt, tomas.neverdauskas@ktu.lt

	1. Introduction
	2. Background
	2.1. VHDL Structure
	2.2. Finite State Machine
	2.3. Control flow
	2.4. Symbolic execution

	3. Framework
	4. Evaluation
	5. Conclusions
	References


