
1259Information Technology and Control 2025/4/54

Relationship-Enhanced Session-
based Recommendation with
Graph Neural Networks

ITC 4/54
Information Technology
and Control
Vol. 54 / No. 4/ 2025
pp. 1259-1270
DOI 10.5755/j01.itc.54.4.42577

Relationship-Enhanced Session-based Recommendation
with Graph Neural Networks

Received 2025/08/18 Accepted after revision 2025/10/18

HOW TO CITE: Ma, L., Liu, J. (2025). Relationship-Enhanced Session-based Recommendation
with Graph Neural Networks. Information Technology and Control, 54(4), 1259-1270. https://doi.
org/10.5755/j01.itc.54.4.42577

Lin Ma*
Shanxi Conservancy Technical Institute, China; e-mail: 19935513769@163.com

Jie Liu
The Computer Science and Technology College, Harbin Engineering University, Harbin 150000,
China; e-mail: liujie@hrbeu.edu.cn

Corresponding author: 19935513769@163.com

The session-based recommendation systems analyze anonymous users' recent behavior data to infer their
preferences and provide accurate recommendations. However, existing methods often fail to adequate-
ly leverage the click order and frequency of items within a session, thus lacking the ability to fully cap-
ture complex dependencies among items. To address these limitations, we propose a novel model named
RESR-GNN. The key innovations of our work include: (1) a relation-enhanced session graph that incorpo-
rates click information to differentiate the importance of items; and (2) an integrated soft attention and
multi-layer self-attention mechanism to comprehensively model pairwise item preferences within the
entire session. Extensive experiments on two public datasets demonstrate that RESR-GNN consistently
outperforms state-of-the-art baseline models. On the Diginetica and Yoochoose1/64 datasets, the evalu-
ation metrics P@20 and MRR@20 were respectively improved by 3.15%, 5.51%, 1.53% and 2.36%, which
proved the effectiveness of the proposed model.
KEYWORDS: Session-based recommendation, Graph neural networks, Session graph, Attention mechanism.

1. Introduction
The scale of data in the network era continues to ex-
pand with the advancement of Internet technology,
and this data contains valuable information resourc-

es. Most traditional recommendation systems rely
on users’ basic profiles and their long-term interac-
tion histories to make recommendations. However,

Information Technology and Control 2025/4/541260

such long-term interactions only reflect general user
preferences, which tend to evolve over time. More-
over, personal information is often difficult to ac-
quire. In contrast, Session-based Recommendation
(SR) systems can capture short-term user interests,
thereby providing more relevant recommendations.
As a result, new techniques and methods in ses-
sion-based recommendation are rapidly emerging
and gaining widespread adoption.
Early approaches ranked items based on timestamps
and employed Markov chains [13], [37], [26], [9], [19],
to model transition relationships between items
within a session, using current behavior to predict
subsequent actions. While these methods achieved
some success, they struggled to effectively leverage
historical behavior information in longer session se-
quences.
This limitation was addressed through the intro-
duction of recurrent neural networks (RNNs) [1],
[32], [17], [2], [18]. Hidasi et al. [1] were the first to
apply RNNs to model session sequences, improving
the utilization of historical behavior information
across long sessions. Subsequently, deep learning
techniques have been widely adopted in SR. For in-
stance, Li et al. [10] used global and local encoders to
capture user interests, while Liu et al. [21] employed
attention mechanisms and multi-layer perceptrons
(MLPs) to model both general and current user inter-
ests. Attention mechanisms, which have been applied
across various AI fields [4], [14], [34], [22], enable
session-based recommenders to assign importance
weights to items, reflecting user preferences.
Despite these advances, capturing complex tran-
sition interactions within session sequences re-
mains challenging. Recent work by Wu et al. [29]
proposed using graph neural networks (GNNs) for
session-based recommendation. Their model, SR-
GNN, constructs a graph for each session and uses
GNNs along with a soft attention mechanism for
training. Compared to linear sequences, session
graphs can represent richer relational information,
leading to better recommendation performance.
Consequently, GNNs have become increasingly
prominent in session-based recommendation re-
search [5], [24].
However, existing methods still have limitations.
First, session graphs often only record whether an
item was clicked, failing to fully utilize click infor-

mation. This can result in identical graph represen-
tations for different sessions, obscuring the user’s
degree of interest in specific items. Second, when
using soft attention for global encoding, weight al-
location typically considers only the relationship
between the last item and all other items, neglecting
potential interests among other items in the session.
To address these issues, we propose a Relation-
ship-Enhanced Session-based Recommendation
model with Graph Neural Networks (RESR-GNN).
This model aims to improve recommendation per-
formance by making better use of session click in-
formation and capturing intricate interest relation-
ships among items within a session. RESR-GNN
integrates techniques such as graph neural networks
and attention mechanisms to enhance session rep-
resentation.
Figure 1 illustrates the overall structure of RESR-
GNN. First, all session sequences are converted
into session graphs, where structural information
is stored using a relationship-enhanced matrix that
incorporates click information. Item node embed-
dings are learned through a gated graph neural net-
work (GGNN), which aggregates feature informa-
tion from the node itself and its neighbors. Then, a
self-attention mechanism captures dependencies
among all nodes in the session, while a soft attention
mechanism computes correlations between the last
node and other nodes. Finally, short-term and long-
term interests are concatenated to form a session
interest representation, which is used to compute
recommendation scores for all candidate items.
The main contributions of this paper are as follows:
1	 Click information about click orders and click

counts in a given session is used to distinguish the
importance of individual items, with the graph
neural network applied to train model;

2	 The self-attention mechanism and the soft at-
tention mechanism are utilised to calculate item
nodes’ embedding vectors, which ensures the rel-
evance of all items to the last item while obtaining
the dependency between each item in the session;

3	 The proposed model underwent comparison with
publicly available datasets. Based on the two se-
lected evaluation metrics, our experiments depict-
ed notable enhancement in the recommendation
performance of RESR-GNN.

1261Information Technology and Control 2025/4/54

2. Related Work
Traditional machine learning methods
Based on Markov chains, these methods model the
transitions between items within a session. The
system’s subsequent state is exclusively tied to the
current state, not the preceding one. Eirinaki et al.
[13] used the Markov method and PageRank algo-
rithm to provide personalized recommendations for
users by analyzing the session information of users
accessing web pages. The FPMC, which integrates
matrix factorization and Markov chains to capture
both long- and short-term user behavior informa-
tion simultaneously, was proposed by Rendle et al
[26] The k-nearest Neighbor algorithm (KNN) is a
classification algorithm that is easy to understand
and often used in machine learning algorithms. The
session-based KNN algorithm [6], [15] compares
the past sessions with the current whole session to
make recommendations, and the item-based KNN
algorithm only considers the similarity with the last
item in a session.

Deep learning methods
Deep learning is now widely employed in disci-
plines such as semantic segmentation [33], ma-
chine translation [16], object detection [28], image
classification [35], recommender systems [23],
[36], [11], and sentiment analysis [12]. Because of
their superior sequence modeling capabilities, re-
current neural networks are commonly employed;
Hidasi et al. [1] proposed the GRU4Rec, which
makes use of the gated recurrent unit (GRU) to
predict the behaviour of users based on their inter-
actions. Subsequently, Tan et al. [32] proposed the
improved RNN recommendation technique that
utilizes data augmentation technology to boost
the model’s recommendation capability. Quadrana
et al. [17] proposed an HRNN method for person-
alized recommendation by adding user identifi-
cation attributes and using the session-level and
the user-level GRU to provide personalized advice
for users. Li et al. [10] suggested the Neural Atten-
tive Session- based Recommendation, or NARM,
employing the gated recurrent unit and attention
mechanism to model session sequences. Convolu-
tional neural networks (CNNs) may learn contex-
tual information from each session through filter-

ing and pooling operations. Yuan et al. [8] proposed
the GRec to model sessions. This method designs
a new encoder- decoder framework, which first
inputs the session sequence after deleting some
items into the encoder, and then predicts deleted
components by the decoder. Tuan et al. [30] pro-
posed the 3D CNN method to model sessions to ob-
tain different content features.

Graph neural networks methods
The graph neural network is a kind of neural net-
work which makes it possible to directly process
unstructured data, such as graph data. Graph neu-
ral network combine convolution, gradient calcula-
tion, and other operations in deep neural networks
with iterative graph propagation. When computing
the features of a node, the hidden state of the cur-
rent node must be updated by integrating the fea-
ture information of its neighbours to obtain richer
relational information. Wu et al. [29] proposed a
SR-GNN method. This method uses GGNN to learn
each node’s embedding representation. Get final
session representation by combining short-term
and long-term interests. In order to get the compli-
cated transformation relationship between items
in the customized scenario, the A-PGNN method
proposed by Zhang et al [20] using the personalized
graph neural network. Wang et al. [31] suggested
the MGNN-SPred method. This method construct-
ed the Multi-Relational Item Graph (MRIG) for all
sessions and utilized the gated mechanism to fuse
target and auxiliary behaviors of the user. Qiu et al.
[25] proposed an FGNN method using the Weight-
ed Graph Attentional Layer (WGAT) and the read-
out function to compute the session representa-
tion. Based on the SR-GNN method, Yu et al. [7]
proposed the TA-GNN method by using the target
attention mechanism to focus on the user’s interest
in different items in the session.

Figure 1
Structure diagram of the RESR-GNN model.

used the Markov method and PageRank algorithm to provide personalized recommendations for users
by analyzing the session information of users accessing web pages. The FPMC, which integrates matrix
factorization and Markov chains to capture both long- and short-term user behavior information
simultaneously, was proposed by Rendle et al [26] The k-nearest Neighbor algorithm (KNN) is a
classification algorithm that is easy to understand and often used in machine learning algorithms. The
session-based KNN algorithm [6], [15] compares the past sessions with the current whole session to make
recommendations, and the item-based KNN algorithm only considers the similarity with the last item in a
session.

Deep learning methods
Deep learning is now widely employed in disciplines such as semantic segmentation [33], machine
translation [16], object detection [28], image classification [35], recommender systems [23], [36], [11], and
sentiment analysis [12]. Because of their superior sequence modeling capabilities, recurrent neural
networks are commonly employed; Hidasi et al. [1] proposed the GRU4Rec, which makes use of the gated
recurrent unit (GRU) to predict the behaviour of users based on their interactions. Subsequently, Tan et al.
[32] proposed the improved RNN recommendation technique that utilizes data augmentation technology
to boost the model’s recommendation capability. Quadrana et al. [17] proposed an HRNN method for
personalized recommendation by adding user identification attributes and using the session-level and the
user-level GRU to provide personalized advice for users. Li et al. [10] suggested the Neural Attentive
Session- based Recommendation, or NARM, employing the gated recurrent unit and attention mechanism
to model session sequences. Convolutional neural networks (CNNs) may learn contextual information
from each session through filtering and pooling operations. Yuan et al. [8] proposed the GRec to model
sessions. This method designs a new encoder- decoder framework, which first inputs the session
sequence after deleting some items into the encoder, and then predicts deleted components by the
decoder. Tuan et al. [30] proposed the 3D CNN method to model sessions to obtain different content
features.

Graph neural networks methods
The graph neural network is a kind of neural network which makes it possible to directly process
unstructured data, such as graph data. Graph neural network combine convolution, gradient calculation,
and other operations in deep neural networks with iterative graph propagation. When computing the
features of a node, the hidden state of the current node must be updated by integrating the feature
information of its neighbours to obtain richer relational information. Wu et al. [29] proposed a SR-GNN
method. This method uses GGNN to learn each node’s embedding representation. Get final session
representation by combining short-term and long-term interests. In order to get the complicated
transformation relationship between items in the customized scenario, the A-PGNN method proposed by
Zhang et al [20] using the personalized graph neural network. Wang et al. [31] suggested the MGNN-
SPred method. This method constructed the Multi-Relational Item Graph (MRIG) for all sessions and
utilized the gated mechanism to fuse target and auxiliary behaviors of the user. Qiu et al. [25] proposed
an FGNN method using the Weighted Graph Attentional Layer (WGAT) and the readout function to
compute the session representation. Based on the SR-GNN method, Yu et al. [7] proposed the TA-GNN
method by using the target attention mechanism to focus on the user’s interest in different items in the
session.

Figure 1

Structure diagram of the RESR-GNN model.

Information Technology and Control 2025/4/541262

3. Method
In this chapter, we introduce the specific imple-
mentation process of the RESR-GNN model. By
constructing a relationship enhancement matrix,
we can obtain more comprehensive information re-
lationships among various items. Using a combina-
tion of soft attention mechanism and self-attention
mechanism, we can fully capture the interest depen-
dencies among items in the entire conversation se-
quence. We also use residual connections to allevi-
ate the problem of gradient disappearance that may
occur in multi-layer neural networks. Next, we will
introduce each part:

Notations Definition
Session-based recommendation according to cur-
rent session behavioral data to predict a user’s
next click.

3. Method
In this chapter, we introduce the specific implementation process of the RESR-GNN model. By
constructing a relationship enhancement matrix, we can obtain more
comprehensive information relationships among various items. Using a combination of soft attention
mechanism and self-attention mechanism, we can fully capture the interest dependencies among items in
the entire conversation sequence. We also use residual connections to alleviate the problem of gradient
disappearance that may occur in multi-layer neural networks. Next, we will introduce each part:

Notations Definition
Session-based recommendation according to current session behavioral data to predict a user’s next
click. 1 2 3{ , , ,..., }nV v v v v represents the set of items in all sessions. A session s is denoted as

,1 ,2 ,[, ,...,]s s s ms v v v ,where ,s iv V
,

m represents the length of the current conversation. The model predicts

the following click behavior , 1s mv through session information of the user and finally outputs the

recommendation probability y of all candidates. Finally, we choose the Top-k items in y as candidates
for recommendation.

Figure 2
Examples of sessions s1 and s2.

The relationship-enhanced session graph
The click orders and counts contained in click information of the session affect the recommendation effect.
Missing records of item click orders and counts in the session graph may result in different session
sequences producing the same session graph and connection matrix. The importance of items cannot be
distinguished. As shown in Figure 2, session 1s and session 2s construct the same session graph and
connection matrix. For instance, node 2 has outgoing edges to both node 3 and node 4. Therefore, after
regularization, the outgoing edge matrix of node 2 has a value of 1/2 for both node 3 and node 4.

We predict the next click of a session according to the order in which each item is clicked. This means that
lower ranked items are more important. In addition, the frequency of the item’s occurrence within the
session sequence can indicate the degree of focus of the item in the mind of the user. Therefore, we design
the relationship-enhanced session graph corresponding to each session, and all click information of items
is integrated. For session graph, we assign edge weights to each edge, and values are incremented from 1.
The edges of the items that are clicked later have greater weights. Accumulate the edge weights of the
items clicked multiple numbers to obtain the relationship-enhanced session graph s s sG {E ,V } . Here

sV represents all session graph nodes and sE represents all session graph edges.

It defines a multiset setE for the session ,1 ,2 ,3 ,[, , ,...,]s s s s ms v v v v , stores connection edges in the

relationship-enhanced session graph sG into setE in order, and defines a boundary-finding function
named Index .

Figure 3

Relationship-enhanced graphs and relationship-enhanced matrixes corresponding to sessions s1 and s2.

 represents the set
of items in all sessions. A session s is denoted as

3. Method
In this chapter, we introduce the specific implementation process of the RESR-GNN model. By
constructing a relationship enhancement matrix, we can obtain more
comprehensive information relationships among various items. Using a combination of soft attention
mechanism and self-attention mechanism, we can fully capture the interest dependencies among items in
the entire conversation sequence. We also use residual connections to alleviate the problem of gradient
disappearance that may occur in multi-layer neural networks. Next, we will introduce each part:

Notations Definition
Session-based recommendation according to current session behavioral data to predict a user’s next
click. 1 2 3{ , , ,..., }nV v v v v represents the set of items in all sessions. A session s is denoted as

,1 ,2 ,[, ,...,]s s s ms v v v ,where ,s iv V
,

m represents the length of the current conversation. The model predicts

the following click behavior , 1s mv through session information of the user and finally outputs the

recommendation probability y of all candidates. Finally, we choose the Top-k items in y as candidates
for recommendation.

Figure 2
Examples of sessions s1 and s2.

The relationship-enhanced session graph
The click orders and counts contained in click information of the session affect the recommendation effect.
Missing records of item click orders and counts in the session graph may result in different session
sequences producing the same session graph and connection matrix. The importance of items cannot be
distinguished. As shown in Figure 2, session 1s and session 2s construct the same session graph and
connection matrix. For instance, node 2 has outgoing edges to both node 3 and node 4. Therefore, after
regularization, the outgoing edge matrix of node 2 has a value of 1/2 for both node 3 and node 4.

We predict the next click of a session according to the order in which each item is clicked. This means that
lower ranked items are more important. In addition, the frequency of the item’s occurrence within the
session sequence can indicate the degree of focus of the item in the mind of the user. Therefore, we design
the relationship-enhanced session graph corresponding to each session, and all click information of items
is integrated. For session graph, we assign edge weights to each edge, and values are incremented from 1.
The edges of the items that are clicked later have greater weights. Accumulate the edge weights of the
items clicked multiple numbers to obtain the relationship-enhanced session graph s s sG {E , V } . Here

sV represents all session graph nodes and sE represents all session graph edges.

It defines a multiset setE for the session ,1 ,2 ,3 ,[, , ,...,]s s s s ms v v v v , stores connection edges in the

relationship-enhanced session graph sG into setE in order, and defines a boundary-finding function
named Index .

Figure 3

Relationship-enhanced graphs and relationship-enhanced matrixes corresponding to sessions s1 and s2.

, where

3. Method
In this chapter, we introduce the specific implementation process of the RESR-GNN model. By
constructing a relationship enhancement matrix, we can obtain more
comprehensive information relationships among various items. Using a combination of soft attention
mechanism and self-attention mechanism, we can fully capture the interest dependencies among items in
the entire conversation sequence. We also use residual connections to alleviate the problem of gradient
disappearance that may occur in multi-layer neural networks. Next, we will introduce each part:

Notations Definition
Session-based recommendation according to current session behavioral data to predict a user’s next
click. 1 2 3{ , , ,..., }nV v v v v represents the set of items in all sessions. A session s is denoted as

,1 ,2 ,[, ,...,]s s s ms v v v ,where ,s iv V
,

m represents the length of the current conversation. The model predicts

the following click behavior , 1s mv through session information of the user and finally outputs the

recommendation probability y of all candidates. Finally, we choose the Top-k items in y as candidates
for recommendation.

Figure 2
Examples of sessions s1 and s2.

The relationship-enhanced session graph
The click orders and counts contained in click information of the session affect the recommendation effect.
Missing records of item click orders and counts in the session graph may result in different session
sequences producing the same session graph and connection matrix. The importance of items cannot be
distinguished. As shown in Figure 2, session 1s and session 2s construct the same session graph and
connection matrix. For instance, node 2 has outgoing edges to both node 3 and node 4. Therefore, after
regularization, the outgoing edge matrix of node 2 has a value of 1/2 for both node 3 and node 4.

We predict the next click of a session according to the order in which each item is clicked. This means that
lower ranked items are more important. In addition, the frequency of the item’s occurrence within the
session sequence can indicate the degree of focus of the item in the mind of the user. Therefore, we design
the relationship-enhanced session graph corresponding to each session, and all click information of items
is integrated. For session graph, we assign edge weights to each edge, and values are incremented from 1.
The edges of the items that are clicked later have greater weights. Accumulate the edge weights of the
items clicked multiple numbers to obtain the relationship-enhanced session graph s s sG {E , V } . Here

sV represents all session graph nodes and sE represents all session graph edges.

It defines a multiset setE for the session ,1 ,2 ,3 ,[, , ,...,]s s s s ms v v v v , stores connection edges in the

relationship-enhanced session graph sG into setE in order, and defines a boundary-finding function
named Index .

Figure 3

Relationship-enhanced graphs and relationship-enhanced matrixes corresponding to sessions s1 and s2.

, m represents
the length of the current conversation. The model
predicts the following click behavior

3. Method
In this chapter, we introduce the specific implementation process of the RESR-GNN model. By
constructing a relationship enhancement matrix, we can obtain more
comprehensive information relationships among various items. Using a combination of soft attention
mechanism and self-attention mechanism, we can fully capture the interest dependencies among items in
the entire conversation sequence. We also use residual connections to alleviate the problem of gradient
disappearance that may occur in multi-layer neural networks. Next, we will introduce each part:

Notations Definition
Session-based recommendation according to current session behavioral data to predict a user’s next
click. 1 2 3{ , , ,..., }nV v v v v represents the set of items in all sessions. A session s is denoted as

,1 ,2 ,[, ,...,]s s s ms v v v ,where ,s iv V
,

m represents the length of the current conversation. The model predicts

the following click behavior , 1s mv through session information of the user and finally outputs the

recommendation probability y of all candidates. Finally, we choose the Top-k items in y as candidates
for recommendation.

Figure 2
Examples of sessions s1 and s2.

The relationship-enhanced session graph
The click orders and counts contained in click information of the session affect the recommendation effect.
Missing records of item click orders and counts in the session graph may result in different session
sequences producing the same session graph and connection matrix. The importance of items cannot be
distinguished. As shown in Figure 2, session 1s and session 2s construct the same session graph and
connection matrix. For instance, node 2 has outgoing edges to both node 3 and node 4. Therefore, after
regularization, the outgoing edge matrix of node 2 has a value of 1/2 for both node 3 and node 4.

We predict the next click of a session according to the order in which each item is clicked. This means that
lower ranked items are more important. In addition, the frequency of the item’s occurrence within the
session sequence can indicate the degree of focus of the item in the mind of the user. Therefore, we design
the relationship-enhanced session graph corresponding to each session, and all click information of items
is integrated. For session graph, we assign edge weights to each edge, and values are incremented from 1.
The edges of the items that are clicked later have greater weights. Accumulate the edge weights of the
items clicked multiple numbers to obtain the relationship-enhanced session graph s s sG {E ,V } . Here

sV represents all session graph nodes and sE represents all session graph edges.

It defines a multiset setE for the session ,1 ,2 ,3 ,[, , ,...,]s s s s ms v v v v , stores connection edges in the

relationship-enhanced session graph sG into setE in order, and defines a boundary-finding function
named Index .

Figure 3

Relationship-enhanced graphs and relationship-enhanced matrixes corresponding to sessions s1 and s2.

 through
session information of the user and finally outputs
the recommendation probability ŷ of all candidates.
Finally, we choose the Top-k items in ŷ as candidates
for recommendation.

Figure 2
Examples of sessions s1 and s2.

3. Method
In this chapter, we introduce the specific implementation process of the RESR-GNN model. By
constructing a relationship enhancement matrix, we can obtain more
comprehensive information relationships among various items. Using a combination of soft attention
mechanism and self-attention mechanism, we can fully capture the interest dependencies among items in
the entire conversation sequence. We also use residual connections to alleviate the problem of gradient
disappearance that may occur in multi-layer neural networks. Next, we will introduce each part:

Notations Definition
Session-based recommendation according to current session behavioral data to predict a user’s next
click. 1 2 3{ , , ,..., }nV v v v v represents the set of items in all sessions. A session s is denoted as

,1 ,2 ,[, ,...,]s s s ms v v v ,where ,s iv V
,

m represents the length of the current conversation. The model predicts

the following click behavior , 1s mv through session information of the user and finally outputs the

recommendation probability y of all candidates. Finally, we choose the Top-k items in y as candidates
for recommendation.

Figure 2
Examples of sessions s1 and s2.

The relationship-enhanced session graph
The click orders and counts contained in click information of the session affect the recommendation effect.
Missing records of item click orders and counts in the session graph may result in different session
sequences producing the same session graph and connection matrix. The importance of items cannot be
distinguished. As shown in Figure 2, session 1s and session 2s construct the same session graph and
connection matrix. For instance, node 2 has outgoing edges to both node 3 and node 4. Therefore, after
regularization, the outgoing edge matrix of node 2 has a value of 1/2 for both node 3 and node 4.

We predict the next click of a session according to the order in which each item is clicked. This means that
lower ranked items are more important. In addition, the frequency of the item’s occurrence within the
session sequence can indicate the degree of focus of the item in the mind of the user. Therefore, we design
the relationship-enhanced session graph corresponding to each session, and all click information of items
is integrated. For session graph, we assign edge weights to each edge, and values are incremented from 1.
The edges of the items that are clicked later have greater weights. Accumulate the edge weights of the
items clicked multiple numbers to obtain the relationship-enhanced session graph s s sG {E ,V } . Here

sV represents all session graph nodes and sE represents all session graph edges.

It defines a multiset setE for the session ,1 ,2 ,3 ,[, , ,...,]s s s s ms v v v v , stores connection edges in the

relationship-enhanced session graph sG into setE in order, and defines a boundary-finding function
named Index .

Figure 3

Relationship-enhanced graphs and relationship-enhanced matrixes corresponding to sessions s1 and s2.

be distinguished. As shown in Figure 2, session s1
and session s2 construct the same session graph and
connection matrix. For instance, node 2 has outgo-
ing edges to both node 3 and node 4. Therefore, after
regularization, the outgoing edge matrix of node 2
has a value of 1/2 for both node 3 and node 4.
We predict the next click of a session according to
the order in which each item is clicked. This means
that lower ranked items are more important. In ad-
dition, the frequency of the item’s occurrence within
the session sequence can indicate the degree of fo-
cus of the item in the mind of the user. Therefore,
we design the relationship-enhanced session graph
corresponding to each session, and all click infor-
mation of items is integrated. For session graph, we
assign edge weights to each edge, and values are in-
cremented from 1. The edges of the items that are
clicked later have greater weights. Accumulate the
edge weights of the items clicked multiple numbers
to obtain the relationship-enhanced session graph

3. Method
In this chapter, we introduce the specific implementation process of the RESR-GNN model. By
constructing a relationship enhancement matrix, we can obtain more
comprehensive information relationships among various items. Using a combination of soft attention
mechanism and self-attention mechanism, we can fully capture the interest dependencies among items in
the entire conversation sequence. We also use residual connections to alleviate the problem of gradient
disappearance that may occur in multi-layer neural networks. Next, we will introduce each part:

Notations Definition
Session-based recommendation according to current session behavioral data to predict a user’s next
click. 1 2 3{ , , ,..., }nV v v v v represents the set of items in all sessions. A session s is denoted as

,1 ,2 ,[, ,...,]s s s ms v v v ,where ,s iv V
,

m represents the length of the current conversation. The model predicts

the following click behavior , 1s mv through session information of the user and finally outputs the

recommendation probability y of all candidates. Finally, we choose the Top-k items in y as candidates
for recommendation.

Figure 2
Examples of sessions s1 and s2.

The relationship-enhanced session graph
The click orders and counts contained in click information of the session affect the recommendation effect.
Missing records of item click orders and counts in the session graph may result in different session
sequences producing the same session graph and connection matrix. The importance of items cannot be
distinguished. As shown in Figure 2, session 1s and session 2s construct the same session graph and
connection matrix. For instance, node 2 has outgoing edges to both node 3 and node 4. Therefore, after
regularization, the outgoing edge matrix of node 2 has a value of 1/2 for both node 3 and node 4.

We predict the next click of a session according to the order in which each item is clicked. This means that
lower ranked items are more important. In addition, the frequency of the item’s occurrence within the
session sequence can indicate the degree of focus of the item in the mind of the user. Therefore, we design
the relationship-enhanced session graph corresponding to each session, and all click information of items
is integrated. For session graph, we assign edge weights to each edge, and values are incremented from 1.
The edges of the items that are clicked later have greater weights. Accumulate the edge weights of the
items clicked multiple numbers to obtain the relationship-enhanced session graph s s sG {E , V } . Here

sV represents all session graph nodes and sE represents all session graph edges.

It defines a multiset setE for the session ,1 ,2 ,3 ,[, , ,...,]s s s s ms v v v v , stores connection edges in the

relationship-enhanced session graph sG into setE in order, and defines a boundary-finding function
named Index .

Figure 3

Relationship-enhanced graphs and relationship-enhanced matrixes corresponding to sessions s1 and s2.

. Here Vs represents all session graph
nodes and Es represents all session graph edges.
It defines a multiset Eset for the session

3. Method
In this chapter, we introduce the specific implementation process of the RESR-GNN model. By
constructing a relationship enhancement matrix, we can obtain more
comprehensive information relationships among various items. Using a combination of soft attention
mechanism and self-attention mechanism, we can fully capture the interest dependencies among items in
the entire conversation sequence. We also use residual connections to alleviate the problem of gradient
disappearance that may occur in multi-layer neural networks. Next, we will introduce each part:

Notations Definition
Session-based recommendation according to current session behavioral data to predict a user’s next
click. 1 2 3{ , , ,..., }nV v v v v represents the set of items in all sessions. A session s is denoted as

,1 ,2 ,[, ,...,]s s s ms v v v ,where ,s iv V
,

m represents the length of the current conversation. The model predicts

the following click behavior , 1s mv through session information of the user and finally outputs the

recommendation probability y of all candidates. Finally, we choose the Top-k items in y as candidates
for recommendation.

Figure 2
Examples of sessions s1 and s2.

The relationship-enhanced session graph
The click orders and counts contained in click information of the session affect the recommendation effect.
Missing records of item click orders and counts in the session graph may result in different session
sequences producing the same session graph and connection matrix. The importance of items cannot be
distinguished. As shown in Figure 2, session 1s and session 2s construct the same session graph and
connection matrix. For instance, node 2 has outgoing edges to both node 3 and node 4. Therefore, after
regularization, the outgoing edge matrix of node 2 has a value of 1/2 for both node 3 and node 4.

We predict the next click of a session according to the order in which each item is clicked. This means that
lower ranked items are more important. In addition, the frequency of the item’s occurrence within the
session sequence can indicate the degree of focus of the item in the mind of the user. Therefore, we design
the relationship-enhanced session graph corresponding to each session, and all click information of items
is integrated. For session graph, we assign edge weights to each edge, and values are incremented from 1.
The edges of the items that are clicked later have greater weights. Accumulate the edge weights of the
items clicked multiple numbers to obtain the relationship-enhanced session graph s s sG {E ,V } . Here

sV represents all session graph nodes and sE represents all session graph edges.

It defines a multiset setE for the session ,1 ,2 ,3 ,[, , ,...,]s s s s ms v v v v , stores connection edges in the

relationship-enhanced session graph sG into setE in order, and defines a boundary-finding function
named Index .

Figure 3

Relationship-enhanced graphs and relationship-enhanced matrixes corresponding to sessions s1 and s2.

, stores connection edges in
the relationship-enhanced session graph Gs into Eset

in order, and defines a boundary-finding function
named Index.

 set ,1 ,2 ,2 ,3E { (,), (,),...}s s s se v v e v v (1)

 ,1 ,2 set
,1 ,2

,1 ,2 set

| ((,),E)
((,))

, if (,) E
s s

s s
s s

x x Index e v v
I e v v

e v v in
 (2)

A function calculation is used to obtain the corresponding value of edge ,1 ,2(,)s se v v in setE , denoted as

x , where ,1 ,2(,)s se v v means that the user clicks item ,2sv after ,1sv ; I is the set that holds the edge
values found.

The relationship-enhanced matrix R s stores the information in the corresponding session graph. If edge

e belongs to setE , the accumulated edge weight values are the values in the corresponding matrix.
Otherwise, it is marked as 0. The relationship-enhanced session diagram and matrix for sessions 1s and

2s are shown in Figure 3. The out- and in- edge matrix, ()R out
s and ()R in

s , are distinguished from the

relationship-enhanced matrix and concatenated, where the ()R out
s is normalized, () ()TR Rin out

s s .

 , , , ,()

, ,

(((,))), (,) E
R

0 , (,) E
s i s j s i s j sout

s
s i s j s

sum I e v v e v v
e v v

 (3)

Learning item embedding on RESR-GNN
The embedding vectors of each item node are then computed by gated graph neural networks. First, we
randomly initialize all item nodes to obtain an initial vector representation de R for each node v V
d represents the embedding dimension of the item. Model uses GGNN to update nodes' embedding in a
session sG . The specific process of ,s iv is as follows:

 () (1) (1) (1) T
, , : 1 2R [, ,...,]t t t t

s i s i m ia e e e W b (4)

 () () (1)
, ,()t t t

s i z s i z iz W a U e (5)

 () () (1)
, ,()t t t

s i r s i r ir W a U e (6)

() () () (1)

, ,tanh(())
t t t t

i t s i t s i ie W a U r e (7)

()() () (1) ()

, ,(1)
tt t t t

ii s i i s ie z e z e (8)

In Equation (4): () 2
,
t d

s ia R is the vector representation of node iv after aggregating the information of its

neighbors at time t ; , :R s i are the two columns corresponding to node ,s iv in the R s ;
(1) (1) (1)
1 2[, ,...,]t t t

me e e represents the vector representation of each item node of the session s at time
1t ;

(1)

The relationship-enhanced session graph
The click orders and counts contained in click infor-
mation of the session affect the recommendation ef-
fect. Missing records of item click orders and counts
in the session graph may result in different session
sequences producing the same session graph and
connection matrix. The importance of items cannot

Figure 3
Relationship-enhanced graphs and relationship-enhanced
matrixes corresponding to sessions s1 and s2.

 set ,1 ,2 ,2 ,3E { (,), (,),...}s s s se v v e v v (1)

 ,1 ,2 set
,1 ,2

,1 ,2 set

| ((,),E)
((,))

, if (,) E
s s

s s
s s

x x Index e v v
I e v v

e v v in
 (2)

A function calculation is used to obtain the corresponding value of edge ,1 ,2(,)s se v v in setE , denoted as

x , where ,1 ,2(,)s se v v means that the user clicks item ,2sv after ,1sv ; I is the set that holds the edge
values found.

The relationship-enhanced matrix R s stores the information in the corresponding session graph. If edge

e belongs to setE , the accumulated edge weight values are the values in the corresponding matrix.
Otherwise, it is marked as 0. The relationship-enhanced session diagram and matrix for sessions 1s and

2s are shown in Figure 3. The out- and in- edge matrix, ()R out
s and ()R in

s , are distinguished from the

relationship-enhanced matrix and concatenated, where the ()R out
s is normalized, () ()TR Rin out

s s .

 , , , ,()

, ,

(((,))), (,) E
R

0 , (,) E
s i s j s i s j sout

s
s i s j s

sum I e v v e v v
e v v

 (3)

Learning item embedding on RESR-GNN
The embedding vectors of each item node are then computed by gated graph neural networks. First, we
randomly initialize all item nodes to obtain an initial vector representation de R for each node v V
d represents the embedding dimension of the item. Model uses GGNN to update nodes' embedding in a
session sG . The specific process of ,s iv is as follows:

 () (1) (1) (1) T
, , : 1 2R [, ,...,]t t t t

s i s i m ia e e e W b (4)

 () () (1)
, ,()t t t

s i z s i z iz W a U e (5)

 () () (1)
, ,()t t t

s i r s i r ir W a U e (6)

() () () (1)

, ,tanh(())
t t t t

i t s i t s i ie W a U r e (7)

()() () (1) ()

, ,(1)
tt t t t

ii s i i s ie z e z e (8)

In Equation (4): () 2
,
t d

s ia R is the vector representation of node iv after aggregating the information of its

neighbors at time t ; , :R s i are the two columns corresponding to node ,s iv in the R s ;
(1) (1) (1)
1 2[, ,...,]t t t

me e e represents the vector representation of each item node of the session s at time
1t ;

1263Information Technology and Control 2025/4/54

 set ,1 ,2 ,2 ,3E { (,), (,),...}s s s se v v e v v (1)

 ,1 ,2 set
,1 ,2

,1 ,2 set

| ((,),E)
((,))

, if (,) E
s s

s s
s s

x x Index e v v
I e v v

e v v in
 (2)

A function calculation is used to obtain the corresponding value of edge ,1 ,2(,)s se v v in setE , denoted as

x , where ,1 ,2(,)s se v v means that the user clicks item ,2sv after ,1sv ; I is the set that holds the edge
values found.

The relationship-enhanced matrix R s stores the information in the corresponding session graph. If edge

e belongs to setE , the accumulated edge weight values are the values in the corresponding matrix.
Otherwise, it is marked as 0. The relationship-enhanced session diagram and matrix for sessions 1s and

2s are shown in Figure 3. The out- and in- edge matrix, ()R out
s and ()R in

s , are distinguished from the

relationship-enhanced matrix and concatenated, where the ()R out
s is normalized, () ()TR Rin out

s s .

 , , , ,()

, ,

(((,))), (,) E
R

0 , (,) E
s i s j s i s j sout

s
s i s j s

sum I e v v e v v
e v v

 (3)

Learning item embedding on RESR-GNN
The embedding vectors of each item node are then computed by gated graph neural networks. First, we
randomly initialize all item nodes to obtain an initial vector representation de R for each node v V
d represents the embedding dimension of the item. Model uses GGNN to update nodes' embedding in a
session sG . The specific process of ,s iv is as follows:

 () (1) (1) (1) T
, , : 1 2R [, ,...,]t t t t

s i s i m ia e e e W b (4)

 () () (1)
, ,()t t t

s i z s i z iz W a U e (5)

 () () (1)
, ,()t t t

s i r s i r ir W a U e (6)

() () () (1)

, ,tanh(())
t t t t

i t s i t s i ie W a U r e (7)

()() () (1) ()

, ,(1)
tt t t t

ii s i i s ie z e z e (8)

In Equation (4): () 2
,
t d

s ia R is the vector representation of node iv after aggregating the information of its

neighbors at time t ; , :R s i are the two columns corresponding to node ,s iv in the R s ;
(1) (1) (1)
1 2[, ,...,]t t t

me e e represents the vector representation of each item node of the session s at time
1t ;

(2)

A function calculation is used to obtain the corre-
sponding value of edge

 set ,1 ,2 ,2 ,3E { (,), (,),...}s s s se v v e v v (1)

 ,1 ,2 set
,1 ,2

,1 ,2 set

| ((,),E)
((,))

, if (,) E
s s

s s
s s

x x Index e v v
I e v v

e v v in
 (2)

A function calculation is used to obtain the corresponding value of edge ,1 ,2(,)s se v v in setE , denoted as

x , where ,1 ,2(,)s se v v means that the user clicks item ,2sv after ,1sv ; I is the set that holds the edge
values found.

The relationship-enhanced matrix R s stores the information in the corresponding session graph. If edge

e belongs to setE , the accumulated edge weight values are the values in the corresponding matrix.
Otherwise, it is marked as 0. The relationship-enhanced session diagram and matrix for sessions 1s and

2s are shown in Figure 3. The out- and in- edge matrix, ()R out
s and ()R in

s , are distinguished from the

relationship-enhanced matrix and concatenated, where the ()R out
s is normalized, () ()TR Rin out

s s .

 , , , ,()

, ,

(((,))), (,) E
R

0 , (,) E
s i s j s i s j sout

s
s i s j s

sum I e v v e v v
e v v

 (3)

Learning item embedding on RESR-GNN
The embedding vectors of each item node are then computed by gated graph neural networks. First, we
randomly initialize all item nodes to obtain an initial vector representation de R for each node v V
d represents the embedding dimension of the item. Model uses GGNN to update nodes' embedding in a
session sG . The specific process of ,s iv is as follows:

 () (1) (1) (1) T
, , : 1 2R [, ,...,]t t t t

s i s i m ia e e e W b (4)

 () () (1)
, ,()t t t

s i z s i z iz W a U e (5)

 () () (1)
, ,()t t t

s i r s i r ir W a U e (6)

() () () (1)

, ,tanh(())
t t t t

i t s i t s i ie W a U r e (7)

()() () (1) ()

, ,(1)
tt t t t

ii s i i s ie z e z e (8)

In Equation (4): () 2
,
t d

s ia R is the vector representation of node iv after aggregating the information of its

neighbors at time t ; , :R s i are the two columns corresponding to node ,s iv in the R s ;
(1) (1) (1)
1 2[, ,...,]t t t

me e e represents the vector representation of each item node of the session s at time
1t ;

 in Eset, denoted as
x, where

 set ,1 ,2 ,2 ,3E { (,), (,),...}s s s se v v e v v (1)

 ,1 ,2 set
,1 ,2

,1 ,2 set

| ((,),E)
((,))

, if (,) E
s s

s s
s s

x x Index e v v
I e v v

e v v in
 (2)

A function calculation is used to obtain the corresponding value of edge ,1 ,2(,)s se v v in setE , denoted as

x , where ,1 ,2(,)s se v v means that the user clicks item ,2sv after ,1sv ; I is the set that holds the edge
values found.

The relationship-enhanced matrix R s stores the information in the corresponding session graph. If edge

e belongs to setE , the accumulated edge weight values are the values in the corresponding matrix.
Otherwise, it is marked as 0. The relationship-enhanced session diagram and matrix for sessions 1s and

2s are shown in Figure 3. The out- and in- edge matrix, ()R out
s and ()R in

s , are distinguished from the

relationship-enhanced matrix and concatenated, where the ()R out
s is normalized, () ()TR Rin out

s s .

 , , , ,()

, ,

(((,))), (,) E
R

0 , (,) E
s i s j s i s j sout

s
s i s j s

sum I e v v e v v
e v v

 (3)

Learning item embedding on RESR-GNN
The embedding vectors of each item node are then computed by gated graph neural networks. First, we
randomly initialize all item nodes to obtain an initial vector representation de R for each node v V
d represents the embedding dimension of the item. Model uses GGNN to update nodes' embedding in a
session sG . The specific process of ,s iv is as follows:

 () (1) (1) (1) T
, , : 1 2R [, ,...,]t t t t

s i s i m ia e e e W b (4)

 () () (1)
, ,()t t t

s i z s i z iz W a U e (5)

 () () (1)
, ,()t t t

s i r s i r ir W a U e (6)

() () () (1)

, ,tanh(())
t t t t

i t s i t s i ie W a U r e (7)

()() () (1) ()

, ,(1)
tt t t t

ii s i i s ie z e z e (8)

In Equation (4): () 2
,
t d

s ia R is the vector representation of node iv after aggregating the information of its

neighbors at time t ; , :R s i are the two columns corresponding to node ,s iv in the R s ;
(1) (1) (1)
1 2[, ,...,]t t t

me e e represents the vector representation of each item node of the session s at time
1t ;

 means that the user clicks item
vs,2 after vs,1; I is the set that holds the edge values
found.
The relationship-enhanced matrix Rs stores the in-
formation in the corresponding session graph. If
edge e belongs to Eset, the accumulated edge weight
values are the values in the corresponding matrix.
Otherwise, it is marked as 0. The relationship-en-
hanced session diagram and matrix for sessions s1
and s2 are shown in Figure 3. The out- and in- edge
matrix,

 set ,1 ,2 ,2 ,3E { (,), (,),...}s s s se v v e v v (1)

 ,1 ,2 set
,1 ,2

,1 ,2 set

| ((,),E)
((,))

, if (,) E
s s

s s
s s

x x Index e v v
I e v v

e v v in
 (2)

A function calculation is used to obtain the corresponding value of edge ,1 ,2(,)s se v v in setE , denoted as

x , where ,1 ,2(,)s se v v means that the user clicks item ,2sv after ,1sv ; I is the set that holds the edge
values found.

The relationship-enhanced matrix R s stores the information in the corresponding session graph. If edge

e belongs to setE , the accumulated edge weight values are the values in the corresponding matrix.
Otherwise, it is marked as 0. The relationship-enhanced session diagram and matrix for sessions 1s and

2s are shown in Figure 3. The out- and in- edge matrix, ()R out
s and ()R in

s , are distinguished from the

relationship-enhanced matrix and concatenated, where the ()R out
s is normalized, () ()TR Rin out

s s .

 , , , ,()

, ,

(((,))), (,) E
R

0 , (,) E
s i s j s i s j sout

s
s i s j s

sum I e v v e v v
e v v

 (3)

Learning item embedding on RESR-GNN
The embedding vectors of each item node are then computed by gated graph neural networks. First, we
randomly initialize all item nodes to obtain an initial vector representation de R for each node v V
d represents the embedding dimension of the item. Model uses GGNN to update nodes' embedding in a
session sG . The specific process of ,s iv is as follows:

 () (1) (1) (1) T
, , : 1 2R [, ,...,]t t t t

s i s i m ia e e e W b (4)

 () () (1)
, ,()t t t

s i z s i z iz W a U e (5)

 () () (1)
, ,()t t t

s i r s i r ir W a U e (6)

() () () (1)

, ,tanh(())
t t t t

i t s i t s i ie W a U r e (7)

()() () (1) ()

, ,(1)
tt t t t

ii s i i s ie z e z e (8)

In Equation (4): () 2
,
t d

s ia R is the vector representation of node iv after aggregating the information of its

neighbors at time t ; , :R s i are the two columns corresponding to node ,s iv in the R s ;
(1) (1) (1)
1 2[, ,...,]t t t

me e e represents the vector representation of each item node of the session s at time
1t ;

 and

 set ,1 ,2 ,2 ,3E { (,), (,),...}s s s se v v e v v (1)

 ,1 ,2 set
,1 ,2

,1 ,2 set

| ((,),E)
((,))

, if (,) E
s s

s s
s s

x x Index e v v
I e v v

e v v in
 (2)

A function calculation is used to obtain the corresponding value of edge ,1 ,2(,)s se v v in setE , denoted as

x , where ,1 ,2(,)s se v v means that the user clicks item ,2sv after ,1sv ; I is the set that holds the edge
values found.

The relationship-enhanced matrix R s stores the information in the corresponding session graph. If edge

e belongs to setE , the accumulated edge weight values are the values in the corresponding matrix.
Otherwise, it is marked as 0. The relationship-enhanced session diagram and matrix for sessions 1s and

2s are shown in Figure 3. The out- and in- edge matrix, ()R out
s and ()R in

s , are distinguished from the

relationship-enhanced matrix and concatenated, where the ()R out
s is normalized, () ()TR Rin out

s s .

 , , , ,()

, ,

(((,))), (,) E
R

0 , (,) E
s i s j s i s j sout

s
s i s j s

sum I e v v e v v
e v v

 (3)

Learning item embedding on RESR-GNN
The embedding vectors of each item node are then computed by gated graph neural networks. First, we
randomly initialize all item nodes to obtain an initial vector representation de R for each node v V
d represents the embedding dimension of the item. Model uses GGNN to update nodes' embedding in a
session sG . The specific process of ,s iv is as follows:

 () (1) (1) (1) T
, , : 1 2R [, ,...,]t t t t

s i s i m ia e e e W b (4)

 () () (1)
, ,()t t t

s i z s i z iz W a U e (5)

 () () (1)
, ,()t t t

s i r s i r ir W a U e (6)

() () () (1)

, ,tanh(())
t t t t

i t s i t s i ie W a U r e (7)

()() () (1) ()

, ,(1)
tt t t t

ii s i i s ie z e z e (8)

In Equation (4): () 2
,
t d

s ia R is the vector representation of node iv after aggregating the information of its

neighbors at time t ; , :R s i are the two columns corresponding to node ,s iv in the R s ;
(1) (1) (1)
1 2[, ,...,]t t t

me e e represents the vector representation of each item node of the session s at time
1t ;

, are distinguished from the
relationship-enhanced matrix and concatenated,
where the

 set ,1 ,2 ,2 ,3E { (,), (,),...}s s s se v v e v v (1)

 ,1 ,2 set
,1 ,2

,1 ,2 set

| ((,),E)
((,))

, if (,) E
s s

s s
s s

x x Index e v v
I e v v

e v v in
 (2)

A function calculation is used to obtain the corresponding value of edge ,1 ,2(,)s se v v in setE , denoted as

x , where ,1 ,2(,)s se v v means that the user clicks item ,2sv after ,1sv ; I is the set that holds the edge
values found.

The relationship-enhanced matrix R s stores the information in the corresponding session graph. If edge

e belongs to setE , the accumulated edge weight values are the values in the corresponding matrix.
Otherwise, it is marked as 0. The relationship-enhanced session diagram and matrix for sessions 1s and

2s are shown in Figure 3. The out- and in- edge matrix, ()R out
s and ()R in

s , are distinguished from the

relationship-enhanced matrix and concatenated, where the ()R out
s is normalized, () ()TR Rin out

s s .

 , , , ,()

, ,

(((,))), (,) E
R

0 , (,) E
s i s j s i s j sout

s
s i s j s

sum I e v v e v v
e v v

 (3)

Learning item embedding on RESR-GNN
The embedding vectors of each item node are then computed by gated graph neural networks. First, we
randomly initialize all item nodes to obtain an initial vector representation de R for each node v V
d represents the embedding dimension of the item. Model uses GGNN to update nodes' embedding in a
session sG . The specific process of ,s iv is as follows:

 () (1) (1) (1) T
, , : 1 2R [, ,...,]t t t t

s i s i m ia e e e W b (4)

 () () (1)
, ,()t t t

s i z s i z iz W a U e (5)

 () () (1)
, ,()t t t

s i r s i r ir W a U e (6)

() () () (1)

, ,tanh(())
t t t t

i t s i t s i ie W a U r e (7)

()() () (1) ()

, ,(1)
tt t t t

ii s i i s ie z e z e (8)

In Equation (4): () 2
,
t d

s ia R is the vector representation of node iv after aggregating the information of its

neighbors at time t ; , :R s i are the two columns corresponding to node ,s iv in the R s ;
(1) (1) (1)
1 2[, ,...,]t t t

me e e represents the vector representation of each item node of the session s at time
1t ;

 is normalized,

 set ,1 ,2 ,2 ,3E { (,), (,),...}s s s se v v e v v (1)

 ,1 ,2 set
,1 ,2

,1 ,2 set

| ((,),E)
((,))

, if (,) E
s s

s s
s s

x x Index e v v
I e v v

e v v in
 (2)

A function calculation is used to obtain the corresponding value of edge ,1 ,2(,)s se v v in setE , denoted as

x , where ,1 ,2(,)s se v v means that the user clicks item ,2sv after ,1sv ; I is the set that holds the edge
values found.

The relationship-enhanced matrix R s stores the information in the corresponding session graph. If edge

e belongs to setE , the accumulated edge weight values are the values in the corresponding matrix.
Otherwise, it is marked as 0. The relationship-enhanced session diagram and matrix for sessions 1s and

2s are shown in Figure 3. The out- and in- edge matrix, ()R out
s and ()R in

s , are distinguished from the

relationship-enhanced matrix and concatenated, where the ()R out
s is normalized, () ()TR Rin out

s s .

 , , , ,()

, ,

(((,))), (,) E
R

0 , (,) E
s i s j s i s j sout

s
s i s j s

sum I e v v e v v
e v v

 (3)

Learning item embedding on RESR-GNN
The embedding vectors of each item node are then computed by gated graph neural networks. First, we
randomly initialize all item nodes to obtain an initial vector representation de R for each node v V
d represents the embedding dimension of the item. Model uses GGNN to update nodes' embedding in a
session sG . The specific process of ,s iv is as follows:

 () (1) (1) (1) T
, , : 1 2R [, ,...,]t t t t

s i s i m ia e e e W b (4)

 () () (1)
, ,()t t t

s i z s i z iz W a U e (5)

 () () (1)
, ,()t t t

s i r s i r ir W a U e (6)

() () () (1)

, ,tanh(())
t t t t

i t s i t s i ie W a U r e (7)

()() () (1) ()

, ,(1)
tt t t t

ii s i i s ie z e z e (8)

In Equation (4): () 2
,
t d

s ia R is the vector representation of node iv after aggregating the information of its

neighbors at time t ; , :R s i are the two columns corresponding to node ,s iv in the R s ;
(1) (1) (1)
1 2[, ,...,]t t t

me e e represents the vector representation of each item node of the session s at time
1t ;

.

 set ,1 ,2 ,2 ,3E { (,), (,),...}s s s se v v e v v (1)

 ,1 ,2 set
,1 ,2

,1 ,2 set

| ((,),E)
((,))

, if (,) E
s s

s s
s s

x x Index e v v
I e v v

e v v in
 (2)

A function calculation is used to obtain the corresponding value of edge ,1 ,2(,)s se v v in setE , denoted as

x , where ,1 ,2(,)s se v v means that the user clicks item ,2sv after ,1sv ; I is the set that holds the edge
values found.

The relationship-enhanced matrix R s stores the information in the corresponding session graph. If edge

e belongs to setE , the accumulated edge weight values are the values in the corresponding matrix.
Otherwise, it is marked as 0. The relationship-enhanced session diagram and matrix for sessions 1s and

2s are shown in Figure 3. The out- and in- edge matrix, ()R out
s and ()R in

s , are distinguished from the

relationship-enhanced matrix and concatenated, where the ()R out
s is normalized, () ()TR Rin out

s s .

 , , , ,()

, ,

(((,))), (,) E
R

0 , (,) E
s i s j s i s j sout

s
s i s j s

sum I e v v e v v
e v v

 (3)

Learning item embedding on RESR-GNN
The embedding vectors of each item node are then computed by gated graph neural networks. First, we
randomly initialize all item nodes to obtain an initial vector representation de R for each node v V
d represents the embedding dimension of the item. Model uses GGNN to update nodes' embedding in a
session sG . The specific process of ,s iv is as follows:

 () (1) (1) (1) T
, , : 1 2R [, ,...,]t t t t

s i s i m ia e e e W b (4)

 () () (1)
, ,()t t t

s i z s i z iz W a U e (5)

 () () (1)
, ,()t t t

s i r s i r ir W a U e (6)

() () () (1)

, ,tanh(())
t t t t

i t s i t s i ie W a U r e (7)

()() () (1) ()

, ,(1)
tt t t t

ii s i i s ie z e z e (8)

In Equation (4): () 2
,
t d

s ia R is the vector representation of node iv after aggregating the information of its

neighbors at time t ; , :R s i are the two columns corresponding to node ,s iv in the R s ;
(1) (1) (1)
1 2[, ,...,]t t t

me e e represents the vector representation of each item node of the session s at time
1t ;

(3)

Learning item embedding on RESR-GNN

The embedding vectors of each item node are then
computed by gated graph neural networks. First, we
randomly initialize all item nodes to obtain an ini-
tial vector representation e

 set ,1 ,2 ,2 ,3E { (,), (,),...}s s s se v v e v v (1)

 ,1 ,2 set
,1 ,2

,1 ,2 set

| ((,),E)
((,))

, if (,) E
s s

s s
s s

x x Index e v v
I e v v

e v v in
 (2)

A function calculation is used to obtain the corresponding value of edge ,1 ,2(,)s se v v in setE , denoted as

x , where ,1 ,2(,)s se v v means that the user clicks item ,2sv after ,1sv ; I is the set that holds the edge
values found.

The relationship-enhanced matrix R s stores the information in the corresponding session graph. If edge

e belongs to setE , the accumulated edge weight values are the values in the corresponding matrix.
Otherwise, it is marked as 0. The relationship-enhanced session diagram and matrix for sessions 1s and

2s are shown in Figure 3. The out- and in- edge matrix, ()R out
s and ()R in

s , are distinguished from the

relationship-enhanced matrix and concatenated, where the ()R out
s is normalized, () ()TR Rin out

s s .

 , , , ,()

, ,

(((,))), (,) E
R

0 , (,) E
s i s j s i s j sout

s
s i s j s

sum I e v v e v v
e v v

 (3)

Learning item embedding on RESR-GNN
The embedding vectors of each item node are then computed by gated graph neural networks. First, we
randomly initialize all item nodes to obtain an initial vector representation de R for each node v V
d represents the embedding dimension of the item. Model uses GGNN to update nodes' embedding in a
session sG . The specific process of ,s iv is as follows:

 () (1) (1) (1) T
, , : 1 2R [, ,...,]t t t t

s i s i m ia e e e W b (4)

 () () (1)
, ,()t t t

s i z s i z iz W a U e (5)

 () () (1)
, ,()t t t

s i r s i r ir W a U e (6)

() () () (1)

, ,tanh(())
t t t t

i t s i t s i ie W a U r e (7)

()() () (1) ()

, ,(1)
tt t t t

ii s i i s ie z e z e (8)

In Equation (4): () 2
,
t d

s ia R is the vector representation of node iv after aggregating the information of its

neighbors at time t ; , :R s i are the two columns corresponding to node ,s iv in the R s ;
(1) (1) (1)
1 2[, ,...,]t t t

me e e represents the vector representation of each item node of the session s at time
1t ;

 Rd for each node v

 set ,1 ,2 ,2 ,3E { (,), (,),...}s s s se v v e v v (1)

 ,1 ,2 set
,1 ,2

,1 ,2 set

| ((,), E)
((,))

, if (,) E
s s

s s
s s

x x Index e v v
I e v v

e v v in
 (2)

A function calculation is used to obtain the corresponding value of edge ,1 ,2(,)s se v v in setE , denoted as

x , where ,1 ,2(,)s se v v means that the user clicks item ,2sv after ,1sv ; I is the set that holds the edge
values found.

The relationship-enhanced matrix R s stores the information in the corresponding session graph. If edge

e belongs to setE , the accumulated edge weight values are the values in the corresponding matrix.
Otherwise, it is marked as 0. The relationship-enhanced session diagram and matrix for sessions 1s and

2s are shown in Figure 3. The out- and in- edge matrix, ()R out
s and ()R in

s , are distinguished from the

relationship-enhanced matrix and concatenated, where the ()R out
s is normalized, () ()TR Rin out

s s .

 , , , ,()

, ,

(((,))), (,) E
R

0 , (,) E
s i s j s i s j sout

s
s i s j s

sum I e v v e v v
e v v

 (3)

Learning item embedding on RESR-GNN
The embedding vectors of each item node are then computed by gated graph neural networks. First, we
randomly initialize all item nodes to obtain an initial vector representation de R for each node v V
d represents the embedding dimension of the item. Model uses GGNN to update nodes' embedding in a
session sG . The specific process of ,s iv is as follows:

 () (1) (1) (1) T
, , : 1 2R [, ,...,]t t t t

s i s i m ia e e e W b (4)

 () () (1)
, ,()t t t

s i z s i z iz W a U e (5)

 () () (1)
, ,()t t t

s i r s i r ir W a U e (6)

() () () (1)

, ,tanh(())
t t t t

i t s i t s i ie W a U r e (7)

()() () (1) ()

, ,(1)
tt t t t

ii s i i s ie z e z e (8)

In Equation (4): () 2
,
t d

s ia R is the vector representation of node iv after aggregating the information of its

neighbors at time t ; , :R s i are the two columns corresponding to node ,s iv in the R s ;
(1) (1) (1)
1 2[, ,...,]t t t

me e e represents the vector representation of each item node of the session s at time
1t ;

 V,

d represents the embedding dimension of the item.
Model uses GGNN to update nodes' embedding in a
session Gs. The specific process of vs,i is as follows:

 set ,1 ,2 ,2 ,3E { (,), (,),...}s s s se v v e v v (1)

 ,1 ,2 set
,1 ,2

,1 ,2 set

| ((,),E)
((,))

, if (,) E
s s

s s
s s

x x Index e v v
I e v v

e v v in
 (2)

A function calculation is used to obtain the corresponding value of edge ,1 ,2(,)s se v v in setE , denoted as

x , where ,1 ,2(,)s se v v means that the user clicks item ,2sv after ,1sv ; I is the set that holds the edge
values found.

The relationship-enhanced matrix R s stores the information in the corresponding session graph. If edge

e belongs to setE , the accumulated edge weight values are the values in the corresponding matrix.
Otherwise, it is marked as 0. The relationship-enhanced session diagram and matrix for sessions 1s and

2s are shown in Figure 3. The out- and in- edge matrix, ()R out
s and ()R in

s , are distinguished from the

relationship-enhanced matrix and concatenated, where the ()R out
s is normalized, () ()TR Rin out

s s .

 , , , ,()

, ,

(((,))), (,) E
R

0 , (,) E
s i s j s i s j sout

s
s i s j s

sum I e v v e v v
e v v

 (3)

Learning item embedding on RESR-GNN
The embedding vectors of each item node are then computed by gated graph neural networks. First, we
randomly initialize all item nodes to obtain an initial vector representation de R for each node v V
d represents the embedding dimension of the item. Model uses GGNN to update nodes' embedding in a
session sG . The specific process of ,s iv is as follows:

 () (1) (1) (1) T
, , : 1 2R [, ,...,]t t t t

s i s i m ia e e e W b (4)

 () () (1)
, ,()t t t

s i z s i z iz W a U e (5)

 () () (1)
, ,()t t t

s i r s i r ir W a U e (6)

() () () (1)

, ,tanh(())
t t t t

i t s i t s i ie W a U r e (7)

()() () (1) ()

, ,(1)
tt t t t

ii s i i s ie z e z e (8)

In Equation (4): () 2
,
t d

s ia R is the vector representation of node iv after aggregating the information of its

neighbors at time t ; , :R s i are the two columns corresponding to node ,s iv in the R s ;
(1) (1) (1)
1 2[, ,...,]t t t

me e e represents the vector representation of each item node of the session s at time
1t ;

(4)

 set ,1 ,2 ,2 ,3E { (,), (,),...}s s s se v v e v v (1)

 ,1 ,2 set
,1 ,2

,1 ,2 set

| ((,),E)
((,))

, if (,) E
s s

s s
s s

x x Index e v v
I e v v

e v v in
 (2)

A function calculation is used to obtain the corresponding value of edge ,1 ,2(,)s se v v in setE , denoted as

x , where ,1 ,2(,)s se v v means that the user clicks item ,2sv after ,1sv ; I is the set that holds the edge
values found.

The relationship-enhanced matrix R s stores the information in the corresponding session graph. If edge

e belongs to setE , the accumulated edge weight values are the values in the corresponding matrix.
Otherwise, it is marked as 0. The relationship-enhanced session diagram and matrix for sessions 1s and

2s are shown in Figure 3. The out- and in- edge matrix, ()R out
s and ()R in

s , are distinguished from the

relationship-enhanced matrix and concatenated, where the ()R out
s is normalized, () ()TR Rin out

s s .

 , , , ,()

, ,

(((,))), (,) E
R

0 , (,) E
s i s j s i s j sout

s
s i s j s

sum I e v v e v v
e v v

 (3)

Learning item embedding on RESR-GNN
The embedding vectors of each item node are then computed by gated graph neural networks. First, we
randomly initialize all item nodes to obtain an initial vector representation de R for each node v V
d represents the embedding dimension of the item. Model uses GGNN to update nodes' embedding in a
session sG . The specific process of ,s iv is as follows:

 () (1) (1) (1) T
, , : 1 2R [, ,...,]t t t t

s i s i m ia e e e W b (4)

 () () (1)
, ,()t t t

s i z s i z iz W a U e (5)

 () () (1)
, ,()t t t

s i r s i r ir W a U e (6)

() () () (1)

, ,tanh(())
t t t t

i t s i t s i ie W a U r e (7)

()() () (1) ()

, ,(1)
tt t t t

ii s i i s ie z e z e (8)

In Equation (4): () 2
,
t d

s ia R is the vector representation of node iv after aggregating the information of its

neighbors at time t ; , :R s i are the two columns corresponding to node ,s iv in the R s ;
(1) (1) (1)
1 2[, ,...,]t t t

me e e represents the vector representation of each item node of the session s at time
1t ;

(5)

 set ,1 ,2 ,2 ,3E { (,), (,),...}s s s se v v e v v (1)

 ,1 ,2 set
,1 ,2

,1 ,2 set

| ((,),E)
((,))

, if (,) E
s s

s s
s s

x x Index e v v
I e v v

e v v in
 (2)

A function calculation is used to obtain the corresponding value of edge ,1 ,2(,)s se v v in setE , denoted as

x , where ,1 ,2(,)s se v v means that the user clicks item ,2sv after ,1sv ; I is the set that holds the edge
values found.

The relationship-enhanced matrix R s stores the information in the corresponding session graph. If edge

e belongs to setE , the accumulated edge weight values are the values in the corresponding matrix.
Otherwise, it is marked as 0. The relationship-enhanced session diagram and matrix for sessions 1s and

2s are shown in Figure 3. The out- and in- edge matrix, ()R out
s and ()R in

s , are distinguished from the

relationship-enhanced matrix and concatenated, where the ()R out
s is normalized, () ()TR Rin out

s s .

 , , , ,()

, ,

(((,))), (,) E
R

0 , (,) E
s i s j s i s j sout

s
s i s j s

sum I e v v e v v
e v v

 (3)

Learning item embedding on RESR-GNN
The embedding vectors of each item node are then computed by gated graph neural networks. First, we
randomly initialize all item nodes to obtain an initial vector representation de R for each node v V
d represents the embedding dimension of the item. Model uses GGNN to update nodes' embedding in a
session sG . The specific process of ,s iv is as follows:

 () (1) (1) (1) T
, , : 1 2R [, ,...,]t t t t

s i s i m ia e e e W b (4)

 () () (1)
, ,()t t t

s i z s i z iz W a U e (5)

 () () (1)
, ,()t t t

s i r s i r ir W a U e (6)

() () () (1)

, ,tanh(())
t t t t

i t s i t s i ie W a U r e (7)

()() () (1) ()

, ,(1)
tt t t t

ii s i i s ie z e z e (8)

In Equation (4): () 2
,
t d

s ia R is the vector representation of node iv after aggregating the information of its

neighbors at time t ; , :R s i are the two columns corresponding to node ,s iv in the R s ;
(1) (1) (1)
1 2[, ,...,]t t t

me e e represents the vector representation of each item node of the session s at time
1t ;

(6)

 set ,1 ,2 ,2 ,3E { (,), (,),...}s s s se v v e v v (1)

 ,1 ,2 set
,1 ,2

,1 ,2 set

| ((,),E)
((,))

, if (,) E
s s

s s
s s

x x Index e v v
I e v v

e v v in
 (2)

A function calculation is used to obtain the corresponding value of edge ,1 ,2(,)s se v v in setE , denoted as

x , where ,1 ,2(,)s se v v means that the user clicks item ,2sv after ,1sv ; I is the set that holds the edge
values found.

The relationship-enhanced matrix R s stores the information in the corresponding session graph. If edge

e belongs to setE , the accumulated edge weight values are the values in the corresponding matrix.
Otherwise, it is marked as 0. The relationship-enhanced session diagram and matrix for sessions 1s and

2s are shown in Figure 3. The out- and in- edge matrix, ()R out
s and ()R in

s , are distinguished from the

relationship-enhanced matrix and concatenated, where the ()R out
s is normalized, () ()TR Rin out

s s .

 , , , ,()

, ,

(((,))), (,) E
R

0 , (,) E
s i s j s i s j sout

s
s i s j s

sum I e v v e v v
e v v

 (3)

Learning item embedding on RESR-GNN
The embedding vectors of each item node are then computed by gated graph neural networks. First, we
randomly initialize all item nodes to obtain an initial vector representation de R for each node v V
d represents the embedding dimension of the item. Model uses GGNN to update nodes' embedding in a
session sG . The specific process of ,s iv is as follows:

 () (1) (1) (1) T
, , : 1 2R [, ,...,]t t t t

s i s i m ia e e e W b (4)

 () () (1)
, ,()t t t

s i z s i z iz W a U e (5)

 () () (1)
, ,()t t t

s i r s i r ir W a U e (6)

() () () (1)

, ,tanh(())
t t t t

i t s i t s i ie W a U r e (7)

()() () (1) ()

, ,(1)
tt t t t

ii s i i s ie z e z e (8)

In Equation (4): () 2
,
t d

s ia R is the vector representation of node iv after aggregating the information of its

neighbors at time t ; , :R s i are the two columns corresponding to node ,s iv in the R s ;
(1) (1) (1)
1 2[, ,...,]t t t

me e e represents the vector representation of each item node of the session s at time
1t ;

(7)

 set ,1 ,2 ,2 ,3E { (,), (,),...}s s s se v v e v v (1)

 ,1 ,2 set
,1 ,2

,1 ,2 set

| ((,),E)
((,))

, if (,) E
s s

s s
s s

x x Index e v v
I e v v

e v v in
 (2)

A function calculation is used to obtain the corresponding value of edge ,1 ,2(,)s se v v in setE , denoted as

x , where ,1 ,2(,)s se v v means that the user clicks item ,2sv after ,1sv ; I is the set that holds the edge
values found.

The relationship-enhanced matrix R s stores the information in the corresponding session graph. If edge

e belongs to setE , the accumulated edge weight values are the values in the corresponding matrix.
Otherwise, it is marked as 0. The relationship-enhanced session diagram and matrix for sessions 1s and

2s are shown in Figure 3. The out- and in- edge matrix, ()R out
s and ()R in

s , are distinguished from the

relationship-enhanced matrix and concatenated, where the ()R out
s is normalized, () ()TR Rin out

s s .

 , , , ,()

, ,

(((,))), (,) E
R

0 , (,) E
s i s j s i s j sout

s
s i s j s

sum I e v v e v v
e v v

 (3)

Learning item embedding on RESR-GNN
The embedding vectors of each item node are then computed by gated graph neural networks. First, we
randomly initialize all item nodes to obtain an initial vector representation de R for each node v V
d represents the embedding dimension of the item. Model uses GGNN to update nodes' embedding in a
session sG . The specific process of ,s iv is as follows:

 () (1) (1) (1) T
, , : 1 2R [, ,...,]t t t t

s i s i m ia e e e W b (4)

 () () (1)
, ,()t t t

s i z s i z iz W a U e (5)

 () () (1)
, ,()t t t

s i r s i r ir W a U e (6)

() () () (1)

, ,tanh(())
t t t t

i t s i t s i ie W a U r e (7)

()() () (1) ()

, ,(1)
tt t t t

ii s i i s ie z e z e (8)

In Equation (4): () 2
,
t d

s ia R is the vector representation of node iv after aggregating the information of its

neighbors at time t ; , :R s i are the two columns corresponding to node ,s iv in the R s ;
(1) (1) (1)
1 2[, ,...,]t t t

me e e represents the vector representation of each item node of the session s at time
1t ;

(8)

In Equation (4):

 set ,1 ,2 ,2 ,3E { (,), (,),...}s s s se v v e v v (1)

 ,1 ,2 set
,1 ,2

,1 ,2 set

| ((,),E)
((,))

, if (,) E
s s

s s
s s

x x Index e v v
I e v v

e v v in
 (2)

A function calculation is used to obtain the corresponding value of edge ,1 ,2(,)s se v v in setE , denoted as

x , where ,1 ,2(,)s se v v means that the user clicks item ,2sv after ,1sv ; I is the set that holds the edge
values found.

The relationship-enhanced matrix R s stores the information in the corresponding session graph. If edge

e belongs to setE , the accumulated edge weight values are the values in the corresponding matrix.
Otherwise, it is marked as 0. The relationship-enhanced session diagram and matrix for sessions 1s and

2s are shown in Figure 3. The out- and in- edge matrix, ()R out
s and ()R in

s , are distinguished from the

relationship-enhanced matrix and concatenated, where the ()R out
s is normalized, () ()TR Rin out

s s .

 , , , ,()

, ,

(((,))), (,) E
R

0 , (,) E
s i s j s i s j sout

s
s i s j s

sum I e v v e v v
e v v

 (3)

Learning item embedding on RESR-GNN
The embedding vectors of each item node are then computed by gated graph neural networks. First, we
randomly initialize all item nodes to obtain an initial vector representation de R for each node v V
d represents the embedding dimension of the item. Model uses GGNN to update nodes' embedding in a
session sG . The specific process of ,s iv is as follows:

 () (1) (1) (1) T
, , : 1 2R [, ,...,]t t t t

s i s i m ia e e e W b (4)

 () () (1)
, ,()t t t

s i z s i z iz W a U e (5)

 () () (1)
, ,()t t t

s i r s i r ir W a U e (6)

() () () (1)

, ,tanh(())
t t t t

i t s i t s i ie W a U r e (7)

()() () (1) ()

, ,(1)
tt t t t

ii s i i s ie z e z e (8)

In Equation (4): () 2
,
t d

s ia R is the vector representation of node iv after aggregating the information of its

neighbors at time t ; , :R s i are the two columns corresponding to node ,s iv in the R s ;
(1) (1) (1)
1 2[, ,...,]t t t

me e e represents the vector representation of each item node of the session s at time
1t ;

 is the vector representa-
tion of node vi after aggregating the information of
its neighbors at time t; Rs,i are the two columns corre-
sponding to node vs,i in the Rs;

 set ,1 ,2 ,2 ,3E { (,), (,),...}s s s se v v e v v (1)

 ,1 ,2 set
,1 ,2

,1 ,2 set

| ((,),E)
((,))

, if (,) E
s s

s s
s s

x x Index e v v
I e v v

e v v in
 (2)

A function calculation is used to obtain the corresponding value of edge ,1 ,2(,)s se v v in setE , denoted as

x , where ,1 ,2(,)s se v v means that the user clicks item ,2sv after ,1sv ; I is the set that holds the edge
values found.

The relationship-enhanced matrix R s stores the information in the corresponding session graph. If edge

e belongs to setE , the accumulated edge weight values are the values in the corresponding matrix.
Otherwise, it is marked as 0. The relationship-enhanced session diagram and matrix for sessions 1s and

2s are shown in Figure 3. The out- and in- edge matrix, ()R out
s and ()R in

s , are distinguished from the

relationship-enhanced matrix and concatenated, where the ()R out
s is normalized, () ()TR Rin out

s s .

 , , , ,()

, ,

(((,))), (,) E
R

0 , (,) E
s i s j s i s j sout

s
s i s j s

sum I e v v e v v
e v v

 (3)

Learning item embedding on RESR-GNN
The embedding vectors of each item node are then computed by gated graph neural networks. First, we
randomly initialize all item nodes to obtain an initial vector representation de R for each node v V
d represents the embedding dimension of the item. Model uses GGNN to update nodes' embedding in a
session sG . The specific process of ,s iv is as follows:

 () (1) (1) (1) T
, , : 1 2R [, ,...,]t t t t

s i s i m ia e e e W b (4)

 () () (1)
, ,()t t t

s i z s i z iz W a U e (5)

 () () (1)
, ,()t t t

s i r s i r ir W a U e (6)

() () () (1)

, ,tanh(())
t t t t

i t s i t s i ie W a U r e (7)

()() () (1) ()

, ,(1)
tt t t t

ii s i i s ie z e z e (8)

In Equation (4): () 2
,
t d

s ia R is the vector representation of node iv after aggregating the information of its

neighbors at time t ; , :R s i are the two columns corresponding to node ,s iv in the R s ;
(1) (1) (1)
1 2[, ,...,]t t t

me e e represents the vector representation of each item node of the session s at time
1t ;

 rep-
resents the vector representation of each item node
of the session s at time t–1 ;
Equations (5)-(6) show the calculation formulas of
update gate

Equations (5)-(6) show the calculation formulas of update gate ()
,
t

s iz and reset gate ()
,
t

s ir . They determine
what information is to be retained and discarded. The candidate states are shown in Equation (7). The
final state is shown in Equation (8), jointly determined by the previous time state and the current
candidate state. rW , zW , 2d d

tW R and rU , zU , d d
tU R control the weights.

Generating session embedding
In this section, we compute the final session representation. The item embeddings trained by GGNN will
be fed to the self-attention mechanism for training. This reduces the reliance on external information by
utilizing self-attention mechanisms to better focus on all inputs in the session. The process is as follows:

 1 2 3[, , ,...,]q q
mQ W E W e e e e (9)

 1 2 3[, , ,...,]k k
mK W E W e e e e (10)

 1 2 3[, , ,...,]v v
mV W E W e e e e (11)

T()()soft max ()

q k
vW E W EH W E

d
 (12)

In Equations (9)-(11): Q denotes the query matrix, K denotes the key matrix, and V denotes the value
matrix. qW , kW and vW are the parameter matrixes of the linear mapping. Softmax represents the
activation function. H represents the output.

We add a feedforward network layer after a self-attention mechanism layer. We utilize a non-linear
activation function to improve the model’s non-linear capability, add residual connection to mitigate the
loss incurred during model transmission, and add dropout to reduce the potential issue of overfitting.

 1 1 2 2Dropout(LeakyRELU()P H HW b W b . (13)

In order to collect additional feature information from the nodes, we created a multi-layered self-attention
mechanism. The definition is as follows: the first layer input are the item vectors obtained by training the
gated graph neural network.

 () (1)()m mP multi layer P . (14)

User’s interests and preferences change dynamically. In a session, the long-term interest is reflected in all
clicked items, which recently clicked can better reflect the short- term interest. We obtain the final interest
representation by combining two interests. The embedding vector me of last item ,s mv in session s is
used to represent the short-term interest. Applying soft attention mechanism to calculate long-term
interests.

 l ms e (15)

 T
1 2()i m iq W p W p b (16)

1

m

g i i
i

s p
,
 (17)

where 1W , 2
d dW R and dq R are the training parameters. Finally, a linear transformation of the

short- and long-term interests was used to obtain the final session interest representation.
 3[;]c l gs W s s

.
 (18)

Recommendation prediction
For each candidate item, we then calculate the score. Calculation of the model’s output vector by means of
a softmax function.

 T
i c iz s e (19)

 softmax()y z , (20)

 and reset gate

Equations (5)-(6) show the calculation formulas of update gate ()
,
t

s iz and reset gate ()
,
t

s ir . They determine
what information is to be retained and discarded. The candidate states are shown in Equation (7). The
final state is shown in Equation (8), jointly determined by the previous time state and the current
candidate state. rW , zW , 2d d

tW R and rU , zU , d d
tU R control the weights.

Generating session embedding
In this section, we compute the final session representation. The item embeddings trained by GGNN will
be fed to the self-attention mechanism for training. This reduces the reliance on external information by
utilizing self-attention mechanisms to better focus on all inputs in the session. The process is as follows:

 1 2 3[, , ,...,]q q
mQ W E W e e e e (9)

 1 2 3[, , ,...,]k k
mK W E W e e e e (10)

 1 2 3[, , ,...,]v v
mV W E W e e e e (11)

T()()soft max ()

q k
vW E W EH W E

d
 (12)

In Equations (9)-(11): Q denotes the query matrix, K denotes the key matrix, and V denotes the value
matrix. qW , kW and vW are the parameter matrixes of the linear mapping. Softmax represents the
activation function. H represents the output.

We add a feedforward network layer after a self-attention mechanism layer. We utilize a non-linear
activation function to improve the model’s non-linear capability, add residual connection to mitigate the
loss incurred during model transmission, and add dropout to reduce the potential issue of overfitting.

 1 1 2 2Dropout(LeakyRELU()P H HW b W b . (13)

In order to collect additional feature information from the nodes, we created a multi-layered self-attention
mechanism. The definition is as follows: the first layer input are the item vectors obtained by training the
gated graph neural network.

 () (1)()m mP multi layer P . (14)

User’s interests and preferences change dynamically. In a session, the long-term interest is reflected in all
clicked items, which recently clicked can better reflect the short- term interest. We obtain the final interest
representation by combining two interests. The embedding vector me of last item ,s mv in session s is
used to represent the short-term interest. Applying soft attention mechanism to calculate long-term
interests.

 l ms e (15)

 T
1 2()i m iq W p W p b (16)

1

m

g i i
i

s p
,
 (17)

where 1W , 2
d dW R and dq R are the training parameters. Finally, a linear transformation of the

short- and long-term interests was used to obtain the final session interest representation.
 3[;]c l gs W s s

.
 (18)

Recommendation prediction
For each candidate item, we then calculate the score. Calculation of the model’s output vector by means of
a softmax function.

 T
i c iz s e (19)

 softmax()y z , (20)

. They determine
what information is to be retained and discarded. The
candidate states are shown in Equation (7). The final
state is shown in Equation (8), jointly determined by
the previous time state and the current candidate
state.

Equations (5)-(6) show the calculation formulas of update gate ()
,
t

s iz and reset gate ()
,
t

s ir . They determine
what information is to be retained and discarded. The candidate states are shown in Equation (7). The
final state is shown in Equation (8), jointly determined by the previous time state and the current
candidate state. rW , zW , 2d d

tW R and rU , zU , d d
tU R control the weights.

Generating session embedding
In this section, we compute the final session representation. The item embeddings trained by GGNN will
be fed to the self-attention mechanism for training. This reduces the reliance on external information by
utilizing self-attention mechanisms to better focus on all inputs in the session. The process is as follows:

 1 2 3[, , ,...,]q q
mQ W E W e e e e (9)

 1 2 3[, , ,...,]k k
mK W E W e e e e (10)

 1 2 3[, , ,...,]v v
mV W E W e e e e (11)

T()()soft max ()

q k
vW E W EH W E

d
 (12)

In Equations (9)-(11): Q denotes the query matrix, K denotes the key matrix, and V denotes the value
matrix. qW , kW and vW are the parameter matrixes of the linear mapping. Softmax represents the
activation function. H represents the output.

We add a feedforward network layer after a self-attention mechanism layer. We utilize a non-linear
activation function to improve the model’s non-linear capability, add residual connection to mitigate the
loss incurred during model transmission, and add dropout to reduce the potential issue of overfitting.

 1 1 2 2Dropout(LeakyRELU()P H HW b W b . (13)

In order to collect additional feature information from the nodes, we created a multi-layered self-attention
mechanism. The definition is as follows: the first layer input are the item vectors obtained by training the
gated graph neural network.

 () (1)()m mP multi layer P . (14)

User’s interests and preferences change dynamically. In a session, the long-term interest is reflected in all
clicked items, which recently clicked can better reflect the short- term interest. We obtain the final interest
representation by combining two interests. The embedding vector me of last item ,s mv in session s is
used to represent the short-term interest. Applying soft attention mechanism to calculate long-term
interests.

 l ms e (15)

 T
1 2()i m iq W p W p b (16)

1

m

g i i
i

s p
,
 (17)

where 1W , 2
d dW R and dq R are the training parameters. Finally, a linear transformation of the

short- and long-term interests was used to obtain the final session interest representation.
 3[;]c l gs W s s

.
 (18)

Recommendation prediction
For each candidate item, we then calculate the score. Calculation of the model’s output vector by means of
a softmax function.

 T
i c iz s e (19)

 softmax()y z , (20)

 and

Equations (5)-(6) show the calculation formulas of update gate ()
,
t

s iz and reset gate ()
,
t

s ir . They determine
what information is to be retained and discarded. The candidate states are shown in Equation (7). The
final state is shown in Equation (8), jointly determined by the previous time state and the current
candidate state. rW , zW , 2d d

tW R and rU , zU , d d
tU R control the weights.

Generating session embedding
In this section, we compute the final session representation. The item embeddings trained by GGNN will
be fed to the self-attention mechanism for training. This reduces the reliance on external information by
utilizing self-attention mechanisms to better focus on all inputs in the session. The process is as follows:

 1 2 3[, , ,...,]q q
mQ W E W e e e e (9)

 1 2 3[, , ,...,]k k
mK W E W e e e e (10)

 1 2 3[, , ,...,]v v
mV W E W e e e e (11)

T()()soft max ()

q k
vW E W EH W E

d
 (12)

In Equations (9)-(11): Q denotes the query matrix, K denotes the key matrix, and V denotes the value
matrix. qW , kW and vW are the parameter matrixes of the linear mapping. Softmax represents the
activation function. H represents the output.

We add a feedforward network layer after a self-attention mechanism layer. We utilize a non-linear
activation function to improve the model’s non-linear capability, add residual connection to mitigate the
loss incurred during model transmission, and add dropout to reduce the potential issue of overfitting.

 1 1 2 2Dropout(LeakyRELU()P H HW b W b . (13)

In order to collect additional feature information from the nodes, we created a multi-layered self-attention
mechanism. The definition is as follows: the first layer input are the item vectors obtained by training the
gated graph neural network.

 () (1)()m mP multi layer P . (14)

User’s interests and preferences change dynamically. In a session, the long-term interest is reflected in all
clicked items, which recently clicked can better reflect the short- term interest. We obtain the final interest
representation by combining two interests. The embedding vector me of last item ,s mv in session s is
used to represent the short-term interest. Applying soft attention mechanism to calculate long-term
interests.

 l ms e (15)

 T
1 2()i m iq W p W p b (16)

1

m

g i i
i

s p
,
 (17)

where 1W , 2
d dW R and dq R are the training parameters. Finally, a linear transformation of the

short- and long-term interests was used to obtain the final session interest representation.
 3[;]c l gs W s s

.
 (18)

Recommendation prediction
For each candidate item, we then calculate the score. Calculation of the model’s output vector by means of
a softmax function.

 T
i c iz s e (19)

 softmax()y z , (20)

 control
the weights.

Generating session embedding
In this section, we compute the final session repre-
sentation. The item embeddings trained by GGNN
will be fed to the self-attention mechanism for train-
ing. This reduces the reliance on external informa-
tion by utilizing self-attention mechanisms to better
focus on all inputs in the session. The process is as
follows:

Equations (5)-(6) show the calculation formulas of update gate ()
,
t

s iz and reset gate ()
,
t

s ir . They determine
what information is to be retained and discarded. The candidate states are shown in Equation (7). The
final state is shown in Equation (8), jointly determined by the previous time state and the current
candidate state. rW , zW , 2d d

tW R and rU , zU , d d
tU R control the weights.

Generating session embedding
In this section, we compute the final session representation. The item embeddings trained by GGNN will
be fed to the self-attention mechanism for training. This reduces the reliance on external information by
utilizing self-attention mechanisms to better focus on all inputs in the session. The process is as follows:

 1 2 3[, , ,...,]q q
mQ W E W e e e e (9)

 1 2 3[, , ,...,]k k
mK W E W e e e e (10)

 1 2 3[, , ,...,]v v
mV W E W e e e e (11)

T()()soft max ()

q k
vW E W EH W E

d
 (12)

In Equations (9)-(11): Q denotes the query matrix, K denotes the key matrix, and V denotes the value
matrix. qW , kW and vW are the parameter matrixes of the linear mapping. Softmax represents the
activation function. H represents the output.

We add a feedforward network layer after a self-attention mechanism layer. We utilize a non-linear
activation function to improve the model’s non-linear capability, add residual connection to mitigate the
loss incurred during model transmission, and add dropout to reduce the potential issue of overfitting.

 1 1 2 2Dropout(LeakyRELU()P H HW b W b . (13)

In order to collect additional feature information from the nodes, we created a multi-layered self-attention
mechanism. The definition is as follows: the first layer input are the item vectors obtained by training the
gated graph neural network.

 () (1)()m mP multi layer P . (14)

User’s interests and preferences change dynamically. In a session, the long-term interest is reflected in all
clicked items, which recently clicked can better reflect the short- term interest. We obtain the final interest
representation by combining two interests. The embedding vector me of last item ,s mv in session s is
used to represent the short-term interest. Applying soft attention mechanism to calculate long-term
interests.

 l ms e (15)

 T
1 2()i m iq W p W p b (16)

1

m

g i i
i

s p
,
 (17)

where 1W , 2
d dW R and dq R are the training parameters. Finally, a linear transformation of the

short- and long-term interests was used to obtain the final session interest representation.
 3[;]c l gs W s s

.
 (18)

Recommendation prediction
For each candidate item, we then calculate the score. Calculation of the model’s output vector by means of
a softmax function.

 T
i c iz s e (19)

 softmax()y z , (20)

(9)

Equations (5)-(6) show the calculation formulas of update gate ()
,
t

s iz and reset gate ()
,
t

s ir . They determine
what information is to be retained and discarded. The candidate states are shown in Equation (7). The
final state is shown in Equation (8), jointly determined by the previous time state and the current
candidate state. rW , zW , 2d d

tW R and rU , zU , d d
tU R control the weights.

Generating session embedding
In this section, we compute the final session representation. The item embeddings trained by GGNN will
be fed to the self-attention mechanism for training. This reduces the reliance on external information by
utilizing self-attention mechanisms to better focus on all inputs in the session. The process is as follows:

 1 2 3[, , ,...,]q q
mQ W E W e e e e (9)

 1 2 3[, , ,...,]k k
mK W E W e e e e (10)

 1 2 3[, , ,...,]v v
mV W E W e e e e (11)

T()()soft max ()

q k
vW E W EH W E

d
 (12)

In Equations (9)-(11): Q denotes the query matrix, K denotes the key matrix, and V denotes the value
matrix. qW , kW and vW are the parameter matrixes of the linear mapping. Softmax represents the
activation function. H represents the output.

We add a feedforward network layer after a self-attention mechanism layer. We utilize a non-linear
activation function to improve the model’s non-linear capability, add residual connection to mitigate the
loss incurred during model transmission, and add dropout to reduce the potential issue of overfitting.

 1 1 2 2Dropout(LeakyRELU()P H HW b W b . (13)

In order to collect additional feature information from the nodes, we created a multi-layered self-attention
mechanism. The definition is as follows: the first layer input are the item vectors obtained by training the
gated graph neural network.

 () (1)()m mP multi layer P . (14)

User’s interests and preferences change dynamically. In a session, the long-term interest is reflected in all
clicked items, which recently clicked can better reflect the short- term interest. We obtain the final interest
representation by combining two interests. The embedding vector me of last item ,s mv in session s is
used to represent the short-term interest. Applying soft attention mechanism to calculate long-term
interests.

 l ms e (15)

 T
1 2()i m iq W p W p b (16)

1

m

g i i
i

s p
,
 (17)

where 1W , 2
d dW R and dq R are the training parameters. Finally, a linear transformation of the

short- and long-term interests was used to obtain the final session interest representation.
 3[;]c l gs W s s

.
 (18)

Recommendation prediction
For each candidate item, we then calculate the score. Calculation of the model’s output vector by means of
a softmax function.

 T
i c iz s e (19)

 softmax()y z , (20)

(10)

Equations (5)-(6) show the calculation formulas of update gate ()
,
t

s iz and reset gate ()
,
t

s ir . They determine
what information is to be retained and discarded. The candidate states are shown in Equation (7). The
final state is shown in Equation (8), jointly determined by the previous time state and the current
candidate state. rW , zW , 2d d

tW R and rU , zU , d d
tU R control the weights.

Generating session embedding
In this section, we compute the final session representation. The item embeddings trained by GGNN will
be fed to the self-attention mechanism for training. This reduces the reliance on external information by
utilizing self-attention mechanisms to better focus on all inputs in the session. The process is as follows:

 1 2 3[, , ,...,]q q
mQ W E W e e e e (9)

 1 2 3[, , ,...,]k k
mK W E W e e e e (10)

 1 2 3[, , ,...,]v v
mV W E W e e e e (11)

T()()soft max ()

q k
vW E W EH W E

d
 (12)

In Equations (9)-(11): Q denotes the query matrix, K denotes the key matrix, and V denotes the value
matrix. qW , kW and vW are the parameter matrixes of the linear mapping. Softmax represents the
activation function. H represents the output.

We add a feedforward network layer after a self-attention mechanism layer. We utilize a non-linear
activation function to improve the model’s non-linear capability, add residual connection to mitigate the
loss incurred during model transmission, and add dropout to reduce the potential issue of overfitting.

 1 1 2 2Dropout(LeakyRELU()P H HW b W b . (13)

In order to collect additional feature information from the nodes, we created a multi-layered self-attention
mechanism. The definition is as follows: the first layer input are the item vectors obtained by training the
gated graph neural network.

 () (1)()m mP multi layer P . (14)

User’s interests and preferences change dynamically. In a session, the long-term interest is reflected in all
clicked items, which recently clicked can better reflect the short- term interest. We obtain the final interest
representation by combining two interests. The embedding vector me of last item ,s mv in session s is
used to represent the short-term interest. Applying soft attention mechanism to calculate long-term
interests.

 l ms e (15)

 T
1 2()i m iq W p W p b (16)

1

m

g i i
i

s p
,
 (17)

where 1W , 2
d dW R and dq R are the training parameters. Finally, a linear transformation of the

short- and long-term interests was used to obtain the final session interest representation.
 3[;]c l gs W s s

.
 (18)

Recommendation prediction
For each candidate item, we then calculate the score. Calculation of the model’s output vector by means of
a softmax function.

 T
i c iz s e (19)

 softmax()y z , (20)

(11)

Equations (5)-(6) show the calculation formulas of update gate ()
,
t

s iz and reset gate ()
,
t

s ir . They determine
what information is to be retained and discarded. The candidate states are shown in Equation (7). The
final state is shown in Equation (8), jointly determined by the previous time state and the current
candidate state. rW , zW , 2d d

tW R and rU , zU , d d
tU R control the weights.

Generating session embedding
In this section, we compute the final session representation. The item embeddings trained by GGNN will
be fed to the self-attention mechanism for training. This reduces the reliance on external information by
utilizing self-attention mechanisms to better focus on all inputs in the session. The process is as follows:

 1 2 3[, , ,...,]q q
mQ W E W e e e e (9)

 1 2 3[, , ,...,]k k
mK W E W e e e e (10)

 1 2 3[, , ,...,]v v
mV W E W e e e e (11)

T()()soft max ()

q k
vW E W EH W E

d
 (12)

In Equations (9)-(11): Q denotes the query matrix, K denotes the key matrix, and V denotes the value
matrix. qW , kW and vW are the parameter matrixes of the linear mapping. Softmax represents the
activation function. H represents the output.

We add a feedforward network layer after a self-attention mechanism layer. We utilize a non-linear
activation function to improve the model’s non-linear capability, add residual connection to mitigate the
loss incurred during model transmission, and add dropout to reduce the potential issue of overfitting.

 1 1 2 2Dropout(LeakyRELU()P H HW b W b . (13)

In order to collect additional feature information from the nodes, we created a multi-layered self-attention
mechanism. The definition is as follows: the first layer input are the item vectors obtained by training the
gated graph neural network.

 () (1)()m mP multi layer P . (14)

User’s interests and preferences change dynamically. In a session, the long-term interest is reflected in all
clicked items, which recently clicked can better reflect the short- term interest. We obtain the final interest
representation by combining two interests. The embedding vector me of last item ,s mv in session s is
used to represent the short-term interest. Applying soft attention mechanism to calculate long-term
interests.

 l ms e (15)

 T
1 2()i m iq W p W p b (16)

1

m

g i i
i

s p
,
 (17)

where 1W , 2
d dW R and dq R are the training parameters. Finally, a linear transformation of the

short- and long-term interests was used to obtain the final session interest representation.
 3[;]c l gs W s s

.
 (18)

Recommendation prediction
For each candidate item, we then calculate the score. Calculation of the model’s output vector by means of
a softmax function.

 T
i c iz s e (19)

 softmax()y z , (20)

(12)

In Equations (9)-(11): Q denotes the query matrix, K
denotes the key matrix, and V denotes the value ma-
trix. W q , W k and W v are the parameter matrixes of the
linear mapping. Softmax represents the activation
function. H represents the output.
We add a feedforward network layer after a self-at-
tention mechanism layer. We utilize a non-lin-
ear activation function to improve the model’s
non-linear capability, add residual connection to
mitigate the loss incurred during model transmis-
sion, and add dropout to reduce the potential issue
of overfitting.

Information Technology and Control 2025/4/541264

Equations (5)-(6) show the calculation formulas of update gate ()
,
t

s iz and reset gate ()
,
t

s ir . They determine
what information is to be retained and discarded. The candidate states are shown in Equation (7). The
final state is shown in Equation (8), jointly determined by the previous time state and the current
candidate state. rW , zW , 2d d

tW R and rU , zU , d d
tU R control the weights.

Generating session embedding
In this section, we compute the final session representation. The item embeddings trained by GGNN will
be fed to the self-attention mechanism for training. This reduces the reliance on external information by
utilizing self-attention mechanisms to better focus on all inputs in the session. The process is as follows:

 1 2 3[, , ,...,]q q
mQ W E W e e e e (9)

 1 2 3[, , ,...,]k k
mK W E W e e e e (10)

 1 2 3[, , ,...,]v v
mV W E W e e e e (11)

T()()soft max ()

q k
vW E W EH W E

d
 (12)

In Equations (9)-(11): Q denotes the query matrix, K denotes the key matrix, and V denotes the value
matrix. qW , kW and vW are the parameter matrixes of the linear mapping. Softmax represents the
activation function. H represents the output.

We add a feedforward network layer after a self-attention mechanism layer. We utilize a non-linear
activation function to improve the model’s non-linear capability, add residual connection to mitigate the
loss incurred during model transmission, and add dropout to reduce the potential issue of overfitting.

 1 1 2 2Dropout(LeakyRELU()P H HW b W b . (13)

In order to collect additional feature information from the nodes, we created a multi-layered self-attention
mechanism. The definition is as follows: the first layer input are the item vectors obtained by training the
gated graph neural network.

 () (1)()m mP multi layer P . (14)

User’s interests and preferences change dynamically. In a session, the long-term interest is reflected in all
clicked items, which recently clicked can better reflect the short- term interest. We obtain the final interest
representation by combining two interests. The embedding vector me of last item ,s mv in session s is
used to represent the short-term interest. Applying soft attention mechanism to calculate long-term
interests.

 l ms e (15)

 T
1 2()i m iq W p W p b (16)

1

m

g i i
i

s p
,
 (17)

where 1W , 2
d dW R and dq R are the training parameters. Finally, a linear transformation of the

short- and long-term interests was used to obtain the final session interest representation.
 3[;]c l gs W s s

.
 (18)

Recommendation prediction
For each candidate item, we then calculate the score. Calculation of the model’s output vector by means of
a softmax function.

 T
i c iz s e (19)

 softmax()y z , (20)

(13)

In order to collect additional feature information
from the nodes, we created a multi-layered self-at-
tention mechanism. The definition is as follows: the
first layer input are the item vectors obtained by
training the gated graph neural network.

Equations (5)-(6) show the calculation formulas of update gate ()
,
t

s iz and reset gate ()
,
t

s ir . They determine
what information is to be retained and discarded. The candidate states are shown in Equation (7). The
final state is shown in Equation (8), jointly determined by the previous time state and the current
candidate state. rW , zW , 2d d

tW R and rU , zU , d d
tU R control the weights.

Generating session embedding
In this section, we compute the final session representation. The item embeddings trained by GGNN will
be fed to the self-attention mechanism for training. This reduces the reliance on external information by
utilizing self-attention mechanisms to better focus on all inputs in the session. The process is as follows:

 1 2 3[, , ,...,]q q
mQ W E W e e e e (9)

 1 2 3[, , ,...,]k k
mK W E W e e e e (10)

 1 2 3[, , ,...,]v v
mV W E W e e e e (11)

T()()soft max ()

q k
vW E W EH W E

d
 (12)

In Equations (9)-(11): Q denotes the query matrix, K denotes the key matrix, and V denotes the value
matrix. qW , kW and vW are the parameter matrixes of the linear mapping. Softmax represents the
activation function. H represents the output.

We add a feedforward network layer after a self-attention mechanism layer. We utilize a non-linear
activation function to improve the model’s non-linear capability, add residual connection to mitigate the
loss incurred during model transmission, and add dropout to reduce the potential issue of overfitting.

 1 1 2 2Dropout(LeakyRELU()P H HW b W b . (13)

In order to collect additional feature information from the nodes, we created a multi-layered self-attention
mechanism. The definition is as follows: the first layer input are the item vectors obtained by training the
gated graph neural network.

 () (1)()m mP multi layer P . (14)

User’s interests and preferences change dynamically. In a session, the long-term interest is reflected in all
clicked items, which recently clicked can better reflect the short- term interest. We obtain the final interest
representation by combining two interests. The embedding vector me of last item ,s mv in session s is
used to represent the short-term interest. Applying soft attention mechanism to calculate long-term
interests.

 l ms e (15)

 T
1 2()i m iq W p W p b (16)

1

m

g i i
i

s p
,
 (17)

where 1W , 2
d dW R and dq R are the training parameters. Finally, a linear transformation of the

short- and long-term interests was used to obtain the final session interest representation.
 3[;]c l gs W s s

.
 (18)

Recommendation prediction
For each candidate item, we then calculate the score. Calculation of the model’s output vector by means of
a softmax function.

 T
i c iz s e (19)

 softmax()y z , (20)

(14)

User’s interests and preferences change dynamically.
In a session, the long-term interest is reflected in all
clicked items, which recently clicked can better reflect
the short- term interest. We obtain the final interest
representation by combining two interests. The em-
bedding vector em of last item vs,m in session s is used to
represent the short-term interest. Applying soft atten-
tion mechanism to calculate long-term interests.

Equations (5)-(6) show the calculation formulas of update gate ()
,
t

s iz and reset gate ()
,
t

s ir . They determine
what information is to be retained and discarded. The candidate states are shown in Equation (7). The
final state is shown in Equation (8), jointly determined by the previous time state and the current
candidate state. rW , zW , 2d d

tW R and rU , zU , d d
tU R control the weights.

Generating session embedding
In this section, we compute the final session representation. The item embeddings trained by GGNN will
be fed to the self-attention mechanism for training. This reduces the reliance on external information by
utilizing self-attention mechanisms to better focus on all inputs in the session. The process is as follows:

 1 2 3[, , ,...,]q q
mQ W E W e e e e (9)

 1 2 3[, , ,...,]k k
mK W E W e e e e (10)

 1 2 3[, , ,...,]v v
mV W E W e e e e (11)

T()()soft max ()

q k
vW E W EH W E

d
 (12)

In Equations (9)-(11): Q denotes the query matrix, K denotes the key matrix, and V denotes the value
matrix. qW , kW and vW are the parameter matrixes of the linear mapping. Softmax represents the
activation function. H represents the output.

We add a feedforward network layer after a self-attention mechanism layer. We utilize a non-linear
activation function to improve the model’s non-linear capability, add residual connection to mitigate the
loss incurred during model transmission, and add dropout to reduce the potential issue of overfitting.

 1 1 2 2Dropout(LeakyRELU()P H HW b W b . (13)

In order to collect additional feature information from the nodes, we created a multi-layered self-attention
mechanism. The definition is as follows: the first layer input are the item vectors obtained by training the
gated graph neural network.

 () (1)()m mP multi layer P . (14)

User’s interests and preferences change dynamically. In a session, the long-term interest is reflected in all
clicked items, which recently clicked can better reflect the short- term interest. We obtain the final interest
representation by combining two interests. The embedding vector me of last item ,s mv in session s is
used to represent the short-term interest. Applying soft attention mechanism to calculate long-term
interests.

 l ms e (15)

 T
1 2()i m iq W p W p b (16)

1

m

g i i
i

s p
,
 (17)

where 1W , 2
d dW R and dq R are the training parameters. Finally, a linear transformation of the

short- and long-term interests was used to obtain the final session interest representation.
 3[;]c l gs W s s

.
 (18)

Recommendation prediction
For each candidate item, we then calculate the score. Calculation of the model’s output vector by means of
a softmax function.

 T
i c iz s e (19)

 softmax()y z , (20)

(15)

Equations (5)-(6) show the calculation formulas of update gate ()
,
t

s iz and reset gate ()
,
t

s ir . They determine
what information is to be retained and discarded. The candidate states are shown in Equation (7). The
final state is shown in Equation (8), jointly determined by the previous time state and the current
candidate state. rW , zW , 2d d

tW R and rU , zU , d d
tU R control the weights.

Generating session embedding
In this section, we compute the final session representation. The item embeddings trained by GGNN will
be fed to the self-attention mechanism for training. This reduces the reliance on external information by
utilizing self-attention mechanisms to better focus on all inputs in the session. The process is as follows:

 1 2 3[, , ,...,]q q
mQ W E W e e e e (9)

 1 2 3[, , ,...,]k k
mK W E W e e e e (10)

 1 2 3[, , ,...,]v v
mV W E W e e e e (11)

T()()soft max ()

q k
vW E W EH W E

d
 (12)

In Equations (9)-(11): Q denotes the query matrix, K denotes the key matrix, and V denotes the value
matrix. qW , kW and vW are the parameter matrixes of the linear mapping. Softmax represents the
activation function. H represents the output.

We add a feedforward network layer after a self-attention mechanism layer. We utilize a non-linear
activation function to improve the model’s non-linear capability, add residual connection to mitigate the
loss incurred during model transmission, and add dropout to reduce the potential issue of overfitting.

 1 1 2 2Dropout(LeakyRELU()P H HW b W b . (13)

In order to collect additional feature information from the nodes, we created a multi-layered self-attention
mechanism. The definition is as follows: the first layer input are the item vectors obtained by training the
gated graph neural network.

 () (1)()m mP multi layer P . (14)

User’s interests and preferences change dynamically. In a session, the long-term interest is reflected in all
clicked items, which recently clicked can better reflect the short- term interest. We obtain the final interest
representation by combining two interests. The embedding vector me of last item ,s mv in session s is
used to represent the short-term interest. Applying soft attention mechanism to calculate long-term
interests.

 l ms e (15)

 T
1 2()i m iq W p W p b (16)

1

m

g i i
i

s p
,
 (17)

where 1W , 2
d dW R and dq R are the training parameters. Finally, a linear transformation of the

short- and long-term interests was used to obtain the final session interest representation.
 3[;]c l gs W s s

.
 (18)

Recommendation prediction
For each candidate item, we then calculate the score. Calculation of the model’s output vector by means of
a softmax function.

 T
i c iz s e (19)

 softmax()y z , (20)

(16)

Equations (5)-(6) show the calculation formulas of update gate ()
,
t

s iz and reset gate ()
,
t

s ir . They determine
what information is to be retained and discarded. The candidate states are shown in Equation (7). The
final state is shown in Equation (8), jointly determined by the previous time state and the current
candidate state. rW , zW , 2d d

tW R and rU , zU , d d
tU R control the weights.

Generating session embedding
In this section, we compute the final session representation. The item embeddings trained by GGNN will
be fed to the self-attention mechanism for training. This reduces the reliance on external information by
utilizing self-attention mechanisms to better focus on all inputs in the session. The process is as follows:

 1 2 3[, , ,...,]q q
mQ W E W e e e e (9)

 1 2 3[, , ,...,]k k
mK W E W e e e e (10)

 1 2 3[, , ,...,]v v
mV W E W e e e e (11)

T()()soft max ()

q k
vW E W EH W E

d
 (12)

In Equations (9)-(11): Q denotes the query matrix, K denotes the key matrix, and V denotes the value
matrix. qW , kW and vW are the parameter matrixes of the linear mapping. Softmax represents the
activation function. H represents the output.

We add a feedforward network layer after a self-attention mechanism layer. We utilize a non-linear
activation function to improve the model’s non-linear capability, add residual connection to mitigate the
loss incurred during model transmission, and add dropout to reduce the potential issue of overfitting.

 1 1 2 2Dropout(LeakyRELU()P H HW b W b . (13)

In order to collect additional feature information from the nodes, we created a multi-layered self-attention
mechanism. The definition is as follows: the first layer input are the item vectors obtained by training the
gated graph neural network.

 () (1)()m mP multi layer P . (14)

User’s interests and preferences change dynamically. In a session, the long-term interest is reflected in all
clicked items, which recently clicked can better reflect the short- term interest. We obtain the final interest
representation by combining two interests. The embedding vector me of last item ,s mv in session s is
used to represent the short-term interest. Applying soft attention mechanism to calculate long-term
interests.

 l ms e (15)

 T
1 2()i m iq W p W p b (16)

1

m

g i i
i

s p
,
 (17)

where 1W , 2
d dW R and dq R are the training parameters. Finally, a linear transformation of the

short- and long-term interests was used to obtain the final session interest representation.
 3[;]c l gs W s s

.
 (18)

Recommendation prediction
For each candidate item, we then calculate the score. Calculation of the model’s output vector by means of
a softmax function.

 T
i c iz s e (19)

 softmax()y z , (20)

(17)

where

Equations (5)-(6) show the calculation formulas of update gate ()
,
t

s iz and reset gate ()
,
t

s ir . They determine
what information is to be retained and discarded. The candidate states are shown in Equation (7). The
final state is shown in Equation (8), jointly determined by the previous time state and the current
candidate state. rW , zW , 2d d

tW R and rU , zU , d d
tU R control the weights.

Generating session embedding
In this section, we compute the final session representation. The item embeddings trained by GGNN will
be fed to the self-attention mechanism for training. This reduces the reliance on external information by
utilizing self-attention mechanisms to better focus on all inputs in the session. The process is as follows:

 1 2 3[, , ,...,]q q
mQ W E W e e e e (9)

 1 2 3[, , ,...,]k k
mK W E W e e e e (10)

 1 2 3[, , ,...,]v v
mV W E W e e e e (11)

T()()soft max ()

q k
vW E W EH W E

d
 (12)

In Equations (9)-(11): Q denotes the query matrix, K denotes the key matrix, and V denotes the value
matrix. qW , kW and vW are the parameter matrixes of the linear mapping. Softmax represents the
activation function. H represents the output.

We add a feedforward network layer after a self-attention mechanism layer. We utilize a non-linear
activation function to improve the model’s non-linear capability, add residual connection to mitigate the
loss incurred during model transmission, and add dropout to reduce the potential issue of overfitting.

 1 1 2 2Dropout(LeakyRELU()P H HW b W b . (13)

In order to collect additional feature information from the nodes, we created a multi-layered self-attention
mechanism. The definition is as follows: the first layer input are the item vectors obtained by training the
gated graph neural network.

 () (1)()m mP multi layer P . (14)

User’s interests and preferences change dynamically. In a session, the long-term interest is reflected in all
clicked items, which recently clicked can better reflect the short- term interest. We obtain the final interest
representation by combining two interests. The embedding vector me of last item ,s mv in session s is
used to represent the short-term interest. Applying soft attention mechanism to calculate long-term
interests.

 l ms e (15)

 T
1 2()i m iq W p W p b (16)

1

m

g i i
i

s p
,
 (17)

where 1W , 2
d dW R and dq R are the training parameters. Finally, a linear transformation of the

short- and long-term interests was used to obtain the final session interest representation.
 3[;]c l gs W s s

.
 (18)

Recommendation prediction
For each candidate item, we then calculate the score. Calculation of the model’s output vector by means of
a softmax function.

 T
i c iz s e (19)

 softmax()y z , (20)

 and

Equations (5)-(6) show the calculation formulas of update gate ()
,
t

s iz and reset gate ()
,
t

s ir . They determine
what information is to be retained and discarded. The candidate states are shown in Equation (7). The
final state is shown in Equation (8), jointly determined by the previous time state and the current
candidate state. rW , zW , 2d d

tW R and rU , zU , d d
tU R control the weights.

Generating session embedding
In this section, we compute the final session representation. The item embeddings trained by GGNN will
be fed to the self-attention mechanism for training. This reduces the reliance on external information by
utilizing self-attention mechanisms to better focus on all inputs in the session. The process is as follows:

 1 2 3[, , ,...,]q q
mQ W E W e e e e (9)

 1 2 3[, , ,...,]k k
mK W E W e e e e (10)

 1 2 3[, , ,...,]v v
mV W E W e e e e (11)

T()()soft max ()

q k
vW E W EH W E

d
 (12)

In Equations (9)-(11): Q denotes the query matrix, K denotes the key matrix, and V denotes the value
matrix. qW , kW and vW are the parameter matrixes of the linear mapping. Softmax represents the
activation function. H represents the output.

We add a feedforward network layer after a self-attention mechanism layer. We utilize a non-linear
activation function to improve the model’s non-linear capability, add residual connection to mitigate the
loss incurred during model transmission, and add dropout to reduce the potential issue of overfitting.

 1 1 2 2Dropout(LeakyRELU()P H HW b W b . (13)

In order to collect additional feature information from the nodes, we created a multi-layered self-attention
mechanism. The definition is as follows: the first layer input are the item vectors obtained by training the
gated graph neural network.

 () (1)()m mP multi layer P . (14)

User’s interests and preferences change dynamically. In a session, the long-term interest is reflected in all
clicked items, which recently clicked can better reflect the short- term interest. We obtain the final interest
representation by combining two interests. The embedding vector me of last item ,s mv in session s is
used to represent the short-term interest. Applying soft attention mechanism to calculate long-term
interests.

 l ms e (15)

 T
1 2()i m iq W p W p b (16)

1

m

g i i
i

s p
,
 (17)

where 1W , 2
d dW R and dq R are the training parameters. Finally, a linear transformation of the

short- and long-term interests was used to obtain the final session interest representation.
 3[;]c l gs W s s

.
 (18)

Recommendation prediction
For each candidate item, we then calculate the score. Calculation of the model’s output vector by means of
a softmax function.

 T
i c iz s e (19)

 softmax()y z , (20)

 are the training pa-
rameters. Finally, a linear transformation of the
short- and long-term interests was used to obtain
the final session interest representation.

Equations (5)-(6) show the calculation formulas of update gate ()
,
t

s iz and reset gate ()
,
t

s ir . They determine
what information is to be retained and discarded. The candidate states are shown in Equation (7). The
final state is shown in Equation (8), jointly determined by the previous time state and the current
candidate state. rW , zW , 2d d

tW R and rU , zU , d d
tU R control the weights.

Generating session embedding
In this section, we compute the final session representation. The item embeddings trained by GGNN will
be fed to the self-attention mechanism for training. This reduces the reliance on external information by
utilizing self-attention mechanisms to better focus on all inputs in the session. The process is as follows:

 1 2 3[, , ,...,]q q
mQ W E W e e e e (9)

 1 2 3[, , ,...,]k k
mK W E W e e e e (10)

 1 2 3[, , ,...,]v v
mV W E W e e e e (11)

T()()soft max ()

q k
vW E W EH W E

d
 (12)

In Equations (9)-(11): Q denotes the query matrix, K denotes the key matrix, and V denotes the value
matrix. qW , kW and vW are the parameter matrixes of the linear mapping. Softmax represents the
activation function. H represents the output.

We add a feedforward network layer after a self-attention mechanism layer. We utilize a non-linear
activation function to improve the model’s non-linear capability, add residual connection to mitigate the
loss incurred during model transmission, and add dropout to reduce the potential issue of overfitting.

 1 1 2 2Dropout(LeakyRELU()P H HW b W b . (13)

In order to collect additional feature information from the nodes, we created a multi-layered self-attention
mechanism. The definition is as follows: the first layer input are the item vectors obtained by training the
gated graph neural network.

 () (1)()m mP multi layer P . (14)

User’s interests and preferences change dynamically. In a session, the long-term interest is reflected in all
clicked items, which recently clicked can better reflect the short- term interest. We obtain the final interest
representation by combining two interests. The embedding vector me of last item ,s mv in session s is
used to represent the short-term interest. Applying soft attention mechanism to calculate long-term
interests.

 l ms e (15)

 T
1 2()i m iq W p W p b (16)

1

m

g i i
i

s p
,
 (17)

where 1W , 2
d dW R and dq R are the training parameters. Finally, a linear transformation of the

short- and long-term interests was used to obtain the final session interest representation.
 3[;]c l gs W s s

.
 (18)

Recommendation prediction
For each candidate item, we then calculate the score. Calculation of the model’s output vector by means of
a softmax function.

 T
i c iz s e (19)

 softmax()y z , (20)

(18)

Recommendation prediction
For each candidate item, we then calculate the score.
Calculation of the model’s output vector by means of
a softmax function.

Equations (5)-(6) show the calculation formulas of update gate ()
,
t

s iz and reset gate ()
,
t

s ir . They determine
what information is to be retained and discarded. The candidate states are shown in Equation (7). The
final state is shown in Equation (8), jointly determined by the previous time state and the current
candidate state. rW , zW , 2d d

tW R and rU , zU , d d
tU R control the weights.

Generating session embedding
In this section, we compute the final session representation. The item embeddings trained by GGNN will
be fed to the self-attention mechanism for training. This reduces the reliance on external information by
utilizing self-attention mechanisms to better focus on all inputs in the session. The process is as follows:

 1 2 3[, , ,...,]q q
mQ W E W e e e e (9)

 1 2 3[, , ,...,]k k
mK W E W e e e e (10)

 1 2 3[, , ,...,]v v
mV W E W e e e e (11)

T()()soft max ()

q k
vW E W EH W E

d
 (12)

In Equations (9)-(11): Q denotes the query matrix, K denotes the key matrix, and V denotes the value
matrix. qW , kW and vW are the parameter matrixes of the linear mapping. Softmax represents the
activation function. H represents the output.

We add a feedforward network layer after a self-attention mechanism layer. We utilize a non-linear
activation function to improve the model’s non-linear capability, add residual connection to mitigate the
loss incurred during model transmission, and add dropout to reduce the potential issue of overfitting.

 1 1 2 2Dropout(LeakyRELU()P H HW b W b . (13)

In order to collect additional feature information from the nodes, we created a multi-layered self-attention
mechanism. The definition is as follows: the first layer input are the item vectors obtained by training the
gated graph neural network.

 () (1)()m mP multi layer P . (14)

User’s interests and preferences change dynamically. In a session, the long-term interest is reflected in all
clicked items, which recently clicked can better reflect the short- term interest. We obtain the final interest
representation by combining two interests. The embedding vector me of last item ,s mv in session s is
used to represent the short-term interest. Applying soft attention mechanism to calculate long-term
interests.

 l ms e (15)

 T
1 2()i m iq W p W p b (16)

1

m

g i i
i

s p
,
 (17)

where 1W , 2
d dW R and dq R are the training parameters. Finally, a linear transformation of the

short- and long-term interests was used to obtain the final session interest representation.
 3[;]c l gs W s s

.
 (18)

Recommendation prediction
For each candidate item, we then calculate the score. Calculation of the model’s output vector by means of
a softmax function.

 T
i c iz s e (19)

 softmax()y z , (20)

(19)

Equations (5)-(6) show the calculation formulas of update gate ()
,
t

s iz and reset gate ()
,
t

s ir . They determine
what information is to be retained and discarded. The candidate states are shown in Equation (7). The
final state is shown in Equation (8), jointly determined by the previous time state and the current
candidate state. rW , zW , 2d d

tW R and rU , zU , d d
tU R control the weights.

Generating session embedding
In this section, we compute the final session representation. The item embeddings trained by GGNN will
be fed to the self-attention mechanism for training. This reduces the reliance on external information by
utilizing self-attention mechanisms to better focus on all inputs in the session. The process is as follows:

 1 2 3[, , ,...,]q q
mQ W E W e e e e (9)

 1 2 3[, , ,...,]k k
mK W E W e e e e (10)

 1 2 3[, , ,...,]v v
mV W E W e e e e (11)

T()()soft max ()

q k
vW E W EH W E

d
 (12)

In Equations (9)-(11): Q denotes the query matrix, K denotes the key matrix, and V denotes the value
matrix. qW , kW and vW are the parameter matrixes of the linear mapping. Softmax represents the
activation function. H represents the output.

We add a feedforward network layer after a self-attention mechanism layer. We utilize a non-linear
activation function to improve the model’s non-linear capability, add residual connection to mitigate the
loss incurred during model transmission, and add dropout to reduce the potential issue of overfitting.

 1 1 2 2Dropout(LeakyRELU()P H HW b W b . (13)

In order to collect additional feature information from the nodes, we created a multi-layered self-attention
mechanism. The definition is as follows: the first layer input are the item vectors obtained by training the
gated graph neural network.

 () (1)()m mP multi layer P . (14)

User’s interests and preferences change dynamically. In a session, the long-term interest is reflected in all
clicked items, which recently clicked can better reflect the short- term interest. We obtain the final interest
representation by combining two interests. The embedding vector me of last item ,s mv in session s is
used to represent the short-term interest. Applying soft attention mechanism to calculate long-term
interests.

 l ms e (15)

 T
1 2()i m iq W p W p b (16)

1

m

g i i
i

s p
,
 (17)

where 1W , 2
d dW R and dq R are the training parameters. Finally, a linear transformation of the

short- and long-term interests was used to obtain the final session interest representation.
 3[;]c l gs W s s

.
 (18)

Recommendation prediction
For each candidate item, we then calculate the score. Calculation of the model’s output vector by means of
a softmax function.

 T
i c iz s e (19)

 softmax()y z , (20) (20)

where ŷ is the probability of selecting item nodes
next time; ẑ represents all candidates’ recommenda-
tion scores.

where y is the probability of selecting item nodes next time; z represents all candidates’
recommendation scores.

1

log() (1) log(1)
n

i i i i
i

L y y y y
.
 (21)

The cross-entropy loss function is selected for the experiment, where iy and iy represent the truth and
predicted value, respectively. This model is trained using Back-Propagation Through Time (BPTT).

4. Experiments
Datasets
We select two commonly representative datasets, Diginetica and Yoochoose, for experiments. Table 1
shows the datasets information. The Diginetica dataset is from CIKM Cup 2016. In our experiments, we
selected only published transaction data. First, the data must be pre-processed according to the previous
studies [10], [21]. All sessions that contain an item in the session and items that appear less than five times
in the dataset are filtered out. At the same time, filter out the conversation information with a length of 1.
Next, another dataset of the experiment is introduced. The Yoochoose dataset is from the RecSys
Challenge 2015. We selected users’ browsing activities on e-commerce websites in the past six months.
We are using the same method to preprocess the dataset. Due to the importance of the Yoochoose dataset,
in order to minimise the possible impact of time changes on user preferences, we choose the
Yoochoose1/64 dataset with the most recent split time for the experiments.

Furthermore, we refer to the pre-processing method of [32]. Multiple sequences and corresponding label
data are generated by segmenting each input session sequence. For example, we divide a input session

,1 ,2 ,[, ,...,]s s s ms v v v into many subsequences. Such as ,1 ,2 ,3([,], ())s s sv v L v , where ,3()sL v is the label

data corresponding to the session, representing the next clicked item. ,1 ,2[,]s sv v is the session sequence
generated by segmentation.

Table 1

Specific statistics of datasets.
Statistics Diginetica Yoochoose1/64

Clicks 982,961 557,248

Items 43,097 16,766

Training sessions 719,470 369,859

Test sessions 60,858 55,898

Average length 5.12 6.16

Evaluation metrics
P@20 is the accuracy of correct recommendations among the top 20 recommendations. The mathematical
formula is as follows:

 @ 20 hitHP
N ,

 (22)

where N is total items; hitH is the number of correct recommendations in the recommended list.

MRR@20 is the average ranking of correct recommendations in the top 20 recommendations.
Recommendations that are not within 20 will be shown with 0. The mathematical formula is as follows:

(21)

The cross-entropy loss function is selected for the
experiment, where yi and ŷi represent the truth and
predicted value, respectively. This model is trained
using Back-Propagation Through Time (BPTT).

4. Experiments
Datasets
We select two commonly representative datasets,
Diginetica and Yoochoose, for experiments. Table 1
shows the datasets information. The Diginetica data-
set is from CIKM Cup 2016. In our experiments, we
selected only published transaction data. First, the
data must be pre-processed according to the previous
studies [10], [21]. All sessions that contain an item in
the session and items that appear less than five times in
the dataset are filtered out. At the same time, filter out
the conversation information with a length of 1. Next,
another dataset of the experiment is introduced. The
Yoochoose dataset is from the RecSys Challenge 2015.
We selected users’ browsing activities on e-commerce
websites in the past six months. We are using the same
method to preprocess the dataset. Due to the impor-
tance of the Yoochoose dataset, in order to minimise
the possible impact of time changes on user preferenc-
es, we choose the Yoochoose1/64 dataset with the most
recent split time for the experiments.

Statistics Diginetica Yoochoose1/64

Clicks 982,961 557,248

Items 43,097 16,766

Training sessions 719,470 369,859

Test sessions 60,858 55,898

Average length 5.12 6.16

Table 1
Specific statistics of datasets.

Furthermore, we refer to the pre-processing method
of [32]. Multiple sequences and corresponding label
data are generated by segmenting each input session
sequence. For example, we divide a input session

1265Information Technology and Control 2025/4/54

where y is the probability of selecting item nodes next time; z represents all candidates’
recommendation scores.

1

log() (1) log(1)
n

i i i i
i

L y y y y
.
 (21)

The cross-entropy loss function is selected for the experiment, where iy and iy represent the truth and
predicted value, respectively. This model is trained using Back-Propagation Through Time (BPTT).

4. Experiments
Datasets
We select two commonly representative datasets, Diginetica and Yoochoose, for experiments. Table 1
shows the datasets information. The Diginetica dataset is from CIKM Cup 2016. In our experiments, we
selected only published transaction data. First, the data must be pre-processed according to the previous
studies [10], [21]. All sessions that contain an item in the session and items that appear less than five times
in the dataset are filtered out. At the same time, filter out the conversation information with a length of 1.
Next, another dataset of the experiment is introduced. The Yoochoose dataset is from the RecSys
Challenge 2015. We selected users’ browsing activities on e-commerce websites in the past six months.
We are using the same method to preprocess the dataset. Due to the importance of the Yoochoose dataset,
in order to minimise the possible impact of time changes on user preferences, we choose the
Yoochoose1/64 dataset with the most recent split time for the experiments.

Furthermore, we refer to the pre-processing method of [32]. Multiple sequences and corresponding label
data are generated by segmenting each input session sequence. For example, we divide a input session

,1 ,2 ,[, ,...,]s s s ms v v v into many subsequences. Such as ,1 ,2 ,3([,], ())s s sv v L v , where ,3()sL v is the label

data corresponding to the session, representing the next clicked item. ,1 ,2[,]s sv v is the session sequence
generated by segmentation.

Table 1

Specific statistics of datasets.
Statistics Diginetica Yoochoose1/64

Clicks 982,961 557,248

Items 43,097 16,766

Training sessions 719,470 369,859

Test sessions 60,858 55,898

Average length 5.12 6.16

Evaluation metrics
P@20 is the accuracy of correct recommendations among the top 20 recommendations. The mathematical
formula is as follows:

 @ 20 hitHP
N ,

 (22)

where N is total items; hitH is the number of correct recommendations in the recommended list.

MRR@20 is the average ranking of correct recommendations in the top 20 recommendations.
Recommendations that are not within 20 will be shown with 0. The mathematical formula is as follows:

 into many subsequences. Such
as

where y is the probability of selecting item nodes next time; z represents all candidates’
recommendation scores.

1

log() (1) log(1)
n

i i i i
i

L y y y y
.
 (21)

The cross-entropy loss function is selected for the experiment, where iy and iy represent the truth and
predicted value, respectively. This model is trained using Back-Propagation Through Time (BPTT).

4. Experiments
Datasets
We select two commonly representative datasets, Diginetica and Yoochoose, for experiments. Table 1
shows the datasets information. The Diginetica dataset is from CIKM Cup 2016. In our experiments, we
selected only published transaction data. First, the data must be pre-processed according to the previous
studies [10], [21]. All sessions that contain an item in the session and items that appear less than five times
in the dataset are filtered out. At the same time, filter out the conversation information with a length of 1.
Next, another dataset of the experiment is introduced. The Yoochoose dataset is from the RecSys
Challenge 2015. We selected users’ browsing activities on e-commerce websites in the past six months.
We are using the same method to preprocess the dataset. Due to the importance of the Yoochoose dataset,
in order to minimise the possible impact of time changes on user preferences, we choose the
Yoochoose1/64 dataset with the most recent split time for the experiments.

Furthermore, we refer to the pre-processing method of [32]. Multiple sequences and corresponding label
data are generated by segmenting each input session sequence. For example, we divide a input session

,1 ,2 ,[, ,...,]s s s ms v v v into many subsequences. Such as ,1 ,2 ,3([,], ())s s sv v L v , where ,3()sL v is the label

data corresponding to the session, representing the next clicked item. ,1 ,2[,]s sv v is the session sequence
generated by segmentation.

Table 1

Specific statistics of datasets.
Statistics Diginetica Yoochoose1/64

Clicks 982,961 557,248

Items 43,097 16,766

Training sessions 719,470 369,859

Test sessions 60,858 55,898

Average length 5.12 6.16

Evaluation metrics
P@20 is the accuracy of correct recommendations among the top 20 recommendations. The mathematical
formula is as follows:

 @ 20 hitHP
N ,

 (22)

where N is total items; hitH is the number of correct recommendations in the recommended list.

MRR@20 is the average ranking of correct recommendations in the top 20 recommendations.
Recommendations that are not within 20 will be shown with 0. The mathematical formula is as follows:

, where

where y is the probability of selecting item nodes next time; z represents all candidates’
recommendation scores.

1

log() (1) log(1)
n

i i i i
i

L y y y y
.
 (21)

The cross-entropy loss function is selected for the experiment, where iy and iy represent the truth and
predicted value, respectively. This model is trained using Back-Propagation Through Time (BPTT).

4. Experiments
Datasets
We select two commonly representative datasets, Diginetica and Yoochoose, for experiments. Table 1
shows the datasets information. The Diginetica dataset is from CIKM Cup 2016. In our experiments, we
selected only published transaction data. First, the data must be pre-processed according to the previous
studies [10], [21]. All sessions that contain an item in the session and items that appear less than five times
in the dataset are filtered out. At the same time, filter out the conversation information with a length of 1.
Next, another dataset of the experiment is introduced. The Yoochoose dataset is from the RecSys
Challenge 2015. We selected users’ browsing activities on e-commerce websites in the past six months.
We are using the same method to preprocess the dataset. Due to the importance of the Yoochoose dataset,
in order to minimise the possible impact of time changes on user preferences, we choose the
Yoochoose1/64 dataset with the most recent split time for the experiments.

Furthermore, we refer to the pre-processing method of [32]. Multiple sequences and corresponding label
data are generated by segmenting each input session sequence. For example, we divide a input session

,1 ,2 ,[, ,...,]s s s ms v v v into many subsequences. Such as ,1 ,2 ,3([,], ())s s sv v L v , where ,3()sL v is the label

data corresponding to the session, representing the next clicked item. ,1 ,2[,]s sv v is the session sequence
generated by segmentation.

Table 1

Specific statistics of datasets.
Statistics Diginetica Yoochoose1/64

Clicks 982,961 557,248

Items 43,097 16,766

Training sessions 719,470 369,859

Test sessions 60,858 55,898

Average length 5.12 6.16

Evaluation metrics
P@20 is the accuracy of correct recommendations among the top 20 recommendations. The mathematical
formula is as follows:

 @ 20 hitHP
N ,

 (22)

where N is total items; hitH is the number of correct recommendations in the recommended list.

MRR@20 is the average ranking of correct recommendations in the top 20 recommendations.
Recommendations that are not within 20 will be shown with 0. The mathematical formula is as follows:

 is the label data
corresponding to the session, representing the next
clicked item. [vs,1,vs,2] is the session sequence gener-
ated by segmentation.

Evaluation metrics
P@20 is the accuracy of correct recommendations
among the top 20 recommendations. The mathemat-
ical formula is as follows:

where y is the probability of selecting item nodes next time; z represents all candidates’
recommendation scores.

1

log() (1) log(1)
n

i i i i
i

L y y y y
.
 (21)

The cross-entropy loss function is selected for the experiment, where iy and iy represent the truth and
predicted value, respectively. This model is trained using Back-Propagation Through Time (BPTT).

4. Experiments
Datasets
We select two commonly representative datasets, Diginetica and Yoochoose, for experiments. Table 1
shows the datasets information. The Diginetica dataset is from CIKM Cup 2016. In our experiments, we
selected only published transaction data. First, the data must be pre-processed according to the previous
studies [10], [21]. All sessions that contain an item in the session and items that appear less than five times
in the dataset are filtered out. At the same time, filter out the conversation information with a length of 1.
Next, another dataset of the experiment is introduced. The Yoochoose dataset is from the RecSys
Challenge 2015. We selected users’ browsing activities on e-commerce websites in the past six months.
We are using the same method to preprocess the dataset. Due to the importance of the Yoochoose dataset,
in order to minimise the possible impact of time changes on user preferences, we choose the
Yoochoose1/64 dataset with the most recent split time for the experiments.

Furthermore, we refer to the pre-processing method of [32]. Multiple sequences and corresponding label
data are generated by segmenting each input session sequence. For example, we divide a input session

,1 ,2 ,[, ,...,]s s s ms v v v into many subsequences. Such as ,1 ,2 ,3([,], ())s s sv v L v , where ,3()sL v is the label

data corresponding to the session, representing the next clicked item. ,1 ,2[,]s sv v is the session sequence
generated by segmentation.

Table 1

Specific statistics of datasets.
Statistics Diginetica Yoochoose1/64

Clicks 982,961 557,248

Items 43,097 16,766

Training sessions 719,470 369,859

Test sessions 60,858 55,898

Average length 5.12 6.16

Evaluation metrics
P@20 is the accuracy of correct recommendations among the top 20 recommendations. The mathematical
formula is as follows:

 @ 20 hitHP
N ,

 (22)

where N is total items; hitH is the number of correct recommendations in the recommended list.

MRR@20 is the average ranking of correct recommendations in the top 20 recommendations.
Recommendations that are not within 20 will be shown with 0. The mathematical formula is as follows:

(22)

where N is total items; Hhit is the number of correct
recommendations in the recommended list.
MRR@20 is the average ranking of correct recom-
mendations in the top 20 recommendations. Rec-
ommendations that are not within 20 will be shown
with 0. The mathematical formula is as follows:

1

1 1@ 20
N

i i

MRR
N rank ,

 (23)

where N is total items; irank is the rank given to the i recommended item in the list.

Table 2

Comparison of the performance of the RESR-GNN with other baseline models.

Method
Diginetica Yoochoose1/64

P@20(%) MRR@20(%) P@20(%) MRR@20(%)

POP 0.89 0.20 6.71 1.65

Item-KNN 35.75 11.57 51.60 21.81

BPR-MF 5.24 1.98 31.31 12.08

FPMC 26.53 6.95 45.62 15.01

GRU4Rec 29.45 8.33 60.64 22.89

NARM 49.70 16.17 68.32 28.63

STAMP 45.64 14.32 68.74 29.67

SR-GNN 50.73 17.59 70.57 30.94

RESR-GNN 52.33 18.56 71.65 31.67

Parameter setup
Next, we introduce the experimental parameter Settings. Based on the parameter settings of the previous
model, the parameters of the RESR-GNN model are designed. Set the hidden layer dimension to 100.
Selecting appropriate parameter values can improve the running speed and achieve the optimal
convergence accuracy. The initial vector is randomly dimensioned to 100. Set the batch size to 100 and
model epochs to 30. The dropout parameter is set to 0.2. 0.001 is chosen as the learning rate coefficient and
0.1 is the learning rate decay coefficient. In the experiments, the learning rate is changed every three
epochs. This experiment gives a penalty of 10-5 for L2 to prevent overfitting. The Adam optimiser is
utilized to optimiser the parameters in the model.

Baseline models

To provide a more perceptible evaluation of the recommendation performance of models, we contrast the
proposed RESR-GNN with baseline models.

•POP. This model thinks about the popularity of every item. Items clicked on will be ranked by how
often they have been accessed and recommendations will be made based on the ranking. Items that are
clicked on more often are more likely to be recommended.

•Item-KNN [3]. It computes the similarity between the clicked item and candidate items, finding out the
K items that are most similar to the clicked item for the user to recommend.

•BPR-MF [27]. It optimizes the ranking of items using stochastic gradient descent (SGD), which is
appropriate for implicit feedback data.

•FPMC [26]. This model simultaneously collects data on the user’s long-term interest and recent
behaviour using the two techniques of Markov chain and matrix factorisation. This model is a classic
hybrid method applied to session-based recommendation.

•GRU4Rec [1]. By stacking multiple GRUs to improve performance, this is the first application of RNN
for session-based recommendations.

•NARM [10]. It makes use of GRU to model sessions while adding an attention mechanism that causes
the method to pay closer attention to the user’s primary interests.

(23)

where N is total items; ranki is the rank given to the i
recommended item in the list.

Parameter setup
Next, we introduce the experimental parameter Set-
tings. Based on the parameter settings of the previ-

ous model, the parameters of the RESR-GNN model
are designed. Set the hidden layer dimension to 100.
Selecting appropriate parameter values can improve
the running speed and achieve the optimal conver-
gence accuracy. The initial vector is randomly di-
mensioned to 100. Set the batch size to 100 and mod-
el epochs to 30. The dropout parameter is set to 0.2.
0.001 is chosen as the learning rate coefficient and
0.1 is the learning rate decay coefficient. In the ex-
periments, the learning rate is changed every three
epochs. This experiment gives a penalty of 10-5 for
L2 to prevent overfitting. The Adam optimiser is uti-
lized to optimiser the parameters in the model.

Baseline models

To provide a more perceptible evaluation of the rec-
ommendation performance of models, we contrast
the proposed RESR-GNN with baseline models.
	_ POP. This model thinks about the popularity of every

item. Items clicked on will be ranked by how often
they have been accessed and recommendations will
be made based on the ranking. Items that are clicked
on more often are more likely to be recommended.

	_ Item-KNN [3]. It computes the similarity between
the clicked item and candidate items, finding out
the K items that are most similar to the clicked
item for the user to recommend.

	_ BPR-MF [27]. It optimizes the ranking of items
using stochastic gradient descent (SGD), which is
appropriate for implicit feedback data.

Method
Diginetica Yoochoose1/64

P@20(%) MRR@20(%) P@20(%) MRR@20(%)

POP 0.89 0.20 6.71 1.65

Item-KNN 35.75 11.57 51.60 21.81

BPR-MF 5.24 1.98 31.31 12.08

FPMC 26.53 6.95 45.62 15.01

GRU4Rec 29.45 8.33 60.64 22.89

NARM 49.70 16.17 68.32 28.63

STAMP 45.64 14.32 68.74 29.67

SR-GNN 50.73 17.59 70.57 30.94

RESR-GNN 52.33 18.56 71.65 31.67

Table 2
Comparison of the performance of the RESR-GNN with other baseline models.

Information Technology and Control 2025/4/541266

	_ FPMC [26]. This model simultaneously collects
data on the user’s long-term interest and recent
behaviour using the two techniques of Markov
chain and matrix factorisation. This model is a
classic hybrid method applied to session-based
recommendation.

	_ GRU4Rec [1]. By stacking multiple GRUs to
improve performance, this is the first application
of RNN for session-based recommendations.

	_ NARM [10]. It makes use of GRU to model sessions
while adding an attention mechanism that causes
the method to pay closer attention to the user’s
primary interests.

	_ STAMP [21]. To make recommendations to
users, it uses a short-term attention priority
mechanism that combines short-term and long-
term interests.

	_ SR-GNN [29]. It applies GNN to the session-
based recommendation. Using GGNN encodes
items to obtain complex transformation features
between items.

Comparison with baseline models
On both the Diginetica and Yoochoose1/64 datasets,
we compare RESR-GNN with the aforementioned
baseline models. We use P@20 and MRR@20 as
uniform metrics to evaluate the recommendation
performance of all models. The experimental results
on the above two dataset show that RESR-GNN
achieves the best result. The specific experimental
results are shown in Table 2.
Among the traditional recommendation methods,
BPR-MF outperforms POP in recommendation per-
formance, demonstrating the value of personalized
recommendation. Item-KNN and FPMC are superi-
or to POP and BPR-MF, which indicates the validity
of calculating the similarity between items in Item-
KNN and using the Markov chain in FPMC.
Model performance can be improved by applying
deep learning technology. GRU4Rec is the first to
use RNN, for the most part, it outperforms tradi-
tional recommendation models. In the experimental
results, GRU4Rec performs worse than NARM and
STAMP. This indicates that NARM has more advan-
tages in obtaining the main interest. Using short-
term interest can improve model performance and
provide more accurate recommendations.
By contrasting the recommendation effect of SR-
GNN with the previous models, the feasibility of ap-
plying GNN and the importance of further research
are explained. SR- GNN builds the session sequence
as the graph structure, which can fully consider the
complex transition relationship between the pres-
ent node and its adjacent nodes compared with the
sequential structure. RESR-GNN classifies item’s
importance by clicking information. Compared with
SR- GNN, it further reflects the user’s degree of in-
terest in different items. Furthermore, the self-at-
tention mechanism also captures more inter-item
dependencies. Our proposed RESR-GNN model
performs effectively on both P@20 and MRR@20.

Method analysis
Impact of the dimension of hidden size.
We set different hidden layer dimensions to explore
our model’s performance and select seven dimen-
sions for experiments. Under different hidden layer
dimensions, the recommendation performance of
RESR-GNN is shown in Figure 4. From the experi-

Figure 4
Performance of various hidden size dimensions.

•STAMP [21]. To make recommendations to users, it uses a short-term attention priority mechanism that
combines short-term and long-term interests.

•SR-GNN [29]. It applies GNN to the session- based recommendation. Using GGNN encodes items to
obtain complex transformation features between items.

Figure 4

Performance of various hidden size dimensions.

Comparison with baseline models
On both the Diginetica and Yoochoose1/64 datasets, we compare RESR-GNN with the aforementioned
baseline models. We use P@20 and MRR@20 as uniform metrics to evaluate the recommendation
performance of all models. The experimental results on the above two dataset show that RESR-GNN
achieves the best result. The specific experimental results are shown in Table 2.

Among the traditional recommendation methods, BPR-MF outperforms POP in recommendation
performance, demonstrating the value of personalized recommendation. Item-KNN and FPMC are
superior to POP and BPR-MF, which indicates the validity of calculating the similarity between items in
Item-KNN and using the Markov chain in FPMC.

Model performance can be improved by applying deep learning technology. GRU4Rec is the first to use
RNN, for the most part, it outperforms traditional recommendation models. In the experimental results,
GRU4Rec performs worse than NARM and STAMP. This indicates that NARM has more advantages in
obtaining the main interest. Using short-term interest can improve model performance and provide more
accurate recommendations.

By contrasting the recommendation effect of SR-GNN with the previous models, the feasibility of
applying GNN and the importance of further research are explained. SR- GNN builds the session
sequence as the graph structure, which can fully consider the complex transition relationship between the
present node and its adjacent nodes compared with the sequential structure. RESR-GNN classifies item’s
importance by clicking information. Compared with SR- GNN, it further reflects the user’s degree of
interest in different items. Furthermore, the self-attention mechanism also captures more inter-item
dependencies. Our proposed RESR-GNN model performs effectively on both P@20 and MRR@20.

Method analysis
Impact of the dimension of hidden size.

•STAMP [21]. To make recommendations to users, it uses a short-term attention priority mechanism that
combines short-term and long-term interests.

•SR-GNN [29]. It applies GNN to the session- based recommendation. Using GGNN encodes items to
obtain complex transformation features between items.

Figure 4

Performance of various hidden size dimensions.

Comparison with baseline models
On both the Diginetica and Yoochoose1/64 datasets, we compare RESR-GNN with the aforementioned
baseline models. We use P@20 and MRR@20 as uniform metrics to evaluate the recommendation
performance of all models. The experimental results on the above two dataset show that RESR-GNN
achieves the best result. The specific experimental results are shown in Table 2.

Among the traditional recommendation methods, BPR-MF outperforms POP in recommendation
performance, demonstrating the value of personalized recommendation. Item-KNN and FPMC are
superior to POP and BPR-MF, which indicates the validity of calculating the similarity between items in
Item-KNN and using the Markov chain in FPMC.

Model performance can be improved by applying deep learning technology. GRU4Rec is the first to use
RNN, for the most part, it outperforms traditional recommendation models. In the experimental results,
GRU4Rec performs worse than NARM and STAMP. This indicates that NARM has more advantages in
obtaining the main interest. Using short-term interest can improve model performance and provide more
accurate recommendations.

By contrasting the recommendation effect of SR-GNN with the previous models, the feasibility of
applying GNN and the importance of further research are explained. SR- GNN builds the session
sequence as the graph structure, which can fully consider the complex transition relationship between the
present node and its adjacent nodes compared with the sequential structure. RESR-GNN classifies item’s
importance by clicking information. Compared with SR- GNN, it further reflects the user’s degree of
interest in different items. Furthermore, the self-attention mechanism also captures more inter-item
dependencies. Our proposed RESR-GNN model performs effectively on both P@20 and MRR@20.

Method analysis
Impact of the dimension of hidden size.

(a) (b)

(c) (d)

1267Information Technology and Control 2025/4/54

ment, we can conclude that our model can learn more
feature information by choosing an appropriate hid-
den layer’s dimension. However, if we select a sizeable
hidden layer dimension, the training complexity will
increase, making the model’s performance decline.
The choice of a hidden layer size of 100 was based on
a combination of common practice in the field, empir-
ical validation on our validation set, and a balance be-
tween model capacity and computational efficiency.

The results show that selecting the appropriate
number of layers of the self-attention mechanism
can improve RESR- GNN recommendation per-
formance, and the multi-layer networks can allow
the model to learn richer abstract features through
multiple information updates. Model performance
may degrade as the number of layers increases. The
reason that affects the recommendation effect may
be the problem of disappearing gradients caused by
deepening network layers.

Figure 5
Performance of different layers of self-attention.

We set different hidden layer dimensions to explore our model’s performance and select seven
dimensions for experiments. Under different hidden layer dimensions, the recommendation performance
of RESR-GNN is shown in Figure 4. From the experiment, we can conclude that our model can learn more
feature information by choosing an appropriate hidden layer’s dimension. However, if we select a
sizeable hidden layer dimension, the training complexity will increase, making the model’s performance
decline.

The choice of a hidden layer size of 100 was based on a combination of common practice in the field,
empirical validation on our validation set, and a balance between model capacity and computational
efficiency.

Figure 5

Performance of different layers of self-attention.

Impact of the number of self-attention layer
We choose the number of layers from 1 to 6 to train RESR-GNN and analyze its recommendation
performance. The experimental results of different layers are shown in Figure 5.

The results show that selecting the appropriate number of layers of the self-attention mechanism can
improve RESR- GNN recommendation performance, and the multi-layer networks can allow the model to
learn richer abstract features through multiple information updates. Model performance may degrade as
the number of layers increases. The reason that affects the recommendation effect may be the problem of
disappearing gradients caused by deepening network layers.

Table 3

Comparison of the performance of the relationship-enhanced matrixes.

Method
Diginetica Yoochoose1/64

P@20(%) MRR@20(%) P@20(%) MRR@20(%)

(b)

We set different hidden layer dimensions to explore our model’s performance and select seven
dimensions for experiments. Under different hidden layer dimensions, the recommendation performance
of RESR-GNN is shown in Figure 4. From the experiment, we can conclude that our model can learn more
feature information by choosing an appropriate hidden layer’s dimension. However, if we select a
sizeable hidden layer dimension, the training complexity will increase, making the model’s performance
decline.

The choice of a hidden layer size of 100 was based on a combination of common practice in the field,
empirical validation on our validation set, and a balance between model capacity and computational
efficiency.

Figure 5

Performance of different layers of self-attention.

Impact of the number of self-attention layer
We choose the number of layers from 1 to 6 to train RESR-GNN and analyze its recommendation
performance. The experimental results of different layers are shown in Figure 5.

The results show that selecting the appropriate number of layers of the self-attention mechanism can
improve RESR- GNN recommendation performance, and the multi-layer networks can allow the model to
learn richer abstract features through multiple information updates. Model performance may degrade as
the number of layers increases. The reason that affects the recommendation effect may be the problem of
disappearing gradients caused by deepening network layers.

Table 3

Comparison of the performance of the relationship-enhanced matrixes.

Method
Diginetica Yoochoose1/64

P@20(%) MRR@20(%) P@20(%) MRR@20(%)

(a)

Impact of the number of self-attention layer
We choose the number of layers from 1 to 6 to train
RESR-GNN and analyze its recommendation per-
formance. The experimental results of different lay-
ers are shown in Figure 5.

Ablation experiment
To verify that the proposed relationship-enhanced
matrix can improve the performance of the conver-
sation recommendation model, we conducted an
ablation experiment. We compared the model with
SR-GNN. The specific experimental results are
shown in the table 3. From the table, it can be seen
that by using the relationship-enhanced matrix, the
recommendation performance of the model has im-
proved to a certain extent on the Diginetica and Yoo-
choose1/64 datasets. RESR-GNN (with soft atten-
tion) indicates that the current model is consistent
with other models and is trained solely using the soft
attention mechanism.

5. Conclusion
We proposed a new RESR-GNN model for ses-
sion-based recommendation. RESR-GNN can bet-
ter distinguish the importance of different items
and make full use of session information We use a
multi-layered self- attention mechanism to focus
on the interdependencies of all items in a session.
To make full use of the correlation between items
in the session and improve our model’s compre-

Method
Diginetica Yoochoose1/64

P@20(%) MRR@20(%) P@20(%) MRR@20(%)

SR-GNN 50.73 17.59 70.57 30.94

RESR-
GNN

(soft at-
tention)

51.17 17.84 70.87 31.18

Table 3
Comparison of the performance of the relationship-
enhanced matrixes.

Information Technology and Control 2025/4/541268

hensive recommendation performance, using the
soft attention mechanism to calculate correlations
between other items and the last one. The experi-
mental results show that two evaluation metrics of
RESR-GNN have achieved ideal experimental re-
sults on different datasets. Empirical results on the
Diginetica and Yoochoose1/64 datasets show that
the proposed model consistently enhances perfor-
mance, improving P@20 and MRR@20 by 3.15%
and 5.51% on the former and by 1.53% and 2.36% on

the latter. These gains across diverse datasets un-
derscore the model's robustness and generalizabil-
ity in effectively capturing user behavior patterns
for session-based recommendation. In the follow-
ing work, we will explore the integration of external
information or adaptive mechanisms to enhance
its robustness in short conversations and explore
other implicit relationships in the conversation. At
the same time, the existing experiments will also be
further expanded.

References
1.	 Bahdanau, D., Cho, K., Bengio, Y. Neural Machine

Translation by Jointly Learning to Align and Trans-
late. arXiv preprint, arXiv:1409.0473, 2014.

2.	 Chen, D., Zhang, X., Wang, H., Zhang, W. TEAN: Time-
liness Enhanced Attention Network for Session-Based
Recommendation. Neurocomputing, 2020, 411, 229-
238. https://doi.org/10.1016/j.neucom.2020.06.063

3.	 Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q. V.,
Salakhutdinov, R. Transformer-XL: Attentive Lan-
guage Models Beyond a Fixed-Length Context. arX-
iv preprint arXiv:1901.02860, 2019. https://doi.
org/10.18653/v1/P19-1285

4.	 Eirinaki, M., Vazirgiannis, M., Kapogiannis, D. Web
Path Recommendations Based on Page Ranking
and Markov Models. Proceedings of the 7th Annu-
al ACM International Workshop on Web Informa-
tion and Data Management, 2005, 2-9. https://doi.
org/10.1145/1097047.1097050

5.	 Guo, M.-H., Xu, T.-X., Liu, J.-J., Liu, Z.-N., Jiang, P.-T.,
Mu, T.-J., Zhang, S.-H., Martin, R. R., Cheng, M.-M.,
Hu, S.-M. Attention Mechanisms in Computer Vision:
A Survey. Computational Visual Media, 2022, 8(3),
331-368. https://doi.org/10.1007/s41095-022-0271-y

6.	 Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D. Ses-
sion-Based Recommendations with Recurrent Neural
Networks. arXiv preprint, arXiv:1511.06939, 2015.	

7.	 Hidasi, B., Quadrana, M., Karatzoglou, A., Tikk, D.
Parallel Recurrent Neural Network Architectures
for Feature-Rich Session-Based Recommenda-
tions. Proceedings of the 10th ACM Conference on
Recommender Systems, 2016, 241-248. https://doi.
org/10.1145/2959100.2959167

8.	 Jannach, D., Ludewig, M. When Recurrent Neural
Networks Meet the Neighborhood for Session-Based

Recommendation. Proceedings of the Eleventh ACM
Conference on Recommender Systems, 2017, 306-310.
https://doi.org/10.1145/3109859.3109872

9.	 Li, J., Ren, P., Chen, Z., Ren, Z., Lian, T., Ma, J. Neural
Attentive Session-Based Recommendation. Proceed-
ings of the 2017 ACM on Conference on Information
and Knowledge Management, 2017, 1419-1428. https://
doi.org/10.1145/3132847.3132926

10.	 Li, R., Wu, Z., Jia, J., Bu, Y., Zhao, S., Meng, H. Towards
Discriminative Representation Learning for Speech
Emotion Recognition. Proceedings of IJCAI, 2019,
5060-5066. https://doi.org/10.24963/ijcai.2019/703

11.	 Liu, Q., Zeng, Y., Mokhosi, R., Zhang, H. STAMP:
Short-Term Attention/Memory Priority Model for
Session-Based Recommendation. Proceedings of
the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2018, 1831-1839.
https://doi.org/10.1145/3219819.3219950

12.	 Ludewig, M., Jannach, D. Evaluation of Session-Based
Recommendation Algorithms. User Modeling and Us-
er-Adapted Interaction, 2018, 28, 331-390. https://doi.
org/10.1007/s11257-018-9209-6

13.	 Ma, R., Liu, N., Yuan, J., Yang, H., Zhang, J. CAEN:
A Hierarchically Attentive Evolution Network
for Item-Attribute-Change-Aware Recommenda-
tion in the Growing E-Commerce Environment.
Proceedings of the 16th ACM Conference on Rec-
ommender Systems, 2022, 278-287. https://doi.
org/10.1145/3523227.3546773

14.	 Mo, Y., Wu, Y., Yang, X., Liu, F., Liao, Y. Review of the
State-of-the-Art Technologies of Semantic Segmen-
tation Based on Deep Learning. Neurocomputing,
2022, 493, 626-646. https://doi.org/10.1016/j.neu-
com.2022.01.005

1269Information Technology and Control 2025/4/54

15.	 Popel, M., Tomkova, M., Tomek, J., Kaiser, Ł., Uszkore-
it, J., Bojar, O., Žabokrtskỳ, Z. Transforming Machine
Translation: A Deep Learning System Reaches News
Translation Quality Comparable to Human Profes-
sionals. Nature Communications, 2020, 11(1), 4381.
https://doi.org/10.1038/s41467-020-18073-9

16.	 Qiu, R., Li, J., Huang, Z., Yin, H. Rethinking the Item
Order in Session-Based Recommendation with
Graph Neural Networks. Proceedings of the 28th
ACM International Conference on Information and
Knowledge Management, 2019, 579-588. https://doi.
org/10.1145/3357384.3358010

17.	 Qiu, R., Yin, H., Huang, Z., Chen, T. GAG: Global At-
tributed Graph Neural Network for Streaming Ses-
sion-Based Recommendation. Proceedings of the 43rd
International ACM SIGIR Conference on Research
and Development in Information Retrieval, 2020, 669-
678. https://doi.org/10.1145/3397271.3401109

18.	 Quadrana, M., Karatzoglou, A., Hidasi, B., Cremon-
esi, P. Personalizing Session-Based Recommenda-
tions with Hierarchical Recurrent Neural Networks.
Proceedings of the Eleventh ACM Conference on
Recommender Systems, 2017, 130-137. https://doi.
org/10.1145/3109859.3109896

19.	 Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-
Thieme, L. BPR: Bayesian Personalized Ranking from
Implicit Feedback. Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence,
2009, 452-461.

20.	 Rendle, S., Freudenthaler, C., Schmidt-Thieme, L. Fac-
torizing Personalized Markov Chains for Next-Basket
Recommendation. Proceedings of the 19th Interna-
tional Conference on World Wide Web, 2010, 811-820.
https://doi.org/10.1145/1772690.1772773

21.	 Ruocco, M., Skrede, O. S. L., Langseth, H. Inter-Ses-
sion Modeling for Session-Based Recommendation.
Proceedings of the 2nd Workshop on Deep Learning
for Recommender Systems, 2017, 24-31. https://doi.
org/10.1145/3125486.3125491

22.	 Sarwar, B., Karypis, G., Konstan, J., Riedl, J. Item-
Based Collaborative Filtering Recommendation Algo-
rithms. Proceedings of the 10th International Confer-
ence on World Wide Web, 2001, 285-295. https://doi.
org/10.1145/371920.372071

23.	 Shani, G., Heckerman, D., Brafman, R. I., Boutilier, C.
An MDP-Based Recommender System. Journal of Ma-
chine Learning Research, 2005, 6(9).	

24.	 Tan, Y. K., Xu, X., Liu, Y. Improved Recurrent Neu-

ral Networks for Session-Based Recommendations.
Proceedings of the 1st Workshop on Deep Learning
for Recommender Systems, 2016, 17-22. https://doi.
org/10.1145/2988450.2988452

25.	 Tavakol, M., Brefeld, U. Factored MDPs for Detecting
Topics of User Sessions. Proceedings of the 8th ACM
Conference on Recommender Systems, 2014, 33-40.
https://doi.org/10.1145/2645710.2645739

26.	 Tuan, T. X., Phuong, T. M. 3D Convolutional Networks
for Session-Based Recommendation with Content
Features. Proceedings of the Eleventh ACM Con-
ference on Recommender Systems, 2017, 138-146.
https://doi.org/10.1145/3109859.3109900

27.	 Wang, W., Zhang, W., Liu, S., Liu, Q., Zhang, B., Lin,
L., Zha, H. Beyond Clicks: Modeling Multi-Relational
Item Graph for Session-Based Target Behavior Predic-
tion. Proceedings of The Web Conference 2020, 2020,
3056-3062. https://doi.org/10.1145/3366423.3380077

28.	 Wang, Z., Zhao, H., Shi, C. Profiling the Design Space
for Graph Neural Networks Based Collaborative Fil-
tering. Proceedings of the Fifteenth ACM Internation-
al Conference on Web Search and Data Mining, 2022,
1109-1119. https://doi.org/10.1145/3488560.3498520

29.	 Wu, S., Tang, Y., Zhu, Y., Wang, L., Xie, X., Tan, T. Ses-
sion-Based Recommendation with Graph Neural Net-
works. Proceedings of the AAAI Conference on Arti-
ficial Intelligence, 2019, 33(1), 346-353. https://doi.
org/10.1609/aaai.v33i01.3301346

30.	 Yu, F., Zhu, Y., Liu, Q., Wu, S., Wang, L., Tan, T. TAGNN:
Target Attentive Graph Neural Networks for Ses-
sion-Based Recommendation. Proceedings of the 43rd
International ACM SIGIR Conference on Research
and Development in Information Retrieval, 2020,
1921-1924. https://doi.org/10.1145/3397271.3401319

31.	 Yuan, F., He, X., Jiang, H., Guo, G., Xiong, J., Xu, Z.,
Xiong, Y. Future Data Helps Training: Modeling Fu-
ture Contexts for Session-Based Recommendation.
Proceedings of The Web Conference 2020, 2020, 303-
313. https://doi.org/10.1145/3366423.3380116

32.	 Zaidi, S. S. A., Ansari, M. S., Aslam, A., Kanwal, N., Asghar,
M., Lee, B. A Survey of Modern Deep Learning-Based Ob-
ject Detection Models. Digital Signal Processing, 2022,
126, 103514. https://doi.org/10.1016/j.dsp.2022.103514

33.	 Zhang, L., Ji, Z., Xu, R., Zhao, T., Chen, Q., Wang, Y.,
Li, F. Saliency Detection Algorithm for Foggy Images
Based on Deep Learning. Information Technology and
Control, 2023, 52(3), 581-593. https://doi.org/10.5755/
j01.itc.52.3.32258

Information Technology and Control 2025/4/541270

34.	 Zhang, L., Wang, S., Liu, B. Deep Learning for Sen-
timent Analysis: A Survey. Wiley Interdiscipli-
nary Reviews: Data Mining and Knowledge Dis-
covery, 2018, 8(4), e1253. https://doi.org/10.1002/
widm.1253

35.	 Zhang, M., Wu, S., Gao, M., Jiang, X., Xu, K., Wang, L.
Personalized Graph Neural Networks with Attention
Mechanism for Session-Aware Recommendation.
IEEE Transactions on Knowledge and Data Engineer-
ing, 2020, 34(8), 3946-3957. https://doi.org/10.1109/
TKDE.2020.3031329

36.	 Zhang, Z., Nasraoui, O. Efficient Hybrid Web Recom-
mendations Based on Markov Clickstream Models
and Implicit Search. IEEE/WIC/ACM International
Conference on Web Intelligence (WI'07), IEEE, 2007,
621-627. https://doi.org/10.1109/WI.2007.4427162

37.	 Zhao, K., Zheng, Y., Zhuang, T., Li, X., Zeng, X. Joint
Learning of E-Commerce Search and Recommenda-
tion with a Unified Graph Neural Network. Proceed-
ings of the Fifteenth ACM International Conference
on Web Search and Data Mining, 2022, 1461-1469.
https://doi.org/10.1145/3488560.3498414

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

