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The session-based recommendation systems analyze anonymous users' recent behavior data to infer their 
preferences and provide accurate recommendations. However, existing methods often fail to adequate-
ly leverage the click order and frequency of items within a session, thus lacking the ability to fully cap-
ture complex dependencies among items. To address these limitations, we propose a novel model named 
RESR-GNN. The key innovations of our work include: (1) a relation-enhanced session graph that incorpo-
rates click information to differentiate the importance of items; and (2) an integrated soft attention and 
multi-layer self-attention mechanism to comprehensively model pairwise item preferences within the 
entire session. Extensive experiments on two public datasets demonstrate that RESR-GNN consistently 
outperforms state-of-the-art baseline models. On the Diginetica and Yoochoose1/64 datasets, the evalu-
ation metrics P@20 and MRR@20 were respectively improved by 3.15%, 5.51%, 1.53% and 2.36%, which 
proved the effectiveness of the proposed model. 
KEYWORDS: Session-based recommendation, Graph neural networks, Session graph, Attention mechanism.

1. Introduction
The scale of data in the network era continues to ex-
pand with the advancement of Internet technology, 
and this data contains valuable information resourc-

es. Most traditional recommendation systems rely 
on users’ basic profiles and their long-term interac-
tion histories to make recommendations. However, 
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such long-term interactions only reflect general user 
preferences, which tend to evolve over time. More-
over, personal information is often difficult to ac-
quire. In contrast, Session-based Recommendation 
(SR) systems can capture short-term user interests, 
thereby providing more relevant recommendations. 
As a result, new techniques and methods in ses-
sion-based recommendation are rapidly emerging 
and gaining widespread adoption.
Early approaches ranked items based on timestamps 
and employed Markov chains [13], [37], [26], [9], [19], 
to model transition relationships between items 
within a session, using current behavior to predict 
subsequent actions. While these methods achieved 
some success, they struggled to effectively leverage 
historical behavior information in longer session se-
quences.
This limitation was addressed through the intro-
duction of recurrent neural networks (RNNs) [1], 
[32], [17], [2], [18]. Hidasi et al. [1] were the first to 
apply RNNs to model session sequences, improving 
the utilization of historical behavior information 
across long sessions. Subsequently, deep learning 
techniques have been widely adopted in SR. For in-
stance, Li et al. [10] used global and local encoders to 
capture user interests, while Liu et al. [21] employed 
attention mechanisms and multi-layer perceptrons 
(MLPs) to model both general and current user inter-
ests. Attention mechanisms, which have been applied 
across various AI fields [4], [14], [34], [22], enable 
session-based recommenders to assign importance 
weights to items, reflecting user preferences.
Despite these advances, capturing complex tran-
sition interactions within session sequences re-
mains challenging. Recent work by Wu et al. [29] 
proposed using graph neural networks (GNNs) for 
session-based recommendation. Their model, SR-
GNN, constructs a graph for each session and uses 
GNNs along with a soft attention mechanism for 
training. Compared to linear sequences, session 
graphs can represent richer relational information, 
leading to better recommendation performance. 
Consequently, GNNs have become increasingly 
prominent in session-based recommendation re-
search [5], [24].
However, existing methods still have limitations. 
First, session graphs often only record whether an 
item was clicked, failing to fully utilize click infor-

mation. This can result in identical graph represen-
tations for different sessions, obscuring the user’s 
degree of interest in specific items. Second, when 
using soft attention for global encoding, weight al-
location typically considers only the relationship 
between the last item and all other items, neglecting 
potential interests among other items in the session.
To address these issues, we propose a Relation-
ship-Enhanced Session-based Recommendation 
model with Graph Neural Networks (RESR-GNN). 
This model aims to improve recommendation per-
formance by making better use of session click in-
formation and capturing intricate interest relation-
ships among items within a session. RESR-GNN 
integrates techniques such as graph neural networks 
and attention mechanisms to enhance session rep-
resentation.
Figure 1 illustrates the overall structure of RESR-
GNN. First, all session sequences are converted 
into session graphs, where structural information 
is stored using a relationship-enhanced matrix that 
incorporates click information. Item node embed-
dings are learned through a gated graph neural net-
work (GGNN), which aggregates feature informa-
tion from the node itself and its neighbors. Then, a 
self-attention mechanism captures dependencies 
among all nodes in the session, while a soft attention 
mechanism computes correlations between the last 
node and other nodes. Finally, short-term and long-
term interests are concatenated to form a session 
interest representation, which is used to compute 
recommendation scores for all candidate items.
The main contributions of this paper are as follows:
1	 Click information about click orders and click 

counts in a given session is used to distinguish the 
importance of individual items, with the graph 
neural network applied to train model;

2	 The self-attention mechanism and the soft at-
tention mechanism are utilised to calculate item 
nodes’ embedding vectors, which ensures the rel-
evance of all items to the last item while obtaining 
the dependency between each item in the session;

3	 The proposed model underwent comparison with 
publicly available datasets. Based on the two se-
lected evaluation metrics, our experiments depict-
ed notable enhancement in the recommendation 
performance of RESR-GNN.
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2. Related Work
Traditional machine learning methods
Based on Markov chains, these methods model the 
transitions between items within a session. The 
system’s subsequent state is exclusively tied to the 
current state, not the preceding one. Eirinaki et al. 
[13] used the Markov method and PageRank algo-
rithm to provide personalized recommendations for 
users by analyzing the session information of users 
accessing web pages. The FPMC, which integrates 
matrix factorization and Markov chains to capture 
both long- and short-term user behavior informa-
tion simultaneously, was proposed by Rendle et al 
[26] The k-nearest Neighbor algorithm (KNN) is a 
classification algorithm that is easy to understand 
and often used in machine learning algorithms. The 
session-based KNN algorithm [6], [15] compares 
the past sessions with the current whole session to 
make recommendations, and the item-based KNN 
algorithm only considers the similarity with the last 
item in a session.

Deep learning methods
Deep learning is now widely employed in disci-
plines such as semantic segmentation [33], ma-
chine translation [16], object detection [28], image 
classification [35], recommender systems [23], 
[36], [11], and sentiment analysis [12]. Because of 
their superior sequence modeling capabilities, re-
current neural networks are commonly employed; 
Hidasi et al. [1] proposed the GRU4Rec, which 
makes use of the gated recurrent unit (GRU) to 
predict the behaviour of users based on their inter-
actions. Subsequently, Tan et al. [32] proposed the 
improved RNN recommendation technique that 
utilizes data augmentation technology to boost 
the model’s recommendation capability. Quadrana 
et al. [17] proposed an HRNN method for person-
alized recommendation by adding user identifi-
cation attributes and using the session-level and 
the user-level GRU to provide personalized advice 
for users. Li et al. [10] suggested the Neural Atten-
tive Session- based Recommendation, or NARM, 
employing the gated recurrent unit and attention 
mechanism to model session sequences. Convolu-
tional neural networks (CNNs) may learn contex-
tual information from each session through filter-

ing and pooling operations. Yuan et al. [8] proposed 
the GRec to model sessions. This method designs 
a new encoder- decoder framework, which first 
inputs the session sequence after deleting some 
items into the encoder, and then predicts deleted 
components by the decoder. Tuan et al. [30] pro-
posed the 3D CNN method to model sessions to ob-
tain different content features.

Graph neural networks methods
The graph neural network is a kind of neural net-
work which makes it possible to directly process 
unstructured data, such as graph data. Graph neu-
ral network combine convolution, gradient calcula-
tion, and other operations in deep neural networks 
with iterative graph propagation. When computing 
the features of a node, the hidden state of the cur-
rent node must be updated by integrating the fea-
ture information of its neighbours to obtain richer 
relational information. Wu et al. [29] proposed a 
SR-GNN method. This method uses GGNN to learn 
each node’s embedding representation. Get final 
session representation by combining short-term 
and long-term interests. In order to get the compli-
cated transformation relationship between items 
in the customized scenario, the A-PGNN method 
proposed by Zhang et al [20] using the personalized 
graph neural network. Wang et al. [31] suggested 
the MGNN-SPred method. This method construct-
ed the Multi-Relational Item Graph (MRIG) for all 
sessions and utilized the gated mechanism to fuse 
target and auxiliary behaviors of the user. Qiu et al. 
[25] proposed an FGNN method using the Weight-
ed Graph Attentional Layer (WGAT) and the read-
out function to compute the session representa-
tion. Based on the SR-GNN method, Yu et al. [7] 
proposed the TA-GNN method by using the target 
attention mechanism to focus on the user’s interest 
in different items in the session.

Figure 1  
Structure diagram of the RESR-GNN model.
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3. Method
In this chapter, we introduce the specific imple-
mentation process of the RESR-GNN model. By 
constructing a relationship enhancement matrix, 
we can obtain more comprehensive information re-
lationships among various items. Using a combina-
tion of soft attention mechanism and self-attention 
mechanism, we can fully capture the interest depen-
dencies among items in the entire conversation se-
quence. We also use residual connections to allevi-
ate the problem of gradient disappearance that may 
occur in multi-layer neural networks. Next, we will 
introduce each part:

Notations Definition
Session-based recommendation according to cur-
rent session behavioral data to predict a user’s 
next click. 
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The relationship-enhanced matrix R s  stores the information in the corresponding session graph. If edge 

e  belongs to setE  , the accumulated edge weight values are the values in the corresponding matrix. 
Otherwise, it is marked as 0. The relationship-enhanced session diagram and matrix for sessions 1s  and 

2s  are shown in Figure 3. The out- and in- edge matrix, ( )R out
s  and ( )R in

s , are distinguished from the 

relationship-enhanced matrix and concatenated, where the ( )R out
s  is normalized, ( ) ( )TR Rin out

s s  . 
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Learning item embedding on RESR-GNN 
The embedding vectors of each item node are then computed by gated graph neural networks. First, we 
randomly initialize all item nodes to obtain an initial vector representation de R  for each node v V  
d represents the embedding dimension of the item. Model uses GGNN to update nodes' embedding in a 
session sG . The specific process of ,s iv  is as follows: 
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what information is to be retained and discarded. The candidate states are shown in Equation (7). The 
final state is shown in Equation (8), jointly determined by the previous time state and the current 
candidate state. rW , zW , 2d d

tW R  and rU , zU , d d
tU R control the weights. 

 
Generating session embedding 
In this section, we compute the final session representation. The item embeddings trained by GGNN will 
be fed to the self-attention mechanism for training. This reduces the reliance on external information by 
utilizing self-attention mechanisms to better focus on all inputs in the session. The process is as follows: 
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In Equations (9)-(11): Q  denotes the query matrix, K  denotes the key matrix, and V  denotes the value 
matrix. qW  , kW  and vW  are the parameter matrixes of the linear mapping. Softmax represents the 
activation function. H  represents the output. 

We add a feedforward network layer after a self-attention mechanism layer. We utilize a non-linear 
activation function to improve the model’s non-linear capability, add residual connection to mitigate the 
loss incurred during model transmission, and add dropout to reduce the potential issue of overfitting. 
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short- and long-term interests was used to obtain the final session interest representation. 
 3[ ; ]c l gs W s s

.
  (18) 

Recommendation prediction 
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a softmax function. 
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loss incurred during model transmission, and add dropout to reduce the potential issue of overfitting. 
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where 1W , 2
d dW R and dq R  are the training parameters. Finally, a linear transformation of the 
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Recommendation prediction 
For each candidate item, we then calculate the score. Calculation of the model’s output vector by means of 
a softmax function. 
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In Equations (9)-(11): Q denotes the query matrix, K 
denotes the key matrix, and V denotes the value ma-
trix. W q , W k  and W v  are the parameter matrixes of the 
linear mapping. Softmax represents the activation 
function. H represents the output.
We add a feedforward network layer after a self-at-
tention mechanism layer. We utilize a non-lin-
ear activation function to improve the model’s 
non-linear capability, add residual connection to 
mitigate the loss incurred during model transmis-
sion, and add dropout to reduce the potential issue 
of overfitting.
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Recommendation prediction 
For each candidate item, we then calculate the score. Calculation of the model’s output vector by means of 
a softmax function. 
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Recommendation prediction 
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a softmax function. 
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Recommendation prediction 
For each candidate item, we then calculate the score. Calculation of the model’s output vector by means of 
a softmax function. 
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Recommendation prediction 
For each candidate item, we then calculate the score. Calculation of the model’s output vector by means of 
a softmax function. 
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loss incurred during model transmission, and add dropout to reduce the potential issue of overfitting. 
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Recommendation prediction 
For each candidate item, we then calculate the score. Calculation of the model’s output vector by means of 
a softmax function. 
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Recommendation prediction 
For each candidate item, we then calculate the score. Calculation of the model’s output vector by means of 
a softmax function. 
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Recommendation prediction 
For each candidate item, we then calculate the score. Calculation of the model’s output vector by means of 
a softmax function. 
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The cross-entropy loss function is selected for the experiment, where iy  and iy  represent the truth and 
predicted value, respectively. This model is trained using Back-Propagation Through Time (BPTT). 
 

4. Experiments 
Datasets 
We select two commonly representative datasets, Diginetica and Yoochoose, for experiments. Table 1 
shows the datasets information. The Diginetica dataset is from CIKM Cup 2016. In our experiments, we 
selected only published transaction data. First, the data must be pre-processed according to the previous 
studies [10], [21]. All sessions that contain an item in the session and items that appear less than five times 
in the dataset are filtered out. At the same time, filter out the conversation information with a length of 1. 
Next, another dataset of the experiment is introduced. The Yoochoose dataset is from the RecSys 
Challenge 2015. We selected users’ browsing activities on e-commerce websites in the past six months. 
We are using the same method to preprocess the dataset. Due to the importance of the Yoochoose dataset, 
in order to minimise the possible impact of time changes on user preferences, we choose the 
Yoochoose1/64 dataset with the most recent split time for the experiments. 

Furthermore, we refer to the pre-processing method of [32]. Multiple sequences and corresponding label 
data are generated by segmenting each input session sequence. For example, we divide a input session 

,1 ,2 ,[ , ,..., ]s s s ms v v v into many subsequences. Such as ,1 ,2 ,3([ , ], ( ))s s sv v L v  , where ,3( )sL v  is the label 

data corresponding to the session, representing the next clicked item. ,1 ,2[ , ]s sv v  is the session sequence 
generated by segmentation. 

Table 1 

Specific statistics of datasets. 
Statistics Diginetica Yoochoose1/64 

Clicks 982,961 557,248 

Items 43,097 16,766 

Training sessions 719,470 369,859 

Test sessions 60,858 55,898 

Average length 5.12 6.16 

 

Evaluation metrics 
P@20 is the accuracy of correct recommendations among the top 20 recommendations. The mathematical 
formula is as follows: 
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where N  is total items; hitH  is the number of correct recommendations in the recommended list. 

MRR@20 is the average ranking of correct recommendations in the top 20 recommendations. 
Recommendations that are not within 20 will be shown with 0. The mathematical formula is as follows: 
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ommendations that are not within 20 will be shown 
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where N  is total items; irank  is the rank given to the i  recommended item in the list. 

Table 2  

Comparison of the performance of the RESR-GNN with other baseline models. 

 

Method 
Diginetica Yoochoose1/64 

P@20(%) MRR@20(%) P@20(%) MRR@20(%) 

POP 0.89 0.20 6.71 1.65 

Item-KNN 35.75 11.57 51.60 21.81 

BPR-MF 5.24 1.98 31.31 12.08 

FPMC 26.53 6.95 45.62 15.01 

GRU4Rec 29.45 8.33 60.64 22.89 

NARM 49.70 16.17 68.32 28.63 

STAMP 45.64 14.32 68.74 29.67 

SR-GNN 50.73 17.59 70.57 30.94 

RESR-GNN 52.33 18.56 71.65 31.67 

Parameter setup 
Next, we introduce the experimental parameter Settings. Based on the parameter settings of the previous 
model, the parameters of the RESR-GNN model are designed. Set the hidden layer dimension to 100. 
Selecting appropriate parameter values can improve the running speed and achieve the optimal 
convergence accuracy. The initial vector is randomly dimensioned to 100. Set the batch size to 100 and 
model epochs to 30. The dropout parameter is set to 0.2. 0.001 is chosen as the learning rate coefficient and 
0.1 is the learning rate decay coefficient. In the experiments, the learning rate is changed every three 
epochs. This experiment gives a penalty of 10-5 for L2 to prevent overfitting. The Adam optimiser is 
utilized to optimiser the parameters in the model. 

 
Baseline models 

To provide a more perceptible evaluation of the recommendation performance of models, we contrast the 
proposed RESR-GNN with baseline models. 

•POP. This model thinks about the popularity of every item. Items clicked on will be ranked by how 
often they have been accessed and recommendations will be made based on the ranking. Items that are 
clicked on more often are more likely to be recommended. 

•Item-KNN [3]. It computes the similarity between the clicked item and candidate items, finding out the 
K items that are most similar to the clicked item for the user to recommend. 

•BPR-MF [27]. It optimizes the ranking of items using stochastic gradient descent (SGD), which is 
appropriate for implicit feedback data. 

•FPMC [26]. This model simultaneously collects data on the user’s long-term interest and recent 
behaviour using the two techniques of Markov chain and matrix factorisation. This model is a classic 
hybrid method applied to session-based recommendation. 

•GRU4Rec [1]. By stacking multiple GRUs to improve performance, this is the first application of RNN 
for session-based recommendations. 

•NARM [10]. It makes use of GRU to model sessions while adding an attention mechanism that causes 
the method to pay closer attention to the user’s primary interests. 
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item. Items clicked on will be ranked by how often 
they have been accessed and recommendations will 
be made based on the ranking. Items that are clicked 
on more often are more likely to be recommended.

	_ Item-KNN [3]. It computes the similarity between 
the clicked item and candidate items, finding out 
the K items that are most similar to the clicked 
item for the user to recommend.

	_ BPR-MF [27]. It optimizes the ranking of items 
using stochastic gradient descent (SGD), which is 
appropriate for implicit feedback data.
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Table 2 
Comparison of the performance of the RESR-GNN with other baseline models.
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	_ FPMC [26]. This model simultaneously collects 
data on the user’s long-term interest and recent 
behaviour using the two techniques of Markov 
chain and matrix factorisation. This model is a 
classic hybrid method applied to session-based 
recommendation.

	_ GRU4Rec [1]. By stacking multiple GRUs to 
improve performance, this is the first application 
of RNN for session-based recommendations.

	_ NARM [10]. It makes use of GRU to model sessions 
while adding an attention mechanism that causes 
the method to pay closer attention to the user’s 
primary interests.

	_ STAMP [21]. To make recommendations to 
users, it uses a short-term attention priority 
mechanism that combines short-term and long-
term interests.

	_ SR-GNN [29]. It applies GNN to the session- 
based recommendation. Using GGNN encodes 
items to obtain complex transformation features 
between items.

Comparison with baseline models
On both the Diginetica and Yoochoose1/64 datasets, 
we compare RESR-GNN with the aforementioned 
baseline models. We use P@20 and MRR@20 as 
uniform metrics to evaluate the recommendation 
performance of all models. The experimental results 
on the above two dataset show that RESR-GNN 
achieves the best result. The specific experimental 
results are shown in Table 2.
Among the traditional recommendation methods, 
BPR-MF outperforms POP in recommendation per-
formance, demonstrating the value of personalized 
recommendation. Item-KNN and FPMC are superi-
or to POP and BPR-MF, which indicates the validity 
of calculating the similarity between items in Item-
KNN and using the Markov chain in FPMC.
Model performance can be improved by applying 
deep learning technology. GRU4Rec is the first to 
use RNN, for the most part, it outperforms tradi-
tional recommendation models. In the experimental 
results, GRU4Rec performs worse than NARM and 
STAMP. This indicates that NARM has more advan-
tages in obtaining the main interest. Using short-
term interest can improve model performance and 
provide more accurate recommendations.
By contrasting the recommendation effect of SR-
GNN with the previous models, the feasibility of ap-
plying GNN and the importance of further research 
are explained. SR- GNN builds the session sequence 
as the graph structure, which can fully consider the 
complex transition relationship between the pres-
ent node and its adjacent nodes compared with the 
sequential structure. RESR-GNN classifies item’s 
importance by clicking information. Compared with 
SR- GNN, it further reflects the user’s degree of in-
terest in different items. Furthermore, the self-at-
tention mechanism also captures more inter-item 
dependencies. Our proposed RESR-GNN model 
performs effectively on both P@20 and MRR@20.

Method analysis
Impact of the dimension of hidden size.
We set different hidden layer dimensions to explore 
our model’s performance and select seven dimen-
sions for experiments. Under different hidden layer 
dimensions, the recommendation performance of 
RESR-GNN is shown in Figure 4. From the experi-

Figure 4
Performance of various hidden size dimensions.
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ment, we can conclude that our model can learn more 
feature information by choosing an appropriate hid-
den layer’s dimension. However, if we select a sizeable 
hidden layer dimension, the training complexity will 
increase, making the model’s performance decline. 
The choice of a hidden layer size of 100 was based on 
a combination of common practice in the field, empir-
ical validation on our validation set, and a balance be-
tween model capacity and computational efficiency.

The results show that selecting the appropriate 
number of layers of the self-attention mechanism 
can improve RESR- GNN recommendation per-
formance, and the multi-layer networks can allow 
the model to learn richer abstract features through 
multiple information updates. Model performance 
may degrade as the number of layers increases. The 
reason that affects the recommendation effect may 
be the problem of disappearing gradients caused by 
deepening network layers.

Figure 5
Performance of different layers of self-attention. 
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Impact of the number of self-attention layer
We choose the number of layers from 1 to 6 to train 
RESR-GNN and analyze its recommendation per-
formance. The experimental results of different lay-
ers are shown in Figure 5.

Ablation experiment
To verify that the proposed relationship-enhanced 
matrix can improve the performance of the conver-
sation recommendation model, we conducted an 
ablation experiment. We compared the model with 
SR-GNN. The specific experimental results are 
shown in the table 3. From the table, it can be seen 
that by using the relationship-enhanced matrix, the 
recommendation performance of the model has im-
proved to a certain extent on the Diginetica and Yoo-
choose1/64 datasets. RESR-GNN (with soft atten-
tion) indicates that the current model is consistent 
with other models and is trained solely using the soft 
attention mechanism.

5. Conclusion
We proposed a new RESR-GNN model for ses-
sion-based recommendation. RESR-GNN can bet-
ter distinguish the importance of different items 
and make full use of session information We use a 
multi-layered self- attention mechanism to focus 
on the interdependencies of all items in a session. 
To make full use of the correlation between items 
in the session and improve our model’s compre-

Method
Diginetica Yoochoose1/64

P@20(%) MRR@20(%) P@20(%) MRR@20(%)

SR-GNN 50.73 17.59 70.57 30.94

RESR-
GNN 

(soft at-
tention)

51.17 17.84 70.87 31.18

Table 3 
Comparison of the performance of the relationship-
enhanced matrixes.
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hensive recommendation performance, using the 
soft attention mechanism to calculate correlations 
between other items and the last one. The experi-
mental results show that two evaluation metrics of 
RESR-GNN have achieved ideal experimental re-
sults on different datasets. Empirical results on the 
Diginetica and Yoochoose1/64 datasets show that 
the proposed model consistently enhances perfor-
mance, improving P@20 and MRR@20 by 3.15% 
and 5.51% on the former and by 1.53% and 2.36% on 

the latter. These gains across diverse datasets un-
derscore the model's robustness and generalizabil-
ity in effectively capturing user behavior patterns 
for session-based recommendation. In the follow-
ing work, we will explore the integration of external 
information or adaptive mechanisms to enhance 
its robustness in short conversations and explore 
other implicit relationships in the conversation. At 
the same time, the existing experiments will also be 
further expanded.
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