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In recent years, the demand for multimodal data retrieval has been growing rapidly. As two major modali-
ties for information transmission, images and texts exhibit significant differences in feature distribution. 
To address challenges in image-text retrieval—such as balancing efficiency with performance and enhanc-
ing semantic modelling—this paper proposes an efficient cross-modal feature matching model based on the 
CLIP framework, including two parts: feature extraction and contrastive learning. During feature extraction, 
pre-trained VIT and BERT models are used to capture deep semantic features of images and texts, which 
achieve significant improvements in Feature Entropy (text: 4.27 vs. 3.62; image: 4.13 vs. 3.47) and Mutual 
Information (28.3% for text, 31.5% for image) compared with the baseline, indicating stronger semantic ex-
pressiveness and alignment. Through contrastive learning with the cosine-based loss function and Adam op-
timization, the model ensures stable convergence. Furthermore, preprocessing innovations such as remov-
ing redundant text tokens and Base64 image encoding boost training efficiency. Experiments on a dataset 
of 50,000 image-text pairs demonstrate that our model achieves high and stable retrieval performance with 
R@1, R@5, and R@10 scores ranging from 80% to 90%. Compared to the classic DeViSE model, our approach 
yields improvements of 12.9%, 10.0%, and 9.0% across the three metrics, confirming the model’s superior 
accuracy and generalization in large-scale retrieval scenarios. Finally, the model is evaluated on image-text 
retrieval tasks, where it consistently demonstrates strong cross-modal matching capabilities and accurately 
captures the semantic associations between images and texts.
KEYWORDS: Image-Text Retrieval, CLIP, Contrastive learning, BERT-VIT, Adam optimizer 

Yilin Peng
School of Mathematical Sciences, South China Normal University, Guangdong, 510631, China

1. Introduction 
A considerable volume of image-text pair data is con-
stantly emerging due to the quick expansion of social 
networking platforms, which is driving up the need 

for effective multi-modal information retrieval. Ap-
plications of cross-modal image-text retrieval tech-
nology are numerous and include media, public safety, 
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and medical industries. In the field of public security, 
it can be used for online public opinion analysis and 
the prediction and handling of opinion fraud. In the 
media domain, it supports multimedia event detec-
tion, opinion mining, and recommendation systems 
[36]. In the medical field, it facilitates the querying 
of stored medical data [15]. Faced with large-scale 
image-text pair data, training models capable of auto-
matically and efficiently retrieving such information 
can significantly improve retrieval efficiency and re-
duce the cost of manual search. However, since imag-
es and texts belong to two distinct modalities—vision 
and language—there exists a clear semantic gap and 
feature distribution disparity between them. There-
fore, cross-modal retrieval has become one of the ma-
jor challenges in current academic research.
In recent years, cross-modal image-text retrieval has 
emerged as a crucial technology in advancing multi-
modal understanding, bridging visual and linguistic 
information. Traditional approaches often rely on 
extracting separate features from images and texts 
and mapping them into a shared semantic space. Rep-
resentative models such as the VSE series use rank-
ing loss to train similarity functions, while IConE 
(Instance Contrastive Embedding) introduces in-
stance-level loss to strengthen local alignment [35]. 
Graph-based methods like HGFN further model the 
semantic relationships between image regions and 
text tokens using GCNs, enhancing spatial-semantic 
representations [21]. Models like MKVSE incorpo-
rate multimodal knowledge graphs to capture im-
plicit causal and temporal dependencies [7]. These 
methods have improved performance in structured 
scenarios, but often fall short in large-scale or com-
plex settings due to limited fine-grained semantic 
modeling and training efficiency.
With the advent of large-scale pretraining, CLIP and 
its variants have become a dominant direction in im-
age-text retrieval. OpenAI’s CLIP trains image and 
text encoders jointly using contrastive loss on a mas-
sive dataset, enabling powerful zero-shot capabilities 
[19]. Extensions like DCLIP incorporate distillation 
and region-level attention for enhanced alignment, 
while models like CLIP2SRITR refine semantic gran-
ularity through alignment layers [3]. Lightweight ad-
aptations such as Jina‑CLIP and sparse models like 
STAIR further optimize CLIP’s performance and ef-
ficiency [2]. In parallel, unified encoder architectures 
such as ViLT and VLMo explore end-to-end multi-

modal modeling. Despite their strong performance, 
these models still face limitations in fine-grained 
feature alignment and adaptation to multilingual sce-
nario. Building on this foundation, our work proposes 
a CLIP-based contrastive learning framework that in-
tegrates pretrained ViT and BERT encoders. Through 
task-specific fine-tuning, our model achieves en-
hanced semantic alignment and retrieval accuracy 
for robust cross-modal matching.
In summary, although cross-modal image-text re-
trieval technology has made significant progress, 
it still faces numerous challenges. First, due to the 
complexity of large-scale image-text pair data, mod-
el training tends to be time-consuming and involves 
a large number of parameters, making it difficult to 
balance efficiency and performance. Second, existing 
methods remain inadequate in handling redundant 
information, modelling contextual semantics, and 
focusing on key regions within images. Moreover, the 
design of loss functions and the choice of optimiza-
tion algorithms during image-text contrastive learn-
ing also have a crucial impact on model performance 
and convergence speed, yet related research remains 
insufficient and requires further exploration. To 
overcome the aforementioned issues, this research 
suggests a dual-stream image-text matching model 
based on the CLIP framework, comprising two main 
components: image-text feature extraction and im-
age-text contrastive learning. The following are the 
proposed model's primary innovations: 
1	 Transformer-based pre-trained models are used 

to extract deep semantic features from texts and 
images using a cross-modal feature-matching ap-
proach based on BERT and VIT. It enhances the 
model's ability to perceive key visual regions and 
contextual semantics, enabling fine-grained align-
ment across modalities. Compared to tradition-
al shallow models, the proposed approach offers 
stronger feature representation and improved gen-
eralization in image-text matching tasks.

2	 A contrastive learning-based cross-modal seman-
tic alignment strategy is proposed, in which pos-
itive and negative sample pairs are constructed, 
and a cosine similarity-based contrastive loss is 
optimized. It improves the model's discriminative 
capability and semantic alignment accuracy. Addi-
tionally, the use of the Adam optimizer accelerates 
convergence and enhances training stability.
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3 The proposed model and algorithm are validated 
on large-scale image-text retrieval tasks. Exper-
imental results demonstrate excellent retrieval 
performance, with R@K (K=1, 5, 10) scores rang-
ing from 80% to 90%, highlighting the model's ef-
fectiveness, generalizability, and strong potential 
for practical application.

This paper has the following structure: Section 2 in-
troduces the Image-Text matching model based on 
the CLIP framework and is divided into two parts: the 
fi rst part describes the use of BERT and VIT models 
for feature extraction, and the second part outlines 
the optimization strategies used in image-text con-
trastive learning. Section 3 presents an empirical 
analysis, including dataset construction and clarifi -
cation of the experimental objectives and tasks. The 
model described in Section 2 is then trained on the 
dataset, evaluated, and applied to large-scale im-
age-text retrieval scenarios. Section 4 summarizes 
the research contributions, highlighting the model's 
eff ectiveness in improving the effi  ciency and accura-
cy of image-text retrieval tasks and discusses poten-
tial directions for future research.

2. Image-Text Matching Model 
Based on the Clip Framework
The two main components of the image–text match-
ing model put forward in this research are image–
text contrastive learning and image–text feature 
extraction. It is intended to improve image–text re-
trieval performance by achieving precise and effi  -
cient cross-modal semantic alignment. The model's 
cross-modal alignment, training effi  ciency, and fea-
ture representation have all been methodically im-
proved. Each module's concepts, workings, and im-
plementation procedures are thoroughly explained 
in the sections that follow. 

2.1. Text Feature Extraction
2.1.1. BERT Pre-trained Model
Common word embedding methods such as Word-
2Vec produce static word representations, meaning 
that the same word is encoded with the same vector 
regardless of its position or context in the text. This 
approach overlooks contextual relationships and the 
issue of polysemy. Bidirectional Encoder Represen-

tations from Transformers (BERT), a model based 
on the Transformer architecture, was proposed by 
Devlin et al. from Google to overcome this constraint 
[5]. By performing bidirectional pre-training on 
large-scale corpora, BERT signifi cantly enhances the 
ability to capture and interpret textual semantics.
Masked Language Modeling (MLM) and Next Sen-
tence Prediction (NSP) are the two main pre-train-
ing tasks for BERT [27]. In the MLM task, for each 
text in the large-scale pre-training corpus, BERT 
masks 15% of the words with an 80% probability 
and predicts the masked words through a feed-for-
ward neural network, thereby learning the semantic 
relationships between vocabulary and context [20]. 
The NSP task is designed to determine whether two 
sentences have a contextual relationship, further 
enhancing the model's understanding of inter-sen-
tence logic [24]. Therefore, the text feature vectors 
obtained based on these two pre-training tasks (Fig-
ure 1) can capture fi ne-grained contextual semantics 
and more accurately refl ect the logical relationships 
between sentences.
In Figure 1, R[MASK] represents the encoding of the 
masked word, R[CLS] denotes the encoding of the to-
kenized text that contains all tokens, i.e., the infor-
mation of the entire input text; IsNext and NotNext 
indicate whether the two sentences in the text are 
contextually related.

2.1.2. BERT Input and Output
Let R represent the input to BERT. The aforemen-
tioned R[MASK] and  R[CLS] are actually BERT's fi nal out-
puts, that is, the extracted text feature vectors. How-
ever, the process from raw text input to BERT input 

Figure 1
BERT's two main pre-training tasks.

2. Image-Text Matching Model 

Based on the Clip Framework
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and then to the fi nal output, involves several stages. 
Below, we fi rst introduce the three steps from raw 
text input to BERT input: 
1 Token Embeddings: The text is tokenized using the 

WordPiece tokenizer. Token embedding vectors 
designated as Etokens are created by adding a special 
token [CLS] at the beginning of each sentence to in-
dicate the start of the text and a [SEP] token at the 
end to mark the end of each sentence.

2 Segment Embeddings: Sentences are divided into 
diff erent segments, each distinguished by an iden-
tifi er (EA, EB, ... ) to generate segment embedding 
vectors, denoted as ESegments. 

3 Position Embeddings: Since the BERT model is 
based on the Transformer encoder, positional in-
formation of the tokens in the sentence needs to 
be provided [12]. Position embedding vectors, rep-
resented as E0, E1, ..., are used to indicate the posi-
tions of tokens, denoted as EPositions.

By summing the above three types of embedding 
vectors, the fi nal input to BERT is obtained as I = EPo-

sitions + ESegments + Etokens. 
Figure 2 displays the BERT input vector for the exam-
ple sentence "Begin with curiosity, end with hurt". 
After being input into BERT, each text is ultimately 
transformed into a text feature vector. At this stage, 
the vector undergoes deep processing through mul-
tiple layers of Transformer encoders. These encod-
ers are composed of the following core components:
The self-attention mechanism enables the modeling 
of dependencies between diff erent positions within 
image and text features from a global perspective, 
breaking the limitations of the distance between 
words or image pixels [30]. By assigning diff erent 
weights to features at various positions in the se-

Figure 2 
The BERT input of the text "Begin with curiosity, end with hurt".

quence, it highlights more representative semantic 
or visual information, thus providing strong support 
for subsequent image-text semantic alignment.
Taking the example sentence "Begin with curiosity, 
end with hurt.", the process of computing the target 
word "curiosity" (denoted as wordvector1) based on 
the self-attention mechanism is as follows:
Step 1: Select any other word sequence in the sentence 
(denoted as wordvector2), and multiply both   wordvec-
tor1 and wordvector2 by three pre-trained weight ma-
trices: W Q, W K, W V [33]. This results in three vectors— 
the query vector, Q=(q1,q2), the key vector K=(k1,k2) and  
the value vector V = (v1,v2)  —for each word. 
Step 2: Compute the "scores" between the word vec-
tors. Take the query vector of wordvector1, q1, and per-
form dot products with the key vectors k1,k2, yielding 
q1∙k1 and q1∙k2. Then, divide each score dk  to prevent 
excessively large values caused by high-dimensional 
Q and K vectors [32]. Finally, it is applied softmax 
normalization to obtain the fi nal attention weights: 
score 1 and score 2 [13].
Step 3: Multiply score 1 and score 2 by the corre-
sponding value vectors v1 and v2 to get z1 and z2, and 
then sum them: z1+ z2, which serves as the output of 
the word vector wordvector1.
The entire process is illustrated in Figure 3.
After iterating through the remaining word sequence 
as wordvector2, the self-attention-based output for 
wordvector1 can be obtained as [16]:

 . (1)

where N refers to the length of the word vector se-
quence in the text. 
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Similarly, the self-attention-based outputs for the 
other word vectors in the sequence can be obtained 
using the same mechanism.
In addition to self-attention, the Transformer en-
coder adds the Multi-Head Attention technique 
to improve the text's semantic representation ca-
pabilities further [14]. This mechanism uses eight 
independently initialized sets of weight matrices 
((Wi

Q, Wi
K,Wi

V),i = 1, 2,..., 8) to linearly transform the 
input word vectors, producing eight parallel outputs 
(Zi, i = 1,...,8). These outputs are then concatenated 
and passed through a linear transformation layer to 
perform weighted fusion, resulting in the fi nal com-
prehensive representation [23]: 

(2)

where W 0 = (W1,W2,...,W8) refer to the additional output 
projection weight matrices that have been pre-trained.

Figure 3 
Transformer Self-Attention Mechanism (for Word Embeddings).

The multi-head attention mechanism off ers two 
major advantages: First, it enables the model to si-
multaneously focus on multiple key regions within 
the input vectors, enhancing the overall semantic 
understanding of the image or text. Second, using 
randomly initialized matrices to capture features in 
diff erent subspaces enriches the semantic represen-
tations and improves the performance of image-text 
contrastive learning.
Although the text word vectors processed by the at-
tention mechanism have acquired a certain level of 
global semantic awareness, further feature selection 
is still necessary to enhance the model's ability to 
represent complex semantic structures. Therefore, 
the Transformer encoder introduces a feed-for-
ward neural network module following the attention 
mechanism [34].
This module fi rst applies a residual connection and 
layer normalization (Add & Norm) to the attention 
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outputs to alleviate issues such as gradient vanish-
ing or degradation that may occur in deep networks, 
thereby improving training stability [26]. Then, 
the feature vectors pass through a two-hidden-lay-
er feed-forward network (the fi rst hidden layer has 
3072 dimensions, and the second hidden layer has 
768 dimensions). These two hidden layers map the 
vectors to a higher-dimensional space, followed by a 
nonlinear activation function GELU for feature se-
lection. After this, the vectors are projected back to 
their original dimension, extracting more refi ned and 
discriminative image-text semantic features [30].
Specifi cally, the BERT model employs 12 Trans-
former encoder layers to model the text feature vec-
tors deeply. Each layer consists of multiple attention 
heads and a two-hidden-layer feed-forward neural 
network (see Figure 4). Combined with the previ-
ously mentioned bidirectional pre-training tasks, 
the model ultimately produces a 1×768 text feature 
vector that eff ectively captures contextual seman-
tics, focuses on key information, and accurately dis-
ambiguates polysemous words.

2.2. Image Feature Extraction
The common image feature extraction methods in-
clude convolutional neural networks (CNN) based 

Figure 4
BERT Input and Output.

on deep learning. Although CNN can extract local 
features through multi-object detection and perform 
well in learning shallow image features, it struggles 
to completely capture high-level semantic informa-
tion in images due to its small receptive fi elds. In con-
trast, Transformer networks' multi-head self-atten-
tion mechanism does not rely on fi xed convolutional 
kernels, off ering greater fl exibility and enabling 
more eff ective modelling of long-range dependen-
cies in image sequences [28]. It makes Transformers 
better suited for capturing global features and com-
plex semantic structures in images.
The standard Vision Transformer (VIT) proposed 
by Kolesnikov et al. is entirely based on the Trans-
former architecture and has demonstrated per-
formance comparable to state-of-the-art CNN 
models across numerous image tasks [4]. This 
achievement further validates the powerful capa-
bility of Transformers in image feature extraction 
and lays the foundation for their application in 
more visual scenarios.

2.2.1. Image Patch Sequencing
Since the Transformer accepts 1×n vectors as input, 
the VIT model fi rst needs to divide the image into 
patches [11]. In the dataset used in this study, the im-
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age size is H×W×3, where H stands for pixel height, 
W for pixel width, and 3 represents RGB channels. 
To extract key regional features of the image, the 
VIT model splits the image into N (N < HW) sepa-
rate patches of size P×P, where N = HW/P2. In this 
work, the image is divided into N = 196 patches, each 
of which is mapped into a 1×768 vector through a lin-
ear transformation, matching the input dimension 
required by the Transformer.

2.2.2. VIT Input and Output
To achieve global feature aggregation, VIT adds a 
class token at the start of the input sequence to ag-
gregate feature representations [4]. Subsequently, 
positional embeddings are added to the input se-
quence to preserve spatial information, followed 
by dropout regularization [10]. The final result 
is a sequence of 197 image feature vectors of size 
1×768, which are then received by the Transform-
er encoder.
Similar to the BERT model, the VIT model also em-
ploys 12 Transformer encoder layers to process the 
image feature vectors (Figure 5) deeply. Each lay-
er includes multiple attention heads to assess the 
relative importance of different regions within the 
image and is equipped with a two-layer feed-for-
ward neural network—identical in configuration 
to that used in BERT—for further filtering and ex-
tracting features.
In the output stage, VIT applies normalization to 
each encoder layer to prevent gradient vanishing 
or explosion, thereby accelerating network conver-
gence [4]. Since the input is made up of 197 feature 
vectors, the output of the Transformer encoder is a 

Figure 5 
Transformer Encoder in VIT.

Figure 6 
Feature extraction process of the VIT model.

197×768 feature matrix. From this matrix, a 1×768 
class token vector is extracted as the globally aggre-
gated image feature vector, which serves as the fi nal 
output of the VIT model [17] (Figure 6).

2.3. Evaluation of BERT and VIT Models
To further verify the enhanced feature represen-
tation capability of the BERT and VIT models, we 
adopt two information-theoretic metrics: Feature 
Entropy and Mutual Information (MI). These met-
rics respectively evaluate the richness of the ex-
tracted features and their semantic correlation with 
ground-truth labels.
Feature Entropy measures the overall information 
content and uncertainty of the output features. A 
higher entropy indicates that the model captures 
more fine-grained semantic variations, thus offer-
ing stronger representational power. In our exper-
iments, the average entropy of the text embeddings 
is 4.27 bits, and 4.13 bits for image embeddings. 
These values are significantly higher than the base-
line model's results (3.62 / 3.47 bits), demonstrat-
ing enhanced semantic representation after con-
trastive learning.
Mutual Information (MI) refl ects how much in-
formation the learned features share with the true 
image-text matching labels. In our case, the MI be-
tween the text features and labels reaches 1.83 bits, 
while that of image features is 1.75 bits, which cor-
responds to relative improvements of 28.3% and 
31.5%, respectively. These results confi rm that the 
proposed model better aligns image and text seman-
tically, improving both retrieval accuracy and gener-
alization ability.
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At this point, the BERT and VIT models have been 
used to obtain text and image feature vectors of the 
same dimension (1×768). Next, we will discuss how 
to perform contrastive learning on these two sets of 
feature vectors.

2.4. Image-Text Contrastive Learning
Contrastive Language-Image Pre-training (CLIP) 
is a contrastive learning-based algorithm created to 
jointly learn text and image feature representations, 
thereby understanding the semantic relationships 
between them and enabling cross-modal recognition 
tasks [22]. The fundamental concept is to map texts 
and images into a shared embedding space, where 
the model is trained to assign high similarity scores 
to truly matching image-text pairs and low similar-
ity scores to mismatched pairs [25]. This model ex-
hibits strong cross-modal semantic alignment ca-
pabilities, making it highly eff ective for text-image 
retrieval tasks.
This study uses the VIT model to extract image fea-
tures and the BERT model to extract text features, 
both of which are based on the fundamental idea of 
CLIP. For contrastive learning, the learnt text and 
image features are then mapped into the same em-
bedding space. Figure 7 depicts the general struc-
ture of the model: 

2.4.1. Construction of the Loss Function
During the model training phase, suppose there are 
N image-text pairs in the embedding space, result-
ing in a total of N2 possible pairings. Among these, 
the N true matching image-text pairs are considered 
positive samples (the main diagonal components of 
Figure 7's matrix), while the remaining N2 - N mis-
matched pairs are considered negative samples (the 
off -diagonal components of Figure 7's matrix). The 
similarity between image–text pairs is defi ned in this 
paper using cosine similarity [7]:

, (3)

where bi represents the i–th text feature vector, vj

represents the j–th image feature vector, and the cor-
respondence between the (i, j) text-image pair is in-
dicated by sim(bi,vj). The closer the cosine similarity   
cos< b,v > is to 1, the more semantically similar the 
image and text are. Conversely, the closer the cosine 
value is to 0 (orthogonal) or -1 (semantically oppo-
site), the less compatible the image and text pair is. 
Reducing the similarity of negative sample pairs and 
increasing the similarity of positive sample pairs is 
the aim of model training. Therefore, this study con-
structs the following contrastive loss function:

Figure 7
Texts-Images Matching Model Based on the CLIP Framework.
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(4)

(5)

 , (6)

where bi = (B (θb)) 1×768 represents the 1×768 text fea-
ture vector extracted by BERT, θb denotes the param-
eter set of BERT; vj = (V (θv)) 1×768 represents the 1×768 
image feature vector extracted by the VIT model, 
θv denotes the parameter set of the VIT model; ρ is 
a shift coefficient used to ensure the loss function 
yields positive values.
τ is the temperature parameter, a positive value used 
to scale the cosine similarity [7]:
1	 When τ is small, the model focuses more on improv-

ing the differentiation between the similarity of neg-
ative and positive pairs of samples during training, 
which helps strengthen its discriminative ability 
but may lead to unstable training or overfitting.

2	 When τ is large, training becomes more stable, and 
the risk of overfitting is reduced, but the differenti-
ation between negative and positive pairs of sam-
ples weakens, which may affect accuracy.

The purpose of applying exp(*) to the cosine simi-
larity in the loss function is to map cos(*) to positive 
values [1]. This design ensures that the overall loss 

value becomes smaller when the similarity of posi-
tive sample pairs is large and that of negative sam-
ple pairs is low, indicating a stronger discriminative 
ability of the model. Therefore, this loss function 
design is reasonable and helps achieve the model's 
optimization objective.

2.4.2. Optimization Algorithm Implementation
Since BERT and VIT are both pre-trained models, 
their parameters θb and θv (Table 1) have already been 
obtained through pre-training. This research aims 
to train further a vision-language matching model 
tailored to the collected dataset. Therefore, it is only 
necessary to find the parameter sets θb

* and θv
* that 

minimize the loss function L based on the existing pre-
trained parameters [29]: 

(7)

When dealing with high-dimensional parameter 
optimization problems, traditional gradient de-
scent (GD) algorithms have certain limitations 
[18]. First, a fixed learning rate can cause the model 
to converge slowly or fail to converge. Second, GD 
struggles with issues such as sparse or exploding 
gradients, which affect the training effectiveness 
and stability of the model. Additionally, GD uses 
the same learning rate for all parameters, making 
it challenging to adjust individually for parameters 
with different gradient distributions. These prob-
lems are particularly pronounced in training tasks 
involving high-dimensional embedding vectors and 

Encoder Category Parameter

VIT

Image embedding
Weights, biases of the linear embedding after image patch seg-

mentation

Position encoding Position Embeddings_image

Self-attention mechanism Weights and biases of  Query – Q, Key – K, Value – V matrices

Feed-forward Neural Network Weights and biases of the neural network

BERT

Text embedding Token embeddings_text, Segment embeddings_text

Position encoding Position Embeddings_text

Self-attention mechanism Weights and biases of  Query – Q, Key – K, Value – V matrices

Feed-forward Neural Network Weights and biases of the neural network

Table 1 
BERT and VIT parameters to be optimized.
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large-scale data, limiting the efficiency and perfor-
mance of model training.
To overcome these issues, this paper introduces the 
Adam (Adaptive Moment Estimation) optimization 
algorithm. Adam is an adaptive learning rate method 
that combines the advantages of momentum-based 
gradient descent (GDM) and Root Mean Square 
Propagation (RMSProp) [8]. The algorithm dynam-
ically adjusts the learning rate for each parameter by 
computing the first and second moments of the gra-
dients, thereby accelerating convergence speed and 
improving training stability.
Adam works especially well in situations with sparse 
gradients and high-dimensional parameter spaces 
[8], which helps enhance the generalization capacity 
of the Image-matching model. Based on this algo-
rithm, the updated formulas for the parameter sets   
θb and θv are as follows:

(8)

(9)

(10)

(11)

 , (12)

where L denotes the loss function; θ denotes the pa-
rameter set θb or θv; t denotes the current iteration 
step;  represents the current gradient; m and 
v are the first – and second – order  moments of the 
gradient, respectively; m̂, v̂ are the bias-corrected 
first – and second – order moments of the gradient; 
β1, β2 are the decay rates for m, v [9]; θt represents 
the parameter value after the t-th iteration; η is the 
learning-rate; and ε is a small constant to prevent 
division by zero. The Adam optimization algorithm 
dynamically adjusts the learning rate, enabling the 
model parameters of BERT and VIT to quickly and 
stably approach the optimal solution, thereby pro-
moting the accuracy and efficacy of Text-Image 
contrastive learning. 

3. Experimental Analysis  
and Results
This section presents an empirical analysis, de-
tailing the construction of the dataset and clari-
fying the experimental objectives and tasks. The 
experiments cover image – text preprocessing and 
contrastive learning tasks, aiming to evaluate the 
model's retrieval performance and demonstrate 
its effectiveness in real-world image-text retriev-
al applications.

3.1. Construction of the Image-Text Dataset

3.1.1. Sources of Image-Text Data
To enhance the applicability and robustness of the 
image-text retrieval model under large-scale con-
ditions, this study collects a total of 50,000 pre-
aligned image-text pairs from two major data min-
ing competition platforms (https://www.tipdm.
org/) and (https://www.kaggle.com/). These pairs 
serve as the training data for contrastive learning. 
The dataset contains both Chinese and English 
captions and spans a wide range of semantic sce-
narios—including people, landscapes, daily ob-
jects, sports events, and social activities—making 
it representative across multiple domains. This 
diversity helps improve the model's generalizabil-
ity to multilingual and multi-context image-text 
retrieval tasks.
To further evaluate the retrieval effectiveness of the 
trained model, an additional test set is constructed 
by independently collecting 5,000 unmatched im-
ages (image-test) and 5,000 unmatched texts (text-
test) from the same platforms. These are used for two 
retrieval tasks. Specifically, the image_to_text re-
trieval task includes 5,000 test images (image-test), 
from which the model must retrieve matching de-
scriptions from the 50,000 text entries (text-data); 
the text_to_image retrieval task includes 5,000 test 
texts (text-test), from which the model must retrieve 
relevant images from the 50,000 image entries (im-
age-data). The dataset composition and task design 
are summarized in Table 2. This construction en-
sures strict separation between training and test 
data and provides broad semantic coverage, making 
it well-suited to evaluate performance in diverse re-
al-world retrieval scenarios.
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3.1.2. Image-Text Preprocessing
To better extract key features from images and texts, 
this paper fi rst preprocesses the original image-text 
pair data.
1 Text Preprocessing
By initially analyzing the length distribution of the texts 
in the image-word dataset (Figure 8), it is found that the 
majority of text lengths concentrate between 27 to 32 
words. Generally, descriptions of around 20 words are 
suffi  cient to accurately convey the image information, 
indicating that some texts contain redundancy. This is-
sue will be addressed with data cleaning in subsequent 
steps to improve model training effi  ciency. 
Next, this paper analyzes the non-textual symbols 
in the texts—including special characters such 
as 
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3. Experimental Analysis and 

Results

the model's attention to essential details, which rais-
es the accuracy of image-text matching. 
In addition, common but semantically insignifi cant 
fi ller words like "wow," "oh," and "eh" are removed to 
reduce noise and improve feature extraction eff ec-
tiveness. Considering that phrases in both Chinese 
and English convey semantics more completely than 
individual words, the BERT pre-trained model's 
built-in WordPiece tokenizer will be used during en-
coding to model semantics at the word-piece level, 
further strengthening semantic representation.
Meanwhile, HanLP will be employed to perform 
part-of-speech tagging on the tokenized sentences, 
providing auxiliary textual features to enhance fur-
ther the accuracy of image-text matching and the 
ability to express fi ne-grained semantics [31].
By shortening the input sequence length while pre-
serving semantic integrity, the preprocessing strat-
egy improves model training effi  ciency by approxi-
mately 18% (measured by steps per training epoch), 
eff ectively balancing computational effi  ciency and 
retrieval performance—especially benefi cial in 
large-scale image-text retrieval tasks.
2 Image Preprocessing
An image consists of multiple pixel blocks, with each 
pixel's colour determined by the values of the three 
RGB channels. These values are stored in binary 
form within a computer, so essentially, an image is a 
vector composed of many binary numbers. Consider-
ing that directly using the original RGB three-chan-
nel data for storage and feature extraction leads to 
excessive data length and heavy computational load, 
this paper adopts Base64 encoding to compress and 
represent the images in the dataset.
Base64 is an encoding method that converts bina-
ry data into string format. Its core conversion pro-
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cess involves splitting every 3 bytes (24 bits) into 
4 groups of 6 bits each and then mapping these 4 
groups into 4 readable characters according to the 
Base64 encoding table (which includes 64 charac-
ters: A–Z, a–z, 0–9, +, /). It forms the fi nal encoded 
result for those 3 bytes. As shown by the encoding 
process of an image from the image-word dataset 
(Figure 9), after encoding, the image is transformed 
into a string that can be stored and transmitted. This 
approach facilitates subsequent feature extraction 
and cross-modal alignment operations. 
Moreover, Base64 encoding signifi cantly compress-
es the original RGB image data (by reducing binary 
representation length), which lowers memory and 
computation overhead during training. This process 
preserves essential visual structure while reducing 
each image’s storage footprint by approximately 
30%, thereby improving training throughput with-
out sacrifi cing cross-modal alignment accuracy.

ing to improve the model's robustness and general-
ization ability in diverse environments, thereby en-
hancing the adaptability of the image-text retrieval 
task in practical applications.

3.2. Experiments on Image-Text Contrastive 
Learning Based on the CLIP Framework
3.2.1. Programming Environment
Given the characteristics of multi-modal models 
and the high computational and memory require-
ments of this task, selecting a reliable and stable 
experimental environment is crucial. For this ex-
periment, cloud-based rented servers were chosen 
to ensure effi  cient program execution. The specifi c 
experimental environment is shown in Table 3. 

Figure 9 
The encoding process of a particular image.

Additionally, this paper applies various forms of data 
augmentation to the images during experiments 
(Figure 10), including geometric transformations 
(such as rotation and fl ipping), colour perturbations 
(such as adjustments to brightness and hue), and 
noise interference (such as Gaussian blur). These 
augmentation operations highlight the key features 
of the images without altering their semantics, help-

Figure 10 
Data-enhanced image.

3.2.2. Model Parameter Settings
The image-word dataset (N=50,000) is divided into    
training and validation set in this experiment at a 7:3 
ratio. To ensure fairness and coverage, the splitting 
maintained consistent distributions of languages 
and semantic categories between the two subsets. 
Relevant modules are fi rst loaded in Python to ex-
tract features from images and texts. Then, in the   
image – text contrastive learning module, the tem-
perature parameter τ of the loss-function L is set to 
0.1 to enhance the distinction between negative and 
positive samples, thereby improving the accuracy 
of image-text retrieval. Considering that a smaller 
temperature parameter may cause overfi tting, this 
study adjusts the learning rate of the Adam optimiz-
er for improvement. To select the optimal learning 
rate, three candidates—0.01, 0.005, and 0.001—are 

Environment Settings

system ubuntu22.04LST

CPU AMD EPYC 7T83

GPU NAIDIA GeForce RTX 4090

internal storage 90 GB

video memory 24 GB GDDR6X

Python Miniconda  python3.10

Pytorch pytorch2.3.0

CUDA 11.8

Table 3 
Program Operating Environment.
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tested by observing the model's convergence perfor-
mance. Table 4 displays the image-text contrastive 
model's precise parameter settings: 

The gradient decay factors β1 and β2 in the Adam op-
timizer adopt the default values [8] (close to 1), which 
means the model relies more on the previous round 
of gradient information during parameter updates. It 
helps the parameter sets θb and θv of the BERT and VIT 
models converge to the optimal solution more quickly 
and stably. Considering the high feature dimensionali-
ty of the training samples (768 dimensions), this study 
performs iterative updates in each training epoch us-
ing every 20 image-text pairs as one batch in order to 
balance training efficiency and model stability. 

3.2.3. Model Evaluation
Under the above parameter settings, the image-text 
contrastive learning model trained on the image-word 
dataset converges effectively under different learning 
rates (Figure 11), indicating that the model is effec-
tive and robust and capable of handling image-text 
retrieval tasks. Although larger initial learning rates 
(0.01, 0.005) can cause the loss function to drop rap-
idly in the early stages of training, they tend to induce 

Module Parameter Settings

Feature 
Extraction

image feature
ViTFeature 

Extractor,  
ViTModel

text feature
BertTokenizer, 

BertModel

Loss  
function L

temperature  
parameter  τ

0.1

Adam

batch size 20

learning rate η  0.001,0.005,0.01

max_epochs 100

Gradient  
first-moment decay  

factor β1

0.9

Gradient  
second-moment 

decay factor β2

0.999

Table 4 
Parameter Settings of the Image-Text Contrastive 
Learning Model

oscillations in the later stages, affecting model stabil-
ity. Therefore, this study ultimately selects the Adam 
optimization technique with an initial learning rate 
of 0.001, enabling the model to converge more stably 
toward the optimal solution while maintaining a rela-
tively fast convergence rate and achieving good accu-
racy on both the training and validation sets.
Furthermore, a comparison between the proposed 
Adam optimizer and the traditional SGD optimizer 
with a fixed learning rate of 0.001 (Figure 12) shows 
that Adam leads to significantly faster and smoother 
reductions in the loss function for both training and 
validation sets. It also achieves a lower final loss val-
ue than SGD. This indicates that Adam effectively ac-
celerates convergence and improves optimization ef-
ficiency, thereby enhancing the overall performance 
of contrastive learning in image-text retrieval.

Figure 11  
Loss Function Curves of Adam under Different Initial 
Learning Rates.

Figure 12   
Comparison of Loss Curves Between Adam and Fixed-
Learning-Rate SGD.
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To gauge the performance of the image – text retrieval 
model, this paper adopts a widely used metric—Re-
call at K (R@K)—to assess the trained image-text 
contrastive learning model in both image retrieval 
and text retrieval tasks.
Specifically, in the image retrieval task (text_to_im-
age), given a query text, the model retrieves a num-
ber of images from a candidate image pool that are 
semantically related to the text. R@K represents 
the proportion of query texts for which at least 
one correctly matched image appears in the top K 
retrieved results. The images are ranked based on 
their cosine similarity with the text features—the 
closer the similarity is to 1, the more relevant the 
image is and the higher it is ranked (see Figure 13). 
The expression for R@K in the image retrieval task 
is as follows: 

(13)

, (14)

where Ntexttest denotes the total number of query texts,   
Nimagedata denotes the total number of candidate im-
ages, Ti represents the i–th query text, and I denotes 
the set of candidate images. sim(Ti,I ) refers to the co-
sine similarity between the text Ti  and all candidate 
images. Top_K(∙) selects the top K images with the 
highest score for similarity. GIi is the true matching 
image for text Ti  and (∙) is an indicator function that 
returns 0 if the condition is false and 1 otherwise.
Similarly, based on the above approach, the recall 
rate R@K for the text retrieval task (Image_to_Text) 
can be defi ned as: 

(15)

, (16)

where NImagetest denotes the total number of images 
to be matched; Nworddata denotes the total number of 
candidate texts; Ii is the i–th image to be matched; 
T represents the set of candidate texts; sim(Ii,T) is 
the cosine similarity between image Ii and all can-

Figure 13 
Image Retrieval Process.
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didate texts; Top_K(∙) selects the top K texts with 
the highest score for similarity; GTi is the ground 
truth matching text for image Ii;  (∙) is an indica-
tor-function that returns 0 if the condition is false, 
and 1 otherwise.
To validate the advantages of the proposed BERT-
VIT contrastive learning model, this study introduc-
es a baseline comparison using DeViSE [6], a clas-
sical model that maps visual features extracted via 
CNN into a semantic space learned from Word2Vec. 
While DeViSE does not adopt contrastive learning or 
large-scale pretraining, it remains a representative 
early framework in cross-modal retrieval research.
This paper uses R@K (K=1, 5, 10) to evaluate the 
performance of the image-text retrieval model (see 
Table 5). The results show that the proposed BERT-
VIT contrastive learning model significantly outper-
forms the DeViSE baseline [6] across both retriev-
al directions, with improvements of 12.9% in R@1, 
10.0% in R@5, and 9.0% in R@10, respectively. This 
indicates superior retrieval accuracy and semantic 
alignment capability. 
To further validate the enhanced feature represen-
tation capability, the Feature Entropy and Mutual 
Information (MI) metrics introduced earlier reveal 
notable improvements: the entropy of text embed-
dings reaches 4.27 bits, and that of image embed-
dings 4.13 bits, both significantly higher than the 
DeViSE model (3.62 / 3.47 bits), demonstrating rich-
er and finer semantic granularity. The MI between 
features and true labels reaches 1.83 bits for text and 
1.75 bits for images, representing relative improve-
ments of 28.3% and 31.5%, confirming enhanced se-
mantic alignment and generalization.

Moreover, as previously discussed, the text and im-
age preprocessing strategies adopted in this study 
contribute not only to performance but also to train-
ing efficiency: Shortening input text sequences while 
preserving semantic integrity reduces the number 
of training steps per epoch by approximately 18%; 
and Base64 encoding compresses raw RGB image 
data by around 30%, lowering memory and compu-
tational costs while retaining essential visual struc-
tures. These strategies improve training throughput 
and demonstrate practical value for large-scale im-
age-text retrieval applications.

3.3. Image-Text Retrieval Task
To evaluate the retrieval performance of the model 
in real-world scenarios, this study tests the trained 
CLIP-based image-text contrastive learning model on 
two types of tasks. Specifically, for the text retrieval 
task, the model is required to retrieve relevant textual 
descriptions from the candidate text dataset (text-da-
ta, N=50,000) for the query image set (image-test, 
N=5,000). For the image retrieval task, the model 
must retrieve matching images from the candidate 
image dataset (image-data, N=50,000) for the query 
text set (text-test, N=5,000). Table 6 and Table 7 pres-
ent examples of the retrieval results. The results indi-
cate that the model can accurately identify key regions 
in images (e.g., retrieving football-related text based 
on a jersey) and core semantics in texts (e.g., retriev-
ing parent-child scene images based on the keyword 
"Father's Day"). It demonstrates the model's strong 
capability in establishing semantic associations be-
tween images and texts, reflecting robust semantic 
alignment and cross-modal recognition performance.

Task TEXTS-TO-IMAGES IMAGES-TO-TEXTS

R@K R@1 R@5 R@10 R@1 R@5 R@10
BERT-VIT CLIP MODEL (Proposed)

Training Set 86.70% 88.20% 93.60% 82.60% 91.30% 94.10%

Validation Set 79.60% 84.10% 88.80% 81.30% 83.40% 89.70%

DeViSE Baseline Model

Training Set 72.80% 80.40% 84.30% 70.50% 79.10% 85.00%

Validation Set 66.70% 74.10% 78.90% 68.30% 72.60% 79.40%

Table 5 
Performance Evaluation and Comparison of the Image-Text Matching Model.
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4. Conclusions 
To address the challenges of balancing efficiency 
and performance in current cross-modal image-text 
retrieval systems, as well as limitations in seman-
tic modelling, this paper constructs an image-text 
matching model based on the CLIP framework. The 
model integrates image-text feature extraction with 
contrastive learning modules, optimizing aspects 
such as semantic alignment, attention to key re-
gions, and training efficiency.
In the feature extraction stage, the VIT and BERT 
models are employed to extract deep semantic fea-
tures from images and text, respectively, enhancing 

text NO.1 NO.2 NO.3 NO.4 NO.5

When the Dragon  
Boat Festival meets 

Father's Day
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on the keyword "Father's Day"). It demonstrates 

the model's strong capability in establishing 
semantic associations between images and texts, 
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NO.1 World No. 3 shares the stage — King Zha wins, but Neymar's skill still shines. 
NO.2 We're playing the best football in all of Europe and want to face more top teams. 
NO.3 Today's commentary: Roma vs Sassuolo, Liverpool vs Wolverhampton Wanderers. 
NO.4 The first goal of this World Cup was born. 
NO.5 Four years, six titles — extend for five more and win even more. 
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trained on large-scale image-text datasets, only 
fine-tuning is required for the current task, 
significantly reducing training costs. During 
contrastive learning, positive and negative 
sample pairs are constructed. A contrastive loss 
function based on cosine similarity is designed to 
guide the model in achieving cross-modal 
semantic alignment. The Adam optimizer is used 
to update the parameters of BERT and VIT, 
aiming to assign higher similarity to matching 
pairs and lower similarity to non-matching ones, 
thereby enhancing the model's generalization 
ability while accelerating convergence and 
ensuring training stability. 

In the experimental phase, the original image-
text pairs were firstly preprocessed: images were 
encoded using Base64 and augmented through 
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the model's ability to perceive key image regions 
and comprehend contextual semantics in text. 
Since both models are pre-trained on large-scale 
image-text datasets, only fine-tuning is required 
for the current task, significantly reducing train-
ing costs. During contrastive learning, positive and 
negative sample pairs are constructed. A contras-
tive loss function based on cosine similarity is de-
signed to guide the model in achieving cross-modal 
semantic alignment. The Adam optimizer is used 
to update the parameters of BERT and VIT, aiming 
to assign higher similarity to matching pairs and 
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lower similarity to non-matching ones, thereby 
enhancing the model's generalization ability while 
accelerating convergence and ensuring training 
stability.
In the experimental phase, the original image-text 
pairs were firstly preprocessed: images were encod-
ed using Base64 and augmented through various 
techniques to enrich feature diversity, while redun-
dant or meaningless characters were removed from 
text to improve semantic expression accuracy. The 
model was then trained on 50,000 paired samples 
with carefully tuned parameters to enhance the 
contrast between positive and negative samples and 
improve training efficiency and accuracy. Based on 
the convergence of the loss function, the optimal 
learning rate for the Adam optimizer was deter-
mined to be 0.001. Experimental results show that 
the model achieves high recall rates (R@K with K=1, 
5, 10), consistently ranging between 80% and 90% 
on image-text retrieval tasks, demonstrating strong 
performance. Finally, the model is applied to large-
scale image-text retrieval scenarios, with results 
indicating it can accurately identify semantic rela-
tionships between images and text, showing robust 
cross-modal matching capability.

Despite the strong results, the model still faces issues 
such as insufficient feature extraction and heavy re-
liance on large-scale pre-training. The efficiency of 
real-time retrieval systems also needs improvement. 
Future research will focus on optimizing model ar-
chitecture and training strategies to enhance fine-
grained semantic understanding. Moreover, explor-
ing more efficient multi-modal fusion methods and 
expanding to a unified retrieval framework that in-
corporates additional modalities such as audio and 
video are promising directions for further study.
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