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This paper establishes a combined fire recognition and prediction model to study the spread of forest fires in 
response to the frequent occurrence of forest hill fires and its difficult recognition and prediction pain point. 
Based on the traditional recognition neural network, this paper innovatively establishes Fully Convolutional 
Network (FCN) to improve the fire recognition accuracy. The Rothermel model is introduced for fire spread 
prediction of the Palisades Mountain Fire in Los Angeles, and it is found that the accuracy of the Rothermel 
model is as high as 87% and the stability is about 70.9%. Referring to the excellent model performance of 
the Rothermel model, this paper establishes a combined model for identification and prediction with the 
combination of FCN and Rothermel in order to improve the accuracy of fire identification and prediction, 
and provide double accuracy to ensure the reliability of the study. Based on the simulation of forest fires in 
a simulated wildland environment, the fire spreading stages are segmented into 4 parts, fire recognition is 
performed by FCN network, and Rothermel fire prediction is performed based on the recognition results. 
It is found that the combined model effectively reduces the errors of individual models, complements the 
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1. Introduction 
Fire as one of the frequent natural disasters world-
wide, poses a serious threat to the safety of human 
life and property, the balance of the ecosystem and 
socio-economic development due to its suddenness 
and destructive nature. In recent years, under the 
influence of factors such as the intensification of 
climate change, the acceleration of urban expansion 
and the expansion of the scope of human activities, 
the global trend of fire occurrence has shown an in-
crease in frequency and scale[7]. For example, the 
fires that broke out in the Pacific Palisades area of Los 
Angeles in 2025 quickly spread to Santa Monica and 
beyond, overtopping more than 38,000 acres (about 
153 square kilometers), twice the size of Manhattan. 
More than 24 million hectares damaged by Austra-
lian hill fires in 2020[19]. The total amount of carbon 
dioxide released from the Amazon rainforest fires in 
2019 amounted to 228 million tons, and such events 
not only cause direct economic losses, but also have 
far-reaching impacts on regional ecological recovery 
and the global carbon cycle. In this context, how to 
reduce disaster losses through efficient and accurate 
fire early detection technology, and with the help 
of scientific spread prediction modeling to provide 
support for emergency decision-making, has be-
come a key issue to be solved in the field of disaster 
prevention and mitigation.
In order to carry out an efficient detection of ex-
isting fires, Schultze [29] investigated the dynam-
ic behavior of open fires within the scope of the 
development of a video-based fire detection sys-
tem using different audio and video systems to 
record standardized fires and analyze their flow 
and flickering. Liang [20] proposed an early smoke 
detection method for forest fires by combining su-
per-resolution reconstruction network and smoke 
segmentation network. San-Miguel-Ayanz [28] as-
sessed the use of existing remote sensing systems 
for active fire detection and highlighted the appli-
cability of these systems in fire emergency manage-

ment and firefighting. Barmpoutis [4] describes the 
application of optical remote sensing in early fire 
warning and discusses its system types, detection 
models, and advantages and disadvantages. Pre-
ma [26]  proposed a texture analysis method for 
flames in forest fire detection by segmenting can-
didate flame regions through YCbCr color space, 
extracting static and dynamic texture features, and 
classifying real flames from non-flames using an 
Extreme Learning Machine classifier. Appana [3] 
Extraction of temporal features by optical smoke 
flow pattern analysis and spatio-temporal energy 
analysis and identification of smoke pixels using 
HSV color space. Zhao [34] proposed the Fire-YO-
LO detection model to extend the feature extraction 
network in three dimensions, which enhances the 
feature propagation capability for fire small target 
identification, improves the network performance, 
and reduces the model parameters. Li [21] proposed 
a fast and efficient fire detection model based on 
MobileNetV3 and unanchored structure, the mod-
el has better performance and speed on public fire 
dataset, and is suitable for real-time fire detection 
and embedded device applications. Wu [32] pro-
posed a multi-scale fire image detection method 
by combining convolutional neural network (CNN) 
and Transformer. Abdusalomov [1] presents an im-
proved forest fire detection method to classify fires 
using a deep learning approach based on a new ver-
sion of the Detectron2 platform (a scratch rewrite 
of the Detectron library).
Marziliano [23] proposes the use of mathematical 
reaction-diffusion models aimed at predicting the 
development of forest fires. Encinas [11] Proposed 
Regular Hexagonal Regions for Predicting Fireline 
Spread in Uniform and Non-Uniform Environ-
ments Based on 2D Metacellular Automata Mod-
els. Kuznetsov [18] derives a system of differential 
equations that reliably predicts the span of moist 
forest fuel belts that provide forest fire contain-

advantages of individual models, and improves the fire identification and prediction accuracy. At last, this 
paper suggests a combination with the field of drones for smart fire prevention and reference.
KEYWORDS: Forest Fire Recognition and Prediction, Fully Convolutional Network, Rothermel Model, 
FCN-Rothermel Model
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ment at all flame lengths. Mutthulakshmi [24] pro-
poses the application of metacellular automata to 
predict and analyze the effects of fire suppression 
intervention strategies, taking into account both 
the spatial and propagation dynamics of fire. Gla-
sa [13] demonstrated several simple examples of 
fire propagation that correspond to elliptical and 
non-elliptical localized fire propagation under uni-
form conditions. Jing [16] proposed Light Gradient 
Boosting Machine (LightGBM) model, a powerful 
prediction algorithm that can handle large-scale 
data and complex problems. Diaz-Avalos [10] sim-
ulated the magnitude of forest fires in Castellón, 
Spain, from 2001-2006 using a spatial mark-
er-point process, modeling with spatial covariates 
to capture spatial variability and identify fire-relat-
ed factors, and Bayesian methods (including INLA 
and SPDE) for model fitting. Khennou [17] present-
ed the FU-NetCastV2 for fire spread and burned 
area mapping. Byari [6] Appropriate Multiscale 
CA Modeling Methods Based on 3D Geometric 
Cells and the Proposed Methods Applied as Part of 
the Overall Forecasting System for Predicting the 
Spread of Wildfires.
In this paper we used fully convolutional network 
(FCN) to segment the current fire images of the 
scene, which can effectively improve the accuracy 
of the prediction; and we introduced the Rothermel 
model for the prediction of fire spreading trend to 
verify its performance in simulating fire spread-
ing. Currently, there are various research topics on 
wildfires that are being addressed and improved 
to develop more effective mitigation strategies for 
wildfire impacts. For example, wildfire spread pre-
diction [15], Forecast of wildfire occurrence [31], 
Active fire detection and fire risk calibration [25]. 
Rothermel model is the most commonly used mod-
el for predicting fire spread rates [35]. One of the 
Rothermel models proposed by Glasa et al. [13] de-
fines the shape of the fire as a double ellipse. An-
other model defines the shape of the fire as a single 
ellipse. Edigley et al. [12] used a two-stage predic-
tion scheme for the input data describing the fire 
scenarios in a forest fire simulation model to adjust 
the unknown parameters to reduce the elevated 
level of uncertainty that exists in the input data for 
the fire scenarios. Based on this, this paper draws 
on the improved method of Rothermel model in 

the previous literature to analyze the fire spread 
prediction in combination with real cases. The Ro-
thermel model also is introduced to predict the fire 
spread trend and verify its performance in simulat-
ing fire spread.
The main contributions of this paper are as follows:
1	 Due to the uncertainty of fire spread and the er-

rors associated with fire remote sensing identi-
fication techniques, it is crucial to upgrade and 
innovate traditional neural networks. Based on 
the traditional recognition neural network meth-
od, the innovative establishment of Full Convolu-
tional Network (FCN) to improve the accuracy of 
fire recognition. With the deep residual network, 
RESNet, as the backbone, FCN incorporates the 
Conv Block and Identity Block, to recognize the 
flames of different color images in remote sensing 
technology while maintaining robustness, which 
is a major improvement over the traditional deep 
learning networks.

2	 Since fire spread is affected by multiple factors, 
its effect needs to be quantified. Rothermel mod-
el can be used for fire spread prediction, but its 
prediction range is larger than the actual range, 
which will lead to the waste of fire prevention and 
control resources and increase the cost. In order 
to reduce the prediction error, a combination of 
the Rothermel model and the FCN network iden-
tification method is used to synchronize the fire 
prediction (the prediction is performed as soon 
as the fire is identified and iterated at a certain 
frequency). Compared with the independent 
models, the combined model can effectively re-
duce the errors caused by individual models to 
a certain extent, thus improving the accuracy of 
the overall model.

The remainder of this article is organized as follows. 
The fundamentals of FCN are described in Section 
2, alone with the approach to fire scenario segmen-
tation is described in Section 2. The mathematical 
derivation and fundamentals of the Rothermel fire 
spread prediction model are also described in Sec-
tion 2. Experiments are carried out in section 3 to 
verify the effectiveness of FCN network, Rothermel 
model, and FCN-Rothermel synchronized fire iden-
tification and prediction for hill fire prevention and 
control. Section 4 serves as the conclusion.
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2. Scene Segmentation of a Fire
2.1. Segmentation Strategy and Architecture

The core idea of Fully Convolutional Network, as 
a pioneering framework for end-to-end pixel-level 
semantic segmentation, is to achieve dense predic-
tion of input images of arbitrary sizes through fully 
convolutionalization with an upsampling mecha-
nism. This experiment is based on the paper “Ful-
ly Convolutional Networks for Semantic Segmen-
tation” published by Shelhamer et al. in 2015, and 
a number of optimizations are carried out on the 
basis of the original architecture, the structure of 
which is shown in Figure 1. We replace Backbone 
from VGG/GoogLeNet to ResNet, adjust the layer 
structure of feature fusion, and introduce auxil-
iary classifiers to improve training efficiency and 
segmentation accuracy. Specifically, the original 
FCN adopts VGG16 as the feature extractor, and 
achieves full convolutionalization by removing 
the fully connected layer and adding 1×1 convolu-
tional and transposed convolutional layers, but the 
resolution of its deeper features is too low (e.g., 
the output of the pool5 layer is 1/32 of the original 
image), which leads to serious loss of details af-
ter upsampling. This experiment improves this by 
first choosing ResNet-50 or ResNet-101 as Back-
bone, utilizing its residual structure to alleviate 
the problem of gradient vanishing in the deep net-
work, and constructing a multi-scale feature pyra-
mid by cross-layer jump connection (e.g., merging 
the outputs of ResNet's layer3, layer4, and layer5 
with the up-sampled features, respectively), which 
significantly improves the segmentation ability 
of small targets and edge details. In terms of layer 
adjustment, the original FCN-8s only fused pool3, 
pool4, and pool5, while this experiment dynamical-
ly adjusted the number of jump connections (e.g., 
increasing the shallow features of layer2 to partici-
pate in the fusion) and combined with the adaptive 
upsampling coefficients, which enabled the net-
work to automatically optimize the feature fusion 
paths according to the different input resolutions, 
which demonstrated better performance in recog-
nizing complex scenarios, such as forest fires. This 
design shows stronger generalization in identifying 
complex scene datasets such as forest fires. 

In addition, this experiment refers to the official im-
plementation of PyTorch and introduces the Aux-
iliary Classifier in the FCN Head module, which 
serves to apply additional cross-entropy loss to the 
intermediate layer features (e.g., layer4 output from 
ResNet) during the training phase, accelerating the 
model convergence through the multi-task learning 
mechanism and enhancing the gradient back prop-
agation effect. In terms of implementation details, 
the auxiliary classifier consists of 3×3 convolution, 
batch normalization with ReLU activation func-
tion, and its outputs are weighted and fused with 
the predictions from the main branch by bilinear 
interpolation up-sampling to the original image size, 
which ultimately forms an end-to-end trainable ar-
chitecture. It is worth mentioning that this experi-
ment also optimizes Backbone's pre-training strat-
egy: using ResNet weight initialization pre-trained 
in ImageNet in conjunction with COCO, instead of 
the original FCN relying on ImageNet classification 
pre-training only, which enables the model to better 
capture the fine-grained features required for se-
mantic segmentation.
Compared with the original FCN, the improved ver-
sion of this experiment significantly improves the 
segmentation accuracy and inference efficiency 
through the deep-feature extraction capability of 
ResNet, the detail enhancement mechanism of mul-
tilevel jump connections, and the regularization of 
auxiliary classifiers, while maintaining the advan-
tages of full convolutionalization, arbitrary size in-
puts and end-to-end training.

Figure 1
Framework of the FCN-Based Segmentation Network.
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2.2 Backbone: Resnet 50 

ResNet50 is a classical deep residual network, 
and its core idea is to solve the common gradient 
vanishing and exploding problems in deep 
neural networks by introducing residual 
structures, so as to achieve the training and 
optimization of deeper networks. ResNet50 
consists of 50 convolutional layers, and its 
structure is shown in Figure 2. ResNet50 is 
divided into five main stages, and each stage 
contains a different number of residual blocks 
These residual blocks are classified into two 
types, Conv Block and Identity Block, Conv 

Block is used to increase the depth of the 
network, while Identity Block is used to keep the 
dimension of the feature map unchanged. In the 
structure of ResNet50, the first stage consists of 
a 7x7 convolutional layer and a maximal pooling 
layer, which is used for the initial extraction of 
the image features. The second to fifth stages 
each consist of multiple residual blocks, where 
the first stage's residual block contains a 
convolutional layer with a step size of 2, and the 
rest of the stages have a residual block with a 
step size of 1, and the number of residual blocks 
in each stage is 3, 4, 6 and 3, respectively. The 
residual structure is inspired by the constant 
mapping, which is formed by adding the inputs 
directly to the outputs to form a constant 
mapping, which allows the network to learn a 
residual mapping between inputs and outputs. 
The residual mapping between the input and the 
output, thus avoiding the gradient vanishing 
problem. The basic form of the residual block is 
F(X) + X , where F(X) is the feature map 
processed by the convolutional layer and the 
activation function, and X is the input feature 
map. 

 

Figure 2 

Layer-wise Configuration of ResNet-50 
Network. 

 
 

The BN layer in ResNet50 is widely used before 
each residual block to normalize the input data. 
The role of the BN layer is to adjust the meaning 
of the input data to 0 and the variance to 1, thus 
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the stability of the model. Equation (1) is the 
formula for the BN layer, where xi is the original 
input data , x  and y  is the standardized output 
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dardized output data. μ and σ² are the mean and vari-
ance of the input data, respectively, ε is a small con-
stant to prevent the denominator from being zero, γ 
and β are learnable parameters.

( )

1

2

1

2

1

1

ˆ

ˆ ˆ

m
ii

m
ii

i
i

i i

x
m

x
m

xx

y x

µ

σ µ

µ

σ ε
γ β

=

=

 =

 = −

 −

=
+

 = +

∑

∑

 

.
(1)

ResNet50 adopts the Bottleneck design to reduce the 
computation and improve the efficiency, the Bottle-
neck module consists of three convolutional layers, 
including two 1x1 convolutional layers and one 3x3 
convolutional layer, the 1x1 convolutional layer is 
used for dimensionality reduction or dimensionality 
upgrading while the 3x3 convolutional layer is used 
for feature extraction, this design not only reduces 
the number of references, but also improves the ex-
pressive power of the network, the In the structure of 
Bottleneck module, the first 1x1 convolutional layer 
reduces the number of input channels from C_in to 
C_bottleneck, the second 3x3 convolutional layer car-
ries out feature extraction on the downscaled feature 
maps, and the third 1x1 convolutional layer recovers 
the feature maps to the original number of channels, 
C_out. The ReLU activation function is widely used 
in ResNet50. Equation (2) is the formula for ReLU.
The main advantages of ReLU function are computa-
tional simplicity and ability to alleviate the problem 
of gradient vanishing. Its powerful feature extract 
capability and efficient computational performance 
show excellent performance in the task of semantic 
segmentation in dealing with images of fire scene.

( ) max(0, )f x x=  . (2)

Figure 2
Layer-wise Configuration of ResNet-50 Network.
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2.3. FCN Head Module

FCN Head module is the key component to real-
ize pixel-level semantic segmentation in the full 
convolutional network, and its structure mainly 
includes three parts: feature map dimensionali-
ty reduction, bilinear interpolation, and auxiliary 
classifiers, and its structure is shown in Figure 3. 
First, the number of channels of the feature map is 
reduced from a high dimension to the same dimen-
sion as the number of categories through a 1x1 con-
volutional layer. The feature map output from the 
Backbone of ResNet50 is adjusted to 512 channels 
after a 3x3 convolutional layer, and then it is ad-
justed to the number of channels of the categories 
through a 1x1 convolutional layer. Next, the feature 
map is restored to the size of the original image us-
ing a bilinear interpolation method.
In order to prevent the error gradient from not be-
ing passed to the shallow layers of the network, the 
FCN Head module introduces an auxiliary classifi-
er which usually extracts features from the Layer3 
layer of ResNet and is processed in parallel with 
the main branch. The auxiliary classifier provides 
additional supervised signals during the training 
phase, but is removed during the prediction phase. 
The main functions of the FCN Head module in-
clude feature map dimensionality reduction, re-
storing the original dimensions and auxiliary clas-
sifiers. The number of channels of the feature map 

is adjusted to the number of channels of the cate-
gory through a 1x1 convolutional layer to achieve 
the prediction of the classification of each pixel 
point. The dimensionality reduced feature map is 
restored to the same dimensions as the input image 
through the bilinear interpolation method to en-
sure that the model is able to output the classifica-
tion results corresponding to the spatial location of 
the input image. By extracting the features from the 
deeper layers of the network and classifying them, 
the auxiliary classifiers can enhance the perfor-
mance of the model, especially in the training phase 
(Figure 4).

Figure 3 
Detailed Structure of a Residual Block with Bottleneck.
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3. Prediction of Fire Spread Trends
Although computer neural network recognition of 
fire can give the range of fire in time, the study of fire 
spread is necessary because forest fire is a dynamic 
process, and the tendency of fire spread will affect 
the later fire-fighting action and fire rescue. The 
main work of this study is to select a burning forest, 
construct the improved Rothermel model for fire 
spread prediction based on the fire extent obtained 
by deep learning performed by computer, and ver-
ify its performance in simulating fire spread. The 
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methodology of this research is divided into three 
parts: data collection and preprocessing, selection of 
parameters for construction and model validation. 
This section focuses on the modeling methodology 
construction and model validation of the proposed 
improved Rothermel model.
The Rothermel model was proposed by the Ameri-
can forester Rothermel in 1972, which is mainly ap-
plied to predict the spread of forest fires, and its out-
put is the rate of fire spread, which corresponds to 
the linear velocity of the propagation of the fire front 
(m/s). This semi-empirical model combines theo-
retical first principles and experimental data into a 
set of equations that converge with Equation (3).
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where, R is the rate of fire spread (IV/min); IR is 
for the flame zone reaction intensity 
(Btu/ft2.min);  is the rate of spread of the fire 
(no factor);  is the wind speed correction 
factor;  is the slope correction factor; P  is 
the density of the combustible bed (lb/ft3);  is 
the effective heat coefficient (no factor); Q  is 
the heat of preignition, the amount of heat 
required to ignite a unit mass of combustible 
material (Btu/lb).  

A fire occurs in a given patch of forest, the time 
of fire occurrence is almost negligible in relation 
to the time of forest evolution, and under the 
condition of no strong winds on flat land. This 
would indicate that the coefficients of 
combustible bed density, effective heat 
coefficient, heat of preignition, intensity of 
reaction in the flame zone, and rate of spread of 
the fire, etc., are a fixed number in this forest 
where the fire occurs. Let it be K1, named as 
forest fire model coefficient. 
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The Rothermel model can be simplified to 
Equation (4). For the wind speed correction 
factor, it can be analyzed in more detail, which 
is shown in the below Equation (5). 
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For the wind speed correction factor, it will be 
like Equation (6). 
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Combining the specific forms of the wind speed 
correction factor and the slope correction factor, 
the Rothermel model can be simplified to 
Equation (7). 
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3.1 Scene Segmentation Experiment 

(1) Dataset processing 

In the research of fire detection technology, the 
public dataset generally lacks fine flame 
morphology annotation information, which has 
become a key bottleneck restricting the 
performance improvement of the model. In 
order to overcome this limitation, this study 
systematically constructed a set of dedicated 
datasets containing 268 high-quality annotated 
images by integrating multi-source data 
collection and intelligent annotation technology. 
In the data collection stage, 144 high-resolution 
aerial fire images covering forests, factories and 
other scenes were screened out to fully record 
the dynamic characteristics of flame 
propagation under different wind conditions. At 
the same time, a controlled combustion device 
was used to generate 124 pieces of laboratory 
data, including 10 sets of steel wool combustion 
experiments completed outdoors, which 
provided basic samples for flame multi-
characteristic analysis. The annotation process 
adopts a hybrid intelligent strategy: the initial 
annotation of the target position is based on the 
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3.1. Scene Segmentation Experiment

1	 Dataset processing
In the research of fire detection technology, the pub-
lic dataset generally lacks fine flame morphology 
annotation information, which has become a key 
bottleneck restricting the performance improve-
ment of the model. In order to overcome this lim-
itation, this study systematically constructed a set 
of dedicated datasets containing 268 high-quality 
annotated images by integrating multi-source data 
collection and intelligent annotation technology. In 
the data collection stage, 144 high-resolution aeri-
al fire images covering forests, factories and other 
scenes were screened out to fully record the dy-
namic characteristics of flame propagation under 
different wind conditions. At the same time, a con-
trolled combustion device was used to generate 124 
pieces of laboratory data, including 10 sets of steel 
wool combustion experiments completed outdoors, 
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which provided basic samples for flame multi-char-
acteristic analysis. The annotation process adopts 
a hybrid intelligent strategy: the initial annotation 
of the target position is based on the LabelImg tool 
(which meets the requirements of the PASCAL VOC 
format), and the labeling label is "fire". On this basis, 
the semi-automatic contour extraction is realized 
by improving the U-Net network, supplemented by 
manual verification to ensure the boundary accura-
cy, and finally the XML format annotation file is gen-
erated. The dataset is divided into training set and 
test set at a ratio of 0.85:0.15, including 227 training 
sets (including 122 aerial images and 105 laboratory 
images) and 41 test sets (including 22 aerial images 
and 19 laboratory images).
The data images used in this study were categorized 
into two parts: background and flame. As an exam-
ple image, Figure 5(a) shows the original flame pho-
tograph and Figure 5(b) shows the corresponding 
labeled image. The total number of pixels in a single 
image is calculated to be 513,000, of which the flame 
region accounts for 19,689 (about 3.8%) and the back-
ground region accounts for 493,311 (about 96.2%), 
with a ratio of nearly 25:1. This obvious difference in 
number can easily lead to the model focusing exces-
sively on the background region during training.

real region only partially, PA may score high due to 
most of the pixels being correct, but IoU will be sig-
nificantly lower due to the lack of overlap, which is 
more in line with the demand for fine segmentation 
in practical applications. In addition, in remote sens-
ing segmentation tasks, where the target objects are 
usually small and have complex boundaries, the IoU 
can reflect the subtle differences in model perfor-
mance more sensitively. Equation (8) is the calcula-
tion formula of IoU, PA and CPA: (where nij denotes 
the number of pixels of category i predicted to be 
called category j, ncls denotes the number of target 
columns (including background), and ti denotes the 
total number of pixels of category i in the real case).
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3	 Experimental results
After 20 epochs of training, the performance of the 
final model on the test set is quantitatively evaluated 
by the confusion matrix, in which the intersection 
and concurrency ratio (IoU) for the key target cat-
egory “fire” reaches 65.8%, which indicates that the 
model has a strong capability of recognizing the fire 
region in complex scenarios. Figures 6(a)-6(b) show 
the labeled and predicted mask images of Figure 5, 
respectively, and Figure 7 shows the confusion ma-
trix used to represent Figure 8.

Figure 5 
Original and labeled images: (a)Photographs of the original 
flame (b) Labeling images.
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4	 Comparison with traditional computer vision 
methods

Methods based on color features to separate flame 
regions have significant specificity problems, and 
the adaptability of different algorithms to flame col-
or varies greatly. Taking the RGB-HIS model as an 
example, interferences such as green plants and sky 
can be excluded by setting the red component thresh-
old (R>RT) and the high saturation threshold (ST), 

Figure 7 
Confusion matrix for predicting results.

 

but this method is only applicable to flame scenes 
where the red component is dominant. When pro-
cessing Image 8(a) (orange flame), the R > G > B rule 
of the RGB model leads to misjudgment. Similarly, 
although the YCbCr model reduces light interfer-
ence by separating luminance (Y) and chromaticity 
(Cb/Cr), it does not take into account the dynamic 
relationship between luminance and flame color and 
will misjudge the highlighted areas as flames in re-
flective scenes. The HSV model, on the other hand, 
has a recognition accuracy of more than 90% at the 
maximum value and 0% at the minimum value in 144 
test maps through the joint thresholds of hue (0 ≤ H 
≤ 0.35), saturation (0.3 ≤ S ≤ 1) and luminance (0.8 ≤ 
V ≤ 1), which is a great difference.

3.2. Fire Prediction Experiment Part
1	 The Los Palisades Mountain Fire Experiment
Previously, this paper introduced the Rothermel 
Forest Fire Spread Prediction Model and made some 
amendments to it in specific cases to make it more 
consistent with the prediction needs of forest fire 
spread in specific cases and to improve the predic-
tion accuracy. The improvement of prediction ac-
curacy not only helps to protect the forest biological 
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but also effectively reduces the loss of the fire de-
partment and the public property. In January 2025, 
a forest fire occurred in Los Angeles County, Califor-
nia, U.S., causing severe damage. In this paper, the 
Palisades Fire in Los Angeles County was selected 
as the research object, and the satellite images of the 
fire were acquired from NASAfirms website for six 
days from January 7 to January 12. In order to bet-
ter validate the Rothermel Forest Fire Spread Pre-
diction Model, it was introduced to predict the trend 
of the fire spread on each day, and the loss rate was 
calculated by comparing with the real area of the fire 
in the next day.
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fire spread north of the point of ignition. On January 
12, the fire reached its approximate maximum size.

Figure 8 
Flame color under different conditions: (a) Different colors 
of flame-yellowish flame; (b) Different Color Flame-
Reddish Flame; (c) The effect of cloudy skies on flame 
color; (d) Flaming area with a lot of smoke.
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Through the satellite images on January 7, this pa-
per selects “The Summit” location (latitude and lon-
gitude: 34.075 N, -118.547 W) as the ignition point, 
and introduce the Rothermel model to predict the 
future course of fires in the region.
On January 7, The Summit location was the first to 
detect the point of origin of the fire. Assuming first 
that there was no wind in the area at the beginning, 
the combustible density, effective heat coefficient, 
and forest fire spread coefficients for the area were 
combined and substituted into Rothermel's formula 
to obtain the predicted over-fire area on January 8 
(before January 9), which was then compared to the 
true over-fire area to calculate the loss ratio.
On January 8, the predicted overfire area used The 
Summit location as the upper focal point, and its 
predicted overfire area shape approximated an el-
lipse. Predictions are made based on the new true 
overfire area, with the constraints of wind speed and 

Figure 9 
Palisades Mountain Fire spread timeline (Jan. 7-Jan. 12).
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On January 8, the predicted overfire area used 
The Summit location as the upper focal point, 
and its predicted overfire area shape 
approximated an ellipse. Predictions are made 
based on the new true overfire area, with the 
constraints of wind speed and land and sea 
geomorphology, and constraints are added to 
the model for prediction (Figure 10). 
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Under the influence of Santa Ana winds, the 
overfire area spread at an alarming rate from 
January 8 to January 9, with the overfire area on 

January 9 reaching nearly 30 times the size of the 
overfire area on January 8 (Figure 11). 
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Comparison images of predicted overfire area 
and actual overfire area from January 9th to 
January 10th. 

 
 

On January 9, the forest fires maintained a 
predominantly east-west direction of spread, 
with the southern portion of their overfire area 
reaching Santa Monica Beach, which has caused 
property damage in a large residential 
community. From January 9 to January 10, the 
east-west spread of the fires remained 
essentially stationary, and a northward trend in 
the spread of the forest fires was detected 
(Figure 12). 
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and actual overfire area from January 10th to 
January 11th. 

 
 

On January 10, as some of the fires spread to 
residential neighborhoods, which have different 
fire conditions than forests, a categorization 
discussion was required. Based on the original 
overfire area, the fire spread trend to the north 
was still predicted by the original Rothermel 
forest fire spread model, while the southeast 
corner of the overfire range (residential 
communities) was parameterized to better 
improve prediction accuracy. The improved 
Rothermel forest fire spread model predicted a 
nearly circular fire area. Between January 10 and 
January 11, the fire's spread slowed (Figure 13). 
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required. Based on the original overfire area, the fire 
spread trend to the north was still predicted by the 
original Rothermel forest fire spread model, while 
the southeast corner of the overfire range (residen-
tial communities) was parameterized to better im-
prove prediction accuracy. The improved Rothermel 
forest fire spread model predicted a nearly circular 
fire area. Between January 10 and January 11, the 
fire's spread slowed (Figure 13).
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East-west fire spread largely ceased from 
January 11 to January 12, a day when fires 
spread primarily in a northerly direction. By 
January 12, the area over which forest fires had 
burned was largely fixed (Figure 14). 

(2) Experimental error analysis 

Jorge et al. proposed that the symmetric 
difference between the predicted fire area and 
the real fire area based on the corresponding 
predicted fire area, i.e., the error between the 
predicted fire area value and the real fire 
overfire area value for the Rothermel model[33]. 
Let the predicted fire region be region A and the 
real fire region be region B. The symmetric 

concatenation of the two sets minus their 
intersection, as shown in Equation (9). 
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In order to reduce the systematic error of poor 
symmetry caused by insufficiently fine area 
identification (including fire identification area 
and predicted spread area), this paper adopts 
the closed curve integral for the area of these 
areas to improve the height of area 
identification. Martin et al. proposed the Green's 
formula integral for the area of time area [5]. 
And since the Rothermel model in this paper 
predicts curves that are approximately elliptical 
rather than perfectly elliptical nonsmoothed 
curves, the integral formula has to be improved, 
and Claf et al. [9] in referring to celestial motions 
that are approximately elliptical orbits propose 
the multi-point discretization of elliptical orbits 
of planetary bodies, and abstract it to orbits 
resulting from the summation of the limits of the 
discretized points. For this, Ananthan and 
Gaurav [2] then used the Gaussian area formula 
(shoestring formula) of the discretization 
method to solve for the area of the graphical 
region whose boundary consists of discrete 
points. 
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Equation (10) is the Green's formula, in order to 
avoid the calculation accuracy failure caused by 
the non-smooth curve, this paper adopts the 
shoelace formula (11) on the basis of the Green's 
formula to solve the simulated fire area A and 
the real fire area B, and arrives at a more suitable 
method by comparing the two types of 
calculation methods. 

At the same time, these fire regions are divided 
into a finite number of square raster's of the 
same size and ensure that the size of the number 
of raster's is larger than 10000 to improve the 
accuracy for the fitness function solution. Since 
both the results of the fire spread simulation and 
the actual prescribed fire data consist of 
corresponding burning mini-raster's, the fitness 
function is given by the following equation in 
order to calculate the symmetric difference 
between the two groups and to assess the quality 
of the candidate solution Si: 
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grid  Corresponds to the number of rasters in 
the two concatenated sets grid  
corresponding to the number of rasters in the 
intersection of the two sets. R  is the number 
of grids actually burned. I  is the number of 
grids actually lit. R I  is due to the fact 
that the fitness is calculated using the number of 
grids actually burned, i.e., it is the relative error 
of the fitness function. The fitness function also 
represents the stability of the model to some 
extent. The fitness function of the area of the 
region obtained by solving the two integration 
methods is used to assess the model stability 
RSDi. 

After algorithmic solution calculations, this 

of the predictive model for the Los Angeles 
Palisades Hill Fire from January 7 to January 12, 
the predicted area values obtained from the two 
methods (integral vs. infinite series) of solution, 
and the model fitness function RSDi, as shown 
in the following figure. 
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Palisades Mountain Fire Prediction Error and 
Evaluation Metrics. 

East-west fire spread largely ceased from January 
11 to January 12, a day when fires spread primari-
ly in a northerly direction. By January 12, the area 
over which forest fires had burned was largely fixed 
(Figure 14).
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And since the Rothermel model in this paper 
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the multi-point discretization of elliptical orbits 
of planetary bodies, and abstract it to orbits 
resulting from the summation of the limits of the 
discretized points. For this, Ananthan and 
Gaurav [2] then used the Gaussian area formula 
(shoestring formula) of the discretization 
method to solve for the area of the graphical 
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Equation (10) is the Green's formula, in order to 
avoid the calculation accuracy failure caused by 
the non-smooth curve, this paper adopts the 
shoelace formula (11) on the basis of the Green's 
formula to solve the simulated fire area A and 
the real fire area B, and arrives at a more suitable 
method by comparing the two types of 
calculation methods. 

At the same time, these fire regions are divided 
into a finite number of square raster's of the 
same size and ensure that the size of the number 
of raster's is larger than 10000 to improve the 
accuracy for the fitness function solution. Since 
both the results of the fire spread simulation and 
the actual prescribed fire data consist of 
corresponding burning mini-raster's, the fitness 
function is given by the following equation in 
order to calculate the symmetric difference 
between the two groups and to assess the quality 
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grid  Corresponds to the number of rasters in 
the two concatenated sets grid  
corresponding to the number of rasters in the 
intersection of the two sets. R  is the number 
of grids actually burned. I  is the number of 
grids actually lit. R I  is due to the fact 
that the fitness is calculated using the number of 
grids actually burned, i.e., it is the relative error 
of the fitness function. The fitness function also 
represents the stability of the model to some 
extent. The fitness function of the area of the 
region obtained by solving the two integration 
methods is used to assess the model stability 
RSDi. 

After algorithmic solution calculations, this 

of the predictive model for the Los Angeles 
Palisades Hill Fire from January 7 to January 12, 
the predicted area values obtained from the two 
methods (integral vs. infinite series) of solution, 
and the model fitness function RSDi, as shown 
in the following figure. 
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ensure that the size of the number of raster's is larg-
er than 10000 to improve the accuracy for the fitness 
function solution. Since both the results of the fire 
spread simulation and the actual prescribed fire data 
consist of corresponding burning mini-raster's, the 
fitness function is given by the following equation in 
order to calculate the symmetric difference between 
the two groups and to assess the quality of the candi-
date solution Si:

Comparison images of predicted overfire area 
and actual overfire area from January 11th to 
January 12th 
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⋃gridi Corresponds to the number of rasters in the 
two concatenated sets ⋂gridi corresponding to the 
number of rasters in the intersection of the two sets. 
Rgridi

 is the number of grids actually burned. Igridi
 is the 

number of grids actually lit. Rgridi
-Igridi

 is due to the 
fact that the fitness is calculated using the number 
of grids actually burned, i.e., it is the relative error of 
the fitness function. The fitness function also rep-
resents the stability of the model to some extent. The 
fitness function of the area of the region obtained by 
solving the two integration methods is used to assess 
the model stability RSDi.
After algorithmic solution calculations, this study 
produced the symmetry difference AΔB of the pre-
dictive model for the Los Angeles Palisades Hill Fire 
from January 7 to January 12, the predicted area val-
ues obtained from the two methods (integral vs. in-
finite series) of solution, and the model fitness func-
tion RSDi, as shown in the following figure.

As can be seen from Figure 15, the predicted area 
values obtained by the two calculation methods do 
not differ much, and in general, the total error of the 
shoelace formula method is relatively small. Howev-
er, it is worth mentioning that the accurate predicted 
values of the shoelace formula method have a larger 
error in the later stages of fire spread, and the accu-
rate predicted values of the curve integral method 
have a larger error in the early stages of fire spread. 
This is related to the burning out of combustibles in 
the later stages of the fire. The symmetry difference 
shows a trend of increasing and then decreasing, and 
the symmetry difference is the largest on January 8, 
and the decrease of symmetry difference in the later 
stage shows that the model has accuracy but also has 
a certain lag. The fitness function RSDi shows a de-
creasing and then increasing trend, and finally tends 
to equilibrium (0.7), indicating that the prediction 
results of the Rothermel prediction model are ac-
ceptable. Overall, the prediction of the Palisades Hill 
Fire in Los Angeles proves the applicability of the 
Rothermel model, but there are certain errors and 
backwardness of the technology of confirming the 
predicted area, and the change of the experimental 
environment that exists during the spread of the fire 
leads to the deterioration of the stability of the Ro-
thermel model in the middle stage of the experiment, 
which requires manual intervention and increases 
the experimental error and experimental cost. In the 
middle stage of fire spread, it is recommended to use 
manual intervention or multiple hybrid modeling 
methods to reduce the experimental error.

3.3. Comprehensive Experiment
This study focuses on the coupling mechanism be-
tween FCN network and Rothermel model and its 
synergistic effect in fire dynamics prediction. In 
the framework of the integrated experiment, FCN 
serves as the core module of fire field identification, 
and its output binary mask directly determines the 
initial fire field boundary of the Rothermel model. 
Although FCN has achieved 65.8% IoU in the prelude 
test, edge blurring or local omissions (e.g., smoke ob-
scured areas) in its segmentation results will direct-
ly affect the input accuracy of the Rothermel model: 
for example, if FCN misclassifies a portion of the fire 
boundary as an unburned area, the Rothermel mod-
el will underestimate the spreading potential of the 
direction due to the absence of the initial fireline, 

Figure 15  
Palisades Mountain Fire Prediction Error and Evaluation 
Metrics.
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resulting in the contraction of the predicted contour 
to the west. This error conduction is nonlinear in na-
ture-fire shape deviations not only change the local 
spread direction, but also trigger global prediction 
shifts through fire interactions (e.g., flame merging). 
To mitigate this problem, the experiment introduces 
morphological post-processing at the data interface 
layer, which performs expansion and smoothing op-
erations on the discretized boundaries of FCN out-
puts to repair small holes and fill in broken edges, 
thus enhancing the continuity of the initial fire line 
and reducing the sensitivity of the Rothermel mod-
el to segmentation noise. This optimization mech-
anism makes the combination between FCN and 
Rothermel smoother and significantly improves the 
prediction robustness in complex environments.
1	 Experimental scene
The experimental site was constructed in a con-
trolled open-air environment with a mixture of 
leaves, dead grass and low shrubs to simulate the 
structure of typical mountain surface combustibles. 
The size of the combustion bed was 2m×2m (total 
area of 4m2), and the thickness was strictly con-
trolled at 5cm to ensure the uniform distribution 
of fuel through layered compaction. The vegetation 
ratios refer to the common combinations of dead 
combustibles on the forest surface, with about 30% 
of dead branches, 40% of dry fallen leaves, and 30% 
of shrub residues, in order to restore the fuel hetero-
geneity of a real fire. The experiments were chosen 
to be conducted at night to improve the accuracy of 
the visual recognition system by utilizing the high 
contrast properties of the flames and the dark back-
ground. Under windless conditions (wind speed 
<0.2 m/s), environmental parameters, including air 
temperature (4.4±1.0°C), relative humidity (45±5%), 
etc., were continuously monitored at the same time. 
The ignition device adopts the resistance wire igni-
tion method, and the initial ignition source is placed 
at the center of the combustion bed.
2	 Flame area identification
In this experiment, four typical time nodes were se-
lected based on the flame area growth rate and mo-
tion characteristics: T1 (early fire initiation, flame 
area share <5%), T2 (diffusion acceleration period, 
area share 15%-20%), T3 (stable combustion period, 
area share 30%-35%), and T4 (recession period, area 
share 25%-30%).

T1 stage (IoU=35%): The flame region in this stage 
is characterized by dispersed star fire points with 
blurred edges and obvious dynamic flickering. Tra-
ditional edge detection methods (e.g., Canny oper-
ator) often cause contour breakage due to noise in-
terference in this stage, while FCN can reduce the 
noise sensitivity through deep feature learning, but 
it is still difficult to localize tiny targets (<50 pixels).
T2-T3 stage (IoU=64%-71%): As the fire intensifies, 
the flame region forms a continuous thermal radiation 
belt with significant edge gradient features. At this 
time, the feature extraction advantages of FCN are 
fully realized: the ResNet-50 pre-trained model can 
effectively capture the high-frequency texture fea-
tures of the flame (e.g., turbulent fluctuation patterns).
Stage T4 (IoU = 69%): Although the total flame 
area decreases, the residual radiation from the 
high temperature products maintains a strong edge 
contrast. The decrease in IoU at this point mainly 
stems from the semantic segmentation confusion 
between the flame core area and the non-uniform 
residual flame area.
3	 Fire spread prediction
In Section 4.3.1. this paper carries out an identifi-
cation experiment for T1-T4 stage flames, based on 
this fire experiment and the Rothermel fire spread 
model, this paper predicts the overfire area as well as 
the spreading tendency at the end of the i(1-4) stage 
to the end of the i+1(2-5) stage and gives the approx-
imate predicted range of overfire area.
Stage T1 (small variation coefficient of curvature of 
the spreading area curve): the flame area in this stage 
is concentrated and of circular shape, and based on its 
contour and fixed experimental parameters, it is con-
cluded that the predicted overfire area of Stage T2 is 
about 0.915 square meters, and at the same time, it is 
also concluded that the approximate spreading direc-
tion of the fire is in the direction of 8.0° north by east.
Stage T2 (spread area curve curvature change co-
efficient began to increase): this stage of the flame 
area began to predict the direction of the left devi-
ation 34.9° direction of the spread (i.e., the direc-
tion of 26.9° north of west), and this direction and 
its opposite direction for the ellipse of the long axis 
(approximate ellipse) to spread, resulting in T3 
stage of the predicted area of the fire area of about 
1.591 square meters.
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Stage T3 (the curvature variation coefficient of the 
spreading area curve begins to decrease): In this 
stage, the flame area begins to spread in the direc-
tion of 31.4° to the right of the predicted direction 
(i.e., in the direction of 4.5° to the east of the north), 
and results in the predicted over-fire area of about 
2.228 square meters in Stage T4. At the same time, 
the main body of the flame no longer spreads in the 
predicted direction, but spreads in all directions at a 
microscopic angle (gradually evolving from an irreg-
ular shape to a circle-like shape, with the coefficient 
of variation of curvature starting to decrease).
Stage T4 (Spread Area Divided into Two Parts): 
In this stage, the fire area changes to two irregular 
shapes as the combustible material in the center 
area of the fire burns out and the flame area breaks 
into two parts. Similar to the Los Palisades Hill Fire, 
when the fire spreads to a certain extent, the fire area 
changes into two or more unconnected areas. In the 
microcosm, the area of burned-out combustible ma-
terial cannot be recognized in the Rothermel model, 
which leads to the prediction error of the Rothermel 
model will be large. Finally, the predicted overfire 
area of the T5 stage is about 3.106 square meters.
Unlike the fire spread predictions for the Palisades 
Mountain Fire in Los Angeles, the Rothermel model 
has a smaller prediction error under macro condi-
tions, but the relative error of the Rothermel model 
is smaller under the micro conditions of small, sim-
ulated fires. Also, in the later stages of fire spread (T4 
and later stages), the Rothermel model can be divid-
ed into multiple parts for prediction in large fires, 
but it is difficult to divide into multiple parts for pre-

diction in small fires. In conclusion, the Rothermel 
prediction model is more applicable in large fires, 
but in small fires, the Rothermel model has a high-
er prediction accuracy (only for the first and middle 
stages of fire spread).
4	 Comprehensive experimental error
By comparing the errors of four consecutive mo-
ments, the initial recognition errors of FCN neural 
network are 60%, 36%, 29%, and 31%, while the pre-
diction errors corrected by Rothermel model are sig-
nificantly reduced to 30%, 7.2%, 4.95%, and 7.05%. 
Figure 16 shows the FCN recognition error versus the 
prediction error corrected by the Rothermel model.

Figure 16  
Comprehensive experimental comparative analysis chart.

T1 stage (IoU=35%): The flame region in this 
stage is characterized by dispersed star fire 
points with blurred edges and obvious dynamic 
flickering. Traditional edge detection methods 
(e.g., Canny operator) often cause contour 
breakage due to noise interference in this stage, 
while FCN can reduce the noise sensitivity 
through deep feature learning, but it is still 
difficult to localize tiny targets (<50 pixels). 

T2-T3 stage (IoU=64%-71%): As the fire 
intensifies, the flame region forms a continuous 
thermal radiation belt with significant edge 
gradient features. At this time, the feature 
extraction advantages of FCN are fully realized: 
the ResNet-50 pre-trained model can effectively 
capture the high-frequency texture features of 
the flame (e.g., turbulent fluctuation patterns). 
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mainly stems from the semantic segmentation 
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and based on its contour and fixed experimental 
parameters, it is concluded that the predicted 
overfire area of Stage T2 is about 0.915 square 
meters, and at the same time, it is also concluded 
that the approximate spreading direction of the 
fire is in the direction of 8.0° north by east. 

Stage T2 (spread area curve curvature change 
coefficient began to increase): this stage of the 
flame area began to predict the direction of the 
left deviation 34.9° direction of the spread (i.e., 
the direction of 26.9° north of west), and this 
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direction of 31.4° to the right of the predicted 
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circle-like shape, with the coefficient of variation 
of curvature starting to decrease). 

Stage T4 (Spread Area Divided into Two Parts): 
In this stage, the fire area changes to two 
irregular shapes as the combustible material in 
the center area of the fire burns out and the flame 
area breaks into two parts. Similar to the Los 
Palisades Hill Fire, when the fire spreads to a 
certain extent, the fire area changes into two or 
more unconnected areas. In the microcosm, the 
area of burned-out combustible material cannot 
be recognized in the Rothermel model, which 
leads to the prediction error of the Rothermel 
model will be large. Finally, the predicted 
overfire area of the T5 stage is about 3.106 square 
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Unlike the fire spread predictions for the 
Palisades Mountain Fire in Los Angeles, the 
Rothermel model has a smaller prediction error 
under macro conditions, but the relative error of 
the Rothermel model is smaller under the micro 
conditions of small, simulated fires. Also, in the 
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the Rothermel model can be divided into 
multiple parts for prediction in large fires, but it 
is difficult to divide into multiple parts for 
prediction in small fires. In conclusion, the 
Rothermel prediction model is more applicable 
in large fires, but in small fires, the Rothermel 
model has a higher prediction accuracy (only for 
the first and middle stages of fire spread). 
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(4) Comprehensive experimental error 

By comparing the errors of four consecutive 
moments, the initial recognition errors of FCN 
neural network are 60%, 36%, 29%, and 31%, 
while the prediction errors corrected by 
Rothermel model are significantly reduced to 
30%, 7.2%, 4.95%, and 7.05%. Figure 16 shows 
the FCN recognition error versus the prediction 

Rapid convergence of initial moment error: the 
recognition error of FCN in the first moment is as 
high as 60%, but the error drops by 50% directly 
after Rothermel correction, which indicates that 
the physical model has strong correction ability for 
initial misjudgment. This correction stems from 
Rothermel's physical constraints on the direction 
and speed of fire spread, such as dynamically adjust-
ing the position of the fire line through the reaction 
strength parameter (Figure 17).
Stability of the mid-term error: the error between 
the second and third moments is reduced from 36% 
to 4.95%, an error reduction of more than 85%. This 
reflects the continuous adaptability of the Rother-
mel model to dynamic fires, e.g., through real-time 
feedback of fuel load, wind speed, and terrain pa-
rameters, which suppresses the accumulation of er-
rors in the FCN due to image noise or occlusion.

Figure 17   
Comparison of Rothermel prediction error and FCN 
identification error.

error corrected by the Rothermel model. 

Figure 17  

Comparison of Rothermel prediction error and 
FCN identification error. 

 
Rapid convergence of initial moment error: the 
recognition error of FCN in the first moment is 
as high as 60%, but the error drops by 50% 
directly after Rothermel correction, which 
indicates that the physical model has strong 
correction ability for initial misjudgment. This 
correction stems from Rothermel's physical 
constraints on the direction and speed of fire 
spread, such as dynamically adjusting the 
position of the fire line through the reaction 
strength parameter (Figure 17). 

Stability of the mid-term error: the error 
between the second and third moments is 
reduced from 36% to 4.95%, an error reduction 
of more than 85%. This reflects the continuous 
adaptability of the Rothermel model to dynamic 
fires, e.g., through real-time feedback of fuel 
load, wind speed, and terrain parameters, which 
suppresses the accumulation of errors in the 
FCN due to image noise or occlusion. 

Slight rebound in the terminal error: the slight 
increase in the error to 7.05% at the fourth 
moment may be related to the complexity of 
environmental factors (e.g., sudden changes in 
wind direction, changes in fuel moisture) in the 
later stages of fire spread. However, the overall 
error is still significantly lower than the pure 
FCN model, indicating that the joint model has 
the ability to resist interference. 

(5) Comprehensive experimental results analysis 

In order to better quantify the predictive 
effectiveness of two prediction experiments, the 
Rothermel model prediction of Palisades fires 
and the Rothermel model prediction of fires 
with the addition of the FCN fire recognition 
network corrected for fire area, this paper uses 
two composite error tables (Tables 1-2) to show 
the improvement in the accuracy of the 
Rothermel model prediction with the addition 
of the FCN fire recognition network corrected 
for fire area and methods to improve the 
accuracy improvement within the Rothermel 
prediction model. accuracy improvement, and 
methods to improve the accuracy improvement 
within the Rothermel prediction model. 

Table 1 Error of Rothermel Prediction Model by 
two approximation method. 

 

Table 2 The accuracy of FCN-RotTaTable 2 The 
accuracy of FCN-Rothermel Comprehensive 
Experiment Compared to Traditional Rothermel 
Model. 

Accuracy of 
Experiment 

on the 
Rothermel 

Model's 
Prediction of 
the Palisades 

Fire 

Accuracy Improvement by 
Curvilinear Integral 

Date 
Prediction 

area 
Real 
area 

 

Jan. 
8th 

10.891 12.901 5.172 

Jan. 
9th 

49.913 69.917 27.814 

Jan. 
10th 

64.874 79.316 12.919 

Jan. 
11th 

78.196 84.891 11.119 

Jan. 
12th 

92.137 95.901 6.318 

Accuracy Improvement by Shoelace 
Formula 

Date Prediction Real RSDi 
Jan. 
8th 

12.741 14.901 0.971 

Jan. 
9th 

51.573 67.462 0.637 

Jan. 
10th 

66.874 78.316 0.772 

Jan. 
11th 

75.389 86.194 0.71 

Jan. 
12th 

90.137 94.754 0.691 
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Slight rebound in the terminal error: the slight in-
crease in the error to 7.05% at the fourth moment 
may be related to the complexity of environmen-
tal factors (e.g., sudden changes in wind direction, 
changes in fuel moisture) in the later stages of fire 
spread. However, the overall error is still significant-
ly lower than the pure FCN model, indicating that 
the joint model has the ability to resist interference.
5	 Comprehensive experimental results analysis
In order to better quantify the predictive effective-
ness of two prediction experiments, the Rothermel 

model prediction of Palisades fires and the Rother-
mel model prediction of fires with the addition of the 
FCN fire recognition network corrected for fire area, 
this paper uses two composite error tables (Tables 
1-2) to show the improvement in the accuracy of the 
Rothermel model prediction with the addition of the 
FCN fire recognition network corrected for fire area 
and methods to improve the accuracy improvement 
within the Rothermel prediction model. accuracy im-
provement, and methods to improve the accuracy im-
provement within the Rothermel prediction model.

Accuracy of Experiment 
on the Rothermel Model's 

Prediction of the Palisades 
Fire

Accuracy Improvement by Curvilinear Integral

Date Prediction area Real area AΔB

Jan. 8th 10.891 12.901 5.172

Jan. 9th 49.913 69.917 27.814

Jan. 10th 64.874 79.316 12.919

Jan. 11th 78.196 84.891 11.119

Jan. 12th 92.137 95.901 6.318

Accuracy Improvement by Shoelace Formula

Date Prediction Real RSDi

Jan. 8th 12.741 14.901 0.971

Jan. 9th 51.573 67.462 0.637

Jan. 10th 66.874 78.316 0.772

Jan. 11th 75.389 86.194 0.71

Jan. 12th 90.137 94.754 0.691

Table 1
Error of Rothermel Prediction Model by two approximation method.

Analysis of FCN-Rothermel Comprehensive Experiment

T1
FCN-Rothermel prediction area 0.915 Original prediction accuracy 0.844

Real fire area 0.871 Prediction accuracy with FCN 0.952

T2
FCN-Rothermel prediction area 1.501 Original prediction accuracy 0.713

Real fire area 1.486 Prediction accuracy with FCN 0.989

T3
FCN-Rothermel prediction area 1.778 Original prediction accuracy 0.818

Real fire area 1.674 Prediction accuracy with FCN 0.942

T4
FCN-Rothermel prediction area 2.506 Original prediction accuracy 0.921

Real fire area 2.397 Prediction accuracy with FCN 0.956

Table 2 
The accuracy of FCN-RotTaTable 2 The accuracy of FCN-Rothermel Comprehensive Experiment Compared to Traditional 
Rothermel Model.
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Note: The data represented in Tables 1-2 were not 
derived in the same experiment. All data units in 
Table 1 are per square kilometer and all data units 
in Table 2 are per square meter. Through different 
approximation methods, the true overfire area of 
the two also differ, but the error from the true val-
ue did not exceed 2%-3%. Each prediction value in 
Table 2 is the mean of the predictions from multiple 
experiments in a specific stage (excluding outliers), 
as a way to reduce the error in a single experiment. 
Original prediction accuracy is the accuracy of the 
fire area predicted by the original Rothermel model 
alone without the FCN. Original prediction accuracy 
is derived from the experimental results in Table 1.
Equations (10)-(11) give two more accurate ap-
proximation methods for the Rothermel model to 
predict the fire area (the traditional curve integral 
method and the shoelace formula method). AΔB and 
RSDi indicate the stability and accuracy of the two 
approximation methods, respectively. The values 
of AΔB and RSDi in Table 1 indicate that these two 
approximation methods are excellent performers 
in this experiment, but these two approximation 
methods cannot be compared in terms of accuracy 
by these two measures because these two measures 
cannot be compared directly.According to Table 1, 
if the comparison is made based on the results of 
the difference between the true fire area and the 
predicted fire area only, then it can be seen that the 
shoelace formula approximation method to improve 
the prediction accuracy of the Rothermel model is 
better than the traditional curve integral approxi-
mation method. 
It can also be concluded that the prediction accura-
cy of the Rothermel model is improved after adding 
the FCN fire recognition network to correct the fire 
area. The prediction accuracy with FCN is 5% to 
20% higher than that without FCN in the same case. 
This indicates that the accuracy of the traditional 
prediction model is effectively improved by adding 
the correction of the deep learning neural network 
model. This suggests that the combined model at-
tempted in this paper is advantageous when com-
pared with existing methods as verified by compre-
hensive experiments.
The Rothermel model not only corrects the initial 
identification bias of the FCN, but also continu-
ously optimizes the prediction trajectory through 

physical rules (e.g., differential equations for fire 
propagation), so that the error shows a tendency to 
converge rather than diverge. There are four possi-
ble reasons why the Rothermel composite FCN is so 
effective, specifically:
The Rothermel model combines physical principles 
with data-driven approaches, leveraging heat trans-
fer and fuel reaction strength formulas verified by 
laboratory data to describe fire propagation laws 
accurately. Meanwhile, the FCN captures spatial 
fire zone characteristics through extensive image 
data learning. This integration allows physical con-
straints to correct data when FCN misjudges due to 
image blurring or smoke interference, adjusting fire 
boundaries via propagation velocity formulas and 
shifting recognition areas toward real fire zones[30]. 
For instance, the MD-CA model reduces area error 
rates to 9.42%-15.63%[32], outperforming tradition-
al CA models. Additionally, Rothermel's parameters 
like wind speed and slope are dynamically optimized 
using genetic algorithms or real-time meteorologi-
cal data, compensating for FCN's rigidity caused by 
static training data [14].
The model suppresses error propagation by ad-
dressing FCN's initial segmentation biases, such as 
confusing flames with smoke. Rothermel prioritizes 
correcting anomalous fire area predictions incon-
sistent with wind direction and terrain slope using 
an eight-direction velocity formula. Terrain slope 
alone can double fire spread speed. FCN struggles 
to extract from images [22]. Furthermore, Rother-
mel estimates combustion intensity via fuel sam-
ple data, recalculating fire-line positions through 
weighted averaging when FCN's identified regions 
mismatch fuel distribution. This prevents stepwise 
error amplification while maintaining alignment 
with physical conditions.
Rothermel and FCN co-optimize time series fore-
casting by preserving historical states: FCN retains 
fire zone textures through convolutional layers, 
while Rothermel tracks temporal dynamics via fire 
propagation differential equations. Their synergy 
resembles an LSTM model that captures both spa-
tial and temporal dependencies. Predictions are 
iteratively refined as Rothermel's outputs at each 
timestep serve as prior inputs for FCN in the next 
step, forming a closed-loop system. For example, 
multi-core CNNs enhance accuracy through multi-
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scale feature fusion, while Rothermel's physical 
rules sharpen sensitivity to fire line edges [22].
Robustness is strengthened through multi-source 
data fusion, integrating non-visual inputs like me-
teorology, terrain, and fuel properties with FCN's 
image-based features. This approach ensures stabil-
ity in complex environments—such as haze or glare 
interfering with images—by relying on wind speed 
and humidity parameters. Additionally, Rothermel 
compensates for FCN's limited regional generaliza-
tion using empirical formulas like Byram's Fireline 
intensity equation, adapting to area-specific condi-
tions while maintaining predictive reliability across 
diverse forest landscapes [8, 27].
6	 Ablation experiment
In the design of ablation experiments, we systemat-
ically isolate and reorganize the core method mod-
ules to quantitatively evaluate the contribution of 
each component to the prediction of fire spread by 
using the principles of modular decomposition and 
incremental validation. A three-layer verification 
system was constructed: firstly, the widely used 
Faster RCNN was used as the traditional baseline 
model; Secondly, independently verify the perfor-
mance of a single module - Finally, the joint strat-
egy is verified by the cascade fusion architecture, 
and the probability graph of the live line output by 
the FCN is used as the initial boundary condition of 
Rothermal, and a two-way feedback mechanism is 
established to make the propagation heat flux cal-
culated by the physical model feed back to the FCN 
feature decoder in real time. In order to objectively 
quantify the performance, the spatiotemporal error 
separation measurement method was used to calcu-
late the coincidence error of the spread area at the 
four key time nodes of fire evolution (T1 fire period, 
T2 accelerated spread period, T3 stable combustion 
period, and T4 attenuation period), and the consis-
tency of data homology, computing resources and 
physical parameters was strictly controlled.
In this study, the performance of different fire 
spread prediction methods was evaluated through 
systematic comparative experiments. As shown in 
Table 3, the prediction error rates of the traditional 
Faster RCNN method are 41%, 37%, 31%, and 35% on 
four consecutive time nodes (T1-T4), respectively. 
In contrast, in the single model prediction, the error 
rate of the Rothermel physical model is maintained 

in the range of 31%-39% at T1-T4. The error of the 
FCN neural network is as high as 60% at T1, but it 
is significantly improved to 29%-36% at T2-T4. It 
is worth noting that the joint forecasting method of 
Rothermel and FCN shows significant advantages: 
the error rate is reduced to 30% at T1, 7.3% at T2, 
4.9% at T3, and 7.0% at T4. The error rate of this 
joint method at T2-T4 is 76%-83% lower than that 
of the optimal single model (e.g., 4.9% at T3 versus 
29% lowest for single model). The experimental re-
sults clearly show that the joint prediction method 
has a continuous accuracy advantage. Especially in 
the middle and late stages of fire propagation (T2-T4 
stage), the error rate of the combined method is al-
ways stable below 7.3%, which is significantly lower 
than that of the FCN single model (29%-36%) and 
the Rothermal single model (31%-37%).

4. Conclusion
Aiming at the social pain points of ecological degra-
dation and multiple types of property losses caused 
by the spread of hill fires, this paper utilizes hill 
fire recognition and prediction techniques to con-
duct comparative study with a combination of mi-
cro-macro perspectives. Based on the traditional 
fire recognition technology, this paper improves 
the model to obtain Fully Convolutional Network 
(FCN), which adapts to the recognition of multiple 
flame colors and shows good robustness compared 
with the traditional model. Based on the Rother-
mel model of fire spread, this paper improves the 
model and uses the Palisades fire in Los Angeles as 
a case study for prediction, and the model is veri-
fied to have high accuracy in prediction through er-
ror analysis. After confirming the applicability and 

Faster-rcnn 
(Traditional 

Method)
Rothermel FCN-Net Rothermel 

+FCN

T1 41% 39% 60% 30%

T2 37% 37% 36% 7.3%

T3 31% 31% 29% 4.9%

T4 35% 33% 31% 7.0%

Table 3 
Comparison of ablation experimental errors.
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combinability of the two types of models, this paper 
conducts experiments by simulating a microscopic 
mountain fire environment, and applies the Rother-
mel model for fire spread prediction based on the 
FCN for fire identification, and establishes a multi-
stage research on the prediction and prevention of 
fires from the start of the fire to the spread and the 
end of the fire. The study analyzes the recognition 
and prediction accuracy of the combined FCN-Ro-
thermel recognition-prediction model through the 
four stages of fire spread and finds that the respec-
tive shortcomings of the FCN and Rothermel models 
can be complemented. For example, in the T3 stage 
of fire propagation, when the initial combustible ma-
terial is burned out and the area of the burning place 
is reduced, the Rothermel model cannot identify the 
experimental error, and the FCN model can identify 
the burned out area and realize the reduction of pre-
diction error. Finally, the experimental error anal-
ysis in this paper shows that the FCN-Rothermel 
identification-prediction combination model fits 
well, effectively reduces the experimental error of 

the traditional modeling method, improves the iden-
tification and prediction efficiency, and to a certain 
extent provides an innovative point and a new way 
of thinking for the identification and prevention of 
hill fires. However, there are still flaws in this mod-
el, and the ability of the combined model to adapt to 
changes in different environments needs to be fur-
ther studied.
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