
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2011, Vol.40, No.2

COMPLEXITY OF EMBEDDED CHAIN ALGORITHM FOR
COMPUTING STEADY STATE PROBABILITIES OF MARKOV CHAIN

 Henrikas Pranevičius

Department of Business Informatics, Kaunas University of Technology
Studentų St, 56-301, LT – 51368 Kaunas, Lithuania

e-mail: henrikas.pranevicius@ktu.lt

Eimutis Valakevičius, Mindaugas Šnipas

Department of Mathematical Research in Systems, Kaunas University of Technology
Studentų St. 50-203, LT – 51368 Kaunas, Lithuania

e-mail: eimval@ktu.lt, minsnip@ktu.lt

Abstract. The paper presents the theoretical evaluation of the complexity of an algorithm, based on embedded
Markov chains, for computing steady state probabilities. Experimental research with different infinitesimal generator
matrices was performed to support theoretical evaluations. Results showed that modified algorithm can be more effec-
tive for sparse matrices. An example of a queuing system is presented to demonstrate the automatic creation of the
model of the system based on the proposed modelling method.

Keywords: Steady state probabilities, complexity of the algorithm, numerical model, queuing system.

1. Introduction

The Markov chains are widely used for creating
functioning models of various systems: computer net-
works, communication systems, reliability models etc.
It is known that the analytical solution of complex real
world systems is very difficult or even impossible.
Using numerical methods permits to model a wider
class of systems. The process of creating numerical
models for systems described by the Markov chain
consists of the following stages:
1. Defining a state space of the Markov chain.
2. Generating a linear system of Kolmogorov-Chap-

man equations, describing the performance of the
system as a set of states and transitions among
them.

3. Solving the linear system of Kolmogorov-Chapman
equations, i.e., computing steady state probabi-
lities.

4. Computing probabilistic characteristics of the
system performance.
It is necessary to emphasize that automation is not

equally applicable for all the stages. The first stage is
determined in a heuristic way. The description of the
system is the original that determines the state space
of the system. The principal requirement in that stage

is to introduce a necessary number of coordinates to
describe behavior of the system.

Most difficult stages in the construction of a nume-
rical model are the creation and solution of the linear
system of Kolmogorov-Chapman equations. The num-
ber of equations is usually large (counted in thou-
sands). Thus an automatic construction of linear
systems and effective numerical solution methods are
very important.

In order to demonstrate creation of numerical
model we present an example of queuing system.
There are a few different approaches to model queuing
systems. In some cases, an exact solution of queuing
systems can be found using the matrix geometric or
the matrix analytical approaches [5, 8, 15]. Simulation
(which in some aspects can be seen as opposite of
analytical approach) is a powerful and universal scien-
tific method to estimate the performance measures of
various stochastic systems, including those based on
queuing theory [1, 9]. One of the drawbacks of
simulation is that sometimes it requires large amount
of CPU time in order to achieve high accuracy. Vali-
dation and verification of a model is also a difficult
problem.

An alternative is to use special numerical solvers,
based on Markov chains to compute necessary

110

http://dx.doi.org/10.5755/j01.itc.40.2.425

Complexity of Embedded Chain Algorithm for Computing Steady State Probabilities of Markov Chain

performance measures of queuing system. Such a
numerical-analytical approach can be seen as a comp-
romise among strictly analytical models and simula-
tion, since it can achieve computational accuracy in
relatively small amount of time.

In this paper we used the created software, which
is based on Markov chains, to generate linear system
of Kolmogorov-Chapman equations, which is stored
in CPU memory as infinitesimal generator matrix of
Markov chain. In book [14], the system that automates
the construction of Markov models is presented. The
embedded Markov chains are used for computing
steady state probabilities of the Markov process. We
used PLA formalism ([10, 13],etc.) to describe the
performance of the system.

The former modeling and computation method
was presented in [16] etc. In this paper we propose
theoretical evaluation of the complexity of the algo-
rithm. Theoretical results were compared with similar
computation techniques and supported by experimen-
tal results.

In the second section of the paper, the method of
embedded Markov chains for computing steady state
probabilities is presented. In the third section, we
derive theoretical evaluation of the complexity of the
algorithm for worst-case scenario. In Section 4, the
modified algorithm for computing steady state prob-
abilities is presented. It is proved that its slight
modifycation improves the performance of the
algorithm when infinitesimal generator matrix is
sparse. In Section 5, an empirical research of the algo-
rithm is presented. Experimental results with different
infinitesimal generator matrices confirm theoretical
evaluations of the complexity of the algorithm. An
example of creating a numerical model of multi-class,
multi-server queuing system is presented in the last
section. In the paper, we use PLA formalism for
description of the system performance and generation
of Kolmogorov-Chapman equations [12].

2. An algorithm for computing steady state
probabilities

Let  
NN

N
ijN pP


 be the transitions probability

matrix of the embedded Markov chain   0, mx N
m

N 1NX

specified by . Let , ,,

 be the sequence of the state spaces obtained by

the following state space reduction routine:

},,2 Ni,{ 1N iiX  X

1X

},,,{ 21 kk iiiX  ,

}/ 11  kkk iXX , 1,1  Nk .

Construct the sequence of Markov chains
      0,,,0,,0, 1)1(  mxmxmx m

N
m

N
m 

 
 by em-

bedding the chain  0, mx k
m

 
 into the chain

 0,1  mx k
m , 1,1  Nk . It is proved that in this

case the Markov chain   0, mx k
m is embedded into

the chain   0, mx N
m too. Since the Markov chain

  0

1NP 1P

P

  

, mx n
m

NP

 

 is specified by the and then we

need to construct the sequence of transition mat-
rixes , ,, . In [14], it is shown that the

elements of matrixes , ,, are calculated

according the formulas

nP

N 1NP


 

nX

1P



k

kp ,1
,i

1

1
1
,1


 k

kp
1


1


k

1
1,

1 


  k
ki

k
ij ppk

ijp (1)

1,1 . ,, kk1, ji  N

Steady state probabilities of discrete time Markov
chain are calculated by the formulas

1
1

1 p ;

 

 



















;1,;1,

1

,,

1
1

1

N
p

pp

kp

k
ii

k

j

k
ji

k

j

k

i

1k

 ,1

ki

i

1
p

k

i (2)

.,1, j 

1

)(

)(
)(N

p

p
p

N

j

N
j

N
jN

j 




p j  (3)

Formulas (1)-(3) are not convenient when dealing
with practical problems. Usually, real systems are
described by continuous time Markov chains.
Therefore transitions are given as an infinitesimal

generator matrix  
NN 

N
ijQ   instead of the transi-

tion probability matrix  
NN

N
ijpNP . To apply the

algorithm to continuous time Markov chains, we
substitute




ijp
N

j
iji

i

ij S
S

1

, 


into (1). After the substitution we obtain the formulas

,
)1(

,1
k

jk

)1(

1,)1(

i

k
kik

ij
S


 




)(k
ij 

kji,;1 Nk
N

ij
ij ,1,1,

,1




S
j

i 

)1(
1 r

 

.

The non-normalized probabilities can be calculated
recursively. At first we get

. 1

The other non-normalized probabilities are
()

1
1k

ir
 () (1)

1

, 1, ,

, 1 1, 1.

k
i

N
k k

j ji
j

i

r i k

r

N
S








 

 
 


;k i k 

111

H. Pranevičius, E. Valakevičius, M. Šnipas

Finally, steady state probabilities are  Niqi ,,1, 

.,1,

1

)(

)(

Ni

r

r
q

N

j

N
j

N
i

i 




3. Complexity analysis of the algorithm for
calculating steady state probabilities

The worst-case scenario arises when all elements
of the generator Q are non-zero. In this case, all
elements of the matrix Q are stored in a two-
dimension array. We will analyze two stages of the
embedded chains algorithm separately.

The first stage of the algorithm is an embedding
stage. The recalculated intensities are stored for the
second step. The code is written in C++ and shown
below:

void TForm1::EmbeddingStep(int n)
{
 1 if (n==2)
 2 { M[0]=A[0][1];
 3 sumn[0]=A[1][0]; }
 4 else
 5 { float sum = 0;
 6 for (int i=0;i<(n-1);i++)
 7 M[((n-1)*(n-1)-(n-1))/2+i]=Q[i][n-1] ;
 8 for (int i=0;i<(n-1);i++)
 9 sum = sum + Q[n-1][i];
10 sumn[n-2]=sum;
11 for (int i=0;i<(n-1);i++)
12 for (int j = 0;j<(n-1);j++)
13 A[i][j]+=(Q[i][m-1]*Q[m-1][j]/sumn[n-2]);
14 EmbeddingStep(n-1);}
}

In order to evaluate the runtime complexity of the
algorithm, we made a simplifying assumption, that
different instructions (i.e. saving new variables, addi-
tion, and multiplication) require equal amount of time,
which we denote as 1. In steps 1-4, two variables are
saved, so they require 2 units of time. While n > 2,
steps 5-14 are executed recursively. Step 5 requires 1
unit of time. In steps 6-7 we have the loop, which is
executed (n – 2) times, and each execution requires 1
unit of time. Analogically, in steps 8-9, the loop
requires the same amount of time as in steps 6-7, and
in step 10 one unit of time is required. In steps 11-13
we have the outer and inner loops which are executed
(n – 1) times each. Since each execution requires 3
units of time, steps 11-13 require 3(n-1)² units of time
in total.

We denote by the runtime complexity of the

whole algorithm, and by and we denote

the runtime complexity functions of the first and the
second stages of the algorithm, respectively.

 nT

 nT1  nT2

In order to find , we need to solve the inho-

mogeneous difference equation of the first order

 nT1

   )1(131)(1
2

1  nTnnnnT

or

243)1()(2
11  nnnTnT , n (4) N

with the seed value
2)2(1 T . (5)

The solution of a difference equation can be found
by the method of undetermined coefficients. The
characteristic polynomial is , so is a

root having multiplicity 1. The general solution of
homogenous part is

01q 1q

    11 1 cnTcnT H
n

H  , . Rc 1

The particular solution has the form

   2
2100 npnppnn  , (6)

Rppp 210 ,, .

To find coefficients , we substitute (3)

into (1). We obtain the equation:
210 ,, ppp

2 2
0 1 2 1 2 22 3 3 3 4p p p p n p n p n n n 2.       

Comparing both sides, we have the system linear
of equations













33

432

2

2

21

210

p

pp

ppp

which has the solution

2

1
0 p ,

2

1
1 p , 12 p .

The general solution is the sum of the homogenous
part and particular solution:

c
nn

nnT 
22

)(
2

3
1 .

Constant c can be found from the seed value (2)
7c .

The second stage of the algorithm is the
calculation of steady state probabilities. The code in
C++ is written below:

void TForm1::StacTik()
{
1 float r[n];
2 r[0]=1;
3 for (int i=1; i<n; i++)
4 { r[i]=0;
5 for (int j=0;j<i;j++)
6 r[i]+=r[j]*M[(i*i-i)/2+j];
7 r[i] = r[i]/sumn[i-1]; }

}

In step 2, the algorithm performs a save operation.
In steps 3-6 an outer loop is executed (n – 1) times and
it has an inner loop inside. The inner loop is governed
by the outer loop. Using the arithmetical progression,

112

Complexity of Embedded Chain Algorithm for Computing Steady State Probabilities of Markov Chain

the running time of the second stage can be evaluated
as follows:

 

1 1

2
1 0 1

2

2

() 2 2

1 2 ... (1) 2(1)

2 2
2

1 3
2.

2 2

n i n

i j i

T n

n n

n n
n

n n

 

  

  

      


  

 

 

The complexity of the whole algorithm is equal to
.       723

21  nnnTnTnT

Eventually, using big O notation, the complexity of
the algorithm is

   3~ nOnT . (7)

4. Complexity analysis of the modified
algorithm

In the worst-case scenario, the algorithm has the
run time complexity of  3nO . Matrices which arise in

practical problems (e.g. queuing networks) usually are
very sparse. The algorithm of embedded chains can be
modified for that case. Assuming that the matrix Q is
not very large (i.e., it is possible to store the matrix in
random access memory and no sparse matrix
representation is necessary), steps 11-13 of the
embedding stage of the algorithm can be written as
follows:

11 for (int i=0;i<(n-1);i++)
12 if (Q[i][n-1]>0)
13 {for (int j = 0;j<(n-1);j++)
14 Q[i][j]+=Q[i][n-1]*Q[n-1][j]/sumn[n-2]);}

In other words, we add an additional ‘if’ statement,
in order to avoid superfluous instructions in step 14 of
outer loop.

The run time complexity of the modified algorithm
can be estimated using the recurrence relation. We
denote by i – the number of nonzero entries in an i-

th column of the matrix Q, and  is

  i
Ni


,,1
max


 .

The modified algorithm has one additional
instruction in each outer loop, but the inner loop will
be executed just ν times (at most). Obviously, until
step 11, the modified algorithm requires the same
amount of time (2(n-1)) as written in Section 3. ‘If’
statement in step 12 will be executed (n-1) times and
steps 13-14 will be executed no more than ν(n-1)
times (because of the modification), and each
execution requires 3 units of time. The run time
complexity can be expressed using the following
recurrence relation:

   )1()1(3112)(11  nTnnnnT 

or
  3333)1()(11   nnTnT , Nn ,

with seed value 2)2(T .

The general solution of homogenous part is
  cnTH  , Rc .

If n , or even, for example 10 , the
particular solution has the form

   nppnn 100  ,

Rpp 10, .

We can find using the method of

undetermined coefficients. Again, we obtain the
equation:

210 ,, ppp

  3332 110   nnppp .

The values are the solution of the system of

linear equations:
10, pp








.32

33

1

10




p

pp

So

2

65
0





p ,

2

3
1


p .

In conclusion, the run time complexity of the
embedding step of the modified algorithm is equal to

cnnnT 





 





2

65

2

3
)(2

1
 .

If we assume that n , then using big O
notation, the complexity of the first stage is

)(~)(2
1 nOnT .

(An exact value of the constant c can be found
from the seed value, but it does not change the
asymptotic evaluation).

Since the second step was not modified, we obtain
the estimation of the run time complexity

       2
21 ~ nnTnTnT  .

Therefore, for very sparse matrices, the modified
embedded chains algorithm has the run time
complexity of  2n , which is better than classical

Gaussian elimination. In addition, the run time comp-
lexity of the embedded chains algorithm does not
depend on the structure of the infinitesimal generator
matrix Q.

5. Experimental investigation of the algorithm

We have compared the run time of the embedded
chains (both ordinary and modified) algorithm and the
LU decomposition (in particularly, we have used the
Doolittle decomposition of the transposed matrix Q),
which is a variant of the Gaussian elimination.

113

H. Pranevičius, E. Valakevičius, M. Šnipas

In order to compare the algorithms, we have used
four different infinitesimal generator matrices of Mar-
kov chains with 1000 000 elements each (i.e., matrices
represent Markov chains with 1000 states). Since the
matrices are relatively small, they were stored in two-
dimension arrays.

For the first experiment we chose a Markov chain
with all intensities among the states equal to 1 (i.e.,
matrix Q1 has all non-diagonal elements equal to 1).
Obviously, in this trivial case the steady states prob-
abilities are all equal to 0.001.

For the second experiment, we generated (i.e.,
using random number generator) infinitesimal gene-
rator matrix Q05. Matrix Q05 was generated in such a
way that all intensities among the states – i.e., non-
diagonal elements of the matrix – are equal to 1 (with
probability 0.5) or 0 (also with probability 0.5). We
have also checked if the rank of the matrix Q is equal
to (n-1). It is obvious that randomly generated matrix
Q05 will have on average 50 % nonzero entries, and
entries in matrix are scattered without any noticeable
pattern or structure. In Figure 1 a portion of the matrix
Q05 is shown.

Figure 1. Structure of matrix Q05

In the third experiment, we have generated matrix
Q001 with the intensities among the states equal to 1
with probability 0.01, or 0 with probability 0.99. In
this case, matrix Q001 will have on average 1 %
nonzero entries (so it is a sparse matrix), and the
entries again are scattered without any noticeable
structure, except for diagonal (see Figure 2).

Figure 2. Structure of matrix Q001

For the last experiment, we use infinitesimal gene-
rator matrix Q of the Markov chain, which describes a
queuing system with quality control [14].

We have generated an infinitesimal generator
matrix Q, using the created software, which is based
on Markov chains. It generates the set of possible
states, the generator and the steady state probabilities.
In this case, the matrix Q is very sparse, nonsymmet-
rical and highly structured (Figure. 3).

Figure 3. Structure of matrix Q

Experimental run time analysis of algorithms was
performed using a PC with AMD Athlon 64 X2 dual
core processor 4000+ 2.10 GHz, 896 MB of RAM
physical address extensions.
The experimental results are shown are in Table 1.

Table 1. Comparison of modeling results (time in seconds)

Generator
matrix

Embedded
chains

Modified
embedded

chains

LU
decompo-

sition

Q1 7.032 6.984 5.101

Q05 6.984 6.921 5.093

Q001 6.969 3.688 5.100

Q 6.969 0.047 5.095

Embedded chains algorithm is slightly less effec-
tive than LU decomposition, if infinitesimal generator
matrix is dense. However, if infinitesimal generator
matrix is sparse (less than 1 percent non-zero entries)
the modified algorithm outperforms LU decomposi-
tion, and it is much more effective if infinetisimal
generator matrix is very sparse.

6. Example: queuing system with Markov
modulated service time

Consider a queue whose service capacity varies
over time. That is, the speed of the server is deter-
mined by an underlying stochastic process. In parti-
cular, we assume that the server speed changes
according to a continuous time Markov chain that is
independent of the arrival process and service re-
quirements of the customer. Each customer brings a
certain random amount of work, however, the rate at
which this work is completed is time varying. We
assume that the customers in the queue are served in a

114

Complexity of Embedded Chain Algorithm for Computing Steady State Probabilities of Markov Chain

First In First Out (FIFO) manner. Server speed can
change at service completion.
The system is represented schematically in Figure 4.

f

s

ssp

ffp

sfp fsp 

Figure 4. Scheme of the queuing system

Customers arrive into the queue according to a
Poisson process with mean rate λ. Each arriving cus-
tomer brings a certain amount of work distributed
exponentially with mean which depends on some
external Markov chain. In the following analysis we
assume, that underlying Markov chain has two states,
which we denote as slow S, and fast F. When the
underlying Markov chain is in state S, server works at

rate s , and when Markov chain is in state F, server

works at rate f . We assume that fs   . If server is

in state S and completes a service, it can remain in
state S with probability , or it can transit in state F

with probability . Similarly, if server is in

state F, it can remain in the same state with
probability , or it can transit in the state S with

probability .

ssp

ssp1sf 

ffp1

p

ffp

fsp 

Since customer arrival and service times have
exponential distribution, performance of the whole
queuing system can be described as Markov chain
with infinitesimal generator matrix. There are a few
different approaches to create infinitesimal generator
matrix automatically. One can use tools based on Petri
nets ([4, 6, 7]), stochastic automata networks forma-
lism, proposed by Plateau ([2, 3, 11]) or other me-
thods. In any case, the user must precisely describe the
performance of the system.

We used the PLA formalism for numerical models
[12] to describe the performance of the queuing
system.
Aggregate specification of the queuing system is:

1. The set of input signals X = Ø.
2. The set of output signals Y = Ø.
3. The set of external events E' = Ø.
4. The set of internal events:

 "
5

"
4

"
3

"
2

"
1 ,,,," eeeeeE  ,

where – a customer arrived at the system; "
1e
"
2e – a customer was served at state F and the

state of the server did not change;

"
3e – a customer was served at state F and the

state of the server changed into S;
"
4e – a customer was served at state S and the

state of the server did not change;
"
5e - a customer was served at state S and the

state of the server changed into F.
5. The transition rates between states of the system:

"
1e

se  "
4

, , ,

 , .

fff pe  "
2

ssp e  "
5

fsf pe  "
3

sfs p

6. The discrete component of the state:
      tntnt 21 , ,

where  tn1 – number of customers in the system;

 tn2 – indicates the state of the server (0, if

state is F and 1 if it’s S).
7. The continuous component of the state:

            tewtewtewtewtewtz ,,,,,,,,, "
5

"
4

"
3

"
2

"
1 .

8. Initial state of the system:
    ,,,,,0,0tz .

9. Internal transition operators:

 "
1H e : / a customer arrived at the system /

     
 


 


;,

,,1
0

1

11
1 otherwisetn

Ltniftn
tn

   tntn 22 0  ;

   tewtew ,0, "
1

"
1  ;

   









;,

,0,
0,

2"
2

otherwise

tnifp
tew

fff

   









;,

,0,
0,

2"
3

otherwise

tnifp
tew

fsf

   








;,

,1,
0, 2"

4 otherwise

tnifp
tew sss

   









.,

,1,
0,

2"
5

otherwise

tnifp
tew

sfs

 "
2eH and  "

5eH :

    10 11  tntn ;

  002 tn ;

   tewtew ,0, "
1

"
1  ;

   









;,

,1,
0,

1"
2

otherwise

tnifp
tew

fff

115

H. Pranevičius, E. Valakevičius, M. Šnipas

   









;,

,1,
0,

1"
3

otherwise

tnifp
tew

fsf

   0,"
4 tew ;

   0,"
5 tew .

 "
3eH and  "

4eH :

    10 11  tntn ;

  103 tn ;

   tewtew ,0, "
1

"
1  ;

   0,"
2 tew ;

   0,"
3 tew ;

   








;,

,1,
0, 1"

4 otherwise

tnifp
tew sss

   









.,

,1,
0,

1"
5

otherwise

tnifp
tew

sfs

The created software automatically builds infinite-
simal generator matrix and estimates steady state
probabilities  21,nn  . System performance characte-

ristics can be calculated using steady state probabi-
lities. For example, loss probability (arriving customer
finds L customers in the queue) is estimated by the
formula

   



Ln n

nnLP
1 2

21, ,

when waiting space is limited by L.
We modeled queuing systems with Markov modu-

lated service times and with limitation on the waiting
space (M/MMPP/1/N by Kendall notation). In order to
compare run time of the modified algorithm with
different size infinitesimal generator matrices, the
limit imposed on the waiting space L was varied.
Experimental results (in Table 2 and Figure 5) confirm
theoretical complexity evaluation of the modified
algorithm O(n²) , since run time of modified algorithm
increases about 4 times, when the number of system
states increases 2 times, and trend line is consistent
with second order function.

Table 2. Computation time of the modified algorithm

Number of states CPU time, ms

600 16
800 31
1000 47
1200 62
1400 94
1600 141

Modeling results were compared with results ob-
tained by analytical solution in [17]. Loss probability
of the system with limited waiting space was

calculated when limitation on waiting space is 7. In
Table 3 we can see that numeric modeling results
coincide with results obtained analytically. The results
were obtained with the software created in C++
program language.

0

20

40

60

80

100

120

140

160

0 500 1000 1500 2000

Number of states

ti
m

e
, m

s

Figure 5. Computation time

Table 3. Comparison of numerical and analytical modeling
results

 sfp fsp ()anP L ()numP L

10 0.6 0.3 3.11% 3.11%

8s 0.3 0.6 11.05% 11.05%

50s 0.9 0.15 0.78% 0.78%

10 0.6 0.3 0.52% 0.52%

5.12s 0.3 0.6 1.91% 1.91%

50s 0.9 0.15 0.14% 0.14%

7. Conclusion

Embedded chains algorithm is designed specifi-
cally for Markov chains. It is a direct algorithm, so
theoretically it will calculate the exact solution in a
finite number of steps. Theoretical analysis showed
that the complexity of the embedded chains algortihm
is O(n³) in the worst-case scenario, so it cannot out-
perform Gaussian algortihm and its variants (LU de-
composition) when infinetisimal generator matrix is
dense. However, the modified algorithm becomes
more effective when infinetisimal generator matrix is
sparse. Theoretical and experimental results showed
that the complexity of the modified algorithm is O(n²)
when infinitesimal generator matrix is very sparse.

References

 [1] D. Bakšys, L. Sakalauskas. Simulation and testing of
FIFO clearing algortihms. Information Technology
and Control, Vol. 39, No. 1, 2010, 25-31.

 [2] L. Brenner, P. Fernandes, B. Plateau, I. Sbeity.
PEPS2007 – Stochastic automata networks software
tool. Fourth International Conference on the Quanti-
tive Evaluation of Systems, QEST 2007, Edinburgh,
2007,163-164.

 [3] L. Brenner, P. Fernandes, J.M. Fourneau, B. Pla-
teau. Modelling GRID5000 point availability with
SAN. Electronic Notes in Theoretical Computer
Science, Vol. 232, 2009, 165-178.

116

Complexity of Embedded Chain Algorithm for Computing Steady State Probabilities of Markov Chain

 [4] K.S. Cheung. Refinement of Petri-net-based system
specification. Information Technology and Control,
Vol. 35, No. 2, 2006, 137-143.

 [5] M. Harchol-Balter, T. Osogami, A. Scheller-Wolf,
A. Wierman. Multi-server queueing systems with
multiple priority classes Queueing System, Vol. 51,
2005, 331-360.

 [6] S. Kounev. Performance modelling and evaluation of
distributed component-based systems using queueing
Petri nets. IEEE Transactions on Software Enginee-
ring, Vol. 32, No. 7, 2006, 486-502.

 [7] S. Kounev, C. Dutz. QPME: a performance modelling
tool besed on queueing Petri nets. ACM SIGMETRICS
Performance Evaluation Review, Vol. 36, No. 4, 2009,
46-51.

 [8] S.R. Mahabhashyam, N. Gautam. On queues with
Markov modulated service rates. Queueing Systems,
Vol. 51, 2005, 89-113.

 [9] S. Minkevičius. Simulation of the open message
switching system. Information Technology and
Control, Vol. 37, No. 1, 2008, 75-78.

[10] Š. Packevičius, A. Kazla, H. Pranevičius. Extension
of PLA specification for dynamic system
formalization. Information Technology and Control,
Vol. 35, No. 3, 2006, 235-242.

[11] B. Plateau, K. Atif. Stochastic automata network of
modeling parallel systems. IEEE Transactions on Soft-
ware Engineering, Vol. 17, No. 10, 1991, 1093-1108.

[12] H. Pranevičius, V. Germanavičius, G. Tumelis.
Automatic Creation of Numerical Model of Systems
Specified by PLA Method. 19th European Conference
of Modelling and Simulation, ASMTA 2005, 118-124.

[13] H. Pranevičius, A. Paulauskaitė-Tarasevičienė, D.
Makackas. Application of abstract data type in dyna-
mic PLA approach. Information Technology and
Control, Vol. 38, No. 1, 2009, 7-13.

[14] H. Pranevičius, E. Valakevičius. Numerical models
of systems specified by Markovian processes. Techno-
logija, Kaunas, 1996.

[15] A. Sleptchenko, A. van Harten, M. van der Heij-
den. An exact solution for the state probabilities of the
multi-class, multi-server queue with preemptive prio-
rities. Queueing Systems, Vol. 50, 2005, 81-107.

[16] E. Valakevičius, H. Pranevičius. An algorithm for
creating Markovian Models of Complex Systems,
Proceedings of the 12th World Multi-Conference on
Systemics, Cybernetics and Informatics, WSMCI 2008,
Orlando, 2008. 258-262.

[17] Y.P. Zhou, N. Gans. A Single-Server Queue with
Markov Modulated Service Times. Working paper, the
Wharton School, University of Pensilvania.

Received November 2010.

