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Motivated by the demand for immersive VR, binocular 3D reconstruction, estimating 3D structure from
two camera views is key to enhancing depth perception. In response to existing challenges such as depth
ambiguity, calibration inaccuracies, and occlusion handling, this paper introduces a novel real-time binoc-
ular 3D reconstruction framework based on the integration of feature-based and learning-based process.
Specifically, the proposed approach features a hybrid neural network combining ResNet-50 extractors
with attention fusion, and a deep learning model using surface normal priors to refine disparity maps,
thereby enhancing depth prediction in occluded regions of the inputs. Experimental results demonstrate
significant improvements in the accuracy and efficiency of real-time binocular 3D reconstructions for en-
hanced depth perception, with the system capable of producing high-quality, detailed models in real time.
This work not only addresses some key limitations of current technologies but also significantly advances
the potential for more sophisticated and immersive VR applications.
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1. Introduction

Virtual Reality (VR) has advanced rapidly. This tral to this. It enables natural interaction in virtual
progress is driven by the need for more immersive environments. Binocular 3D reconstruction plays a
and realistic experiences. Depth perception is cen-  pivotal role in enhancing depth perception, enabling
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the creation of more accurate and engaging VR
worlds [14]. Human vision is inherently stereoscop-
ic, relying on the subtle differences between the im-
ages captured by each eye to gauge depth. Drawing
inspiration from this biological mechanism, binocu-
lar vision systems capture dual images from slightly
different perspectives to reconstruct the three-di-
mensional structure of a scene. This approach not
only mirrors human visual processing but also en-
hances the realism and interactivity of virtual envi-
ronments. Recent VR systems like Meta Quest 3 and
Apple Vision Pro use depth sensing for mixed reality.
Their accurate depth improves object occlusion and
user interaction [4].

Despite significant progress, state-of-the-art works
face challenges: depth ambiguity (uncertainty in
depth due to low texture), calibration inaccuracies
(misalignment between cameras), occlusion han-
dling, etc. To address these issues, lots of studies
have developed various solutions, ranging from tra-
ditional feature-based approaches, dense match-
ing techniques to that learning-based frameworks
and hybrid systems. Each of these strategies brings
unique strengths and limitations to the table.

Feature-based methods focus on extracting and
matching distinctive features between stereo im-
ages to achieve accurate reconstructions [5, 20].
Chen et al. [1] developed an optimized feature point
matching algorithm for binocular vision that boosts
the accuracy and efficiency of 3D reconstruction,
especially under occlusion and varying lighting
conditions. Feature-based approaches offer high
accuracy at the cost of computational intensity [6].
Li et al. [7] introduced a binocular line laser system
that resolves single-line laser multi-angle position-
ing issues through the use of a spherical 3D target
for precise homologous point pair matching. Wang
et al. [17] reviewed vision-based 3D reconstruction
methods, comparing active and passive techniques
like structured light and laser rangefinders, and dis-
cussed their suitability for various applications. In
summary, feature-based approaches offer high accu-
racy at the cost of computational intensity, while the
binocular line laser system excels in precision for
specific applications but lacks versatility, and active
methods, like those using structured light, involve
higher setup costs, while passive methods are more
dependent on environmental conditions. Recent ad-
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vancements on optimized algorithms and innovative
systems like binocular line laser setups, continue to
enhance their performance and applicability across
diverse 3D reconstruction tasks.

Densematchingtechniquesaimtoexplore pixel-wise
correspondence, which is crucial for high-quality
3D reconstruction. These methods often employ al-
gorithms such as Semi-Global Matching (SGM) or
Belief Propagation (BP) to achieve their goals [8].
SGM checks multiple paths to reduce errors. BP up-
dates match probabilities iteratively for better re-
sults. Zhang et al. [21] proposed a CNN-based dense
matching technique that leverages the powerful rep-
resentation capabilities of deep learning to direct-
ly predict disparity maps from images without the
need for traditional feature extraction and matching
processes. This approach has shown significant im-
provements in handling textureless areas and pro-
viding more accurate depth estimations. Similarly,
Li et al. [9] introduced a method that combines lo-
cal and global optimization [22], aiming to enhance
both the accuracy and completeness of the recon-
structed models. Ye et al. [19], on the other hand, uti-
lized the Block Matching (BM) algorithm for stereo
matching and established a triangulation model.
This method is simple to implement and manages
to keep errors within 5%, making it highly feasible
for practical applications. They offer high-quality
pixel-wise correspondence, which is essential for
accurate and detailed 3D reconstruction. Howev-
er, the accuracy of the triangulation model heavily
relies on the precision of camera calibration and
is susceptible to environmental factors [10]. while
they have advanced the binocular 3D reconstruction
with their completeness and accuracy, they still face
challenges related to noise sensitivity and environ-
mental dependencies, which may significantly affect
performance in real-world applications. Therefore,
while delivering superior results in controlled envi-
ronments, their practicality in uncalibrated settings
remains a challenge.

As for learning-based approaches, leveraging deep
learning to predict disparity maps directly from ste-
reo images, these methods have gained popularity
due to their ability to handle complex scenes with lit-
tle pre-processing [23]. Sun et al. [15] broke through
traditional camera calibration methods by using a BP
neural network, collecting datasets for training with-
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out needing to establish a binocular vision model
beforehand. Neural networks provide strong robust-
ness for high-speed camera calibration, though data-
set training can be time-consuming. Zhao et al. [24]
used epipolar constraints, NCC similarity measures,
and disparity gradient compatibility to enhance sta-
bility and robustness in sparse feature-based ste-
reo matching [11]. Li et al. [16] employed a Vision
Transformer (ViT) for image classification, utilizing
self-attention mechanisms to extract regional fea-
tures, improving speed and accuracy [2]. However,
these methods often require extensive and diverse
training datasets,leading to high computational costs
during training. Additionally, their performance can
be sensitive to data quality and environmental con-
ditions, and they may lack interpretability compared
to traditional model-based approaches. Thus, while
learning-based techniques show great promise in
terms of adaptability and performance, they still face
challenges related to efficiency, generalization, ex-
plainability, and potential ethical concerns such as
data privacy and model bias.

Hybrid methods aim to combine two or more of the
aforementioned methods to leverage the strengths
of each approach while mitigating their weaknesses
[10]. For instance, Meng et al. [12] proposed a pas-
sive-active hybrid binocular intelligent inspection
system based on CNN for high-precision 3D recon-
struction. Rabab et al. [13] introduced a new hybrid
polynomial Stochastic K-Means Plus (SKMP), min-
imizing errors during image processing and achiev-
ing faster and more robust 3D image reconstruction
compared to traditional methods. The incorporation
further enhances the system’s ability to process
and interpret the collected data, resulting in high-
ly detailed and reliable 3D reconstructions. hybrid
methods often depend on careful tuning of multi-
ple components and may still be sensitive to envi-
ronmental factors such as lighting conditions and
scene texture. Therefore, while hybrid approaches
represent a promising direction for high-precision
3D reconstruction, they require balanced design
considerations to ensure practical applicability and
scalability.

Each of these approaches presents unique strengths
and challenges. For instance, feature-based meth-
ods are fast but less accurate in texture-less regions,
while dense matching provides high accuracy but
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at a computational cost. Learning-based methods
offer flexibility and adaptability but require exten-
sive training data. Hybrid method usually provides
a compromise strategy but it may still face the chal-
lenges in real-time applications. This paper pro-
poses a novel method that combines the efficiency
of feature-based approaches with the robustness of
learning-based models. The three main contribu-
tions of this paper are listed as follow.

1 Real-time Binocular 3D Reconstruction Frame-
work. It is designed to capture and process vi-
sual data for enhancing depth perception and
3D Reconstruction. With a focus on the feature
extraction, matching, depth calculation, and 3D
reconstruction modules, the framework utilizes
advanced convolutional layers, regression process-
ing, and a stacked hourglass network to iteratively
refine depth estimates. This results in a highly effi-
cient system capable of producing high-quality 3D
models in real time, thus significantly advancing
the 3D reconstruction.

2 Deep Learning Model Incorporating Local Geo-
metric Priors for Occluded Regions. It incor-
porates local geometric priors to refine disparity
maps, which aims at enhancing depth prediction
accuracy in the occluded regions where conven-
tional techniques often struggle. By considering
local geometric information, the work can more
accurately predict the depths even in complex
scenes, leading to more reliable and detailed 3D re-
constructions.

3 Feature-Learning Model for Enhanced Depth
Accuracy in Textureless Areas. It integrates the
computational efficiency of feature-based com-
putation with robustness of learning-based pro-
cessing, specifically addressing challenges en-
countered by traditional methods in texture-poor
regions. By synergizing these strengths, the work
achieves improved depth accuracy.

2. 3D Reconstruction Framework

2.1. Problem Statement

The proposed real-time binocular 3D reconstruc-
tion framework is a sophisticated system designed
to capture and process visual data for the purpose
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of enhancing depth perception and creating immer-
sive virtual reality environments. The work aims to
address depth ambiguity, occlusion, and textureless
regions in real-time (operating at 27-30 FPS) bin-
ocular 3D reconstruction. Figure 1 illustrates the
process of the binocular 3D reconstruction task, in-
volving camera calibration, image collection, stereo
correction, feature extraction, feature math, depth
calculation, and final 3D reconstruction, where the
set of Cpammeter represents the camera parameters,
F, . is the feature map matrix, P, denotes the
uisiance 1S the generated depth

map istance
distance matching set, D
distance set, and /., is the final constructed im-

age. We focus on the design of latter four modules.
Feature extraction and matching modules operate

Figure 1
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by identifying and extracting feature points from
the left and right images captured by the binocu-
lar cameras. Advanced feature detection strategy is
employed to ensure the selection of robust and dis-
tinctive points. Subsequently, an efficient feature
matching is utilized to identify corresponding points
between the two images, establishing the spatial re-
lationship necessary for depth estimation. With the
feature points matched, the depth calculation mod-
ule takes over to compute the depth information of
the scene. This is achieved by leveraging the dispar-
ity between the matched points, along with the in-
trinsic and extrinsic parameters of the cameras. The
disparity-to-depth conversion is a critical step that
allows for the extraction of accurate depth informa-

Process of the real-time binocular 3D reconstruction. Modules: camera calibration aligns sensors; image collection
captures stereo pairs; stereo correction rectifies images; feature extraction and matching find correspondences;
depth calculation computes disparity; 3D reconstruction builds the model.

Start [—{ Camera calibration [ Image collection [ Stereo correction [—{ Feature extraction
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I image D distance o distance
Figure 2

The detailed network structure of the proposed real-time binocular image 3D reconstruction framework.
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tion for each feature point in the scene. The final 3D
reconstruction module integrates the depth infor-
mation with the 2D images to construct a 3D envi-
ronment. The workflow culminates in the output
and display of the reconstructed 3D model, provid-
ing an enhanced depth perception and a captivating
virtual reality experience

2.2. Overview of the Framework

The framework is designed to efficiently handle fea-
ture extraction and matching, depth calculation, and
3D reconstruction computation, as depicted in the
provided figure 2, which illustrates the network struc-
ture, showing convolutional layers, pooling stages, re-
gression blocks, and the stacked hourglass refinement
module. The process begins with two input images.
First, convolutional layers extract features. Then,
pooling downs-samples them. Next, regression layers
estimate depth. Outputs are up-sampled and refined
via bilinear interpolation. Finally, a stacked hourglass
network iteratively improves depth estimates for
high-quality 3D output. The two image includes a left
image and a right image, which are passed through a
series of convolutional layers. The first convolution-
al layer, Convl, uses a 3x3 kernel with 64 filters and
a stride of 1, followed by batch normalization and a
ReLU activation function. This step is repeated mul-
tiple times to extract rich features from both imag-
es. The extracted feature maps then undergo further
processing, including downsampling through pooling
layers of varying sizes such as 64x64, 32x32, 16x16,
and 9x9, followed by additional convolutional layers
to refine the features. These refined feature maps are
subsequently used in regression tasks, where multi-
ple linear regression layers estimate depth informa-
tion. The outputs from these regression layers are
concatenated and up-sampled to match the original
input image size. To ensure the constructed accura-
cy, real-time bilinear interpolation is applied to refine
the depth map, and further regression steps are per-
formed. The architecture also incorporates a stacked
hourglass network, which iteratively refines the depth
estimates operation, ensuring that the final 3D recon-
struction is both detailed and precise. Through the
structured and iterative strategy, the proposed frame-
work can achieve efficient and high-quality real-time
binocular 3D reconstruction, producing accurate and
high-quality 3D models from the input’s images.
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2.3. Feature Extraction Module

The module is meticulously constructed around the
ResNet architecture, a renowned and robust network
that acts as the backbone for the extraction of hierar-
chical image features and the generation of rich fea-
ture maps. ResNet, short for Residual Network, is dis-
tinguished by its use of residual connections as a core
mechanism to facilitate effective learning [18]. The
process begins with the collection of images, which
are then subjected to an initial training phase. Follow-
ing this, the images are passed through a pooling lay-
er, a critical step that leads to the creation of a series
of residual structures. These residual structures are
then activated using the Rectified Linear Unit (ReLU)
function, a popular choice for introducing non-lin-
earities into the model while maintaining computa-
tional efficiency. One of the significant advantages
of leveraging residual learning is the mitigation of
common issues that plague deep neural networks,
such as gradient vanishing and network degradation.
These issues can hinder the training process and lead
to suboptimal performance. However, the improved
ResNet design effectively addresses these challenges,
ensuring that the network can be trained at greater
depths without sacrificing performance. This design
choice ensures the extraction of robust and multi-
scale features from the input images. The module is
capable of capturing both fine-grained details and
high-level semantic information, which is crucial for
a wide range of applications, from object detection
to image segmentation. By incorporating advanced
techniques to enhance feature extraction, the module
is able to improve the overall quality of the extracted
features, leading to better performance and more ac-
curate results. The module is greatly centered around
the ResNet architecture and enhanced with residual
connections and advanced feature extraction tech-
niques, which represents a significant advancement
in the field of computer vision. We use ResNet-50,
pretrained on ImageNet. The final classification lay-
er is removed and replaced with regression layers for
depth estimation. It is well-equipped to handle the
complexities of modern image processing tasks.

2.4. Feature Matching for Disparity Estimation

The feature matching module is designed to employ
the PSMNet (Pyramid Stereo Matching Network)
framework to progressively estimate the disparity
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of each pixel in the images captured by a binocular
camera system. This module begins with feature ex-
traction from both left and right camera images us-
ing a parameter-sharing convolutional network, de-
signed to extract multi-resolution features through
downsampling and pyramid structures. To maintain
the resolution of feature maps while expanding the
receptive field, dilated convolutions are incorporated.
These extracted features from both images are then
used to construct a Cost Volume, which encapsulates
the similarity information across different disparity
levels between the left and right feature maps. Subse-
quently, 3D convolutions are applied to this Cost Vol-
ume to further extract and fuse information among
the left and right feature maps at various disparity
levels, resulting in a refined Cost Volume that effec-
tively captures the relationships and disparities with-
in the stereo pair. The refined Cost Volume is then
up-sampled to the original image resolution, ensuring
high fidelity in the final disparity map. By identifying
the disparity values that minimize matching errors,
the module accurately estimates the depth for each
pixel, providing a robust foundation for subsequent
3D reconstruction processes. This approach not only
enhances the accuracy of disparity estimation but
also ensures computational efficiency and effective-
ness in handling complex scenes.

2.5. Depth Estimation Module

This module converts the disparity values obtained
from the disparity estimation module into depth
distances by leveraging the camera parameters and
applying a linear transformation layer. Based on the
fundamental assumptions of binocular stereo vi-
sion—where the intrinsic parameters of the left and
right cameras are identical, and the relative motion
between the cameras is restricted to translation along
the X-axis, the mathematical relationship between
disparity and depth is derived. In-camera parameter
and that off-camera parameter are depicted using the
following two representations.

fx Y U
0 f, vy 1)
0 0 1

Cp=Cr=C

parameter —
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where C, and C, are the right and left in-camera ma-
trix, respectively. f, and f, are the focal lengths of the
camera in the x and y directions, respectively, mea-
sured in pixels. y is the skew parameter, and v, rep-
resents the coordinates of the principal point. RR—L
represents the rotation matrix from the right camera
coordinate system to the left camera coordinate sys-
tem, and E denotes the Essential Matrix. t,—L is the
translation matrix from the right camera coordinate
system to the left camera coordinate system, where
t,=b, t, =0, t, =0 indicates that the right camera in the
binocular camera setup has a translation distance of
b only in the x-direction relative to the left camera, b
is the baseline distance. Let the coordinates of POL,
POR, PL, PR be:

Xp Xg

Por=| Y[, Por=|MW 3
7y, R
U UR

P = [VIL], Pr= [VIR] 4

where POL and POR are the coordinate of point P
in the left and right camera coordinate system, PL
and PR are the pixel coordinates according to the
pinhole imaging model, and that the PL and PR can
be expressed in another way with the following rep-
resentations (Equations (5) - (8)). According to the
representative equation, the output of the 3D depth
estimation can be obtained with Equations (9) - (10).

(UL ] Xy
Py =V =K1 Po =K1 | Y, 5)
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2.6. 3D Reconstruction Module

The module ues the PSMNet [3] framework for the fi-
nal stage of constructing a three-dimensional model
from stereo images. After obtaining refined disparity
maps through previous stages, this module integrates
depth information with the original 2D images to gen-
erate detailed and accurate 3D reconstructions. Ini-
tially, the depth information derived from the disparity
and depth estimation modules is mapped back onto the
corresponding pixels in the left and right images. This
mapping process involves transforming the disparity
values into 3D coordinates based on the camera intrin-
sic and extrinsic parameters. Specifically, for each pix-
el Pl in the left image, its corresponding 3D coordinate
can be calculated using the following transformation:

— We)*Z Y= (v-¢,)*2 7—B*f a1

X f ’ f ’ d

where u and v are the pixel coordinates, cx and cy are
the principal point coordinates, f is the focal length,
B is the baseline distance, and d is the disparity val-
ue. Subsequently, these 3D points are integrated into
a coherent 3D model through a series of operations
including triangulation and surface reconstruction.
PSMNet is chosen for its accuracy in disparity esti-
mation and efficient 3D cost volume processing. No
modifications were made. This iterative refinement
process helps in smoothing out noise and filling gaps
in the reconstructed model, thereby enhancing the
overall accuracy and completeness of the 3D struc-
ture. Furthermore, the module incorporates addition-
al convolutional layers and regression techniques to
further optimize the reconstructed 3D model. These
steps ensure that the output is precise and computa-
tionally efficient, providing an enhanced depth per-
ception and a reality experience.

2025/4/54

3. Experimental Evaluation on
Binocular 3D Reconstruction

The experiment involves a dataset of stereo image
pairs with diverse scenes and conditions, capturing
both texture-rich and - areas, varying lighting, and po-
tential occlusions. Evaluation metrics include RMSE
and MAE for depth error, and F1-Score to measure
edge accuracy and object boundary preservation in
reconstructed models. We conduct comparisons with
existing methods, including Zhang et al. [20], Zhang
et al. [21], Dong et al. [2] to provide insights into the
framework’s performance. Analyzing the impact of
individual components through ablation studies and
visual inspections of reconstructed models would
further validate the framework’s effectiveness in ad-
dressing depth ambiguity, calibration inaccuracies,
and occlusion handling. Figures 3, 4, and 5 illustrate
the performance of the proposed binocular 3D re-
construction method on three different datasets:
"community,” "lecythus,” and "guitars.” In Figure 3,
the proposed method demonstrates its capability in
reconstructing a complex outdoor scene with mul-
tiple buildings and greenery. The feature generation
(panel ¢) successfully captures the essential features
of the scene, including architectural details and vege-
tation. The depth map (panel d) accurately represents
the spatial relationships between objects, with clear
distinctions between foreground and background
elements. The 3D reconstruction result (panel e)
shows a well-defined structure of the buildings and
pathways, while the constructed result (panel f) fur-
ther validates the accuracy of the reconstruction by
presenting a coherent and visually plausible 3D mod-
el. Despite the complexity of the scene, the method
maintains high fidelity and detail in the reconstructed
output. Figure 4 focuses on a more controlled indoor
environment featuring a lecythus (a type of ancient
Greek vase). The feature generation (panel c¢) high-
lights the intricate patterns and textures on the vase’s
surface. The depth map (panel d) provides precise
depth information, capturing the curvature and con-
tours of the vase effectively. The 3D reconstruction
result (panel e) faithfully reproduces the shape and
details of the vase, demonstrating the method'’s abil-
ity to handle smooth surfaces and subtle variations in
depth. The constructed result (panel f) confirms the
accuracy of the reconstruction, showing a highly de-
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Figure 3
The real-time binocular 3D reconstruction results using the data of “community” with the proposed method.

(a) left-input (b) right-input (c) feature (d) depth map (e) 3D result (f) constructed
generation result
Figure 4

The real-time binocular 3D reconstruction results with the data of “lecythus” using the proposed method.

(a) left-input (b) right-input (c) feature (d) depth map (e) 3D result (f) constructed
generation result

Figure 5
The real-time binocular 3D reconstruction results with the data of “guitars” using the proposed method.

(a) left-input (b) right-input (c) feature (d) depth map (e) 3D result (f) constructed

generation result
Table 1
The average results of the MSE, RMSE, F'1-Score metrics form the compared methods.
Reconstruction method MSE RMSE F1-Score
Zhang et al. [4] 28.365 62.917 0.846
Zhang et al. [10] 23476 51.009 0.883
Dong et al. [20] 16.703 42744 0.920

The proposed method 9.552 31.006 0.951
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tailed and realistic 3D model of the lecythus. Figure
5 captures the distinct shapes and colors of each gui-
tar, as well as the fine details such as strings and frets.
The depth map (panel d) accurately distinguishes
between the individual guitars and their relative po-
sitions, providing a comprehensive understanding of
the scene’s depth. The 3D reconstruction result (pan-
el e) presents a clear and structured arrangement of
the guitars, maintaining their proportions and spa-
tial relationships. The constructed result (panel f)
offers a complete and accurate 3D representation of
the scene, showcasing the method’s effectiveness in
handling multiple objects with varying shapes and
textures. The subjective evaluation across these three
representivie diverse datasets indicates that the pro-
posed 3D reconstructed method achieves high-qual-
ity binocular 3D reconstruction. It successfully cap-
tures detailed features, generates accurate depth
maps, and produces faithful 3D models, making it
suitable for vairous applications from outdoor scenes
to indoor objects with intricate details.

For the objective evaluations, Table 1 illustrates the
average results across three metrics. These metrics
provide a quantitative assessment of the accuracy
and effectiveness of each reconstruction method.
The proposed method demonstrates superior per-
formance across all three metrics when compared to
existing approaches. Specifically, for the MSE metric,
which measures the average squared difference be-
tween the estimated values and the actual values, the
proposed method achieves avalue 0f 9.552. This is sig-
nificantly lower than the values obtained from Zhang
etal. [20] (28.365), Zhang et al. [21] (23.476), and that
work of Dong et al. [2] (16.703). The reduction in MSE
indicates that the proposed method provides more ac-
curate estimations with less deviation from the true
values. Similarly, for the RMSE metric, which is the
square root of the MSE and gives a measure of the
magnitude of the error in the same units as the data,
the proposed method achieves a value of 31.006. This
is considerably lower than the RMSE values reported
by Zhang et al. [20] (62.917), Zhang et al. [21] (51.009),
and Dong et al. [2] (42.744). A lower RMSE signifies
that the proposed 3D reconstruction method has a
smaller average error magnitude, further emphasiz-
ing its superior performance. Lastly, the F1-Score,
which is a harmonic mean of precision and recall and
provides a balanced measure of the method'’s ability
to correctly identify positive instances while mini-
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mizing false positives and false negatives, shows that
the proposed method attains a score of 0.951. This is
notably higher than the scores achieved by Zhang et
al. [20] (0.846), Zhang et al. [21] (0.883), and Dong et
al. [2] (0.920). A higher F1-Score indicates that we
not only accurately identified the features but also
maintained a high level of precision in its reconstruc-
tions. For the comparisons, the proposed method out-
performs the compared methods in terms of MSE,
RMSE, and F1-Score, demonstrating its robustness
and accuracy in binocular 3D reconstruction tasks.
The significant improvements in these metrics high-
light the effectiveness of the proposed approach and
its potential for practical applications in various
fields requiring precise 3D reconstruction.

4. Conclusion

This paper presents a novel real-time binocular 3D
reconstruction framework that significantly enhanc-
es depth perception. By integrating feature-based and
learning-based approaches, our method addresses key
limitations of current technologies, including depth
ambiguity, calibration inaccuracies, and occlusion
handling. The proposed framework features a hybrid
model designed to improve depth accuracy in tex-
tureless areas and employs deep learning models in-
corporating local geometric priors to refine disparity
maps, thereby enhancing depth prediction in occlud-
ed regions. Experimental results demonstrate that the
proposed system is capable of producing high-qual-
ity, detailed 3D models in real time (>25 FPS). Spe-
cifically, the method achieves superior performance
across multiple evaluation metrics—MSE, RMSE,
and F1-Score—compared to existing methods. These
improvements are particularly evident in challenging
scenarios such as complex outdoor scenes with multi-
ple buildings and greenery, controlled indoor environ-
ments featuring intricate objects like ancient Greek
vases, and scenes with multiple objects of varying
shapes and textures. These results were achieved un-
der real-time constraints on consumer-grade GPUs,
showing practical deployment potential.
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