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Motivated by the demand for immersive VR, binocular 3D reconstruction, estimating 3D structure from 
two camera views is key to enhancing depth perception.  In response to existing challenges such as depth 
ambiguity, calibration inaccuracies, and occlusion handling, this paper introduces a novel real-time binoc-
ular 3D reconstruction framework based on the integration of feature-based and learning-based process. 
Specifically, the proposed approach features a hybrid neural network combining ResNet-50 extractors 
with attention fusion, and a deep learning model using surface normal priors to refine disparity maps, 
thereby enhancing depth prediction in occluded regions of the inputs. Experimental results demonstrate 
significant improvements in the accuracy and efficiency of real-time binocular 3D reconstructions for en-
hanced depth perception, with the system capable of producing high-quality, detailed models in real time. 
This work not only addresses some key limitations of current technologies but also significantly advances 
the potential for more sophisticated and immersive VR applications.  
KEYWORDS: Binocular 3D Reconstruction, Disparity Refinement, Depth Perception, VR Depth Perception, 
Virtual Reality

1. Introduction
Virtual Reality (VR) has advanced rapidly. This 
progress is driven by the need for more immersive 
and realistic experiences. Depth perception is cen-

tral to this. It enables natural interaction in virtual 
environments. Binocular 3D reconstruction plays a 
pivotal role in enhancing depth perception, enabling 
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the creation of more accurate and engaging VR 
worlds [14]. Human vision is inherently stereoscop-
ic, relying on the subtle differences between the im-
ages captured by each eye to gauge depth. Drawing 
inspiration from this biological mechanism, binocu-
lar vision systems capture dual images from slightly 
different perspectives to reconstruct the three-di-
mensional structure of a scene. This approach not 
only mirrors human visual processing but also en-
hances the realism and interactivity of virtual envi-
ronments. Recent VR systems like Meta Quest 3 and 
Apple Vision Pro use depth sensing for mixed reality. 
Their accurate depth improves object occlusion and 
user interaction [4].
Despite significant progress, state-of-the-art works 
face challenges: depth ambiguity (uncertainty in 
depth due to low texture), calibration inaccuracies 
(misalignment between cameras), occlusion han-
dling, etc. To address these issues, lots of studies 
have developed various solutions, ranging from tra-
ditional feature-based approaches, dense match-
ing techniques to that learning-based frameworks 
and hybrid systems. Each of these strategies brings 
unique strengths and limitations to the table.
Feature-based methods focus on extracting and 
matching distinctive features between stereo im-
ages to achieve accurate reconstructions [5, 20]. 
Chen et al. [1] developed an optimized feature point 
matching algorithm for binocular vision that boosts 
the accuracy and efficiency of 3D reconstruction, 
especially under occlusion and varying lighting 
conditions. Feature-based approaches offer high 
accuracy at the cost of computational intensity [6]. 
Li et al. [7] introduced a binocular line laser system 
that resolves single-line laser multi-angle position-
ing issues through the use of a spherical 3D target 
for precise homologous point pair matching. Wang 
et al. [17] reviewed vision-based 3D reconstruction 
methods, comparing active and passive techniques 
like structured light and laser rangefinders, and dis-
cussed their suitability for various applications. In 
summary, feature-based approaches offer high accu-
racy at the cost of computational intensity, while the 
binocular line laser system excels in precision for 
specific applications but lacks versatility, and active 
methods, like those using structured light, involve 
higher setup costs, while passive methods are more 
dependent on environmental conditions. Recent ad-

vancements on optimized algorithms and innovative 
systems like binocular line laser setups, continue to 
enhance their performance and applicability across 
diverse 3D reconstruction tasks.
Dense matching techniques aim to explore pixel-wise 
correspondence, which is crucial for high-quality 
3D reconstruction. These methods often employ al-
gorithms such as Semi-Global Matching (SGM) or 
Belief Propagation (BP) to achieve their goals [8]. 
SGM checks multiple paths to reduce errors. BP up-
dates match probabilities iteratively for better re-
sults. Zhang et al. [21] proposed a CNN-based dense 
matching technique that leverages the powerful rep-
resentation capabilities of deep learning to direct-
ly predict disparity maps from images without the 
need for traditional feature extraction and matching 
processes. This approach has shown significant im-
provements in handling textureless areas and pro-
viding more accurate depth estimations. Similarly, 
Li et al. [9] introduced a method that combines lo-
cal and global optimization [22], aiming to enhance 
both the accuracy and completeness of the recon-
structed models. Ye et al. [19], on the other hand, uti-
lized the Block Matching (BM) algorithm for stereo 
matching and established a triangulation model. 
This method is simple to implement and manages 
to keep errors within 5%, making it highly feasible 
for practical applications. They offer high-quality 
pixel-wise correspondence, which is essential for 
accurate and detailed 3D reconstruction. Howev-
er, the accuracy of the triangulation model heavily 
relies on the precision of camera calibration and 
is susceptible to environmental factors [10]. while 
they have advanced the binocular 3D reconstruction 
with their completeness and accuracy, they still face 
challenges related to noise sensitivity and environ-
mental dependencies, which may significantly affect 
performance in real-world applications. Therefore, 
while delivering superior results in controlled envi-
ronments, their practicality in uncalibrated settings 
remains a challenge.
As for learning-based approaches, leveraging deep 
learning to predict disparity maps directly from ste-
reo images, these methods have gained popularity 
due to their ability to handle complex scenes with lit-
tle pre-processing [23]. Sun et al. [15] broke through 
traditional camera calibration methods by using a BP 
neural network, collecting datasets for training with-
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out needing to establish a binocular vision model 
beforehand. Neural networks provide strong robust-
ness for high-speed camera calibration, though data-
set training can be time-consuming. Zhao et al. [24] 
used epipolar constraints, NCC similarity measures, 
and disparity gradient compatibility to enhance sta-
bility and robustness in sparse feature-based ste-
reo matching [11]. Li et al. [16] employed a Vision 
Transformer (ViT) for image classification, utilizing 
self-attention mechanisms to extract regional fea-
tures, improving speed and accuracy [2]. However, 
these methods often require extensive and diverse 
training datasets, leading to high computational costs 
during training. Additionally, their performance can 
be sensitive to data quality and environmental con-
ditions, and they may lack interpretability compared 
to traditional model-based approaches. Thus, while 
learning-based techniques show great promise in 
terms of adaptability and performance, they still face 
challenges related to efficiency, generalization, ex-
plainability, and potential ethical concerns such as 
data privacy and model bias.
Hybrid methods aim to combine two or more of the 
aforementioned methods to leverage the strengths 
of each approach while mitigating their weaknesses 
[10]. For instance, Meng et al. [12] proposed a pas-
sive-active hybrid binocular intelligent inspection 
system based on CNN for high-precision 3D recon-
struction. Rabab et al. [13] introduced a new hybrid 
polynomial Stochastic K-Means Plus (SKMP), min-
imizing errors during image processing and achiev-
ing faster and more robust 3D image reconstruction 
compared to traditional methods. The incorporation 
further enhances the system's ability to process 
and interpret the collected data, resulting in high-
ly detailed and reliable 3D reconstructions. hybrid 
methods often depend on careful tuning of multi-
ple components and may still be sensitive to envi-
ronmental factors such as lighting conditions and 
scene texture. Therefore, while hybrid approaches 
represent a promising direction for high-precision 
3D reconstruction, they require balanced design 
considerations to ensure practical applicability and 
scalability.
Each of these approaches presents unique strengths 
and challenges. For instance, feature-based meth-
ods are fast but less accurate in texture-less regions, 
while dense matching provides high accuracy but 

at a computational cost. Learning-based methods 
offer flexibility and adaptability but require exten-
sive training data. Hybrid method usually provides 
a compromise strategy but it may still face the chal-
lenges in real-time applications. This paper pro-
poses a novel method that combines the efficiency 
of feature-based approaches with the robustness of 
learning-based models. The three main contribu-
tions of this paper are listed as follow.
1	 	Real-time Binocular 3D Reconstruction Frame-

work.  It is designed to capture and process vi-
sual data for enhancing depth perception and 
3D Reconstruction. With a focus on the feature 
extraction, matching, depth calculation, and 3D 
reconstruction modules, the framework utilizes 
advanced convolutional layers, regression process-
ing, and a stacked hourglass network to iteratively 
refine depth estimates. This results in a highly effi-
cient system capable of producing high-quality 3D 
models in real time, thus significantly advancing 
the 3D reconstruction.

2	 	Deep Learning Model Incorporating Local Geo-
metric Priors for Occluded Regions. It incor-
porates local geometric priors to refine disparity 
maps, which aims at enhancing depth prediction 
accuracy in the occluded regions where conven-
tional techniques often struggle. By considering 
local geometric information, the work can more 
accurately predict the depths even in complex 
scenes, leading to more reliable and detailed 3D re-
constructions.

3	 	Feature-Learning Model for Enhanced Depth 
Accuracy in Textureless Areas. It integrates the 
computational efficiency of feature-based com-
putation with robustness of learning-based pro-
cessing, specifically addressing challenges en-
countered by traditional methods in texture-poor 
regions. By synergizing these strengths, the work 
achieves improved depth accuracy.

2. 3D Reconstruction Framework
2.1. Problem Statement
The proposed real-time binocular 3D reconstruc-
tion framework is a sophisticated system designed 
to capture and process visual data for the purpose 
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of enhancing depth perception and creating immer-
sive virtual reality environments. The work aims to 
address depth ambiguity, occlusion, and textureless 
regions in real-time (operating at 27–30 FPS) bin-
ocular 3D reconstruction. Figure 1 illustrates the 
process of the binocular 3D reconstruction task, in-
volving camera calibration, image collection, stereo 
correction, feature extraction, feature math, depth 
calculation, and final 3D reconstruction, where the 
set of Cparameter represents the camera parameters, 
Fmap is the feature map matrix, Pdistance denotes the 
distance matching set, Ddistance is the generated depth 
distance set, and Iimage is the final constructed im-
age. We focus on the design of latter four modules. 
Feature extraction and matching modules operate 

by identifying and extracting feature points from 
the left and right images captured by the binocu-
lar cameras. Advanced feature detection strategy is 
employed to ensure the selection of robust and dis-
tinctive points. Subsequently, an efficient feature 
matching is utilized to identify corresponding points 
between the two images, establishing the spatial re-
lationship necessary for depth estimation. With the 
feature points matched, the depth calculation mod-
ule takes over to compute the depth information of 
the scene. This is achieved by leveraging the dispar-
ity between the matched points, along with the in-
trinsic and extrinsic parameters of the cameras. The 
disparity-to-depth conversion is a critical step that 
allows for the extraction of accurate depth informa-

Figure 1 
Process of the real-time binocular 3D reconstruction. Modules: camera calibration aligns sensors; image collection 
captures stereo pairs; stereo correction rectifies images; feature extraction and matching find correspondences;  
depth calculation computes disparity; 3D reconstruction builds the model. 

  

 

environment. The workflow culminates in the 
output and display of the reconstructed 3D model, 

providing an enhanced depth perception and a 
captivating virtual reality experience
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2.2. Overview of the Framework 

The framework is designed to efficiently handle 
feature extraction and matching, depth calculation, 
and 3D reconstruction computation, as depicted in 
the provided figure 2, which illustrates the network 
structure, showing convolutional layers, pooling 
stages, regression blocks, and the stacked hourglass 
refinement module. The process begins with two 
input images. First, convolutional layers extract 
features. Then, pooling downs-samples them. Next, 
regression layers estimate depth. Outputs are up-
sampled and refined via bilinear interpolation. 
Finally, a stacked hourglass network iteratively 
improves depth estimates for high-quality 3D 
output. The two image includes a left image and a 
right image, which are passed through a series of 
convolutional layers. The first convolutional layer, 
Conv1, uses a 3x3 kernel with 64 filters and a stride 
of 1, followed by batch normalization and a ReLU 
activation function. This step is repeated multiple 
times to extract rich features from both images. The 
extracted feature maps then undergo further 

processing, including downsampling through 
pooling layers of varying sizes such as 64x64, 32x32, 
16x16, and 9x9, followed by additional 
convolutional layers to refine the features. These 
refined feature maps are subsequently used in 
regression tasks, where multiple linear regression 
layers estimate depth information. The outputs 
from these regression layers are concatenated and 
up-sampled to match the original input image size. 
To ensure the constructed accuracy, real-time 
bilinear interpolation is applied to refine the depth 
map, and further regression steps are performed. 
The architecture also incorporates a stacked 
hourglass network, which iteratively refines the 
depth estimates operation, ensuring that the final 
3D reconstruction is both detailed and precise. 
Through the structured and iterative strategy, the 
proposed framework can achieve efficient and high-
quality real-time binocular 3D reconstruction, 
producing accurate and high-quality 3D models 
from the input’s images. 

2.3. Feature Extraction Module 

Figure 2 
The detailed network structure of the proposed real-time binocular image 3D reconstruction framework.
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tion for each feature point in the scene. The final 3D 
reconstruction module integrates the depth infor-
mation with the 2D images to construct a 3D envi-
ronment. The workflow culminates in the output 
and display of the reconstructed 3D model, provid-
ing an enhanced depth perception and a captivating 
virtual reality experience 

2.2. Overview of the Framework

The framework is designed to efficiently handle fea-
ture extraction and matching, depth calculation, and 
3D reconstruction computation, as depicted in the 
provided figure 2, which illustrates the network struc-
ture, showing convolutional layers, pooling stages, re-
gression blocks, and the stacked hourglass refinement 
module. The process begins with two input images. 
First, convolutional layers extract features. Then, 
pooling downs-samples them. Next, regression layers 
estimate depth. Outputs are up-sampled and refined 
via bilinear interpolation. Finally, a stacked hourglass 
network iteratively improves depth estimates for 
high-quality 3D output. The two image includes a left 
image and a right image, which are passed through a 
series of convolutional layers. The first convolution-
al layer, Conv1, uses a 3x3 kernel with 64 filters and 
a stride of 1, followed by batch normalization and a 
ReLU activation function. This step is repeated mul-
tiple times to extract rich features from both imag-
es. The extracted feature maps then undergo further 
processing, including downsampling through pooling 
layers of varying sizes such as 64x64, 32x32, 16x16, 
and 9x9, followed by additional convolutional layers 
to refine the features. These refined feature maps are 
subsequently used in regression tasks, where multi-
ple linear regression layers estimate depth informa-
tion. The outputs from these regression layers are 
concatenated and up-sampled to match the original 
input image size. To ensure the constructed accura-
cy, real-time bilinear interpolation is applied to refine 
the depth map, and further regression steps are per-
formed. The architecture also incorporates a stacked 
hourglass network, which iteratively refines the depth 
estimates operation, ensuring that the final 3D recon-
struction is both detailed and precise. Through the 
structured and iterative strategy, the proposed frame-
work can achieve efficient and high-quality real-time 
binocular 3D reconstruction, producing accurate and 
high-quality 3D models from the input’s images.

2.3. Feature Extraction Module
The module is meticulously constructed around the 
ResNet architecture, a renowned and robust network 
that acts as the backbone for the extraction of hierar-
chical image features and the generation of rich fea-
ture maps. ResNet, short for Residual Network, is dis-
tinguished by its use of residual connections as a core 
mechanism to facilitate effective learning [18]. The 
process begins with the collection of images, which 
are then subjected to an initial training phase. Follow-
ing this, the images are passed through a pooling lay-
er, a critical step that leads to the creation of a series 
of residual structures. These residual structures are 
then activated using the Rectified Linear Unit (ReLU) 
function, a popular choice for introducing non-lin-
earities into the model while maintaining computa-
tional efficiency. One of the significant advantages 
of leveraging residual learning is the mitigation of 
common issues that plague deep neural networks, 
such as gradient vanishing and network degradation. 
These issues can hinder the training process and lead 
to suboptimal performance. However, the improved 
ResNet design effectively addresses these challenges, 
ensuring that the network can be trained at greater 
depths without sacrificing performance. This design 
choice ensures the extraction of robust and multi-
scale features from the input images. The module is 
capable of capturing both fine-grained details and 
high-level semantic information, which is crucial for 
a wide range of applications, from object detection 
to image segmentation. By incorporating advanced 
techniques to enhance feature extraction, the module 
is able to improve the overall quality of the extracted 
features, leading to better performance and more ac-
curate results. The module is greatly centered around 
the ResNet architecture and enhanced with residual 
connections and advanced feature extraction tech-
niques, which represents a significant advancement 
in the field of computer vision. We use ResNet-50, 
pretrained on ImageNet. The final classification lay-
er is removed and replaced with regression layers for 
depth estimation. It is well-equipped to handle the 
complexities of modern image processing tasks.

2.4. Feature Matching for Disparity Estimation
The feature matching module is designed to employ 
the PSMNet (Pyramid Stereo Matching Network) 
framework to progressively estimate the disparity 
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of each pixel in the images captured by a binocular 
camera system. This module begins with feature ex-
traction from both left and right camera images us-
ing a parameter-sharing convolutional network, de-
signed to extract multi-resolution features through 
downsampling and pyramid structures. To maintain 
the resolution of feature maps while expanding the 
receptive field, dilated convolutions are incorporated. 
These extracted features from both images are then 
used to construct a Cost Volume, which encapsulates 
the similarity information across different disparity 
levels between the left and right feature maps. Subse-
quently, 3D convolutions are applied to this Cost Vol-
ume to further extract and fuse information among 
the left and right feature maps at various disparity 
levels, resulting in a refined Cost Volume that effec-
tively captures the relationships and disparities with-
in the stereo pair. The refined Cost Volume is then 
up-sampled to the original image resolution, ensuring 
high fidelity in the final disparity map. By identifying 
the disparity values that minimize matching errors, 
the module accurately estimates the depth for each 
pixel, providing a robust foundation for subsequent 
3D reconstruction processes. This approach not only 
enhances the accuracy of disparity estimation but 
also ensures computational efficiency and effective-
ness in handling complex scenes.

2.5. Depth Estimation Module

This module converts the disparity values obtained 
from the disparity estimation module into depth 
distances by leveraging the camera parameters and 
applying a linear transformation layer. Based on the 
fundamental assumptions of binocular stereo vi-
sion—where the intrinsic parameters of the left and 
right cameras are identical, and the relative motion 
between the cameras is restricted to translation along 
the X-axis, the mathematical relationship between 
disparity and depth is derived. In-camera parameter 
and that off-camera parameter are depicted using the 
following two representations.         

! !

!
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restricted to translation along the X-axis, the 
mathematical relationship between disparity and depth is 
derived. In-camera parameter and that off-camera 
parameter are depicted using the following two 
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CL=CR=Cparameter= [

fx γ u0
0 fy v0
0 0 1 ]

 ,               (1) 

RR-L=E ,tR-L=
[

tx
ty
tz]

= [
b
0
0]  ,                      (2)  

where CR and CL are the right and left in-camera matrix, 
respectively. fx and fy are the focal lengths of the camera 
in the x and y directions, respectively, measured in pixels. 
γ is the skew parameter, and v0 represents the coordinates 
of the principal point. RR->L represents the rotation 
matrix from the right camera coordinate system to the left 
camera coordinate system, and E denotes the Essential 
Matrix.  tR->L is the translation matrix from the right 
camera coordinate system to the left camera coordinate 
system, where tx=b, ty =0, tz =0 indicates that the right 
camera in the binocular camera setup has a translation 
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where POL and POR are the coordinate of point P in the 

left and right camera coordinate system, PL and PR are 
the pixel coordinates according to the pinhole imaging 
model, and that the PL and PR can be expressed in 
another way with the following representations 
(Equations (5) - (8)). According to the representative 
equation, the output of the 3D depth estimation can be 
obtained with Equations (9) - (10). 
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The module ues the PSMNet [3] framework for the final 
stage of constructing a three-dimensional model from 
stereo images. After obtaining refined disparity maps 
through previous stages, this module integrates depth 
information with the original 2D images to generate 
detailed and accurate 3D reconstructions. Initially, the 
depth information derived from the disparity and depth 
estimation modules is mapped back onto the 
corresponding pixels in the left and right images. This 
mapping process involves transforming the disparity 
values into 3D coordinates based on the camera intrinsic 
and extrinsic parameters. Specifically, for each pixel Pl 
in the left image, its corresponding 3D coordinate can be 
calculated using the following transformation:  

X= (u-cx)*Z
f  ,       Y= (v-cy)*Z

f   ,     Z= B* f
d  ,            (11) 

where u and v are the pixel coordinates, cx and cy are the 
principal point coordinates, f is the focal length, B is the 
baseline distance, and d is the disparity value. 
Subsequently, these 3D points are integrated into a 
coherent 3D model through a series of operations 
including triangulation and surface reconstruction. 
PSMNet is chosen for its accuracy in disparity estimation 
and efficient 3D cost volume processing. No 
modifications were made. This iterative refinement 
process helps in smoothing out noise and filling gaps in 
the reconstructed model, thereby enhancing the overall 
accuracy and completeness of the 3D structure. 
Furthermore, the module incorporates additional 
convolutional layers and regression techniques to further 
optimize the reconstructed 3D model. These steps ensure 
that the output is precise and computationally efficient, 
providing an enhanced depth perception and a reality 
experience. 
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mathematical relationship between disparity and depth is 
derived. In-camera parameter and that off-camera 
parameter are depicted using the following two 
representations.          

CL=CR=Cparameter= [

fx γ u0
0 fy v0
0 0 1 ]

 ,               (1) 

RR-L=E ,tR-L=
[

tx
ty
tz]

= [
b
0
0]  ,                      (2)  

where CR and CL are the right and left in-camera matrix, 
respectively. fx and fy are the focal lengths of the camera 
in the x and y directions, respectively, measured in pixels. 
γ is the skew parameter, and v0 represents the coordinates 
of the principal point. RR->L represents the rotation 
matrix from the right camera coordinate system to the left 
camera coordinate system, and E denotes the Essential 
Matrix.  tR->L is the translation matrix from the right 
camera coordinate system to the left camera coordinate 
system, where tx=b, ty =0, tz =0 indicates that the right 
camera in the binocular camera setup has a translation 
distance of b only in the x-direction relative to the left 
camera, b is the baseline distance. Let the coordinates of 
POL, POR, PL, PR be:  
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where POL and POR are the coordinate of point P in the 

left and right camera coordinate system, PL and PR are 
the pixel coordinates according to the pinhole imaging 
model, and that the PL and PR can be expressed in 
another way with the following representations 
(Equations (5) - (8)). According to the representative 
equation, the output of the 3D depth estimation can be 
obtained with Equations (9) - (10). 
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2.6. 3� 	������������� ����
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The module ues the PSMNet [3] framework for the final 
stage of constructing a three-dimensional model from 
stereo images. After obtaining refined disparity maps 
through previous stages, this module integrates depth 
information with the original 2D images to generate 
detailed and accurate 3D reconstructions. Initially, the 
depth information derived from the disparity and depth 
estimation modules is mapped back onto the 
corresponding pixels in the left and right images. This 
mapping process involves transforming the disparity 
values into 3D coordinates based on the camera intrinsic 
and extrinsic parameters. Specifically, for each pixel Pl 
in the left image, its corresponding 3D coordinate can be 
calculated using the following transformation:  

X= (u-cx)*Z
f  ,       Y= (v-cy)*Z

f   ,     Z= B* f
d  ,            (11) 

where u and v are the pixel coordinates, cx and cy are the 
principal point coordinates, f is the focal length, B is the 
baseline distance, and d is the disparity value. 
Subsequently, these 3D points are integrated into a 
coherent 3D model through a series of operations 
including triangulation and surface reconstruction. 
PSMNet is chosen for its accuracy in disparity estimation 
and efficient 3D cost volume processing. No 
modifications were made. This iterative refinement 
process helps in smoothing out noise and filling gaps in 
the reconstructed model, thereby enhancing the overall 
accuracy and completeness of the 3D structure. 
Furthermore, the module incorporates additional 
convolutional layers and regression techniques to further 
optimize the reconstructed 3D model. These steps ensure 
that the output is precise and computationally efficient, 
providing an enhanced depth perception and a reality 
experience. 
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where CR and CL are the right and left in-camera ma-
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where POL and POR are the coordinate of point P 
in the left and right camera coordinate system, PL 
and PR are the pixel coordinates according to the 
pinhole imaging model, and that the PL and PR can 
be expressed in another way with the following rep-
resentations (Equations (5) - (8)). According to the 
representative equation, the output of the 3D depth 
estimation can be obtained with Equations (9) - (10).
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The feature matching module is designed to employ the 
PSMNet (Pyramid Stereo Matching Network) framework 
to progressively estimate the disparity of each pixel in the 
images captured by a binocular camera system. This 
module begins with feature extraction from both left and 
right camera images using a parameter-sharing 
convolutional network, designed to extract multi-
resolution features through downsampling and pyramid 
structures. To maintain the resolution of feature maps 
while expanding the receptive field, dilated convolutions 
are incorporated. These extracted features from both 
images are then used to construct a Cost Volume, which 
encapsulates the similarity information across different 
disparity levels between the left and right feature maps. 
Subsequently, 3D convolutions are applied to this Cost 
Volume to further extract and fuse information among the 
left and right feature maps at various disparity levels, 
resulting in a refined Cost Volume that effectively 
captures the relationships and disparities within the stereo 
pair. The refined Cost Volume is then up-sampled to the 
original image resolution, ensuring high fidelity in the 
final disparity map. By identifying the disparity values 
that minimize matching errors, the module accurately 
estimates the depth for each pixel, providing a robust 
foundation for subsequent 3D reconstruction processes. 
This approach not only enhances the accuracy of 
disparity estimation but also ensures computational 
efficiency and effectiveness in handling complex scenes. 
2.5. ����� 
��������� ����
� 
This module converts the disparity values obtained from 
the disparity estimation module into depth distances by 
leveraging the camera parameters and applying a linear 
transformation layer. Based on the fundamental 
assumptions of binocular stereo vision—where the 
intrinsic parameters of the left and right cameras are 
identical, and the relative motion between the cameras is 
restricted to translation along the X-axis, the 
mathematical relationship between disparity and depth is 
derived. In-camera parameter and that off-camera 
parameter are depicted using the following two 
representations.          
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where CR and CL are the right and left in-camera matrix, 
respectively. fx and fy are the focal lengths of the camera 
in the x and y directions, respectively, measured in pixels. 
γ is the skew parameter, and v0 represents the coordinates 
of the principal point. RR->L represents the rotation 
matrix from the right camera coordinate system to the left 
camera coordinate system, and E denotes the Essential 
Matrix.  tR->L is the translation matrix from the right 
camera coordinate system to the left camera coordinate 
system, where tx=b, ty =0, tz =0 indicates that the right 
camera in the binocular camera setup has a translation 
distance of b only in the x-direction relative to the left 
camera, b is the baseline distance. Let the coordinates of 
POL, POR, PL, PR be:  
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[
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where POL and POR are the coordinate of point P in the 

left and right camera coordinate system, PL and PR are 
the pixel coordinates according to the pinhole imaging 
model, and that the PL and PR can be expressed in 
another way with the following representations 
(Equations (5) - (8)). According to the representative 
equation, the output of the 3D depth estimation can be 
obtained with Equations (9) - (10). 
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The module ues the PSMNet [3] framework for the final 
stage of constructing a three-dimensional model from 
stereo images. After obtaining refined disparity maps 
through previous stages, this module integrates depth 
information with the original 2D images to generate 
detailed and accurate 3D reconstructions. Initially, the 
depth information derived from the disparity and depth 
estimation modules is mapped back onto the 
corresponding pixels in the left and right images. This 
mapping process involves transforming the disparity 
values into 3D coordinates based on the camera intrinsic 
and extrinsic parameters. Specifically, for each pixel Pl 
in the left image, its corresponding 3D coordinate can be 
calculated using the following transformation:  

X= (u-cx)*Z
f  ,       Y= (v-cy)*Z

f   ,     Z= B* f
d  ,            (11) 

where u and v are the pixel coordinates, cx and cy are the 
principal point coordinates, f is the focal length, B is the 
baseline distance, and d is the disparity value. 
Subsequently, these 3D points are integrated into a 
coherent 3D model through a series of operations 
including triangulation and surface reconstruction. 
PSMNet is chosen for its accuracy in disparity estimation 
and efficient 3D cost volume processing. No 
modifications were made. This iterative refinement 
process helps in smoothing out noise and filling gaps in 
the reconstructed model, thereby enhancing the overall 
accuracy and completeness of the 3D structure. 
Furthermore, the module incorporates additional 
convolutional layers and regression techniques to further 
optimize the reconstructed 3D model. These steps ensure 
that the output is precise and computationally efficient, 
providing an enhanced depth perception and a reality 
experience. 
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The feature matching module is designed to employ the 
PSMNet (Pyramid Stereo Matching Network) framework 
to progressively estimate the disparity of each pixel in the 
images captured by a binocular camera system. This 
module begins with feature extraction from both left and 
right camera images using a parameter-sharing 
convolutional network, designed to extract multi-
resolution features through downsampling and pyramid 
structures. To maintain the resolution of feature maps 
while expanding the receptive field, dilated convolutions 
are incorporated. These extracted features from both 
images are then used to construct a Cost Volume, which 
encapsulates the similarity information across different 
disparity levels between the left and right feature maps. 
Subsequently, 3D convolutions are applied to this Cost 
Volume to further extract and fuse information among the 
left and right feature maps at various disparity levels, 
resulting in a refined Cost Volume that effectively 
captures the relationships and disparities within the stereo 
pair. The refined Cost Volume is then up-sampled to the 
original image resolution, ensuring high fidelity in the 
final disparity map. By identifying the disparity values 
that minimize matching errors, the module accurately 
estimates the depth for each pixel, providing a robust 
foundation for subsequent 3D reconstruction processes. 
This approach not only enhances the accuracy of 
disparity estimation but also ensures computational 
efficiency and effectiveness in handling complex scenes. 
2.5. ����� 
��������� ����
� 
This module converts the disparity values obtained from 
the disparity estimation module into depth distances by 
leveraging the camera parameters and applying a linear 
transformation layer. Based on the fundamental 
assumptions of binocular stereo vision—where the 
intrinsic parameters of the left and right cameras are 
identical, and the relative motion between the cameras is 
restricted to translation along the X-axis, the 
mathematical relationship between disparity and depth is 
derived. In-camera parameter and that off-camera 
parameter are depicted using the following two 
representations.          
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where CR and CL are the right and left in-camera matrix, 
respectively. fx and fy are the focal lengths of the camera 
in the x and y directions, respectively, measured in pixels. 
γ is the skew parameter, and v0 represents the coordinates 
of the principal point. RR->L represents the rotation 
matrix from the right camera coordinate system to the left 
camera coordinate system, and E denotes the Essential 
Matrix.  tR->L is the translation matrix from the right 
camera coordinate system to the left camera coordinate 
system, where tx=b, ty =0, tz =0 indicates that the right 
camera in the binocular camera setup has a translation 
distance of b only in the x-direction relative to the left 
camera, b is the baseline distance. Let the coordinates of 
POL, POR, PL, PR be:  
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where POL and POR are the coordinate of point P in the 

left and right camera coordinate system, PL and PR are 
the pixel coordinates according to the pinhole imaging 
model, and that the PL and PR can be expressed in 
another way with the following representations 
(Equations (5) - (8)). According to the representative 
equation, the output of the 3D depth estimation can be 
obtained with Equations (9) - (10). 
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The module ues the PSMNet [3] framework for the final 
stage of constructing a three-dimensional model from 
stereo images. After obtaining refined disparity maps 
through previous stages, this module integrates depth 
information with the original 2D images to generate 
detailed and accurate 3D reconstructions. Initially, the 
depth information derived from the disparity and depth 
estimation modules is mapped back onto the 
corresponding pixels in the left and right images. This 
mapping process involves transforming the disparity 
values into 3D coordinates based on the camera intrinsic 
and extrinsic parameters. Specifically, for each pixel Pl 
in the left image, its corresponding 3D coordinate can be 
calculated using the following transformation:  

X= (u-cx)*Z
f  ,       Y= (v-cy)*Z

f   ,     Z= B* f
d  ,            (11) 

where u and v are the pixel coordinates, cx and cy are the 
principal point coordinates, f is the focal length, B is the 
baseline distance, and d is the disparity value. 
Subsequently, these 3D points are integrated into a 
coherent 3D model through a series of operations 
including triangulation and surface reconstruction. 
PSMNet is chosen for its accuracy in disparity estimation 
and efficient 3D cost volume processing. No 
modifications were made. This iterative refinement 
process helps in smoothing out noise and filling gaps in 
the reconstructed model, thereby enhancing the overall 
accuracy and completeness of the 3D structure. 
Furthermore, the module incorporates additional 
convolutional layers and regression techniques to further 
optimize the reconstructed 3D model. These steps ensure 
that the output is precise and computationally efficient, 
providing an enhanced depth perception and a reality 
experience. 
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2.6. 3D Reconstruction Module
The module ues the PSMNet [3] framework for the fi-
nal stage of constructing a three-dimensional model 
from stereo images. After obtaining refined disparity 
maps through previous stages, this module integrates 
depth information with the original 2D images to gen-
erate detailed and accurate 3D reconstructions. Ini-
tially, the depth information derived from the disparity 
and depth estimation modules is mapped back onto the 
corresponding pixels in the left and right images. This 
mapping process involves transforming the disparity 
values into 3D coordinates based on the camera intrin-
sic and extrinsic parameters. Specifically, for each pix-
el Pl in the left image, its corresponding 3D coordinate 
can be calculated using the following transformation: 
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The feature matching module is designed to employ the 
PSMNet (Pyramid Stereo Matching Network) framework 
to progressively estimate the disparity of each pixel in the 
images captured by a binocular camera system. This 
module begins with feature extraction from both left and 
right camera images using a parameter-sharing 
convolutional network, designed to extract multi-
resolution features through downsampling and pyramid 
structures. To maintain the resolution of feature maps 
while expanding the receptive field, dilated convolutions 
are incorporated. These extracted features from both 
images are then used to construct a Cost Volume, which 
encapsulates the similarity information across different 
disparity levels between the left and right feature maps. 
Subsequently, 3D convolutions are applied to this Cost 
Volume to further extract and fuse information among the 
left and right feature maps at various disparity levels, 
resulting in a refined Cost Volume that effectively 
captures the relationships and disparities within the stereo 
pair. The refined Cost Volume is then up-sampled to the 
original image resolution, ensuring high fidelity in the 
final disparity map. By identifying the disparity values 
that minimize matching errors, the module accurately 
estimates the depth for each pixel, providing a robust 
foundation for subsequent 3D reconstruction processes. 
This approach not only enhances the accuracy of 
disparity estimation but also ensures computational 
efficiency and effectiveness in handling complex scenes. 
2.5. ����� 
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This module converts the disparity values obtained from 
the disparity estimation module into depth distances by 
leveraging the camera parameters and applying a linear 
transformation layer. Based on the fundamental 
assumptions of binocular stereo vision—where the 
intrinsic parameters of the left and right cameras are 
identical, and the relative motion between the cameras is 
restricted to translation along the X-axis, the 
mathematical relationship between disparity and depth is 
derived. In-camera parameter and that off-camera 
parameter are depicted using the following two 
representations.          

CL=CR=Cparameter= [

fx γ u0
0 fy v0
0 0 1 ]

 ,               (1) 

RR-L=E ,tR-L=
[

tx
ty
tz]

= [
b
0
0]  ,                      (2)  

where CR and CL are the right and left in-camera matrix, 
respectively. fx and fy are the focal lengths of the camera 
in the x and y directions, respectively, measured in pixels. 
γ is the skew parameter, and v0 represents the coordinates 
of the principal point. RR->L represents the rotation 
matrix from the right camera coordinate system to the left 
camera coordinate system, and E denotes the Essential 
Matrix.  tR->L is the translation matrix from the right 
camera coordinate system to the left camera coordinate 
system, where tx=b, ty =0, tz =0 indicates that the right 
camera in the binocular camera setup has a translation 
distance of b only in the x-direction relative to the left 
camera, b is the baseline distance. Let the coordinates of 
POL, POR, PL, PR be:  
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where POL and POR are the coordinate of point P in the 

left and right camera coordinate system, PL and PR are 
the pixel coordinates according to the pinhole imaging 
model, and that the PL and PR can be expressed in 
another way with the following representations 
(Equations (5) - (8)). According to the representative 
equation, the output of the 3D depth estimation can be 
obtained with Equations (9) - (10). 
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The module ues the PSMNet [3] framework for the final 
stage of constructing a three-dimensional model from 
stereo images. After obtaining refined disparity maps 
through previous stages, this module integrates depth 
information with the original 2D images to generate 
detailed and accurate 3D reconstructions. Initially, the 
depth information derived from the disparity and depth 
estimation modules is mapped back onto the 
corresponding pixels in the left and right images. This 
mapping process involves transforming the disparity 
values into 3D coordinates based on the camera intrinsic 
and extrinsic parameters. Specifically, for each pixel Pl 
in the left image, its corresponding 3D coordinate can be 
calculated using the following transformation:  

X= (u-cx)*Z
f  ,       Y= (v-cy)*Z

f   ,     Z= B* f
d  ,            (11) 

where u and v are the pixel coordinates, cx and cy are the 
principal point coordinates, f is the focal length, B is the 
baseline distance, and d is the disparity value. 
Subsequently, these 3D points are integrated into a 
coherent 3D model through a series of operations 
including triangulation and surface reconstruction. 
PSMNet is chosen for its accuracy in disparity estimation 
and efficient 3D cost volume processing. No 
modifications were made. This iterative refinement 
process helps in smoothing out noise and filling gaps in 
the reconstructed model, thereby enhancing the overall 
accuracy and completeness of the 3D structure. 
Furthermore, the module incorporates additional 
convolutional layers and regression techniques to further 
optimize the reconstructed 3D model. These steps ensure 
that the output is precise and computationally efficient, 
providing an enhanced depth perception and a reality 
experience. 
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where u and v are the pixel coordinates, cx and cy are 
the principal point coordinates, f is the focal length, 
B is the baseline distance, and d is the disparity val-
ue. Subsequently, these 3D points are integrated into 
a coherent 3D model through a series of operations 
including triangulation and surface reconstruction. 
PSMNet is chosen for its accuracy in disparity esti-
mation and efficient 3D cost volume processing. No 
modifications were made. This iterative refinement 
process helps in smoothing out noise and filling gaps 
in the reconstructed model, thereby enhancing the 
overall accuracy and completeness of the 3D struc-
ture. Furthermore, the module incorporates addition-
al convolutional layers and regression techniques to 
further optimize the reconstructed 3D model. These 
steps ensure that the output is precise and computa-
tionally efficient, providing an enhanced depth per-
ception and a reality experience.

3. Experimental Evaluation on 
Binocular 3D Reconstruction
The experiment involves a dataset of stereo image 
pairs with diverse scenes and conditions, capturing 
both texture-rich and - areas, varying lighting, and po-
tential occlusions. Evaluation metrics include RMSE 
and MAE for depth error, and F1-Score to measure 
edge accuracy and object boundary preservation in 
reconstructed models. We conduct comparisons with 
existing methods, including Zhang et al. [20], Zhang 
et al. [21], Dong et al. [2] to provide insights into the 
framework’s performance. Analyzing the impact of 
individual components through ablation studies and 
visual inspections of reconstructed models would 
further validate the framework’s effectiveness in ad-
dressing depth ambiguity, calibration inaccuracies, 
and occlusion handling. Figures 3, 4, and 5 illustrate 
the performance of the proposed binocular 3D re-
construction method on three different datasets: 
"community," "lecythus," and "guitars." In Figure 3, 
the proposed method demonstrates its capability in 
reconstructing a complex outdoor scene with mul-
tiple buildings and greenery. The feature generation 
(panel c) successfully captures the essential features 
of the scene, including architectural details and vege-
tation. The depth map (panel d) accurately represents 
the spatial relationships between objects, with clear 
distinctions between foreground and background 
elements. The 3D reconstruction result (panel e) 
shows a well-defined structure of the buildings and 
pathways, while the constructed result (panel f ) fur-
ther validates the accuracy of the reconstruction by 
presenting a coherent and visually plausible 3D mod-
el. Despite the complexity of the scene, the method 
maintains high fidelity and detail in the reconstructed 
output. Figure 4 focuses on a more controlled indoor 
environment featuring a lecythus (a type of ancient 
Greek vase). The feature generation (panel c) high-
lights the intricate patterns and textures on the vase's 
surface. The depth map (panel d) provides precise 
depth information, capturing the curvature and con-
tours of the vase effectively. The 3D reconstruction 
result (panel e) faithfully reproduces the shape and 
details of the vase, demonstrating the method's abil-
ity to handle smooth surfaces and subtle variations in 
depth. The constructed result (panel f ) confirms the 
accuracy of the reconstruction, showing a highly de-
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Reconstruction method MSE  RMSE F1-Score

Zhang et al. [4] 28.365 62.917 0.846

Zhang et al. [10] 23.476 51.009 0.883

Dong et al. [20] 16.703 42.744 0.920

The proposed method 9.552 31.006 0.951

Figure 3 
The real-time binocular 3D reconstruction results using the data of “community” with the proposed method.
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tailed and realistic 3D model of the lecythus. Figure 
5 captures the distinct shapes and colors of each gui-
tar, as well as the fine details such as strings and frets. 
The depth map (panel d) accurately distinguishes 
between the individual guitars and their relative po-
sitions, providing a comprehensive understanding of 
the scene's depth. The 3D reconstruction result (pan-
el e) presents a clear and structured arrangement of 
the guitars, maintaining their proportions and spa-
tial relationships. The constructed result (panel f ) 
offers a complete and accurate 3D representation of 
the scene, showcasing the method's effectiveness in 
handling multiple objects with varying shapes and 
textures. The subjective evaluation across these three 
representivie diverse datasets indicates that the pro-
posed 3D reconstructed method achieves high-qual-
ity binocular 3D reconstruction. It successfully cap-
tures detailed features, generates accurate depth 
maps, and produces faithful 3D models, making it 
suitable for vairous applications from outdoor scenes 
to indoor objects with intricate details.
For the objective evaluations, Table 1 illustrates the 
average results across three metrics. These metrics 
provide a quantitative assessment of the accuracy 
and effectiveness of each reconstruction method. 
The proposed method demonstrates superior per-
formance across all three metrics when compared to 
existing approaches. Specifically, for the MSE metric, 
which measures the average squared difference be-
tween the estimated values and the actual values, the 
proposed method achieves a value of 9.552. This is sig-
nificantly lower than the values obtained from Zhang 
et al. [20] (28.365), Zhang et al. [21] (23.476), and that 
work of Dong et al. [2] (16.703). The reduction in MSE 
indicates that the proposed method provides more ac-
curate estimations with less deviation from the true 
values. Similarly, for the RMSE metric, which is the 
square root of the MSE and gives a measure of the 
magnitude of the error in the same units as the data, 
the proposed method achieves a value of 31.006. This 
is considerably lower than the RMSE values reported 
by Zhang et al. [20] (62.917), Zhang et al. [21] (51.009), 
and Dong et al. [2] (42.744). A lower RMSE signifies 
that the proposed 3D reconstruction method has a 
smaller average error magnitude, further emphasiz-
ing its superior performance. Lastly, the F1-Score, 
which is a harmonic mean of precision and recall and 
provides a balanced measure of the method's ability 
to correctly identify positive instances while mini-

mizing false positives and false negatives, shows that 
the proposed method attains a score of 0.951. This is 
notably higher than the scores achieved by Zhang et 
al. [20] (0.846), Zhang et al. [21] (0.883), and Dong et 
al. [2] (0.920). A higher F1-Score indicates that we 
not only accurately identified the features but also 
maintained a high level of precision in its reconstruc-
tions. For the comparisons, the proposed method out-
performs the compared methods in terms of MSE, 
RMSE, and F1-Score, demonstrating its robustness 
and accuracy in binocular 3D reconstruction tasks. 
The significant improvements in these metrics high-
light the effectiveness of the proposed approach and 
its potential for practical applications in various 
fields requiring precise 3D reconstruction.

4. Conclusion
This paper presents a novel real-time binocular 3D 
reconstruction framework that significantly enhanc-
es depth perception. By integrating feature-based and 
learning-based approaches, our method addresses key 
limitations of current technologies, including depth 
ambiguity, calibration inaccuracies, and occlusion 
handling. The proposed framework features a hybrid 
model designed to improve depth accuracy in tex-
tureless areas and employs deep learning models in-
corporating local geometric priors to refine disparity 
maps, thereby enhancing depth prediction in occlud-
ed regions. Experimental results demonstrate that the 
proposed system is capable of producing high-qual-
ity, detailed 3D models in real time (>25 FPS). Spe-
cifically, the method achieves superior performance 
across multiple evaluation metrics—MSE, RMSE, 
and F1-Score—compared to existing methods. These 
improvements are particularly evident in challenging 
scenarios such as complex outdoor scenes with multi-
ple buildings and greenery, controlled indoor environ-
ments featuring intricate objects like ancient Greek 
vases, and scenes with multiple objects of varying 
shapes and textures. These results were achieved un-
der real-time constraints on consumer-grade GPUs, 
showing practical deployment potential.
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