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The anomaly target detection accuracy and speed in transmission cable drone inspection batch images with 
low pixel size is not enough high to make operation decision. To address this problem by recon-struction of 
image enhancing pixel, a super-resolution transmission cable target detection method based on improved 
YOLO10 is proposed. In this paper, we do the following: (1) the Best-Buddy loss function is used instead of 
the commonly used one-to-one MSE/MAE loss function, allowing low pixel images to dynamically find the 
most suitable supervised image, providing more reasonable image details and reducing training difficulty; (2) 
a region-aware adversarial learning strategy is introduced, focusing on training texture-rich image areas, en-
riching the texture structure of images, making them more realistic, reducing artifacts, and improving their 
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visual effects; (3) the feature-driven super-resolution algorithm is applied to the object detection of power 
transmission lines, using YOLO10's backbone as a feature extractor and fine-tuning the super-resolution 
model to generate more machine-readable feature maps to improve detection accuracy and speed. The ex-
perimental results show that the proposed model improves detection accuracy by 6.62% compared to using 
only the YOLO10 object detection model and 1.22% compared to using ESRGAN (Enhanced Super-Resolu-
tion Generative Adversarial Networks) as image pre-processing before using YOLO7 for object detection, 
achieving a detection accuracy of 92.55%.
KEYWORDS: Feature-driven; Super-resolution algorithm; GAN; Power transmission cable; Machine learning

1. Introduction
Under severe weather conditions such as wind, snow, 
and ice, imaginary power transmission cables can 
cause frequent vibra-tions and movements, which 
can lead to ma-terial fatigue and accidents such as 
wire breakage or damage. Attaching vibration damp-
ers to the suspension points of power transmission 
cable towers can absorb or reduce wire amplitude, 
change the frequency of line sway, prevent line vi-
bration or movement, and are a key factor in extend-
ing the service life of power transmission cables. 
However, due to the long-term exposure of vibration 
dampers to harsh out-door conditions, they are prone 
to malfunctions, making it extremely important to 
identify abnormal dampers during power transmis-
sion cable inspections. Traditional manual inspec-
tions not only have low inspection efficiency but also 
cannot guarantee the safety of inspection personnel 
in complex environments. With the continuous de-
velopment of artificial intelligence, un-manned aeri-
al vehicle (UAV) inspections, represented by drones, 
have gradually re-placed traditional manual inspec-
tions, with higher efficiency and greater safety in the 
inspection process. However, due to the poor con-
trollability of drones in special weather conditions, 
if they do not maintain a safe dis-tance from the line 
equipment during flight, they are prone to accidental-
ly collide with power lines, causing the drone to crash 
and power equipment to be damaged, or even causing 
a power outage accident. Therefore, the power grid 
management agency re-quires that drones maintain 
a certain distance from high-voltage power equip-
ment, which leads to lower image resolution and 
smaller targets, increasing the difficulty of detecting 
small targets. The analysis of the detection results of 
UAV inspection images shows that the main-stream 
target detectors currently have poor capability of 
detection small targets in busy backgrounds. On the 

other hand, because small targets have fewer pixels 
in the original image due to their distance or limited 
carrying equipment, they lack relevant appearance 
information for detection, and their resolution and 
feature information gradually weaken after multiple 
down-sampling, increasing the difficulty of detection 
[6]. Therefore, it is ur-gently necessary to propose a 
method for de-tecting small targets in power trans-
mission cables under complex backgrounds to im-
prove detection efficiency [14].
A direct method to enhance recognition per-for-
mance for tiny targets in object detection is to use 
super-resolution algorithms for image reconstruc-
tion. Super-resolution reconstruction algorithms 
can be used to reconstruct the entire image or small 
target images cropped from the image, improving 
pixel density in the target and enabling the detection 
model to extract richer semantic information from 
the small target images in the backbone stage for bet-
ter prediction accuracy. To mitigate the diffi-culty 
of detecting small targets in low-resolution images 
under complex back-grounds, this study integrates 
image su-per-resolution reconstruction with object 
de-tection. The method introduces a region-aware 
adversarial learning strategy to enhance tex-ture 
details and applies the Best-Buddy loss function to 
improve the training efficiency and reconstruction 
quality by enabling flexible supervision.
The feature-driven super-resolution recon-struc-
tion algorithm combined with the YO-LO10 [12] 
model is proposed to solve the aforementioned prob-
lems in glass insulator detection under self-explo-
sion. Our main contributions are as follows: (1) us-
ing the Best-Buddy loss [9] function instead of the 
standard used one-to-one MSE/MAE loss to pre-
vent excessive smoothing and reduce ar-tifacts in 
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the generated images. (2) adopting a region-aware 
adversarial learning strategy [9] to make the model 
focus more on texture-rich regions during training, 
leading to more re-alistic texture effects in the gen-
erated images. (3) Fine-tuning the super-resolution 
model based on feature-driven techniques to ge-
ner-ate feature maps that are more understandable 
to the machine, reducing the differences be-tween 
the feature maps extracted from the super-resolu-
tion algorithmically created im-ages and the ground 
truth images, and im-proving the accuracy of the ob-
ject detector.

2. Related Works
Traditional super-resolution approaches pre-dom-
inantly rely on interpolation methods (e.g., Lanczos, 
non-uniform, and bicubic in-terpolation) for image 
upscaling. Despite their computational efficiency and 
implementation simplicity, these techniques general-
ly pro-duce limited reconstruction performance.
Rely on deep learning methods [4], the SRCNN [3] 
super-resolution reconstruction algorithm was em-
ployed to reduce noise and blur in the original imag-
es, thereby opti-mizing and enhancing the dataset. 
Due to the presence of subpixel structures such as 
thin cables and insulators in aerial images, con-ven-
tional SR methods like SRCNN, which rely on fixed-
size convolutional kernels, often fail to reconstruct 
these fine-grained details.
Subsequently, they employed the YOLOv4 [2] detec-
tion algorithm for detecting self-explosion faults in 
glass insulators. However, it was found that SRCNN 
did not yield satisfactory results for reconstruct-
ing complex images [10]. To address this, dy-nami-
cally selected different super-resolution networks 
for reconstruction based on the images' diverse 
features, thereby achieving improved detection re-
sults. Authors in [15] introduced a feature texture 
transfer module that combined deep semantic fea-
tures of low-resolution images and shallow area 
tex-tures of high-resolution reference features to 
reconstruct small target features and improve the 
detection capability of small targets. Alt-hough the 
above-improved object detection models have im-
proved detection accuracy to a certain extent, they 
did not consider that the reconstructed images only 

focus on the sensory experience of human vision, 
while ignoring the machine's understanding of fea-
ture maps, which may cause unforeseen impacts 
in sub-sequent detection tasks. Moreover, during 
the generator model training phase, one-to-one 
MSE/MAE losses were used to force the map-ping 
transformation between the given low-resolution 
and high-resolution image pairs, which is difficult 
to train and may lead to excessive smoothing and 
generation of pseudo-artifacts. Unlike traditional 
su-per-resolution and detection approaches that 
focus primarily on visual enhancement or isolated 
module optimization, our proposed method inte-
grates a feature-driven su-per-resolution network 
with a task-aware de-sign. This ensures that the re-
constructed im-ages are not only visually improved 
but also better aligned with the feature representa-
tion required by the detection model, leading to su-
perior performance in small object detection under 
complex conditions.

3. Super-resolution Network
3.1. ESRGAN Super-resolution model

Enhanced Super-Resolution Generative Ad-versari-
al Network (ESRGAN) [13] inherits the characteris-
tics of the Super-Resolution Gen-erative Adversar-
ial Network (SRGAN) [8] model. It is a deep neural 
network structure consisting of two networks, one 
opposing the other. One neural network generates 
its cor-responding high-resolution image based on 
the input LR (low-resolution image), which is called 
the generator. The other neural network is used to 
evaluate the authenticity of the input image, deter-
mining whether each High-definition imagery it re-
views belongs to the actual training dataset, which 
is called the discriminator. The two neural networks 
are iteratively trained until the discriminator can no 
longer distinguish whether the input im-age is gen-
erated or real, which is considered as Nash equilib-
rium [11]. Finally, the generator model can generate 
high-resolution images that are indistinguishable 
from real ones.
ESRGAN uses Relativistic average GAN to learn 
"whether a picture is more real than others "rather 
than just "whether a picture is true or false" [1]. Ex-
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perimental results demonstrate that the proposed 
enhancement enables the generator to reconstruct 
more authentic texture details.

3.1.1. Generator Model
Since the original BN (Batch Normalization) [7] lay-
er relies on the mean and variance pa-rameters of 
the batch data when regularizing the features, but 
mainly relies on the esti-mated mean and variance 
parameters of the test set during the testing process, 
the BN layer introduces artifact interference and 
limits the generalization ability of the model when 
the data of both are widely different. Thus, the gen-
erator model of ESRGAN removes the BN layer to 
obtain a stable and consistent training effect. Based 
on the architectural design of SRGAN, ESRGAN in-
troduces a deep residual dense connection [5] to pro-
pose RRDB (Re-sidual in Residual Dense Block) to 
replace the conventional fundamental block. It com-
bines the multi-level residual network and dense 
connection with a deeper and more complex struc-
ture, which can ex-tract more effective features.

3.1.2. Discriminator Model
The network model of the ESGRAN dis-criminator 
uses VGG-19. The output value of SRGAN discrimi-
nator D is the probability that the reconstructed im-
age is consistent with the real image, while ESGRAN 
is effectively improved by referring to Relativistic 
GAN, and the output value of discriminator D is the 
chance that the real image is more inclined to the 
real image than the false image. The probability of 
the discriminator in SRGAN is calculated as follows: 

D(xr) = σ (C(xr)) →1

D(xf) = σ (C(xf)) → 0
. (1)

Further, the discriminator D probability of Relativ-
istic GAN is calculated as follows: 

DRa(xr ,xf ) = σ (C(xr) – Exf
[C(xf )] ) →1 (2)

DRb(xf ,xr ) = σ (C(xf) – Exr
[C(xr )] ) →0 , (3)

where represents the indicate that the dis-crimi-
nated image is more real than the false image, and 
represents the indicate that the discriminated im-

age is falser than the true image. From this, the orig-
inal discrimination mechanism is supplanted by 
the relative av-erage discriminator RaD, which is 
expressed as in the formula. The standard discrim-
inator in SRGAN can be expressed as D(x)=σ((x)), 
where represents the Sigmoid function, rep-resents 
the discriminator output of the end transformation, 
represents the average oper-ation of all spurious 
data in a small batch, and the discriminator The loss 
function of the identifier is defined as follows:

LG
Ro – Exr [log(1 – DRo(xr ,xf ))]

– Exf [log(DRo(xf ,xr ))]
. (4)

3.2. Improving ESRGAN

3.2.1. Best-Buddy Loss
A single image super-resolution reconstruc-tion is 
essentially an ill-posed problem with multiple solu-
tions, so a low-resolution patch should correspond 
to multiple high-resolution super-vised patches 
while all current models use the common one-to-
one MSE/MAE loss, which forces a mapping be-
tween a given low-resolution and high-resolution 
image pair during the training phase. This strict-
ly limits the generated HR images, making it very 
difficult and un-reasonable to train the net-work, 
and the reconstructed HR images may lack sever-
al high-frequency structures. The Best-Buddy loss 
function improves the one-to-one MAE loss func-
tion by exploiting the self-similarity prevalent in 
natural images to find and use a suitable HR patch 
as a super-vised patch in high-definition images in 
a flexible manner patch.
For the patch to be evaluated, it is necessary to find the 
supervised patch (i. e., the best partner) correspond-
ing to it in the current it-eration, which needs to sat-
isfy two constraints: (1) must remain proximal to the 
prespecified real patch in the HR space, and it is likely 
to find an HR patch close to the real patch among the 
candidate patches of the real HR image. (2) To make 
the subsequent optimization easier, should be close 
to the 2nd term in Equation (7). Since the generator 
model uses a pre-trained model, is a reasonable pre-
diction patch. If satisfying these two constraints, then 
is a reasonable HR supervised patch.
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First, the real high-resolution images are down sam-
pled using different scales:

I r
HR = S(IHR,r),r = {2,4}, (5)

where is performing bicubic downsampling. Image 
downsampling results in a 3-layer image pyramid 
containing the original GT images at different reso-
lutions. The HR image to be evaluated and the cor-
responding GT image pyramid are unfolded into n*n 
patches, and the GT image unfolded patches are used 
as the supervised candidate database G. For the i-th 
to be estimated. 
The patch is noted as, which is not supervised by the 
predefined real patch and needs to find the best part-
ner to supervise in the current iteration:

g*
i = arg min α||g–gi||2

2 + β||g–p̂i||2
2

g ϵ G
, (6)

where ≥ 0 and ≥ 0 are scaling parameters. The best 
buddy loss for this patch is expressed as:

LBB (p̂i – g*
i) = ||p̂i – g*

i||1 . (7)

When <<, the best partner loss function de-generates 
to a typical one-to-one MAE loss.

3.2.2. Region-aware Adversarial Learning Strategy
Images reconstructed using ESGRAN some-times 
produce artifacts, especially in smooth regions. 
Therefore, region-aware adversarial learning is used 
to distinguish texture-rich regions from smooth 
regions based on local pixel statistics, and only tex-
ture-rich content is provided to the discriminator 
since images in smooth regions are easy to train 
without ad-versarial training.
First, the real HR image (i. e., IHR ϵ RHS×WS) is expanded 
into block B(B ϵ  RHS×WS×k2) of size, and then the stan-
dard deviation of each block is calculated. Then, the 
binary masks are obtained according to Equation (9) 
as follows: 

Mi , j = 

1,    std (Bi , j) ≥ δ

0,    std (Bi , j) < δ





, (8)

where is the predefined threshold and is the location 
of the patch. Texture-rich regions are marked as 1, 

while texture-smoothed regions are marked as 0. The 
evaluation results and ground truth are then multi-
plied with the same mask M to obtain and, which are 
then computed by the discriminator. Although more 
arithmetic power is consumed by using the complex 
training method, the results show that the model can 
generate more realistic texture effects.

4. Methods
4.1. YOLO10 Network

The YOLO algorithm series constitutes the most 
characteristic implementation of sin-gle-stage ob-
ject detection frameworks, em-ploying deep neural 
networks for simulta-neous object recognition and 
spatial localiza-tion. They run very fast and can be 
used in real-time systems. The network structure 
of YO-LO10 can be classified into three parts: Back-
bone, Neck, and Head. Backbone is the backbone 
network, which is the basic feature extraction layer 
responsible for extracting features of different scales 
in the image, with rich high-level semantic informa-
tion and rich bottom-level structural positioning in-
for-mation. Neck is the feature fusion layer, which is 
responsible for fusing different scale feature maps 
together. Head is the prediction layer, which is re-
sponsible for processing the output of the Neck part 
and making predictions. YOLO10 first performs Mo-
saic data augmen-tation, adaptive anchor box cal-
culation, and image scaling on the image, and then 
pre-processes the image into an RGB image of size 
640*640 and inputs it into the Backbone to extract 
different sizes of features. The feature maps extract-
ed at different stages are then input into PAFPN in 
the Neck part for full fusion of the top-level seman-
tic features and bottom-level structural positioning 
features in the Backbone, and parameter aggregation 
of different detection layers in different back-bone 
layers. Finally, regression prediction is per-formed 
on targets of different sizes, namely large, medium, 
and small.

4.2. Feature-driven Su-per-resolution-
based Recon-struction Network with 
Target Detector
Although the convolutional neural net-work-based 
super-resolution generative ad-versarial network 
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algorithms currently achieve good visual results in 
image recon-struction, these models are too focused 
on human visual perception and ignore the spe-cific 
needs of downstream vision tasks in-cluding object 
detection, image segmentation, and recognition. The 
generated feature maps of super-resolution recon-
struction may differ from those of the real images 
after multiple convolutions, which makes it difficult 
for the model to understand and affects accuracy.
As shown in Figure 1, to balance the needs of sub-
sequent tasks and improve detection performance, 
we use a trained object detection backbone network 
as a feature extractor to make the reconstructed HR 
image features with a similarity of possible to those 
of the real HR image features. The feature-driven 
su-per-resolution reconstruction network reduces 
the excessive coupling be-tween the feature extractor 
and the subsequent detection net-work, which helps 
enhance the practical utility of synthesized imagery 
in subsequent detec-tion networks. Mean squared er-
ror (MSE) is applied to evaluate the feature differenc-
es between the HR image extracted by the backbone 
net-work and the reconstructed image:

 , (9)

where  is the feature of the reconstruct-

ed image,  is the char-acteristic attribute of 
the reference image, denotes the Frobenius parame-
trization, and is the index of the image.

4.3. Other Loss Functions

Perceptual loss: ESRGAN enhances the visual per-
ceptual quality by minimizing the fea-ture-space 
discrepancy rather than pixel-level divergence. The 
perceptual loss is:

 , (10)

The loss function of the final generator net-work as 
a whole is:

L =  λ1 LBB +  λ2 LP +  λ3 L
Feat  , 

where, λ1 = 0.1, λ2 = 1.0, λ3 = 1.0
MSE

 
. (11)

5. Experiments
The experimental environment is Windows 10 oper-
ating system, Python 3.7, Pytorch 1.12.1, and the GPU 
is NVIDIA GeForce RTX 2080TI, and the detailed 
configuration is shown in Table 1.

5.1.1. Model Evaluation Indicators
The effect of model improvement was evalu-ated by 
comparing several metrics before and after mod-
el improvement in the same ex-perimental setting. 
The performance of the target detection model was 
verified using four metrics, precision (precision) P, 
recall (recall) R, average precision (average preci-

Figure 1  
Feature-driven super-resolution network structure.
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Table 1
Experimental platform configuration.

CPU Memory/GB GPU System CUDA

Intel Xeon Gold 5120 16 NVIDIA GeForce RTX 2080Ti Win 11 CUDA-11

sion, AP), and frames per second (FPS) F, which are 
expressed as follows:

(12)

(13)

 , (14)

where NTP indicates the number of accurately detect-
ed hammers; NFP indicates the number of unlabeled 
but detected error samples; NFN indicates the num-
ber of labeled hammers not identified, i.e. the num-
ber of missed detec-tions; the accuracy P indicates 
the probability of correct prediction among the de-
tected hammers; and the recall R indicates the prob-
ability that a certain hammer is detected. In the P-R 
curve, the area enclosed by the P-R curve and the 
coordinate axis is equal to the size of the AP value. 
The mAP is obtained by averaging the AP values of 
all categories. The mAP is used in this experiment 
to evaluate the detection performance of the whole 
target detection network model.

5.1.2. Datasets
In this paper, we use a homemade power transmission 
cable dataset for the detection of anti-vibration ham-
mers, which includes an-ti-vibration hammers of dif-
ferent sizes and angles. The power transmission cable 
dataset consists of 1184 power transmission cable 
in-spection images, and the image input scale is set 
to 640×640 during the training process. The clear and 
complete anti-vibration hammers in the images are 
labeled by using labelImg software, and the labeled 
dataset is randomly classified into a training set, test 
set, and validation set according to the ratio of 6:2:2.

5.1.3. Model Training
The training of this model is mainly divided into 
two parts: super-resolution (SR) network and fea-

ture extractor of the detection archi-tecture. In 
the stage of training the su-per-resolution model, 
the public pre-trained RRDB model is used. During 
the object de-tector training phase, we use a part of 
the YOLO10 backbone network as the feature ex-
tractor. First, we train the entire YOLO10 network 
to generate effective feature maps by the feature 
extractor, then we train the fea-ture-driven su-
per-resolution network to gen-erate super-resolu-
tion feature maps that can pass off as real images, 
and finally, the sub-sequent YOLO10 object detec-
tion network is used to complete the detection of 
the shock absorber.

5.1.4. Analysis of Experimental Results
Five sets of experimental methods were used with 
the same test set and different model set-tings. Model 
a uses the ESRGAN su-per-resolution algorithm for 
image recon-struction; Model b adds region-aware 
adver-sarial learning strategy based on the ESR-
GAN model, supplanting the loss function with the 
Best-buddy loss function (generating su-per-res-
olution images instead of feature maps). Model c 
uses the standard YOLO10 object detector; Model d 
uses the ESRGAN super-resolution algorithm to im-
prove image pixels before object detection; Model e 
uses our proposed feature-driven super-resolution 
al-gorithm for object detection. Traditional manual 
or low-accuracy detection methods often result in 
missed or false detections, leading to repeated in-
spections, increased labor costs, and potential op-
erational risks. By significantly improving detection 
accura-cy—particularly for small and low-resolu-
tion targets—the proposed method reduces the fre-
quency of manual verification and the likelihood of 
undetected faults.
The detection results of experiments a and b are 
shown in Figure 2. Although the shape features of the 
generated seismic hammer have not fully restored 
the structural features of the real image, the generat-
ed image has achieved good visual effects compared 
to the low-resolution image. In addition, the texture 
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structure of the trees in the generated image is very 
close to that of the real image, and there is no unrea-
sonable pseudo-shadow structure, which confirms 
the effectiveness of the re-gion-aware adversarial 
learning strategy. The results of experiments a and 
b show that by improving ESRGAN, the super-res-
olution model can generate images that are likely to 
real images, which confirms the effectiveness of the 
super-resolution model and provides a guarantee for 
subsequent feature-driven su-per-resolution object 
detection experiment.
The experimental results of super-resolution recon-
struction are shown in Table 2:

The detection results of the target detection com-
parison experiment part are shown in Table 3 and 
Figure 3. The use of the su-per-resolution algorithm 
can enhance the detection accuracy of the target de-
tector for small targets. It can be seen that the mAP 
value of model c is improved by 6.2% compared to 
model b without the su-per-resolution algorithm, 
and the target de-tection algorithm model based 
on the fea-ture-driven super-resolution algorithm 
com-bined with YOLO10 proposed in this paper has 
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algorithm to improve image pixels before ob-

ject detection; Model e uses our proposed fea-
ture-driven super-resolution algorithm for ob-
ject detection. Traditional manual or low-accu-
racy detection methods often result in missed 
or false detections, leading to repeated inspec-
tions, increased labor costs, and potential op-
erational risks. By significantly improving de-
tection accuracy—particularly for small and 
low-resolution targets—the proposed method 
reduces the frequency of manual verification 
and the likelihood of undetected faults. 

The detection results of experiments a and b 
are shown in Figure 2. Although the shape fea-
tures of the generated seismic hammer have 
not fully restored the structural features of the 
real image, the generated image has achieved 
good visual effects compared to the low-reso-
lution image. In addition, the texture structure 
of the trees in the generated image is very close 
to that of the real image, and there is no unrea-
sonable pseudo-shadow structure, which con-
firms the effectiveness of the region-aware ad-
versarial learning strategy. The results of ex-
periments a and b show that by improving 
ESRGAN, the super-resolution model can gen-
erate images that are likely to real images, 
which confirms the effectiveness of the super-
resolution model and provides a guarantee for 
subsequent feature-driven super-resolution 
object detection experiment
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 (a) is a low-resolution image, (b) is the small target of the low-resolution image, (c) is the result of bicubic interpolation (d) is the 

image generated by the ESRGAN super-resolution model, (e) is the image generated by the improved super-resolution model, 
and (f) is the real image. 
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Figure 2
(a) is a low-resolution image, (b) is the small target of the low-resolution image, (c) is the result of bicubic interpolation (d) 
is the image generated by the ESRGAN super-resolution model, (e) is the image generated by the improved super-resolution 
mod-el, and (f ) is the real image.

Table 2
Experimental results of super-resolution reconstruction.

Method PSNR (dB) SSIM

Bicubic 22.36 0.6023

ESRGAN 23.78 0.6312

Ours 24.49 0.6948

Model mAP@0.5 
(%)

Precision 
(%)

Recall 
(%)

Model c (YOLO10) 85.53 86.83 85.36

Model d (ESRGAN + 
YOLO10) 91.33 90.76 91.56

Ours (Fea-ture-driven 
SR + YOLO10) 92.55 92.87 91.93

Table 3
Target Detection Experiment Results.
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an improved mAP value of 1.22% com-pared to the 
ESRGAN combined with YO-LO10 algorithm model. 
The loss curve of the YOLO10 model is shown in Fig-
ure 4, where the horizontal axis repre-sents the num-
ber of iterations, and the vertical axis represents the 
loss value of the training process, which stabilizes at 
around 0.015 after 400 iterations.

pixels in UAV inspection. Com-bined with the ex-
perimental results, the analysis reveals are drawn: 
(1) Compared with the commonly used one-to-one 
MSE/MAE (Mean Squared Error/Mean Absolute 
Error) loss function, the one-to-many Best-Buddy 
loss function adopted in this paper can prevent the 
generated images from being over-smoothed and 
reduce artifacts. (2) The region-aware adversarial 
learning strategy allows the model to focus more 
on the texture-rich parts of the image and generate 
more realistic texture effects. (3) The use of an im-
proved fea-ture-driven super-resolution target de-
tection network can generate feature maps that are 
easy to understand by the machine and in-crease 
the predictive accuracy of the target detector. 
This paper verifies the usability of feature-driven 
super-resolution-based target detection in pow-
er transmission cable target detection, improves 
algorithm performance with high accuracy, and 
provides a new re-search method for future power 
transmission cable small target detection and de-
fect detec-tion.
In future work, we aim to extend our approach to 
multi-frame super-resolution, which can leverage 
temporal redundancy to further enhance recon-
struction quality. Additionally, exploring transform-
er-based attention mechanisms could help the mod-
el better focus on relevant small target regions.
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The detection results of the target detection 
comparison experiment part are shown in Ta-
ble 3 and Figure 3. The use of the super-reso-
lution algorithm can enhance the detection ac-
curacy of the target detector for small targets. 
It can be seen that the mAP value of model c is 
improved by 6.2%  

 

compared to model b without the super-reso-
lution algorithm, and the target detection algo-
rithm model based on the feature-driven su-
per-resolution algorithm combined with 
YOLO10 proposed in this paper has an im-
proved mAP value of 1.22% compared to the 
ESRGAN combined with YOLO10 algorithm 
model.
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Figure 3 

Comparison of detection results. As shown in Figure 3, (a) shows the target detection effect using only the YOLOv7 
model; (b) shows the detection effect of the model in this paper. In (a), two anti-vibration hammers are not detected 

because they occupy too few pixels in the image, while in (b), the results demonstrate that the present model has good 
detection results for the small-scale anti-vibration hammers that were not detected before due to insufficient pixels. 

Most of the confidence levels exceed 80%. 
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The loss curve of the YOLO10 model is shown in Figure 4, where the horizontal axis repre-
sents the number of iterations, and the vertical 
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Figure 3
Comparison of detection results. As shown in Figure 3, (a) shows the target detection effect using only the YOLOv7 model; (b) 
shows the detection effect of the model in this paper. In (a), two anti-vibration hammers are not detected because they occupy 
too few pixels in the image, while in (b), the results demonstrate that the present model has good detection results for the small-
scale anti-vibration hammers that were not detected before due to insufficient pixels. Most of the confidence levels exceed 80%.

Figure 4 
YOLOv7 network loss curve.
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Figure 4 
YOLOv7 network loss curve. 

 

 

 

6. Conclusions 
A feature-driven super-resolution reconstruc-
tion target detection algorithm is proposed to 
resolve the inefficiency of detection caused by 
small image pixels in UAV inspection. Com-
bined with the experimental results, the anal-
ysis reveals are drawn: (1) Compared with the 
commonly used one-to-one MSE/MAE (Mean 
Squared Error/Mean Absolute Error) loss 
function, the one-to-many Best-Buddy loss 
function adopted in this paper can prevent the 
generated images from being over-smoothed 
and reduce artifacts. (2) The region-aware ad-
versarial learning strategy allows the model to 
focus more on the texture-rich parts of the im-
age and generate more realistic texture effects. 
(3) The use of an improved feature-driven su-
per-resolution target detection network can 
generate feature maps that are easy to under-
stand by the machine and increase the predic-
tive accuracy of the target detector. This paper 
verifies the usability of feature-driven super-
resolution-based target detection in power 
transmission cable target detection, improves 
algorithm performance with high accuracy, 
and provides a new research method for fu-
ture power transmission cable small target de-
tection and defect detection. 

In future work, we aim to extend our approach 
to multi-frame super-resolution, which can 
leverage temporal redundancy to further en-
hance reconstruction quality. Additionally, ex-
ploring transformer-based attention mecha-
nisms could help the model better focus on rel-
evant small target regions. 
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