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Abstract. Production scheduling problems attract a lot of attention among applied scientists and practitioners 
working in the field of combinatorial optimization and optimization software development since they are encountered 
in many different manufacturing processes and thus effective solutions to them offer great benefits. In this work, two 
commonly used heuristic methods for solving production scheduling problems, namely, the Nearest Neighbor (NN) 
and Ant Colony Optimization (ACO) have been tested on a specific real-life problem and the results discussed. The 
problem belongs to the class of Asymmetric Travelling Salesman Problems (ATSP), which is known as a hard type 
problem with no effective solutions for large scale problems available yet. The performances of the Nearest Neighbor 
algorithm and the Ant Colony Optimization technique were evaluated and compared using two criteria, namely: the 
minimum value of the objective function achieved and the CPU time it took to find it (including the statistical 
confidence limits). The conclusions drawn suggest that on one hand the ACO algorithm works better than NN if 
looking at the achieved minimum values of the objective function. On the other hand, the computational time of the 
ACO algorithm is slightly longer. 
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1. Introduction 

In spite of various methods and techniques being 
actively and continuously developed for solving diffe-
rent combinatorial optimization problems such as 
production scheduling [1, 7, 8] this is still an open-end 
problem in most practical situations. Such methods 
and techniques can deliver substantial benefits by 
improving productivity, utilization of resources and 
time constraint management at different levels of deci-
sion-making and manufacturing processes [1, 3, 17, 
24]. That is why different types of job shop scheduling 
and resource allocation problems are becoming an 
intensively studied field, as they are faced in many 
industrial areas. 

Process scheduling can pose extremely complex 
combinatorial optimization problems that belong to 
the NP-hard family. Many research works were devo-
ted for solving the process scheduling optimization 
problems in different application areas [19, 5, 6, 25, 
26, 27]. The problem of finding the best production 
sequence is generally formulated as the Travelling 
Salesman Problem [3, 15, 22]. There are generally two 
ways of solving such problems: exact and heuristic. 
According to Yagmahan and Yenisey’s reported results 

the heuristic Ant Colony Optimization (ACO) algo-
rithm can be quite effective in solving such job shop 
scheduling type problems [4]. In recent years, among 
the various approaches for solving different schedu-
ling problems, there has been also an increasing inte-
rest in applying Genetic Algorithms (GA) to solve the 
combinatorial optimization problems including pro-
duction process scheduling [2, 10, 20], where Tavak-
koli-Moghaddam et al. successfully applied genetic 
algorithm (GA) to solve the quay crane (QC) control 
and assignment problem, in a container port (terminal) 
using a mixed-integer programming (MIP) model 
[16]. 

Recently, Boland et al. addressed the problem of 
the open pit mining scheduling [18]. They proposed an 
iterative disaggregation method to solve the problem 
formulated as a mixed integer program (MIP). 
Klemmt et al. analyzed a hybrid approach for solving 
scheduling problems [1]. Georgiadis et al. presented 
the development and implementation of a production 
scheduling system for an electrical appliance manu-
facturer [17]. Nonas and Olsen proposed a mixed inte-
ger linear programming formulation for the scheduling 
problem together with a set of heuristic strategies [21]. 

118 

http://dx.doi.org/10.5755/j01.itc.40.2.426



Comparison of Two Heuristic Approaches for Solving the Production Scheduling Problem 

Integer programming models have been widely 
used for solving different combinatorial optimization 
tasks [13, 14]. However, the use of exact methods is 
limited for solving large scale and complex problems 
hence they are often not applicable in many practical 
situations, in particular in make-to-order manu-
facturing [12] where the performance is evaluated by 
qualitative as well as quantitative information. 

The aim of this study was to compare two heuristic 
approaches, the NN and the ACO, in solving specific 
actual ATSP problem. The efficiency of the algorithms 
was measured according to the value of the objective 
function and the CPU time. 

The results of this work can aid in solving similar 
types of practical problems in the future. 

2.  Definition of the production scheduling 
problem 

In today’s competitive industrial environment the 
difference between using quickly gained empiric me-
thods and specially designed algorithms for produc-
tion scheduling can determine whether or not a manu-
facturing company has a future, because productivity 
and optimal usage of resources strongly depend on job 
scheduling which therefore has a major impact on 
overall effectiveness of the production processes. 

During the collaboration with Lithuanian largest 
candle manufacturing company UAB “Geralda” 
(Ltd.), it became clear that the main obstacle in further 
successful development lied in using the right (op-
timal) production scheduling. The objective was to 
minimize the job change over times, which in turn 
would give the highest productivity of the production 
lines i.e. the minimum makespan. Before presenting 
the objective function, some technical definitions are 
as follows: the TSP is defined on a graph G=(V, A) for 
each separate production line, where V is the set of n 
(n=48 for each production line) jobs (vertices) and A 
is the set of change over times (distances). Let C=(cij) 
be a distance matrix associated with A and B=(by) be a 
job matrix associated with V. 

The matrix C is said to be symmetric when 
,  and asymmetric 

when . If , 

, C is said to satisfy the triangle inequality. 

An assignment based double-index integer formu-
lation  is used to define the binary variables 

{1} or {0} used in the description of the objective 
function where variable {1} is assigned if the distance 
(i, j) has been used and {0} otherwise. The problem is 
described as an asymmetric TSP (ATSP) and formu-
lated as follows (1.1): 
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+ sub tour elimination constraints, (1.4) 
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where (1.2), (1.3) and (1.5) are the usual assignment 
constraints. Constraints (1.4) are used to prevent sub 
tours, which are degenerate tours that are formed 
between intermediate jobs and not connected to the 
origin [23]. These constraints are named as sub tour 
elimination constraints (SECs). 

,1 
 Si Sj
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Constraint (1.6) impose connectivity requirement 
for the solution, i.e. prevent the formation of sub tours 
of cardinality S not including the departure jobs. 

3. Formulation of the algorithm 

In this section, the Nearest Neighbor (NN) algo-
rithm and the Ant Colony Optimization (ACO) algo-
rithm are defined. 

3.1.  NN heuristic algorithm for solving production 
control problem 

The nearest neighbour (NN) algorithm is a very 
fast and simple heuristic solution method for 
production scheduling. Though, Gutin et al. showed 
that NN algorithm, while producing comparatively 
good solutions with TSPs, may yield poor results with 
Asymmetric TSPs (ATSPs) [11]. 

The NN algorithm starts with an arbitrarily chosen 
job b1 as partial tour. Then it repeats the following step 
for 1,..., 1g n 

...,

: If the current partial tour is 

1, gb b , then let bg+1 be the job closest to bg (having 

the smallest cij value) subject to the condition that bg+1 
is not already contained in the partial tour; ties are 
broken arbitrarily. 

The sequence of the selected jobs and the sum of 
distances are the outputs of the algorithm. That way, it 
could be suggested that it is possible to get a near 
optimum objective function value with the given NN 
algorithm. 

3.2.  ACO meta-heuristic algorithm for solving the 
production scheduling problem 

An Ant Colony Optimization (ACO) technique 
was used as a paradigm for designing a meta-heuristic 
algorithm to solve the given production scheduling 
problem. A conventional ant colony optimization sys-
tem framework was used, as described in [4], where a 
set of m artificial ants construct solutions from ele-
ments of a finite set of available solution components 
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C=(cij). A solution construction starts from an empty 

partial solution Ø. At each construction step, the 

partial solution  is extended by adding a feasible 

solution component from the set  of 

components that can be added to the current partial 

solution  without violating any of the defined 

ACO model constraints. Here the choice of a solution 

component from  is guided by a stochastic 

mechanism, which is biased by the pheromone 

associated with each of the elements of . 

When ant h has selected job i and constructed the 

partial solution , the probability of selecting job j 

is given by:  
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is, distances (i, l) where l is a job not yet selected by 
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relative importance of the pheromone versus the 
heuristic information  ijc  which is given 

by
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values are updated by all the m ants that have built a 
solution in the iteration itself. The pheromone ij , 

associated with the distance between joining jobs i and 
j, is updated as follows: 
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where  is the evaporation rate and  is the 

quantity of pheromone laid on distance (i, j) by ant h. 
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4. Computational results 

Computational results show that ACO algorithm 
on average gave better values of the objective function 
in comparison with NN algorithm for all production 
lines, see Table 1. 

Table 1. Main computational results 

Production 
line 

Method 
used 

CPU 
time 
(s) 

Value of 
objective 

fun., 
(min) 

Mean 
value, 
(min) 

NN 0.1162 540 540 
1 

ACO 0.7251 316 328 

NN 0.1712 298 298 
2 

ACO 1.6204 256 296 

NN 0.1644 461 461 
3 

ACO 1.7855 245 269 

However, it is interesting to notice that, for the 
second line the value of the objective function 
achieved with NN is very close to the mean result of 
ACO indicating that in some cases NN can be a 
relevant choice. 

The distribution of the values of the objective 
function obtained using ACO with 18 ants (300 
iterations) is illustrated in Figure 1. As one can notice, 
the distribution of values is not strictly normal, it more 
resembles a log normal distribution. The percentage of 
better solutions grew with increasing number of ants 
in the system. 

 
Figure 1. Histogram of values of the objective function 

obtained using ACO with 18 ants, 300 iterations  
(2nd production line) 

Results also indicate that the ACO algorithm with 
a small number of ants (up to 16) on average gave 
worse values of the objective function in comparison 
with NN algorithm, see Figure 2 (a), and better values 
using more than 17 ants, see Figure 2 (b). 

An important result is that with the fixed amount 
of ants in the ant colony system increasing the number 
of iterations does not necessarily lead to a better 
solution as one can see in Figure 3 (a) and (b). 

 

Figure 2 (a). Illustration of results after applying the ACO 
algorithm with a small number of ants (up to 16) 
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Figure 2 (b). ACO computational results using more  

than 17 ants (2nd production line) 

 
a) 

 
b) 

Figure 3. ACO computational data (average of total 
distance versus number if iterations) from the second 

production line using: a) 18 ants; b) 306 ants 

After some optimal number of iterations, at which 
the minimum mean value of the objective function is 
achieved, the mean value starts increasing with the 
increasing number of iterations. This suggests that 
there is no point running a lot of iterations for achiev-
ing good results. It was found from the computational 
results that the optimum range of iterations is around 
from 5 to 100 (i.e. where the minimum is), see Figure 
3 (a), (b).  

The reason why the value of the objective function 
increases with the number of iterations is because 
trails get too “contaminated” with the pheromone. 

5. Conclusions and future work 

The NN algorithm showed similar results as in [11] 
with the first and the third production lines, perfor-
ming there considerably worse than the ACO algo-
rithm, indicating that the ACO is on average more 
efficient than NN with respect to the obtained objec-
tive function values in similar cases, see Table 1. It is 
important to note however that for the second produc-
tion line the results were comparable. With respect to 
CPU time, NN is significantly quicker. However, in 
cases when the computational time is not of high 
relevance as it was in this case the choice of ACO 
would be more rational. 

As Mokotoff and Chretienne [9] suggested, spe-
cially developed combinatorial optimization algo-
rithms for production scheduling work better than 
general methods, thus they can greatly outperform 
other empirical methods currently very common 
among production practitioners.  

In the future, problem-specific simplifications (ad-
justments) in the formulation of the ACO algorithm 
will be implemented to get faster and better results 
without eliminating critical components for better pro-
duction scheduling in real situations. 
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