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Abstract. The paper presents the theoretical evaluation of the complexity of an algorithm, based on embedded 
Markov chains, for computing steady state probabilities. Experimental research with different infinitesimal generator 
matrices was performed to support theoretical evaluations.  Results showed that modified algorithm can be more effec-
tive for sparse matrices. An example of a queuing system is presented to demonstrate the automatic creation of the 
model of the system based on the proposed modelling method. 
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1. Introduction 

The Markov chains are widely used for creating 
functioning models of various systems: computer net-
works, communication systems, reliability models etc. 
It is known that the analytical solution of complex real 
world systems is very difficult or even impossible. 
Using numerical methods permits to model a wider 
class of systems. The process of creating numerical 
models for systems described by the Markov chain 
consists of the following stages: 
1.  Defining a state space of the Markov chain. 
2. Generating a linear system of Kolmogorov-Chap-

man equations, describing the performance of the 
system as a set of states and transitions among 
them. 

3. Solving the linear system of Kolmogorov-Chapman 
equations, i.e., computing steady state probabi-
lities.   

4. Computing probabilistic characteristics of the 
system performance.  
It is necessary to emphasize that automation is not 

equally applicable for all the stages. The first stage is 
determined in a heuristic way. The description of the 
system is the original that determines the state space 
of the system. The principal requirement in that stage 

is to introduce a necessary number of coordinates to 
describe behavior of the system. 

Most difficult stages in the construction of a nume-
rical model are the creation and solution of the linear 
system of Kolmogorov-Chapman equations. The num-
ber of equations is usually large (counted in thou-
sands). Thus an automatic construction of linear 
systems and effective numerical solution methods are 
very important.  

In order to demonstrate creation of numerical 
model we present an example of queuing system. 
There are a few different approaches to model queuing 
systems. In some cases, an exact solution of queuing 
systems can be found using the matrix geometric or 
the matrix analytical approaches [5, 8, 15]. Simulation 
(which in some aspects can be seen as opposite of 
analytical approach) is a powerful and universal scien-
tific method to estimate the performance measures of 
various stochastic systems, including those based on 
queuing theory [1, 9]. One of the drawbacks of 
simulation is that sometimes it requires large amount 
of CPU time in order to achieve high accuracy. Vali-
dation and verification of a model is also a difficult 
problem.  

An alternative is to use special numerical solvers, 
based on Markov chains to compute necessary 
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performance measures of queuing system. Such a 
numerical-analytical approach can be seen as a comp-
romise among strictly analytical models and simula-
tion, since it can achieve computational accuracy in 
relatively small amount of time.  

In this paper we used the created software, which 
is based on Markov chains, to generate linear system 
of Kolmogorov-Chapman equations, which is stored 
in CPU memory as infinitesimal generator matrix of 
Markov chain. In book [14], the system that automates 
the construction of Markov models is presented. The 
embedded Markov chains are used for computing 
steady state probabilities of the Markov process. We 
used PLA formalism ([10, 13],etc.) to describe the 
performance of the system.  

The former modeling and computation method 
was presented in [16] etc. In this paper we propose 
theoretical evaluation of the complexity of the algo-
rithm. Theoretical results were compared with similar 
computation techniques and supported by experimen-
tal results. 

In the second section of the paper, the method of 
embedded Markov chains for computing steady state 
probabilities is presented. In the third section, we 
derive theoretical evaluation of the complexity of the 
algorithm for worst-case scenario. In Section 4, the 
modified algorithm for computing steady state prob-
abilities is presented. It is proved that its slight 
modifycation improves the performance of the 
algorithm when infinitesimal generator matrix is 
sparse. In Section 5, an empirical research of the algo-
rithm is presented. Experimental results with different 
infinitesimal generator matrices confirm theoretical 
evaluations of the complexity of the algorithm. An 
example of creating a numerical model of multi-class, 
multi-server queuing system is presented in the last 
section. In the paper, we use PLA formalism for 
description of the system performance and generation 
of Kolmogorov-Chapman equations [12]. 

2.  An algorithm for computing steady state 
probabilities  

Let  
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Formulas (1)-(3) are not convenient when dealing 
with practical problems. Usually, real systems are 
described by continuous time Markov chains. 
Therefore transitions are given as an infinitesimal 

generator matrix  
NN 

N
ijQ    instead of the transi-

tion probability matrix  
NN
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ijpNP . To apply the 

algorithm to continuous time Markov chains, we 
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into (1). After the substitution we obtain the formulas 
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The non-normalized probabilities can be calculated 
recursively. At first we get 
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Finally, steady state probabilities  are  Niqi ,,1, 
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3.  Complexity analysis of the algorithm for 
calculating steady state probabilities 

The worst-case scenario arises when all elements 
of the generator Q are non-zero. In this case, all 
elements of the matrix Q are stored in a two-
dimension array. We will analyze two stages of the 
embedded chains algorithm separately. 

The first stage of the algorithm is an embedding 
stage. The recalculated intensities are stored for the 
second step. The code is written in C++ and shown 
below: 

void TForm1::EmbeddingStep(int n) 
{ 
 1 if ( n==2) 
 2   { M[0]=A[0][1]; 
 3     sumn[0]=A[1][0]; } 
 4 else 
 5  { float sum = 0; 
 6    for (int i=0;i<(n-1);i++)    
 7     M[((n-1)*(n-1)-(n-1))/2+i]=Q[i][n-1] ; 
 8    for (int i=0;i<(n-1);i++)    
 9      sum = sum + Q[n-1][i]; 
10    sumn[n-2]=sum; 
11     for ( int i=0;i<(n-1);i++) 
12     for (int j = 0;j<(n-1);j++) 
13  A[i][j]+=(Q[i][m-1]*Q[m-1][j]/sumn[n-2]); 
14        EmbeddingStep(n-1);} 
} 

In order to evaluate the runtime complexity of the 
algorithm, we made a simplifying assumption, that 
different instructions (i.e. saving new variables, addi-
tion, and multiplication) require equal amount of time, 
which we denote as 1. In steps 1-4, two variables are 
saved, so they require 2 units of time. While n > 2, 
steps 5-14 are executed recursively. Step 5 requires 1 
unit of time. In steps 6-7 we have the loop, which is 
executed (n – 2) times, and each execution requires 1 
unit of time. Analogically, in steps 8-9, the loop 
requires the same amount of time as in steps 6-7, and 
in step 10 one unit of time is required. In steps 11-13 
we have the outer and inner loops which are executed 
(n – 1) times each. Since each execution requires 3 
units of time, steps 11-13 require 3(n-1)² units of time 
in total. 

We denote by  the runtime complexity of the 

whole algorithm, and by  and  we denote 

the runtime complexity functions of the first and the 
second stages of the algorithm, respectively.  
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part and particular solution: 
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Constant c can be found from the seed value (2) 
7c .  

The second stage of the algorithm is the 
calculation of steady state probabilities.  The code in 
C++ is written below: 

void TForm1::StacTik() 
{ 
1 float r[n]; 
2 r[0]=1; 
3 for ( int i=1; i<n; i++) 
4     { r[i]=0; 
5       for ( int j=0;j<i;j++)  
6          r[i]+=r[j]*M[(i*i-i)/2+j]; 
7       r[i] = r[i]/sumn[i-1]; } 

} 

In step 2, the algorithm performs a save operation. 
In steps 3-6 an outer loop is executed (n – 1) times and 
it has an inner loop inside. The inner loop is governed 
by the outer loop. Using the arithmetical progression, 
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the running time of the second stage can be evaluated 
as follows: 
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The complexity of the whole algorithm is equal to 
.       723

21  nnnTnTnT

Eventually, using big O notation, the complexity of 
the algorithm is  

   3~ nOnT . (7) 

4.  Complexity analysis of the modified 
algorithm 

In the worst-case scenario, the algorithm has the 
run time complexity of  3nO . Matrices which arise in 

practical problems (e.g. queuing networks) usually are 
very sparse. The algorithm of embedded chains can be 
modified for that case. Assuming that the matrix Q is 
not very large (i.e., it is possible to store the matrix in 
random access memory and no sparse matrix 
representation is necessary), steps 11-13 of the 
embedding stage of the algorithm can be written as 
follows: 

11 for ( int i=0;i<(n-1);i++)   
12 if ( Q[i][n-1]>0)  
13  {for (int j = 0;j<(n-1);j++) 
14  Q[i][j]+=Q[i][n-1]*Q[n-1][j]/sumn[n-2]);} 

In other words, we add an additional ‘if’ statement, 
in order to avoid superfluous instructions in step 14 of 
outer loop. 

The run time complexity of the modified algorithm 
can be estimated using the recurrence relation. We 
denote by i  – the number of nonzero entries in an i-

th column of  the matrix Q, and   is 

  i
Ni


,,1
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
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The modified algorithm has one additional 
instruction in each outer loop, but the inner loop will 
be executed just ν times (at most). Obviously, until 
step 11, the modified algorithm requires the same 
amount of time (2(n-1)) as written in Section 3. ‘If’ 
statement in step 12 will be executed (n-1) times and 
steps 13-14 will be executed no more than ν(n-1) 
times (because of the modification), and each 
execution requires 3 units of time. The run time 
complexity can be expressed using the following 
recurrence relation:  
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The general solution of homogenous part is  
  cnTH  , Rc . 

If n , or even, for example 10 , the 
particular solution has the form 
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equation: 
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In conclusion, the run time complexity of the 
embedding step of the modified algorithm is equal to   

cnnnT 
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If we assume that n , then using big O 
notation,  the complexity of the first stage is  

)(~)( 2
1 nOnT .  

(An exact value of the constant c can be found 
from the seed value, but it does not change the 
asymptotic evaluation). 

Since the second step was not modified, we obtain 
the estimation of the run time complexity 

       2
21 ~ nnTnTnT  . 

Therefore, for very sparse matrices, the modified 
embedded chains algorithm has the run time 
complexity of  2n , which is better than classical 

Gaussian elimination. In addition, the run time comp-
lexity of the embedded chains algorithm does not 
depend on the structure of the infinitesimal generator 
matrix Q. 

5. Experimental investigation of the algorithm  

We have compared the run time of the embedded 
chains (both ordinary and modified) algorithm and the 
LU decomposition (in particularly, we have used the 
Doolittle decomposition of the transposed matrix Q), 
which is a variant of the Gaussian elimination. 
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In order to compare the algorithms, we have used 
four different infinitesimal generator matrices of Mar-
kov chains with 1000 000 elements each (i.e., matrices 
represent Markov chains with 1000 states). Since the 
matrices are relatively small, they were stored in two-
dimension arrays. 

For the first experiment we chose a Markov chain 
with all intensities among the states equal to 1 (i.e., 
matrix Q1 has all non-diagonal elements equal to 1). 
Obviously, in this trivial case the steady states prob-
abilities are all equal to 0.001.  

For the second experiment, we generated (i.e., 
using random number generator) infinitesimal gene-
rator matrix Q05. Matrix Q05 was generated in such a 
way that all intensities among the states – i.e., non-
diagonal elements of the matrix – are equal to 1 (with 
probability 0.5) or 0 (also with probability 0.5). We 
have also checked if the rank of the matrix Q is equal 
to (n-1). It is obvious that randomly generated matrix 
Q05 will have on average 50 % nonzero entries, and 
entries in matrix are scattered without any noticeable 
pattern or structure. In Figure 1 a portion of the matrix 
Q05 is shown. 

 

Figure 1.  Structure of matrix Q05 

In the third experiment, we have generated matrix 
Q001 with the intensities among the states equal to 1 
with probability 0.01, or 0 with probability 0.99. In 
this case, matrix Q001 will have on average 1 % 
nonzero entries (so it is a sparse matrix), and the 
entries again are scattered without any noticeable 
structure, except for diagonal (see Figure 2).  

 
Figure 2.  Structure of matrix Q001 

For the last experiment, we use infinitesimal gene-
rator matrix Q of the Markov chain, which describes a 
queuing system with quality control [14].  

We have generated an infinitesimal generator 
matrix Q, using the created software, which is based 
on Markov chains. It generates the set of possible 
states, the generator and the steady state probabilities. 
In this case, the matrix Q is very sparse, nonsymmet-
rical and highly structured ( Figure. 3).  

 
Figure 3.  Structure of matrix Q 

Experimental run time analysis of algorithms was 
performed using a PC with AMD Athlon 64 X2 dual 
core processor 4000+ 2.10 GHz, 896 MB of RAM 
physical address extensions.  
The experimental results are shown are in Table 1.   

Table 1. Comparison of modeling results (time in seconds) 

Generator 
matrix             

Embedded 
chains 

Modified 
embedded 

chains 

LU  
decompo-

sition 

Q1   7.032 6.984 5.101 

Q05   6.984 6.921 5.093 

Q001   6.969 3.688 5.100 

Q 6.969 0.047 5.095 

Embedded chains algorithm is slightly less effec-
tive than LU decomposition, if infinitesimal generator 
matrix is dense. However, if infinitesimal generator 
matrix is sparse (less than 1 percent non-zero entries) 
the modified algorithm outperforms LU decomposi-
tion, and it is much more effective if  infinetisimal 
generator matrix is very sparse.  

6.  Example: queuing system with Markov 
modulated service time  

Consider a queue whose service capacity varies 
over time. That is, the speed of the server is deter-
mined by an underlying stochastic process. In parti-
cular, we assume that the server speed changes 
according to a continuous time Markov chain that is 
independent of the arrival process and service re-
quirements of the customer. Each customer brings a 
certain random amount of work, however, the rate at 
which this work is completed is time varying. We 
assume that the customers in the queue are served in a 
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First In First Out (FIFO) manner. Server speed can 
change at service completion.  
The system is represented schematically in Figure 4.  

f  

s  

ssp  

ffp

sfp  fsp    

 
Figure 4. Scheme of the queuing system  

Customers arrive into the queue according to a 
Poisson process with mean rate λ. Each arriving cus-
tomer brings a certain amount of work distributed 
exponentially with mean which depends on some 
external Markov chain. In the following analysis we 
assume, that underlying Markov chain has two states, 
which we denote as slow S, and fast F. When the 
underlying Markov chain is in state S, server works at 

rate s , and when Markov chain is in state F, server 

works at rate f . We assume that fs   . If server is 

in state S and completes a service, it can remain in 
state S with probability , or it can transit in state F 

with probability . Similarly, if server is in 

state F, it can remain in the same state with 
probability , or it can transit in the state S with 

probability .  

ssp

ssp1sf 

ffp1

p

ffp

fsp 

Since customer arrival and service times have 
exponential distribution, performance of the whole 
queuing system can be described as Markov chain 
with infinitesimal generator matrix. There are a few 
different approaches to create infinitesimal generator 
matrix automatically. One can use tools based on Petri 
nets ([4, 6, 7]), stochastic automata networks forma-
lism, proposed by Plateau ([2, 3, 11]) or other me-
thods. In any case, the user must precisely describe the 
performance of the system.  

We used the PLA formalism for numerical models 
[12] to describe the performance of the queuing 
system.  
Aggregate specification of the queuing system is: 

1. The set of input signals  X = Ø. 
2. The set of output signals  Y = Ø. 
3. The set of external events  E' = Ø.  
4. The set of internal events:  
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2

"
1 ,,,," eeeeeE  ,  

where – a customer arrived at the system; "
1e
"
2e – a customer was served at state F and the 

state of the server did not change; 

"
3e – a customer was served at state F and the 

state of the server changed into S; 
"
4e – a customer was served at state S and the 

state of the server did not change; 
"
5e - a customer was served at state S and the 

state of the server changed into F.     
5. The transition rates between states of the system: 
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6.  The discrete component of the state: 
      tntnt 21 , , 

where  tn1  – number of customers in the system; 

 tn2  –  indicates the state of the server ( 0, if 

state is F and 1 if it’s S ).  
7. The continuous component of the state: 

            tewtewtewtewtewtz ,,,,,,,,, "
5

"
4

"
3

"
2

"
1 . 

8. Initial state of the system: 
    ,,,,,0,0tz . 

9. Internal transition operators: 

 "
1H e : / a customer arrived at the system / 
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Ltniftn
tn  
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2
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otherwise
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The created software automatically builds infinite-
simal generator matrix and estimates steady state 
probabilities  21,nn  . System performance characte-

ristics can be calculated using steady state probabi-
lities. For example, loss probability (arriving customer 
finds L customers in the queue) is estimated by the 
formula  

   



Ln n

nnLP
1 2

21, , 

when waiting space  is limited by L. 
We modeled queuing systems with Markov modu-

lated service times and with limitation on the waiting 
space (M/MMPP/1/N by Kendall notation). In order to 
compare run time of the modified algorithm with 
different size infinitesimal generator matrices, the 
limit imposed on the waiting space L was varied.  
Experimental results (in Table 2 and Figure 5) confirm 
theoretical complexity evaluation of the modified 
algorithm O(n²) , since run time of modified algorithm 
increases about 4 times, when the number of system 
states increases 2 times, and trend line is consistent 
with second order function. 

Table 2. Computation time of the modified algorithm 

Number of states  CPU time, ms  

600 16 
800 31 
1000 47 
1200 62 
1400 94 
1600 141 

Modeling results were compared with results ob-
tained by analytical solution in [17]. Loss probability 
of the system with limited waiting space was 

calculated when limitation on waiting space is 7. In 
Table 3 we can see that numeric modeling results 
coincide with results obtained analytically. The results 
were obtained with the software created in C++ 
program language. 
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Figure 5. Computation time  

Table 3. Comparison of numerical and analytical modeling  
results  

 sfp  fsp  ( )anP L  ( )numP L  

10  0.6 0.3 3.11% 3.11% 

8s  0.3 0.6 11.05% 11.05% 

50s  0.9 0.15 0.78% 0.78% 

10  0.6 0.3 0.52% 0.52% 

5.12s 0.3 0.6 1.91% 1.91% 

50s  0.9 0.15 0.14% 0.14% 

7. Conclusion 

Embedded chains algorithm is designed specifi-
cally for Markov chains. It is a direct algorithm, so 
theoretically it will calculate the exact solution in a 
finite number of steps. Theoretical analysis showed 
that the complexity of the embedded chains algortihm 
is O(n³) in the worst-case scenario, so  it cannot out-
perform Gaussian algortihm and its variants (LU de-
composition) when infinetisimal generator matrix is 
dense. However, the modified algorithm becomes 
more effective  when  infinetisimal generator matrix is 
sparse. Theoretical and experimental results showed 
that the complexity of the modified algorithm is O(n²) 
when infinitesimal generator matrix is very sparse.   

References 

 [1] D. Bakšys, L. Sakalauskas. Simulation and testing of 
FIFO clearing algortihms. Information Technology 
and Control, Vol. 39, No. 1, 2010, 25-31. 

 [2] L. Brenner, P. Fernandes, B. Plateau, I. Sbeity. 
PEPS2007 – Stochastic automata networks software 
tool. Fourth International Conference on the Quanti-
tive Evaluation of Systems, QEST 2007, Edinburgh, 
2007,163-164. 

 [3] L. Brenner, P. Fernandes, J.M. Fourneau, B. Pla-
teau. Modelling GRID5000 point availability with 
SAN. Electronic Notes in Theoretical Computer 
Science, Vol. 232, 2009, 165-178.  

116 



Complexity of Embedded Chain Algorithm for Computing Steady State Probabilities of Markov Chain 

 

 [4] K.S. Cheung. Refinement of Petri-net-based system 
specification. Information Technology and Control, 
Vol. 35, No. 2, 2006, 137-143. 

 [5] M. Harchol-Balter, T. Osogami, A. Scheller-Wolf, 
A. Wierman.  Multi-server queueing systems with 
multiple priority classes Queueing System,  Vol. 51, 
2005, 331-360. 

 [6] S. Kounev. Performance modelling  and evaluation of  
distributed component-based systems using queueing 
Petri nets. IEEE Transactions on Software Enginee-
ring, Vol. 32, No. 7, 2006, 486-502. 

 [7] S. Kounev, C. Dutz. QPME: a performance modelling 
tool besed on queueing Petri nets. ACM SIGMETRICS 
Performance Evaluation Review, Vol. 36, No. 4, 2009, 
46-51. 

 [8] S.R. Mahabhashyam, N. Gautam. On queues with 
Markov modulated service rates. Queueing Systems, 
Vol. 51, 2005, 89-113. 

 [9] S. Minkevičius. Simulation of the open message 
switching system. Information Technology and 
Control, Vol. 37, No. 1, 2008, 75-78. 

[10] Š. Packevičius, A. Kazla, H. Pranevičius. Extension 
of PLA specification for dynamic system 
formalization. Information Technology and Control, 
Vol. 35, No. 3, 2006, 235-242. 

[11] B. Plateau, K. Atif. Stochastic automata network of 
modeling parallel systems. IEEE Transactions on Soft-
ware Engineering, Vol. 17, No. 10, 1991, 1093-1108. 

[12] H. Pranevičius, V. Germanavičius, G. Tumelis. 
Automatic Creation of Numerical Model of Systems 
Specified by PLA Method. 19th European Conference 
of Modelling and Simulation, ASMTA 2005, 118-124. 

[13] H. Pranevičius, A. Paulauskaitė-Tarasevičienė, D. 
Makackas. Application of abstract data type in dyna-
mic PLA approach. Information Technology and 
Control, Vol. 38, No. 1, 2009, 7-13. 

[14] H. Pranevičius, E. Valakevičius. Numerical models 
of systems specified by Markovian processes. Techno-
logija, Kaunas, 1996. 

[15] A. Sleptchenko, A. van Harten, M. van der Heij-
den. An exact solution for the state probabilities of the 
multi-class, multi-server queue with preemptive prio-
rities. Queueing Systems, Vol. 50, 2005, 81-107.  

[16] E. Valakevičius, H. Pranevičius. An algorithm for 
creating Markovian Models of Complex Systems, 
Proceedings of the 12th World Multi-Conference on 
Systemics, Cybernetics and Informatics, WSMCI 2008, 
Orlando, 2008. 258-262. 

[17] Y.P. Zhou, N. Gans. A Single-Server Queue with 
Markov Modulated Service Times. Working paper, the 
Wharton School, University of Pensilvania.  

Received November 2010. 




