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Cross-view Image Geo-localization is the process of determining the geographic location of a ground-view que-
ry image by matching it with geotagged satellite or unmanned aerial vehicle (UAV) captured images. In the 
context of ground images characterized by a constrained field of view (FoV), the query image exhibits a reduced 
coverage area, limited scene content, and an unknown imaging direction. Furthermore, reference satellite im-
ages from the same location may contain significant feature redundancy. These issues lead to low localization 
accuracy when existing methods are applied to ground images with a limited FoV. We propose a cross-view im-
age geo-localization method based on attention weight mask alignment. The Coordinate Attention (CA) mech-
anism, embedded in a lightweight ResNet18 network, generates weight masks to enable precise alignment of 
limited FoV ground images with satellite image feature maps. This process eliminates redundant areas in sat-
ellite images, thereby enhancing localization accuracy. Since feature maps at various levels capture images at 
different granularities, we introduce a multi-scale feature fusion strategy. It generates more representative im-
age descriptors by combining features from different convolutional layers. Experimental results on the CVUSA 
and CVACT_val benchmark datasets demonstrate that when the FoV of ground images to be located is 70° and 
90° with a random imaging direction, the proposed method significantly improves location accuracy.
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1. Introduction
Image geo-localization is a technology of determin-
ing geographical locations of captured scenes or 
photographers using visual content. It offers signif-
icant potential across various domains, such as tar-
get tracking [30], autonomous driving systems [4], 
robotic navigation [13], and virtual/augmented real-
ity (VR/AR) [9], [15]. Cross-view image geo-localiza-
tion, a key focus in this field, matches ground-view 
query images with geotagged satellite or UAV images 
to pinpoint locations. Due to the wide coverage, easy 
acquisition, and inherent geotags of aerial images, 
cross-view image geo-localization has become a re-
search hot point.
A major challenge in cross-view image geo-local-
ization is the feature discrepancy between ground 
and satellite images. Researchers address this by ex-
tracting viewpoint-invariant features from images 
taken from different perspectives. Traditional hand-
crafted feature methods struggle to overcome visual 
and spatial differences between these views, often 
yielding lower localization accuracy. Consequently, 
these methods often result in lower location accu-
racy. With the rapid development of deep learning, 
methods for cross-view geo-localization based on 
deep neural networks [12], [21], [24] have become the 
mainstream method. Lin et al. [11] first applied Con-
volution Neural Network (CNN) to cross-view im-
age geo-localization, presenting a Siamese-like Net-
work for feature extraction of ground and satellite 

images. Since then, AlexNet [27], VGG [8], [31], Res-
Net [32] and their variants have been incorporated 
into two-branch architectures. Researchers are also 
exploring new neural networks with better struc-
tural modeling capabilities. Sun et al. [23] proposed 
GeoCapsNet, a capsule-network-based approach. 
The capsule layer was used to encode CNN-extract-
ed features, enhancing representation by modeling 
spatial hierarchy. Zhu et al. [38] proposed GeoNet, 
an end-to-end network with ResNetX and GeoCaps 
modules. The ResNetX learns intermediate feature 
maps, while the GeoCaps converts them into cap-
sules. Capsule length and orientation denote the ex-
istence probability and spatial information of scene 
objects, modeling the relationships between them. 
Wang et al. [26] proposed a Local Pattern Network 
(LPN) that uses a square-ring feature partitioning 
strategy to learn spatial features based on distance 
from the image center, thus better adapting to ro-
tation variations. Dai et al. [3] designed a Trans-
former-based deep neural network architecture 
named Feature Segmentation and Region Alignment 
(FSRA). By incorporating a saliency-heatmap-guid-
ed feature segmentation mechanism and a region 
alignment module, it effectively enhances cross-
view image matching performance under challenges 
like position shift and scale change.
Existing cross-view geo-localization studies pri-
marily rely on matching panoramic ground images 
with satellite images. Panoramic images, offering a 
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Figure 1
Examples of 70° and 90° Ground Images (a) sample of 70° FoV ground image (b) sample of 70° FoV ground image (c) sample of 
90° FoV ground image (d) sample of 90° FoV ground image.
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full 360° FoV, capture abundant contextual infor-
mation, which significantly alleviates perceptual 
discrepancies in cross-view matching. However, 
acquiring panoramic images is often challenging in 
practical scenarios. Instead, common ground im-
ages—captured by pedestrians, vehicle cameras, or 
mobile devices—typically have a limited FoV. The 
FOV of a typical mobile phone's rear camera is ap-
proximately 70°-90°, while that of the front camera 
is usually 60°-80°, as shown in Figure 1(a)-(b). Some 
high-end mobile phone cameras, equipped with ul-
tra-wide-angle lenses, may have a much wider FOV 
of up to 100° or more, as shown in Figure 1(c)-(d).
Limited FoV ground images, due to the restricted 
perspective, incomplete information, and severe 
scale variations, cannot provide extensive geograph-
ical reference information. This causes feature re-
dundancy in cross-view image geo-localization due 
to coverage discrepancies between these ground im-
ages and satellite images. Consequently, traditional 
methods relying on global consistency often fail in 
such scenarios. To address cross-view image geo-lo-
calization with limited FoV ground images, we pro-
pose a method based on attention-weighted masks. 
By generating this mask to align features between 
ground-level and satellite images, the precision of 
geo-localization can be enhanced effectively. The 
main contributions of this work are as follows.
1	 A feature alignment method based on atten-

tion-weighted masks is proposed. Coordinate at-
tention (CA) mechanism is embedded into the 
lightweight ResNet18 network to capture position 
info of feature maps in vertical and horizontal di-
rections, enhancing the network's perception of 
key-feature regions.

2	 A feature cropping module based on atten-
tion-weighted masks is proposed. It prunes redun-
dant regions in satellite images that are irrelevant 
to ground images, retaining only key matching ar-
eas. This improves the efficiency and accuracy of 
feature matching.

3	 A multi-scale feature concatenate strategy is intro-
duced. It integrates features from different convo-
lutional layers of the ResNet18 network. This gen-
erates more representative image descriptors by 
combining both high-level semantic and low-level 
detail features, thereby improving the accuracy of 
cross-view image geo-localization.

4	 Comprehensive experiments were conducted on 
the CVUSA and CVACT_val benchmark datasets. 
Results indicate that, compared to existing ad-
vanced methods, the proposed method significant-
ly improves recall rates (R@1, R@5, R@10, R@1%) 
for ground images with 70° and 90° FoV.

The structure of this paper is organized as follows: 
Section 2 provides a summary and overview of exist-
ing related research; Section 3 details the proposed 
methodological framework, including the feature 
alignment method based on attention-weighted 
masks and the multi-scale feature fusion strate-
gy; Section 4 describes the experimental setup, the 
datasets used, and the evaluation metrics, and pres-
ents a comprehensive analysis of the experimental 
results and ablation studies; Section 5 discusses the 
potential limitations of the method and outlines fu-
ture research directions; Section 6 summarizes the 
entire paper.

2. Related Work
2.1. Applications of Attention Mechanisms in 
Cross-View Image Geo-localization
Attention mechanisms aid feature extraction opera-
tors in extracting more representative features. The 
core function of feature-processing modules based 
on attention mechanisms lies in leveraging attention 
mechanisms to deeply explore key features within 
images. Cai et al. [1] successfully introduced a Fea-
ture Context-based Attention Module (FCAM) into 
the ResNet network, enabling deeper learning of 
multi-scale contextual semantic information of fea-
tures and more representative feature representa-
tion. Shi et al. [19] designed a Spatial-Aware Feature 
Aggregation (SAFA) module to address image distor-
tion caused by rectangular - polar transformation. 
Based on the VGG network, the module introduces 
spatial attention mechanisms to enhance the focus 
on features from different spatial content. Rodrigues 
et al. [17] innovatively proposed a Multi-scale At-
tention Module and successfully embedded it into 
the ResNet network to accurately capture salient 
image features. Zhu et al. [36] introduced an Atten-
tion-guided Non-uniform Cropping strategy. Using 
the self-attention mechanism of Transformers, it re-
moves redundant areas in satellite images, cuts com-
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putation, and redirects saved resources to high-res-
olution, information-rich regions, improving model 
performance. Wang et al. [25] proposed a multi-scale 
window Transformer module based on self-atten-
tion. By combining global and local scale features, 
it enables precise image feature extraction and im-
proves feature distinctiveness. Zhao et al. [35] de-
signed a cross-attention Transformer module, which 
establishes interaction between the ground image 
and satellite image network branches, enabling effec-
tive cross-view information learning and enhancing 
the network's overall learning ability. Yang et al. [28] 
and Zhu et al. [36], [37] both used Vision Transform-
ers (ViTs) to cross-view image geo-localization, le-
veraging their multi-scale attention to capture glob-
al object position relationships. The latter research 
also used ViT's patching mechanism to discard less 
important satellite image patches, enhancing train-
ing efficiency. Zhang et al. [33] designed a SubSpace 
Attention (SSA) module to highlight salient corre-
sponding layout features across different scales. The 
encoded features represent different objects and re-
flect their relative positions, enabling the learning of 
more distinctive deep features.

2.2. Cross-View Image Geo-localization for 
Limited FoV Ground Images
The limited FoV restricts available visual informa-
tion, causing insufficient features in ground images 
and reducing cross-view matching accuracy. To ad-
dress this, Regmi et al. [16] attempted to synthesize 
panoramic images for limited FoV ground images. 
They proposed two novel cGAN-based architectures. 
With multi-objective training, these architectures 
enhance the model's ability to understand and trans-
fer semantic information. Zhang et al. [34] proposed 
a cross-view sequential localization framework, 
which combines temporal modeling with adaptive 
sequence enhancement. By introducing a multi-head 
self-attention mechanism to construct a Temporal 
Feature Aggregation Module (TFAM), the frame-
work captures potential spatiotemporal structural 
information in small FoV image sequences. Addi-
tionally, a sequence random dropout strategy is em-
ployed to enhance the model's adaptability to vari-
able-length inputs. Rodrigues et al. [18] proposed a 
novel representation method that integrates global 
and local features of satellite images. Based on a Si-
amese network architecture and combined with data 

augmentation strategies such as sky region removal 
and rotation-robustness, this method effectively im-
proves the cross-view matching capability of lim-
ited FoV ground images. Cheng et al. [2] proposed 
the Window-to-Window Bird's Eye View (W2W-
BEV) representation learning method. Using a con-
text-aware window matching strategy and depth 
information initialization, it improves matching 
accuracy under limited FoV and unknown shooting 
direction conditions. Mi et al. [14] proposed ConGeo, 
a feature learning framework integrating cross-view 
appearance consistency modeling with local percep-
tion enhancement. By aligning features of images 
from the same location under varying appearances 
in latent space and simulating appearance changes 
to enhance model adaptability, it effectively reduces 
performance degradation of conventional methods 
in scenarios with significant appearance variation. 
Shugaev et al. [22] devised an angle-constrained Arc-
Geo loss function, combined large-scale pre-train-
ing and FoV transformation data augmentation, 
optimized the feature embedding space structure, 
and significantly improved geo-localization under 
limited FoV conditions. Li et al. [10] proposed the 
Automatic Progressive Learning (AMPLE) meth-
od. Combining an improved ConvNeXt network and 
two progressive training strategies, it effectively im-
proves geo-localization under unknown orientations 
and limited FoV conditions. 
The above researches have somewhat improved 
cross-view matching of limited FoV ground images, 
but mainly focus on feature extraction and align-
ment, neglecting cropping/filtering of redundant ar-
eas in satellite images. Most also use whole-image or 
local-block feature modeling, ignoring "key matching 
regions" like important local details. Moreover, how 
to integrate different-scale feature info (fine-grained 
textures and high-level semantics) remains an issue 
needing attention.

3. Method
3.1. Problem Analysis
The primary challenge in cross-view image geo-lo-
calization lies in the significant viewpoint discrep-
ancy and substantial feature redundancy between 
ground-level and satellite imagery, particularly un-
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der FoV-constrained scenarios. Shi et al. [20] trans-
formed the cross-view geo-localization of limited 
FoV images into a feature alignment problem. They 
proposed a Dynamic Similarity Matching (DS-
M)-based cross-view image geo-localization method. 
First, a polar transform converts the satellite image 
to a ground-view pseudo-panorama. Then, an im-
proved VGG16 backbone extracts feature from the 
limited FoV ground image and the pseudo-panorama. 
Next, using the feature map size of the ground image 
to be located as the sliding window size, it slides hor-
izontally across the pseudo-panoramic feature map. 
The similarity between the sliding window's portion 
and the limited FoV ground image feature map is 
then calculated. Finally, the direction correspond-
ing to the highest-similarity sliding window location 
is estimated as the shooting direction of the ground 
image to be located, as shown in Figure 2. Based on 
the similarity value in this direction, it is determined 
whether the ground image and the reference satellite 
image are taken at the same location.
This method conducts similarity matching on the 
feature maps extracted by the final convolutional 
layer of the feature extraction backbone network. 
It aims to determine the shooting direction of the 
ground image to be located. The feature maps from 
the final convolutional layer of the backbone network 
have low resolution, and the varying importance of 
different semantic objects for geo-localization is ig-
nored. Consequently, the method has significant mis-
alignment in the shooting direction of ground imag-
es, causing low positioning accuracy.

3.2. Method Overview

We propose an attention-weighted mask-based 
feature alignment method for cross-view localiza-
tion of non-panoramic ground images. The atten-
tion-weighted mask, a two-dimensional weight map 
produced by the CA module integrated into the Res-
Net18 residual blocks. It is designed to characterize 
the spatial distribution of importance across differ-
ent regions of the input image. Each weight in the 
mask reflects the contribution of the corresponding 
feature location to the downstream task. By inde-
pendently generating these masks in the ground 
and satellite image branches, the network learns to 
identify pivotal regions within each respective view 
during training, thereby offering spatial guidance for 
subsequent feature alignment and region cropping. 
The overall framework of our method is shown in 
Figure 3 and consists of three main components: a 
Feature Extraction module, a Feature Cropping and 
Alignment module, and a Multi-scale Feature Map 
Concatenation operation.
To reduce the perspective-structure representation 
gap between ground and satellite images, we perform 
polar transformations on the original satellite image 
Isat using its center as the pole, generating a pseu-
do-ground image Is. First, non-panoramic ground im-
ages (Ig) with limited FoV and pseudo-ground-view 
panoramic images (Is) transformed via polar coor-
dinate transformation are input into a network with 
independent dual branches. The network consists of 
two branches: one for ground images and another for 
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the query non-panoramic image and 
reference satellite image whether the same 
location or not. 
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satellite images. Pseudo-ground images are fed into 
the satellite-image branch for feature extraction in-
stead of original satellite images. Each branch con-
tains an identical lightweight ResNet18 network with 
a CA module for feature extraction. Attention masks 
Mg for ground images and Ms for pseudo-ground-view 
images are obtained through CA module process-
ing. Second, in the satellite image branch, an atten-
tion-weighted mask-based feature cropping method 
is introduced to crop the pseudo-ground-view pan-
oramic image. This cropping retains only the pseudo-
ground-view image areas corresponding to the ground 
image, achieving feature alignment between the two 
perspectives. Finally, the aligned ground features (Fg) 
and pseudo-ground-view features (Fs) are input into 
a Triplet Loss function for similarity metric learn-
ing. Minimizing the distance between same-location 
cross-view image pairs and maximizing the distance 
between different-location pairs to determine wheth-
er the query non-panoramic image and reference sat-
ellite image whether the same location or not.
Though polar transformation may cause nonlinear 
stretching in peripheral regions, the ResNet18_CA 
network used in this work, with its integrated coor-
dinate attention mechanism. It has strong direction-
al and positional perception capabilities due to its 
structural, which effectively reduces interference 
from geometric deformation. Moreover, the pseu-
do-ground images resulting from the transformation 
are structurally more consistent with ground images, 
which helps enhance the learning stability of subse-
quent region-cropping and alignment modules.

3.3. Feature Alignment Based on Attention-
Weighted Masking
In this section, we detail the feature alignment pro-
cess using attention weight masks. It includes two 
key steps: generating the masks and performing fea-
ture cropping and alignment.

3.3.1. Attention-Weighted Mask Generation
Non-panoramic ground images, due to their limited 
FoV, only contain partial content of the reference 
image from the same location, or show only part of 
a complete object. If the redundant areas in satellite 
images can be cropped out, and matching is done us-
ing only the regions corresponding to the non-pan-
oramic ground images, the localization accuracy can 
be significantly improved. Hou et al. [7] proposed a CA 

module that captures cross-channel information and 
encodes vertical and horizontal position informa-
tion of image feature maps, embedding it into chan-
nel attention to help networks focus on task relevant 
regions. Given this, we incorporate the CA module 
into our work. The module integrates cross-channel 
information and encodes the vertical and horizontal 
position information of image features. This infor-
mation is embedded into channel attention, enabling 
the network to precisely localize key feature areas 
in images and capture direction-aware and posi-
tion-sensitive information.
Compared with conventional attention mechanisms 
such as SE and CBAM, the CA mechanism demon-
strates a distinctive advantage by introducing posi-
tional awareness of spatial coordinates during the 
feature encoding process. Its core innovation lies in 
the direction-decoupled modeling of spatial features 
and channel dependencies, which achieves more 
fine-grained spatial-position information encoding. 
Let the input feature map be denoted as XϵℝC×H×W, 
where C represents the number of channels, and H 
and W denote the height and width of the feature map, 
respectively. CA mechanism performs average pool-
ing along the height and width directions separately, 
yielding two one-dimensional directional features. 
The operation along the height direction is formulat-
ed in Equation (1): for the h-th row in the c-th chan-
nel, average pooling is applied across the horizontal 
(column-wise) direction. This operation generates a 
feature representation denoted as FhϵℝC×H×1.
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Subsequently, the directional features Fh and 
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maps respectively, bidirectional spatial 
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w) in X is achieved. This process constructs 
the final attention weight mask. 
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coordinates during the feature encoding process. 
Its core innovation lies in the direction-decoupled 
modeling of spatial features and channel 
dependencies, which achieves more fine-grained 
spatial-position information encoding. Let the 
input feature map be denoted as X C×H×W, where 
C represents the number of channels, and H and W 
denote the height and width of the feature map, 
respectively. CA mechanism performs average 
pooling along the height and width directions 
separately, yielding two one-dimensional 
directional features. The operation along the height 
direction is formulated in Equation (1): for the h-th 

row in the c-th channel, average pooling is 
applied across the horizontal (column-wise) 
direction. This operation generates a feature 
representation denoted as Fh C×H×1. 

1
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f c h X c h w

W . 
(1) 

Similarly, in the width direction, as shown in 
Equation (2), average pooling is performed 
along the horizontal (column) direction for 
the w-th column in the c-th channel, resulting 
in a one-dimensional feature Fw C×1×w.  
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Subsequently, the directional features Fh and 
Fw are concatenated. Shared convolution and 
nonlinear transformations are then applied to 
generate two 1D attention weight maps. 
These maps are utilized for the height and 
width dimensions, respectively. By 
multiplying the original input feature map X 
with these two directional attention weight 
maps respectively, bidirectional spatial 
attention weighting for each position point (h, 
w) in X is achieved. This process constructs 
the final attention weight mask. 

ResNet18 is adopted as the backbone network 
architecture in this work. Within the 
ResNet18 architecture, each residual block 
comprises two consecutive 3×3 convolutional 
layers designed to progressively extract 
multi-level feature information from images. 
Specifically, the first 3×3 convolutional layer 
primarily performs initial local feature 
extraction, generating intermediate feature 
maps. The second 3×3 convolutional layer 
subsequently integrates and refines these 
intermediate features to produce more 
discriminative feature representations. To 
enhance the network's capability to focus on 
critical regions and channel features, we 
embed the CA module into the residual 
blocks of the ResNet18 network, between the 
two 3×3 convolutional layers. The improved 
network is termed ResNet18_CA, as shown in 
Fig. 4. First, 70°FoV ground images are input 
into the network. These images have 3 
channels (C), a height (H) of 128, and a width 
(W) of 99. The input images sequentially pass 
through a convolutional layer with a 7×7 
kernel, followed by a batch normalization 
(BN) layer, a ReLU activation layer, and a 
max-pooling layer. Then, the feature maps,

. (2)

Subsequently, the directional features Fh and Fw are 
concatenated. Shared convolution and nonlinear 
transformations are then applied to generate two 
1D attention weight maps. These maps are utilized 
for the height and width dimensions, respectively. 
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By multiplying the original input feature map X with 
these two directional attention weight maps respec-
tively, bidirectional spatial attention weighting for 
each position point (h, w) in X is achieved. This pro-
cess constructs the final attention weight mask.
ResNet18 is adopted as the backbone network archi-
tecture in this work. Within the ResNet18 architec-
ture, each residual block comprises two consecutive 
3×3 convolutional layers designed to progressively 
extract multi-level feature information from images. 
Specifically, the first 3×3 convolutional layer primar-
ily performs initial local feature extraction, generat-
ing intermediate feature maps. The second 3×3 con-
volutional layer subsequently integrates and refines 
these intermediate features to produce more dis-
criminative feature representations. To enhance the 
network's capability to focus on critical regions and 
channel features, we embed the CA module into the 
residual blocks of the ResNet18 network, between 
the two 3×3 convolutional layers. The improved net-
work is termed ResNet18_CA, as shown in Figure 4. 
First, 70°FoV ground images are input into the net-
work. These images have 3 channels (C), a height (H) 
of 128, and a width (W) of 99. The input images se-
quentially pass through a convolutional layer with a 
7×7 kernel, followed by a batch normalization (BN) 

layer, a ReLU activation layer, and a max-pooling lay-
er. Then, the feature maps, reduced in spatial dimen-
sion by the MaxPool layer, are sequentially input into 
four residual blocks (Block 1~Block 4). Finally, the 
output feature maps, sized C = 512, H = 4, W = 4, are 
used as input for subsequent feature cropping and 
alignment. Each residual block's internal structure 
is shown in the right half of Figure 4. The input fea-
ture maps first passing through a 3×3 convolutional 
layer for feature extraction and then through a CA 
layer to introduce spatial coordinate   information. 
This process enhances the model's ability to identify 
key feature locations in images. 
Then, the feature maps pass through another 3×3 
convolutional layer for further feature extraction. 
Finally, a skip connection adds the original input to 
the convolutional output to form the residual block's 
output. This structure not only retains the advan-
tages of deep feature propagation from residual net-
works but also enhances the network's sensitivity to 
spatial information through the CA module, improv-
ing its feature representation ability.
The internal structure of the CA module is shown in 
Figure 5. Generating attention-weighted masks and 
feature maps are obtained from the following steps 
for the input feature map fC×H×W.
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width W) to get fC×H×1. Y AvgPool 
performs average pooling vertically 
(along the feature map's height H) to get 
fC×1×W. This aims to aggregate feature 
information horizontally and vertically 
while maintaining the spatial dimensions 
of the feature map, thereby generating  
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1	 For the input feature map fC×H×W., two 1D average 
pooling layers are used to process. X AvgPool per-
forms average pooling horizontally (along the fea-
ture map's width W) to get fC×H×1. ϒ AvgPool per-
forms average pooling vertically (along the feature 
map's height H) to get fC×1×W. This aims to aggregate 
feature information horizontally and vertically 
while maintaining the spatial dimensions of the 
feature map, thereby generating direction-aware 
feature representations.

2	 The feature maps fC×H×1 and fC×1×W obtained from the 
two average pooling operations are concatenat-
ed along the spatial dimension (dim=2). A feature 
map that integrates information from both hori-
zontal and vertical directions is obtained.

3	 The concatenated feature map sequentially passes 
through a 1×1 Conv2d layer, a BN layer, and a non-
linear activation layer. This process further com-
presses the channel information and yields the fea-
ture representation fC/r×1×(H+W).

4	 To further refine the feature representation, we 
split fC/r×1×(H+W) into two directional feature vectors 
through a feature separation operation, namely  
fC/r×1×(H+W) and fC/r×1×W.

Figure 4
Structure of ResNet18 with Integrated CA Module 
(ResNet18_CA). 
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5	 The two feature vectors are each input into a 1×1 
Conv2d layer for channel adjustment, yielding 
fC×H×1 and fC×1×W.

6	 The Sigmoid activation function generates weight 
masks MaskC×H×1 and MaskC×1×W for the H and W di-
rections of the feature map. These masks help the 
network focus on important features in each row 
and column, capturing long-range dependencies 
along the spatial dimensions (H or W) of the input 
feature map fC×H×W.

7	 By applying multiplication with the two attention 
masks, the network can more accurately identify 
the coordinate positions of important features in 
the input feature fC×H×W.

3.3.2. Feature Cropping and Alignment
After generating the mask, we propose an atten-
tion-based weighted mask method to achieve fea-
ture-map cropping and alignment through Feature 
Cropping and Alignment (FCA). We perform crop-
ping and alignment on the satellite-image feature 
map using the satellite-attention mask Ms. The slid-
ing window searches for areas corresponding to the 
ground-attention mask Mg, removing redundant fea-
tures and keeping key matching regions. The satellite 
image referred to here are pseudo-ground image gen-
erated by polar coordinate transformation. To distin-
guish them from ground images, we collectively refer 
to pseudo-ground images as satellite images in the 
subsequent description.
As shown in Figure 6(a) illustrates the non-panoramic 
ground image, Figure 6(b) presents the polar-trans-
formed reference satellite image, and Figure 6(c)-(d) 
respectively show the visualization heatmaps of the 
ground image feature attention-weighted mask Mg and 
the satellite image feature attention-weighted mask Ms. 
During training, the attention mechanism generates 
optimized weight masks to indicate the importance of 
different regions in the network. The weight values in 
the attention masks reflect the significance of corre-
sponding regions in the feature maps. Darker colors in 
the masks signify larger weight values, highlighting the 
greater importance of those regions.
Using the weight masks learned from the CA layer 
in ResNet18_CA, a dense search identifies the re-
gions with the highest weights. These regions, corre-
sponding to ground image features, guide the removal 
of redundant areas in satellite image feature maps  
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(Fs_block_i) and enhance the key areas related to ground 
images. During feature alignment cropping, the ver-
tical (y-axis) range of ground image features remain 
fixed, while the cropping area's start and end positions 
on the horizontal (x-axis) are determined. Once the op-
timal x-coordinate interval is determined, satellite im-
age feature maps are cropped using this interval. 
We introduce a sliding window matching strategy to lo-
cate candidate regions on the satellite attention mask 

Ms that exhibit maximal relevance to the ground image 
feature areas. During feature cropping and alignment, 
the sliding window dimensions are dynamically adapt-
ed to the spatial resolution of ground feature maps 
generated by distinct convolutional blocks in Res-
Net18_CA—rather than employing a fixed size. At each 
network hierarchy, the corresponding ground-image 
attention mask is leveraged as a complete sliding win-
dow. This window performs horizontal sliding match-
ing on the satellite image attention weight mask. The 
goal is to find regions in the satellite image that are 
most relevant to the ground image. The attention mask 
of the ground image accurately represents the spatial 
location of salient regions in the current view. It guides 
the sliding window to accurately identify correspond-
ing key regions in the satellite image.
The specific implementation process is as described 
below.
1	 In the satellite image network branch, the weight 

masks of satellite image feature maps Ms, gener-
ated by the CA module in each Block of the Res-
Net18_CA network, are extracted.

2	 In the ground image network branch, ground image 
feature maps are extracted from each Block of the 
ResNet18_CA network, and their height (H) and 
width (W) are used as the sliding window size.

3	 Using the sliding window set in step (2), slide it 
across the satellite image feature weight mask Ms. 
At each step, sum the total weight values within 
each window. 

4	 Compare the weights of sliding windows and iden-
tify the window with the maximum total weight. 
The corresponding region of this window in the 
satellite image feature map is considered aligned 
with the ground image feature map. This region is 
cropped to retain key features, while other irrele-
vant areas are discarded. The resulting feature map 
is the final satellite image feature map (Fsc_block_i).

The feature cropping and alignment process is shown 
in Figure 7. The satellite image (Is) is transformed 
into the cropped satellite image (Isc) by this stage. Al-
though the sliding window covers multiple regions, 
the final window is selected by traversing all posi-
tions and comprehensively evaluating the summed 
attention weights within each region. It ensures the 
extracted satellite features maximally correspond 
to ground image features, enhancing cropping accu-

Figure 5
Internal Structure of the CA Module. 

  

 

direction-aware feature representations. 

(2) The feature maps fC×H×1 and fC×1×W obtained 
from the two average pooling operations are 
concatenated along the spatial dimension 
(dim=2). A feature map that integrates 
information from both horizontal and vertical 
directions is obtained. 

(3) The concatenated feature map sequentially 
passes through a 1×1 Conv2d layer, a BN layer, 
and a nonlinear activation layer. This process 
further compresses the channel information 
and yields the feature representation 
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(6) The Sigmoid activation function generates 
weight masks MaskC×H×1 and MaskC×1×W for the 
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masks help the network focus on important 
features in each row and column, capturing 
long-range dependencies along the spatial 
dimensions (H or W) of the input feature map 
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(7) By applying multiplication with the two 
attention masks, the network can more 
accurately identify the coordinate positions of 
important features in the input feature fC×H×W. 
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After generating the mask, we propose an attention-
based weighted mask method to achieve feature-map 
cropping and alignment through Feature Cropping and 
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transformed reference satellite image, and Figure 
6(c)-(d) respectively show the visualization 
heatmaps of the ground image feature attention-
weighted mask Mg and the satellite image feature 
attention-weighted mask Ms. During training, the 
attention mechanism generates optimized weight 
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highlighting the greater importance of those 
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Figure 6
Visualization of Attention-Weighted Masks in Block 4 of ResNet18 Network (a) 70° FoV Ground Image (b) Matching 
Satellite Panoramic Image (c) Heatmap of Ground Image Feature Attention Weights (d) Heatmap of Satellite Image 
Feature Attention Weights. 

  

choosing the first window. 

In feature cropping, sliding matching is only done 
horizontally. The heights of all ground and satellite 
images in the dataset are uniformly scaled to 128 pixels, 
ensuring vertical (y-axis) consistency. After undergoing 
polar coordinate transformation, satellite images 
generate pseudo-ground panoramic images. These 
images visually present a geographical scene 
distribution that is expanded along the horizontal 
direction, aligning with the horizontal-perspective 
characteristics of ground images. This implies that the 
viewpoint differences between ground and satellite 
images mainly lie in the horizontal direction. The 

vertical direction shows smaller semantic-
structural changes. Thus, we directly use the 
feature map of ground images as the sliding 
window. When the height is aligned, sliding-
window matching in the vertical direction is 
unnecessary. 

 

3.4 Multi-scale Feature Fusion 
When learning similarity measurement between 
satellite and non-panoramic ground images, 
feature maps at different levels describe the image  

 

Figure 7  

Feature Cropping and Alignment Process of Satellite Images.  

 

at different granularities. When determining if the query 
and reference satellite images depict the same location, 
people consider both coarse-grained high-level semantic 
info (like object outlines and spatial layouts) and fine-
grained low-level features (such as colors and textures) 
from the two view images. Given this, we introduce a 
multi-scale feature fusion strategy: the Multi-
Convolutional Layer Feature Map Concatenate (FMC) 
method. By concatenating features extracted from 
different convolutional layers, both high-level semantic 
information and low-level visual details are effectively 
integrated to construct image descriptors that capture 
rich hierarchical representations. 

Due to the structural characteristics of the ResNet18 
network, the spatial size and number of channels of the 
feature maps change after passing through each residual 
block. The satellite-image feature maps cropped from 
Block 1~Block 4 differ in spatial resolution and channel 
dimensions, so they cannot be directly concatenated. To 
effectively fuse multi-scale features, we first flatten each 
cropped feature map from the four blocks, converting 
their spatial and channel information into one- 

 

dimensional vectors. Then, the four vectors are 
concatenated on the feature dimension to form the 
final multi-scale image-feature descriptor. 

Specifically, first, in the satellite image network 
branch, the satellite image features learned from 
Block 1 to Block 4 of the ResNet18_CA backbone 
network are each subjected to feature alignment 
and cropping as described in Section 3.3.2. Second, 
the cropped satellite image features from four 
scales are concatenated to form the final multi-
scale satellite image feature descriptor Fs, as shown 
in Figure 8(a). Then, for the ground image network 
branch, as the image is a limited FoV one with a 
concentrated target area, the ground image 
features extracted from Block 1 to Block 4 are 
concatenated. This forms the multi-scale feature 
descriptor Fg of the ground image, as shown in 
Figure 8(b). Finally, the concatenated Fs and Fg are 
input into the loss function module to perform 
similarity-metric learning, which comprehensively 
evaluates the impact of multi-scale features on 
matching results. 

Figure 7
Feature Cropping and Alignment Process of Satellite Images.
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racy and matching effectiveness, rather than simply 
choosing the first window.
In feature cropping, sliding matching is only done 
horizontally. The heights of all ground and satellite 
images in the dataset are uniformly scaled to 128 pix-
els, ensuring vertical (y-axis) consistency. After un-
dergoing polar coordinate transformation, satellite 
images generate pseudo-ground panoramic images. 
These images visually present a geographical scene 
distribution that is expanded along the horizontal 
direction, aligning with the horizontal-perspective 
characteristics of ground images. This implies that 
the viewpoint differences between ground and satel-
lite images mainly lie in the horizontal direction. The 
vertical direction shows smaller semantic-structur-
al changes. Thus, we directly use the feature map 
of ground images as the sliding window. When the 
height is aligned, sliding-window matching in the 
vertical direction is unnecessary.

3.4. Multi-scale Feature Fusion
When learning similarity measurement between 
satellite and non-panoramic ground images, feature 
maps at different levels describe the image at different 
granularities. When determining if the query and ref-
erence satellite images depict the same location, peo-
ple consider both coarse-grained high-level semantic 
info (like object outlines and spatial layouts) and fine-
grained low-level features (such as colors and textures) 
from the two view images. Given this, we introduce a 
multi-scale feature fusion strategy: the Multi-Convo-
lutional Layer Feature Map Concatenate (FMC) meth-
od. By concatenating features extracted from different 
convolutional layers, both high-level semantic infor-
mation and low-level visual details are effectively inte-
grated to construct image descriptors that capture rich 
hierarchical representations.
Due to the structural characteristics of the ResNet18 
network, the spatial size and number of channels of 
the feature maps change after passing through each 
residual block. The satellite-image feature maps 
cropped from Block 1~Block 4 differ in spatial res-
olution and channel dimensions, so they cannot be 
directly concatenated. To effectively fuse multi-
scale features, we first flatten each cropped feature 
map from the four blocks, converting their spatial 
and channel information into one-dimensional vec-
tors. Then, the four vectors are concatenated on the 

feature dimension to form the final multi-scale im-
age-feature descriptor.
Specifically, first, in the satellite image network 
branch, the satellite image features learned from Block 
1 to Block 4 of the ResNet18_CA backbone network 
are each subjected to feature alignment and cropping 
as described in Section 3.3.2. Second, the cropped 
satellite image features from four scales are concat-
enated to form the final multi-scale satellite image 
feature descriptor Fs, as shown in Figure 8(a). Then, 
for the ground image network branch, as the image is 
a limited FoV one with a concentrated target area, the 
ground image features extracted from Block 1 to Block 
4 are concatenated. This forms the multi-scale feature 
descriptor Fg of the ground image, as shown in Figure 
8(b). Finally, the concatenated Fs and Fg are input into 
the loss function module to perform similarity-metric 
learning, which comprehensively evaluates the impact 
of multi-scale features on matching results.

3.5. Loss Function

The design of the loss function is pivotal for opti-
mizing the cross-view image geo-localization model. 
We have adopted a weighted soft-margin triplet loss 
function, as proposed by Hu et al. [8]. The mathemat-
ical formulation of this loss is:
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Here, ,a pd  denotes the Euclidean distance between the 
feature representations of the anchor (a ground image) 
and the positive sample (a satellite image from the same 
geographical location), computed as shown in Equation 
(4). ,a nd  represents the Euclidean distance between the 
anchor and the negative sample (a satellite image from a 
different location), computed as shown in Equation (5). 
The hyperparameter  controls the margin between 
positive and negative pairs, which not only accelerates 
the convergence of the network but also enhances the 
model’s discriminative ability. ( )f represents the 
feature extraction function, implemented by the 
ResNet18_CA network. 
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4. Experiment 
4.1 Datasets and Evaluation Protocols 
1) Dataset 

In this section, the ground and satellite images from the 
CVUSA dataset [29] and CVACT_val [12] are resized. 
For ground images with a field of view of 70°, the 
normalized dimensions are set to 128×99; when the field 

of view is 90°, the dimensions are adjusted to 
128×128. Satellite images are uniformly resized to 
128×512. Our proposed model's performance is 
evaluated on two cross-view datasets. We use the 
image preprocessing method from [20] to obtain 
non-panoramic ground images with random 
shooting directions and FoV angles of 70° and 90°. 
In model training, the shooting directions of these 
ground images were randomly selected for each 
training round. 

2) Training Configuration 

Our proposed method is implemented using 
PyTorch 1.4.1. Experiments are performed on a 
system equipped with a TITAN RTX GPU with 24 
GB of memory. The network is trained for a total 
of 100 epochs. For the optimizer, we adopt 
AdamW with a batch size of 24. The backbone 
network is initialized with ImageNet pre-trained 
weights to accelerate convergence through transfer 
learning. During each training epoch, both the 
training and validation sets are randomly shuffled 
to ensure data diversity. Additionally, we employ 
the hard negative mining strategy proposed by 
Hermans et al. [6], which focuses on repeatedly 
learning the most similar but mismatched satellite 
images to enhance the network's generalization 
ability. The initial learning rate is set to 0.00005 
and is gradually reduced during training to ensure 
stable model convergence. The weight decay is set 
to 0.0005. We conducted L2 regularization on the 
feature descriptors of ground and satellite images.  

3) Evaluation Protocols 

We use the top-k (R@k, k {1,5,10,1%}) recall rate as 
the evaluation metric, which is the probability of 
correct results appearing among the top-k 
retrieved images. When k is an integer, the top-k 
set refers to the collection of the k satellite images 
whose feature descriptors are closest to that of a 
queried ground image. When k is a percentage, the  
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Here, da,p denotes the Euclidean distance between the 
feature representations of the anchor (a ground im-
age) and the positive sample (a satellite image from 
the same geographical location), computed as shown 
in Equation (4). da,n represents the Euclidean distance 
between the anchor and the negative sample (a sat-
ellite image from a different location), computed as 
shown in Equation (5). The hyperparameter α con-
trols the margin between positive and negative pairs, 
which not only accelerates the convergence of the 
network but also enhances the model’s discriminative 
ability.  f (·) represents the feature extraction func-
tion, implemented by the ResNet18_CA network.

 
 

 

3.5 Loss Function 
The design of the loss function is pivotal for optimizing 
the cross-view image geo-localization model. We have 
adopted a weighted soft-margin triplet loss function, as 
proposed by Hu et al. [8]. The mathematical formulation 
of this loss is: 

, ,( )ln(1 )a p a nd dL e . (3) 

Here, ,a pd  denotes the Euclidean distance between the 
feature representations of the anchor (a ground image) 
and the positive sample (a satellite image from the same 
geographical location), computed as shown in Equation 
(4). ,a nd  represents the Euclidean distance between the 
anchor and the negative sample (a satellite image from a 
different location), computed as shown in Equation (5). 
The hyperparameter  controls the margin between 
positive and negative pairs, which not only accelerates 
the convergence of the network but also enhances the 
model’s discriminative ability. ( )f represents the 
feature extraction function, implemented by the 
ResNet18_CA network. 

, 2( ) ( )a pd f a f p  (4) 

, 2( ) ( )a nd f a f n . (5) 

 

4. Experiment 
4.1 Datasets and Evaluation Protocols 
1) Dataset 

In this section, the ground and satellite images from the 
CVUSA dataset [29] and CVACT_val [12] are resized. 
For ground images with a field of view of 70°, the 
normalized dimensions are set to 128×99; when the field 

of view is 90°, the dimensions are adjusted to 
128×128. Satellite images are uniformly resized to 
128×512. Our proposed model's performance is 
evaluated on two cross-view datasets. We use the 
image preprocessing method from [20] to obtain 
non-panoramic ground images with random 
shooting directions and FoV angles of 70° and 90°. 
In model training, the shooting directions of these 
ground images were randomly selected for each 
training round. 

2) Training Configuration 

Our proposed method is implemented using 
PyTorch 1.4.1. Experiments are performed on a 
system equipped with a TITAN RTX GPU with 24 
GB of memory. The network is trained for a total 
of 100 epochs. For the optimizer, we adopt 
AdamW with a batch size of 24. The backbone 
network is initialized with ImageNet pre-trained 
weights to accelerate convergence through transfer 
learning. During each training epoch, both the 
training and validation sets are randomly shuffled 
to ensure data diversity. Additionally, we employ 
the hard negative mining strategy proposed by 
Hermans et al. [6], which focuses on repeatedly 
learning the most similar but mismatched satellite 
images to enhance the network's generalization 
ability. The initial learning rate is set to 0.00005 
and is gradually reduced during training to ensure 
stable model convergence. The weight decay is set 
to 0.0005. We conducted L2 regularization on the 
feature descriptors of ground and satellite images.  

3) Evaluation Protocols 

We use the top-k (R@k, k {1,5,10,1%}) recall rate as 
the evaluation metric, which is the probability of 
correct results appearing among the top-k 
retrieved images. When k is an integer, the top-k 
set refers to the collection of the k satellite images 
whose feature descriptors are closest to that of a 
queried ground image. When k is a percentage, the  

 

(4)

 
 

 

3.5 Loss Function 
The design of the loss function is pivotal for optimizing 
the cross-view image geo-localization model. We have 
adopted a weighted soft-margin triplet loss function, as 
proposed by Hu et al. [8]. The mathematical formulation 
of this loss is: 

, ,( )ln(1 )a p a nd dL e . (3) 

Here, ,a pd  denotes the Euclidean distance between the 
feature representations of the anchor (a ground image) 
and the positive sample (a satellite image from the same 
geographical location), computed as shown in Equation 
(4). ,a nd  represents the Euclidean distance between the 
anchor and the negative sample (a satellite image from a 
different location), computed as shown in Equation (5). 
The hyperparameter  controls the margin between 
positive and negative pairs, which not only accelerates 
the convergence of the network but also enhances the 
model’s discriminative ability. ( )f represents the 
feature extraction function, implemented by the 
ResNet18_CA network. 

, 2( ) ( )a pd f a f p  (4) 

, 2( ) ( )a nd f a f n . (5) 

 

4. Experiment 
4.1 Datasets and Evaluation Protocols 
1) Dataset 

In this section, the ground and satellite images from the 
CVUSA dataset [29] and CVACT_val [12] are resized. 
For ground images with a field of view of 70°, the 
normalized dimensions are set to 128×99; when the field 

of view is 90°, the dimensions are adjusted to 
128×128. Satellite images are uniformly resized to 
128×512. Our proposed model's performance is 
evaluated on two cross-view datasets. We use the 
image preprocessing method from [20] to obtain 
non-panoramic ground images with random 
shooting directions and FoV angles of 70° and 90°. 
In model training, the shooting directions of these 
ground images were randomly selected for each 
training round. 

2) Training Configuration 

Our proposed method is implemented using 
PyTorch 1.4.1. Experiments are performed on a 
system equipped with a TITAN RTX GPU with 24 
GB of memory. The network is trained for a total 
of 100 epochs. For the optimizer, we adopt 
AdamW with a batch size of 24. The backbone 
network is initialized with ImageNet pre-trained 
weights to accelerate convergence through transfer 
learning. During each training epoch, both the 
training and validation sets are randomly shuffled 
to ensure data diversity. Additionally, we employ 
the hard negative mining strategy proposed by 
Hermans et al. [6], which focuses on repeatedly 
learning the most similar but mismatched satellite 
images to enhance the network's generalization 
ability. The initial learning rate is set to 0.00005 
and is gradually reduced during training to ensure 
stable model convergence. The weight decay is set 
to 0.0005. We conducted L2 regularization on the 
feature descriptors of ground and satellite images.  

3) Evaluation Protocols 

We use the top-k (R@k, k {1,5,10,1%}) recall rate as 
the evaluation metric, which is the probability of 
correct results appearing among the top-k 
retrieved images. When k is an integer, the top-k 
set refers to the collection of the k satellite images 
whose feature descriptors are closest to that of a 
queried ground image. When k is a percentage, the  

 

. (5)



789Information Technology and Control 2025/3/54

4. Experiment
4.1. Datasets and Evaluation Protocols

1	 Dataset
In this section, the ground and satellite images 
from the CVUSA dataset [29] and CVACT_val 
[12] are resized. For ground images with a field of 
view of 70°, the normalized dimensions are set to 
128×99; when the field of view is 90°, the dimen-
sions are adjusted to 128×128. Satellite images are 
uniformly resized to 128×512. Our proposed mod-
el's performance is evaluated on two cross-view 
datasets. We use the image preprocessing method 
from [20] to obtain non-panoramic ground images 

with random shooting directions and FoV angles 
of 70° and 90°. In model training, the shooting di-
rections of these ground images were randomly 
selected for each training round.

2	 Training Configuration
Our proposed method is implemented using Py-
Torch 1.4.1. Experiments are performed on a sys-
tem equipped with a TITAN RTX GPU with 24 GB 
of memory. The network is trained for a total of 
100 epochs. For the optimizer, we adopt AdamW 
with a batch size of 24. The backbone network is 
initialized with ImageNet pre-trained weights to 
accelerate convergence through transfer learning. 
During each training epoch, both the training and 
validation sets are randomly shuffled to ensure   

Figure 8  

Multi-scale Feature Concatenation of Two view Images: (a) Feature Concatenation of Satellite Image, and (b) Feature 
Concatenation of Ground Image. 
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Table 1 

Comparison with Existing Methods on the CVUSA. 

Method 
CVUSA 70° FoV CVUSA 90° FoV 

R@1 R@5 R@10 R@1% R@1 R@5 R@10 R@1% 

CVM-Net 
[8] 2.62 9.30 15.06 21.77 2.76 10.11 16.74 55.49 

CVFT [21] 3.79 12.44 19.33 55.56 4.80 14.84 23.18 61.23 

DSM [20] 8.78 19.90 27.30 61.20 16.19 31.44 39.85 71.13 

SEH [5] 8.39 19.54 26.04 / 17.54 32.91 40.54 / 

Ours 16.51 32.67 42.88 75.78 22.45 41.07 52.15 82.09 

 

 

Figure 8
Multi-scale Feature Concatenation of Two view Images: (a) Feature Concatenation of Satellite Image, 
and (b) Feature Concatenation of Ground Image.
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data diversity. Additionally, we employ the hard 
negative mining strategy proposed by Hermans et 
al. [6], which focuses on repeatedly learning the 
most similar but mismatched satellite images to 
enhance the network's generalization ability. The 
initial learning rate is set to 0.00005 and is gradu-
ally reduced during training to ensure stable mod-
el convergence. The weight decay is set to 0.0005. 
We conducted L2 regularization on the feature de-
scriptors of ground and satellite images. 

3	 Evaluation Protocols
We use the top-k (R@k, k ϵ{1,5,10,1%}) recall rate 
as the evaluation metric, which is the probability 
of correct results appearing among the top-k re-
trieved images. When W is an integer, the top-k 
set refers to the collection of the k satellite images 
whose feature descriptors are closest to that of a 
queried ground image. When k is a percentage, the 
top-k set consists of the first k×N satellite images 
closest in feature descriptor to the queried ground 
image, where N denotes the number of reference 
satellite images. This section uses four metrics: 
R@1, R@5, R@10, and R@1%.

4.2. Experimental Results

1	 Comparison with other Methods 
We compared our method with several advanced 
ones on CVUSA and CVACT_val. The results are 
shown in Tables 1-2. As shown in Table 1, on the 
CVUSA dataset, our method significantly improves 
recall accuracy. For ground images with a 70° FoV, 
our R@1 metric improves by 8.12%, R@5 by 13.13%, 
R@10 by 16.24%, and R@1% surpasses DSM by 
24.68%. For ground images with a 90° FoV, our meth-
od achieves notable improvements: a 5% increase in 
R@1, an 8% rise in R@5, an 11.6% gain in R@10, and 
an 11% improvement in R@1% over DSM.
As shown in Table 2, on the CVACT_val data-
set, for ground images with a 70° field of view, we 
improved R@1 from 8.29% to 9.81%, R@5 from 
20.72% to 22.73%, R@10 from 27.13% to 29.29%, 
and increased R@1% by 11.83% from its original 
value. For ground images with a 90° field of view, 
we improved R@1 from 18.11% to 19.56%, R@5 
from 33.34% to 34.02%, R@10 from 40.94% to 
41.50%, and R@1% from 68.65% to 69.24%. This 

Method
CVUSA 70° FoV CVUSA 90° FoV

R@1 R@5 R@10 R@1% R@1 R@5 R@10 R@1%

CVM-Net [8] 2.62 9.30 15.06 21.77 2.76 10.11 16.74 55.49

CVFT [21] 3.79 12.44 19.33 55.56 4.80 14.84 23.18 61.23

DSM [20] 8.78 19.90 27.30 61.20 16.19 31.44 39.85 71.13

SEH [5] 8.39 19.54 26.04 / 17.54 32.91 40.54 /

Ours 16.51 32.67 42.88 75.78 22.45 41.07 52.15 82.09

Method
CVACT_val 70° FoV CVACT_val 90° FoV

R@1 R@5 R@10 R@1% R@1 R@5 R@10 R@1%

CVM-Net [8] 1.24 4.98 8.42 34.74 1.47 5.70 9.64 38.05

CVFT [21] 1.49 4.13 8.19 34.59 1.85 6.28 10.54 39.25

DSM [20] 6.91 16.46 22.28 / 13.85 28.39 36.24 /

SEH [5] 8.29 20.72 27.13 57.08 18.11 33.34 40.94 68.65

Ours 9.81 22.73 29.29 58.91 19.56 34.02 41.50 69.24

Table 1
Comparison with Existing Methods on the CVUSA.

Table 2
Comparison with Existing Methods on the CVACT_val.
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indicates that the proposed method can better han-
dle cross-view geo-localization tasks on non-pan-
oramic ground images taken in real-world settings.

2	 Experimental Results Analysis of Two Datasets
The performance difference observed between the 
two datasets primarily stems from their inherent 
variations in scene distribution and visual con-
tent. The CVUSA dataset mainly comprises sub-
urban scenes, such as forests, deserts, and open 
roads, which are relatively simple and contain 
fewer occlusions. These characteristics facilitate 
the establishment of stable visual correspondenc-
es between different viewpoints. In contrast, the 
CVACT dataset is collected in urban environments 
and includes a wide range of complex  semantic el-
ements, such as vehicles, pedestrians, and densely 
packed buildings. These elements often lack clear 
spatial localization cues and are susceptible to dy-
namic changes and occlusions, making it challeng-
ing to provide stable references for image match-
ing.  Furthermore, urban scenes exhibit greater 
content variations across viewpoints, resulting in 
reduced consistency between ground-level and 
satellite images. Consequently, the proposed mod-
el demonstrates a comparatively smaller perfor-
mance improvement on the CVACT dataset.

4.3. Ablation Studies

1	 Effect of the Utilized CA module
To verify the effectiveness of the CA module in 
cross-view image geo-localization, we conducted 
ablation studies on the CVUSA and CVACT_val 
benchmark datasets. The results are presented 
in Tables 3-4. First, we use the baseline network 
ResNet18 for cross-view image matching and re-
cord its performance metrics. Then, we conduct 
experiments with the improved ResNet18_CA 
network incorporating the CA module under the 
same settings, and compare their recall perfor-

mance at different FoV angles (70° and 90°).
As the results show, on both the CVUSA and 
CVACT_val datasets, the ResNet18_CA network 
with the CA module significantly improves recall 
accuracy at all FoV angles compared to the base-
line ResNet18 model. It demonstrates that the CA 
module, by encoding spatial positions in feature 
maps, enhances the model's sensitivity to spatial 
information, and enables more precise capture of 
key areas in ground images. It also shows the CA 
module's effectiveness and robustness in better 
aligning cross-view image features.

2	 Effect of the Utilized CA Module, FCA Module, 
and FMC Module
To systematically evaluate the combined impact 
of the CA module, FCA module, and FMC mod-
ule on cross-view image geo-localization perfor-
mance, we conducted joint ablation studies on the 
CVUSA and CVACT_val benchmark datasets. The 
experiments used various module combination 
configurations to assess each module's contribu-
tion to model performance. The results are shown 
in Tables 5-6, where “√” indicates a module was 
used and “-” indicates it was not. 
The results indicate that for non-panoramic im-
ages with 70° and 90° FoV, combining the CA and 
FCA modules enhances recall accuracy compared 
to using only the CA module. It shows that feature 
cropping is effective for removing redundant fea-
tures and strengthening key-area matching. 
Moreover, the model achieves optimal R@1, R@5, 
R@10, and R@1% metrics when the FMC module 
is further introduced. This validates the effective 
synergy of the CA, FCA, and FMC modules. By 
fusing multi-scale features, the model's repre-
sentation ability is enhanced. It improves capture 
multi-granularity semantic information in cross-
view images, boosting overall cross-view geo-lo-
calization performance.

Model
CVUSA 70° FoV CVUSA 90° FoV

R@1 R@5 R@10 R@1% R@1 R@5 R@10 R@1%

ResNet18 12.31 27.47 36.02 67.73 15.92 34.53 44.95 76.45

ResNet18_CA 13.36 29.68 38.73 72.18 18.33 37.47 47.26 79.27

Table 3
Ablation Study of the CA Module on the CVUSA.
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Model
CVACT_val 70° FoV CVACT_val 90° FoV

R@1 R@5 R@10 R@1% R@1 R@5 R@10 R@1%

ResNet18 7.65 17.63 24.86 55.64 11.15 24.65 32.28 64.06

ResNet18_CA 9.04 21.69 28.12 58.20 15.42 27.21 36.69 67.18

Table 4
Ablation Study of the CA Module on the CVACT_val.

Module CVUSA 70° FoV CVUSA 90° FoV

CA FCA FMC R@1 R@5 R@10 R@1% R@1 R@5 R@10 R@1%

√ - - 13.36 29.68 38.73 72.18 18.33 37.47 47.26 79.27

√ √ - 15.09 31.72 41.64 74.36 21.18 39.26 49.42 81.40

√ √ √ 16.51 32.67 42.88 75.78 22.45 41.07 52.15 82.09

Table 5
Ablation Study of Combined Three Modules on CVUSA.

Module CVACT_val 70° FoV CVACT_val 90° FoV

CA FCA FMC R@1 R@5 R@10 R@1% R@1 R@5 R@10 R@1%

√ - - 9.04 21.69 28.12 58.20 15.42 27.21 36.69 67.18

√ √ - 9.34 22.09 28.46 58.83 18.92 31.60 39.09 67.57

√ √ √ 9.81 22.72 29.29 58.91 19.56 34.02 41.50 69.24

Table 6
Ablation Study of Combined Three Modules on CVACT_val.

5. Discussion
In this work, we primarily focus on analyzing the im-
pact of ground images with limited F FoV on local-
ization accuracy. The current research is centered on 
the examination of FoV, without incorporating the 
potential influence of camera parameters—such as 
focal length and exposure—on the content of ground 
image scenes. However, we recognize that these cam-
era parameters constitute critical factors in image 
analysis. They may significantly affect the accuracy 
of cross-view matching by altering the image's per-
spective range, brightness distribution, and the qual-
ity of feature extraction. For instance, variations in 
focal length can influence the scaling and detail pre-
sentation of the scene, thereby impacting the effec-
tiveness of feature extraction. Similarly, adjustments 
in exposure may affect the image's contrast and fea-
ture discernibility, particularly in scenes with vary-
ing lighting conditions. In future research, we intend 

to prioritize this aspect as a key focus area, aiming to 
analyzing the impact of factors in the practical appli-
cations on geo-localization performance.

6. Conclusion
In this paper, we address the challenge of cross-view 
image geo-localization for non-panoramic ground 
images with limited field of view. We propose a nov-
el attention-weighted mask alignment approach, le-
veraging a lightweight ResNet18 network embedded 
with the Coordinate Attention mechanism. By gen-
erating attention weight masks to prioritize task-rel-
evant regions that enable precise feature alignment 
between ground and satellite images. Additionally, we 
incorporate a feature cropping module to eliminate 
redundant areas in satellite images, retaining only 
the key regions corresponding to the ground images, 
thereby enhancing both the efficiency and accuracy 
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