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1. Introduction
Sparse optimization has emerged as a cornerstone 
of high-dimensional data analysis, enabling fea-
ture selection and model interpretability across 
machine learning, signal processing, and genomics. 

Central to these applications is the identification of 
ultra-sparse solutions through regularization tech-
niques, where a penalty term P(x,λ) is added to the 
loss function: 
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penalty term P(x, λ) is added to the loss function: 
Q(x̂|D, y, λ): x̂ = argmin

x
(D, x, y) + P(x, λ) 

 
 . (1)

While L0-norm regularization provides ideal sparsi-
ty [18], its NP-hard complexity has driven the adop-
tion of convex/non-convex surrogates like L1-norm 
[21], Lq-norm(0<q<1) [14], CAD [13], LSP [7] and 
MCP [27]. These approximations balance computa-
tional tractability with sparsity induction but face 
escalating computational costs as data dimensional-
ity increases, which appears in some typical sparse 
optimization application scenarios, such as feature 
selection [20], compressed sensing [1], deep learn-
ing [26], etc.
Traditional solvers (ISTA [9], FISTA [4], coordi-
nate descent) iteratively update solutions through 
subgradient or proximal operations. However, their 
computation complexity becomes prohibitive for 
high-dimensional data. Screening strategies address 
this by eliminating provably inactive features using 
safety tests [15]. Static methods [23, 24, 22, 25, 19] 
(ST1, DOME) pre-screen features before optimiza-
tion but fail when regularization parameters λ ap-
proach zero. Dynamic test functions DST1, DDOME 
[5] update screened features iteratively but share the 
same limitation under strong sparsity constraints 
λ
λ*

 <0.3 [6]. Recent research on feature screening 

has abandoned the traditional practice of using el-
ementary functions as screening tools and instead 
adopted methods such as neural networks [16, 17], 
evolutionary computation [8], and non-parametric 
statistics [10, 3, 28].
The core challenge lies in the diminishing discrimi-
native power of existing safety tests as λ is very small 
[20-21]. When λ is small, traditional sphere-test 
thresholds become negative, while polytope-based 
tests (DOME) collapse to trivial bounds. This ren-
ders 90%+ features unfiltered in ultra-sparse re-
gimes, forcing solvers to process full-dimensional 
data despite solution sparsity.
We propose Efficient Screening-Based Optimization 
(ESO), a dual-threshold framework integrating:  
1	 Probabilistic Screening: A greedy criterion re-

taining features with gradients exceeding a given 
threshold, dynamically balancing safety and ag-
gressiveness.  

2	 Proximal-Inspired Test Function: generalizable 
to arbitrary penalties through gradient analysis.  

3	 Adaptive Parameter Updates: Self-tuning based 
on iterative solution sparsity.  

Theoretical analysis confirms ESO preserves solu-
tion consistency while reducing per-iteration com-
plexity. Experiments validate 50–70% speedups 
over state-of-the-art screening methods at λ= 10-5, 
with robustness across penalties L1, SCAD, MCP) 
and data types (synthetic, images, genomic).  
This work bridges three gaps:  
1	 Theoretical: First screening framework with con-

vergence guarantees for non-convex penalties.  
2	 Practical: Parameter p = 0.9 provides stable accel-

eration across datasets.  
3	 Scalability: Sublinear complexity scaling enables 

applications to 21k-feature genomic data.  
The remainder of this paper details ESO’s method-
ology (Section 2), experimental validation (Section 
3), and broader implications for large-scale ana-
lytics. Key innovations include a unified screening 
paradigm for diverse penalties and a probabilistic 
thresholding mechanism overcoming small λ limita-
tions of deterministic tests.

2. Methodology
2.1. Greedy Screening Strategy

To guarantee security, the dynamic screening 
strategy employs a test function T that rigorous-
ly evaluates the inactivity of each feature column. 
However, achieving this objective becomes high-
ly challenging when λ is extremely small. We pro-
pose that the proximal operator (prox) inherently 
provides stronger discriminative capability; thus, 
the screening test T need not enforce absolute ac-
curacy in identifying inactive features. Instead, it 
suffices to ensure that screened features exhibit a 
high probability of inactivity. Under this relaxed 
criterion, T can eliminate the majority of inactive 
features even at small λ values, thereby enhancing 
computational efficiency. Motivated by this ratio-
nale, we introduce a greedy screening strategy in 
this work. The pseudo code is as follows:
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where 0 ≤ p ≤ 1 is a regulating parameter used to ad-
just the size of the screening threshold h. Dt is con-
sisted of features considered active in the previous 
iteration and features selected with a threshold 
h which is higher than λ. In step 7, a screening test 
function is used to screen inactive features. We 
named the test function STT: 

where 0 ≤ � ≤ 1 is a regulating parameter used to 
adjust the size of the screening threshold h. �� is 
consisted of features considered active in the previous 
iteration and features selected with a threshold h 
which is higher than �. In step 7, a screening test 
function is used to screen inactive features. We named 
the test function STT:  

.       2  
The greedy screen strategy uses a double loop to 
guarantee the convergence of the algorithm. It is 
shown that the algorithm integrated with the greedy 
screening strategy converges to the local optimal 
solution of the problem of Q.  
In each iteration round, the time complexity of step 5 
for gradient calculation is O(m*n), whereas that of 
step 6 for feature screening is only O(m), which is 
negligible. Here m denotes the number of features, 
and n represents the number of samples. Particularly 
in ultra-high-dimensional or streaming scenarios, the 
time consumption for feature screening becomes 
negligible since n is huge. 
2.2 ����������� ����� 
Lemma 1: 
Assuming algorithm A guarantees convergence to a 
local optimum of problem Q, its variant B—which 
integrates a greedy feature filtering strategy—also 
maintains convergence to a local optimum of Q. 
Algorithm A converges to a local optimum for 
problem Q, demonstrating that each iterative update 
to the temporary solution x monotonically decreases 
the objective function value, which attains its 
minimum at convergence. 
We further prove that Algorithm B satisfies these dual 
conditions. For the loss function, inactive features are 
excluded from computation, yielding: 

�(�, �, �, �) = �(�∗, �, �, �)�. �. �∗ = {��|�� ≠ 0} 

�∗ ∈ �� → �(��, �, �, �) = �(�∗, �, �, �)
= �(�, �, �, �) 

�(��, ��−1, �, �) ≥ �(��, ��, �, �) → �(�, ��−1, �, �)
≥ �(�, ��, �, �). 

That is, during the iterative process of Algorithm B, 
the objective function value at point D monotonically 
decreases. Furthermore, the termination condition of 
Algorithm B's outer loop is identical to that of 
Algorithm A. Consequently, if Algorithm B 
converges, Algorithm A—when initialized with the 
same solution—will immediately satisfy the stopping 
criterion, indicating that the objective function has 
attained its minimum. Hence, the integrated algorithm 
incorporating the greedy screening strategy must 
converge to a local optimum. 
2.3 ����������� �������� 
For non-sparse optimization, gradient descent along 
all features achieves the fastest convergence. By 
contrast, in sparse optimization, the presence of 
inactive features renders this full-gradient direction 
suboptimal; instead, the optimal descent path aligns 
exclusively with the gradients of active features. 
Although pre-determining active traits remains 
challenging, convergence accelerates when 
prioritizing features with higher activation likelihood. 
The greedy screening strategy addresses this by 
iteratively selecting probable active features through 
high-threshold filtering, thereby accelerating the 
descent process. 
ISTA employs iterative thresholding to select active 
features because the gradient of its objective function 
quantifies residual-feature correlations. This gradient 
term is mathematically equivalent to the residual-
feature correlation coefficient up to a first-order 

approximation. The residual, defined as the difference 
between actual observation y and the current 
temporary solution's predicted value generated by the 
hypothesis function, exhibits higher predictive 
relevance for active features. Under the Central Limit 
Theorem (CLT), normalized features converge in 
distribution to N(0,1) given sufficient sample size. 
Consequently, the correlation coefficient between any 
feature and said residual asymptotically 
follows N(0,σ²). Crucially, inactive features 
demonstrate diminished residual correlations and 
gradient variances, whereas active features exhibit 
substantially larger gradient variance. 
The algorithm combining ISTA with greedy masking 
is designated GISTA. An iteration of GISTA is 
analyzed as follows: starting from initial point �1, the 
update yields new point �2 with step size �, such 
that: 

�(�) = 
|�� ≠ 0 �(�) = 
|�� = 0 

�1 = |�((�̂))| �2 = |�((�̂))| 
� = �� 

��∈�(�̂) ~ � (0, �1
2) ��∈�(�̂) ~ � (0, �2

2
) �1 > �2 

we have: 
� (ℎ) = ||�2 − �̂||1 − ||�1 − �̂||1

= ∑ �
�∈�

|��| − ∑ �
�∈�

|��| − ∑ �
�∈�

|��| 

Let 

� = {
|||��| > ℎ} ∩ �(�̂) 

­ = {
||��| > ℎ&���1, 
 < 0} ∩ �(�̂) 

� = {
||��| > ℎ&���1, 
 > 0} ∩ �(�̂) 

then we have 

�(ℎ) = �(� (ℎ)) = �|�|�(��∈� ) − �|�|�(��∈�)
− �|­ |�(��∈� ) 

Let f denotes the probability density function of 
normal distribution: 

� (�, �, �) = 1
√2��

�−(�−�)2

2�2  

then we have 

�(��∈�) = ∫ �
+∞

ℎ
�(�, 0, �2)�� =

�2

√2�
�

− ℎ2

2�2
2
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�1

√2�
�

− ℎ2

2�1
2
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Let �3 = |­ |,�4 = |�|, then 

��
�ℎ

=
�3�

√2��1

�
− ℎ2

2�1
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+
�2�
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−
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For sparse optimization problems, we have 
�4 < �1 ≪ �2, �3 ≈ �4, �1 ≈ �2 

it means �

�ℎ > 0.  

Consequently, larger h values in GISTA enhance 
proximity to the optimal solution per iteration. 
However, excessively large h severely restricts the 
feature subset Dt, necessitating more iterations for 

<

 

. (2)

The greedy screen strategy uses a double loop to 
guarantee the convergence of the algorithm. It is 
shown that the algorithm integrated with the greedy 
screening strategy converges to the local optimal 
solution of the problem of Q. 
In each iteration round, the time complexity of step 
5 for gradient calculation is O(m*n), whereas that of 
step 6 for feature screening is only O(m), which is 
negligible. Here m denotes the number of features, 
and n represents the number of samples. Particular-
ly in ultra-high-dimensional or streaming scenarios, 
the time consumption for feature screening becomes 
negligible since n is huge.

2.2. Convergence proof
Lemma 1:
Assuming algorithm A guarantees convergence to 
a local optimum of problem Q, its variant B—which 
integrates a greedy feature filtering strategy—also 
maintains convergence to a local optimum of Q.
Algorithm A converges to a local optimum for prob-
lem Q, demonstrating that each iterative update to 

Algorithm Greedy screening

Require: Dataset D, initial solution x0, label y, regularization λ, aggressiveness p ϵ [0,1]
1: D0=D
2: Initialize t=0
3: repeat
4:       t=t+1
5:       Compute gradient: δt =ΔL(D, xt–1, y)
6:       Update dual threshold: ht = (1–p)λ+p‖δt‖∞ 

7:       Screening:  At={dj ||δt,j |≥ht}  // Proximal-inspired test (STT)
8:       Active set update:  Dt ={dj | xt–1,j ≠ 0}  At

9:       Solution update:    xt = Update(Dt, xt–1) 
10: until Stopping criterion at Dt and D

the temporary solution x monotonically decreases 
the objective function value, which attains its min-
imum at convergence.
We further prove that Algorithm B satisfies these 
dual conditions. For the loss function, inactive fea-
tures are excluded from computation, yielding:

where 0 ≤ � ≤ 1 is a regulating parameter used to 
adjust the size of the screening threshold h. �� is 
consisted of features considered active in the previous 
iteration and features selected with a threshold h 
which is higher than �. In step 7, a screening test 
function is used to screen inactive features. We named 
the test function STT:  
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integrates a greedy feature filtering strategy—also 
maintains convergence to a local optimum of Q. 
Algorithm A converges to a local optimum for 
problem Q, demonstrating that each iterative update 
to the temporary solution x monotonically decreases 
the objective function value, which attains its 
minimum at convergence. 
We further prove that Algorithm B satisfies these dual 
conditions. For the loss function, inactive features are 
excluded from computation, yielding: 

�(�, �, �, �) = �(�∗, �, �, �)�. �. �∗ = {��|�� ≠ 0} 

�∗ ∈ �� → �(��, �, �, �) = �(�∗, �, �, �)
= �(�, �, �, �) 

�(��, ��−1, �, �) ≥ �(��, ��, �, �) → �(�, ��−1, �, �)
≥ �(�, ��, �, �). 

That is, during the iterative process of Algorithm B, 
the objective function value at point D monotonically 
decreases. Furthermore, the termination condition of 
Algorithm B's outer loop is identical to that of 
Algorithm A. Consequently, if Algorithm B 
converges, Algorithm A—when initialized with the 
same solution—will immediately satisfy the stopping 
criterion, indicating that the objective function has 
attained its minimum. Hence, the integrated algorithm 
incorporating the greedy screening strategy must 
converge to a local optimum. 
2.3 ����������� �������� 
For non-sparse optimization, gradient descent along 
all features achieves the fastest convergence. By 
contrast, in sparse optimization, the presence of 
inactive features renders this full-gradient direction 
suboptimal; instead, the optimal descent path aligns 
exclusively with the gradients of active features. 
Although pre-determining active traits remains 
challenging, convergence accelerates when 
prioritizing features with higher activation likelihood. 
The greedy screening strategy addresses this by 
iteratively selecting probable active features through 
high-threshold filtering, thereby accelerating the 
descent process. 
ISTA employs iterative thresholding to select active 
features because the gradient of its objective function 
quantifies residual-feature correlations. This gradient 
term is mathematically equivalent to the residual-
feature correlation coefficient up to a first-order 
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For sparse optimization problems, we have 
�4 < �1 ≪ �2, �3 ≈ �4, �1 ≈ �2 

it means �

�ℎ > 0.  

Consequently, larger h values in GISTA enhance 
proximity to the optimal solution per iteration. 
However, excessively large h severely restricts the 
feature subset Dt, necessitating more iterations for 

<

That is, during the iterative process of Algorithm 
B, the objective function value at point D mono-
tonically decreases. Furthermore, the termination 
condition of Algorithm B's outer loop is identical to 
that of Algorithm A. Consequently, if Algorithm B 
converges, Algorithm A—when initialized with the 
same solution—will immediately satisfy the stop-
ping criterion, indicating that the objective function 
has attained its minimum. Hence, the integrated al-
gorithm incorporating the greedy screening strategy 
must converge to a local optimum.

2.3. Performance analysis
For non-sparse optimization, gradient descent along 
all features achieves the fastest convergence. By 
contrast, in sparse optimization, the presence of in-
active features renders this full-gradient direction 
suboptimal; instead, the optimal descent path aligns 
exclusively with the gradients of active features. 
Although pre-determining active traits remains 
challenging, convergence accelerates when prior-
itizing features with higher activation likelihood. 
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The greedy screening strategy addresses this by it-
eratively selecting probable active features through 
high-threshold filtering, thereby accelerating the 
descent process.
ISTA employs iterative thresholding to select active 
features because the gradient of its objective function 
quantifies residual-feature correlations. This gradient 
term is mathematically equivalent to the residual-fea-
ture correlation coefficient up to a first-order approx-
imation. The residual, defined as the difference be-
tween actual observation y and the current temporary 
solution's predicted value generated by the hypothesis 
function, exhibits higher predictive relevance for ac-
tive features. Under the Central Limit Theorem (CLT), 
normalized features converge in distribution to N(0,1) 
given sufficient sample size. Consequently, the correla-
tion coefficient between any feature and said residual 
asymptotically follows N(0,σ²). Crucially, inactive fea-
tures demonstrate diminished residual correlations 
and gradient variances, whereas active features exhibit 
substantially larger gradient variance.
The algorithm combining ISTA with greedy mask-
ing is designated GISTA. An iteration of GISTA is 
analyzed as follows: starting from initial point x1, the 
update yields new point x2 with step size t, such that:

where 0 ≤ � ≤ 1 is a regulating parameter used to 
adjust the size of the screening threshold h. �� is 
consisted of features considered active in the previous 
iteration and features selected with a threshold h 
which is higher than �. In step 7, a screening test 
function is used to screen inactive features. We named 
the test function STT:  

.       2  
The greedy screen strategy uses a double loop to 
guarantee the convergence of the algorithm. It is 
shown that the algorithm integrated with the greedy 
screening strategy converges to the local optimal 
solution of the problem of Q.  
In each iteration round, the time complexity of step 5 
for gradient calculation is O(m*n), whereas that of 
step 6 for feature screening is only O(m), which is 
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and n represents the number of samples. Particularly 
in ultra-high-dimensional or streaming scenarios, the 
time consumption for feature screening becomes 
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the objective function value, which attains its 
minimum at convergence. 
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Consequently, larger h values in GISTA enhance 
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However, excessively large h severely restricts the 
feature subset Dt, necessitating more iterations for 
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we have:
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consisted of features considered active in the previous 
iteration and features selected with a threshold h 
which is higher than �. In step 7, a screening test 
function is used to screen inactive features. We named 
the test function STT:  
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The greedy screen strategy uses a double loop to 
guarantee the convergence of the algorithm. It is 
shown that the algorithm integrated with the greedy 
screening strategy converges to the local optimal 
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for gradient calculation is O(m*n), whereas that of 
step 6 for feature screening is only O(m), which is 
negligible. Here m denotes the number of features, 
and n represents the number of samples. Particularly 
in ultra-high-dimensional or streaming scenarios, the 
time consumption for feature screening becomes 
negligible since n is huge. 
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Assuming algorithm A guarantees convergence to a 
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maintains convergence to a local optimum of Q. 
Algorithm A converges to a local optimum for 
problem Q, demonstrating that each iterative update 
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We further prove that Algorithm B satisfies these dual 
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incorporating the greedy screening strategy must 
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inactive features renders this full-gradient direction 
suboptimal; instead, the optimal descent path aligns 
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Although pre-determining active traits remains 
challenging, convergence accelerates when 
prioritizing features with higher activation likelihood. 
The greedy screening strategy addresses this by 
iteratively selecting probable active features through 
high-threshold filtering, thereby accelerating the 
descent process. 
ISTA employs iterative thresholding to select active 
features because the gradient of its objective function 
quantifies residual-feature correlations. This gradient 
term is mathematically equivalent to the residual-
feature correlation coefficient up to a first-order 

approximation. The residual, defined as the difference 
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Consequently, the correlation coefficient between any 
feature and said residual asymptotically 
follows N(0,σ²). Crucially, inactive features 
demonstrate diminished residual correlations and 
gradient variances, whereas active features exhibit 
substantially larger gradient variance. 
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consisted of features considered active in the previous 
iteration and features selected with a threshold h 
which is higher than �. In step 7, a screening test 
function is used to screen inactive features. We named 
the test function STT:  
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The greedy screen strategy uses a double loop to 
guarantee the convergence of the algorithm. It is 
shown that the algorithm integrated with the greedy 
screening strategy converges to the local optimal 
solution of the problem of Q.  
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for gradient calculation is O(m*n), whereas that of 
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negligible. Here m denotes the number of features, 
and n represents the number of samples. Particularly 
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time consumption for feature screening becomes 
negligible since n is huge. 
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integrates a greedy feature filtering strategy—also 
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Algorithm A converges to a local optimum for 
problem Q, demonstrating that each iterative update 
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That is, during the iterative process of Algorithm B, 
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converges, Algorithm A—when initialized with the 
same solution—will immediately satisfy the stopping 
criterion, indicating that the objective function has 
attained its minimum. Hence, the integrated algorithm 
incorporating the greedy screening strategy must 
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all features achieves the fastest convergence. By 
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inactive features renders this full-gradient direction 
suboptimal; instead, the optimal descent path aligns 
exclusively with the gradients of active features. 
Although pre-determining active traits remains 
challenging, convergence accelerates when 
prioritizing features with higher activation likelihood. 
The greedy screening strategy addresses this by 
iteratively selecting probable active features through 
high-threshold filtering, thereby accelerating the 
descent process. 
ISTA employs iterative thresholding to select active 
features because the gradient of its objective function 
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feature correlation coefficient up to a first-order 
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gradient variances, whereas active features exhibit 
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shown that the algorithm integrated with the greedy 
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time consumption for feature screening becomes 
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it means �
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Consequently, larger h values in GISTA enhance 
proximity to the optimal solution per iteration. 
However, excessively large h severely restricts the 
feature subset Dt, necessitating more iterations for 
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consisted of features considered active in the previous 
iteration and features selected with a threshold h 
which is higher than �. In step 7, a screening test 
function is used to screen inactive features. We named 
the test function STT:  

.       2  
The greedy screen strategy uses a double loop to 
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shown that the algorithm integrated with the greedy 
screening strategy converges to the local optimal 
solution of the problem of Q.  
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for gradient calculation is O(m*n), whereas that of 
step 6 for feature screening is only O(m), which is 
negligible. Here m denotes the number of features, 
and n represents the number of samples. Particularly 
in ultra-high-dimensional or streaming scenarios, the 
time consumption for feature screening becomes 
negligible since n is huge. 
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Assuming algorithm A guarantees convergence to a 
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integrates a greedy feature filtering strategy—also 
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Algorithm A converges to a local optimum for 
problem Q, demonstrating that each iterative update 
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the objective function value, which attains its 
minimum at convergence. 
We further prove that Algorithm B satisfies these dual 
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converges, Algorithm A—when initialized with the 
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attained its minimum. Hence, the integrated algorithm 
incorporating the greedy screening strategy must 
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all features achieves the fastest convergence. By 
contrast, in sparse optimization, the presence of 
inactive features renders this full-gradient direction 
suboptimal; instead, the optimal descent path aligns 
exclusively with the gradients of active features. 
Although pre-determining active traits remains 
challenging, convergence accelerates when 
prioritizing features with higher activation likelihood. 
The greedy screening strategy addresses this by 
iteratively selecting probable active features through 
high-threshold filtering, thereby accelerating the 
descent process. 
ISTA employs iterative thresholding to select active 
features because the gradient of its objective function 
quantifies residual-feature correlations. This gradient 
term is mathematically equivalent to the residual-
feature correlation coefficient up to a first-order 

approximation. The residual, defined as the difference 
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temporary solution's predicted value generated by the 
hypothesis function, exhibits higher predictive 
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Theorem (CLT), normalized features converge in 
distribution to N(0,1) given sufficient sample size. 
Consequently, the correlation coefficient between any 
feature and said residual asymptotically 
follows N(0,σ²). Crucially, inactive features 
demonstrate diminished residual correlations and 
gradient variances, whereas active features exhibit 
substantially larger gradient variance. 
The algorithm combining ISTA with greedy masking 
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proximity to the optimal solution per iteration. 
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adjust the size of the screening threshold h. �� is 
consisted of features considered active in the previous 
iteration and features selected with a threshold h 
which is higher than �. In step 7, a screening test 
function is used to screen inactive features. We named 
the test function STT:  
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The greedy screen strategy uses a double loop to 
guarantee the convergence of the algorithm. It is 
shown that the algorithm integrated with the greedy 
screening strategy converges to the local optimal 
solution of the problem of Q.  
In each iteration round, the time complexity of step 5 
for gradient calculation is O(m*n), whereas that of 
step 6 for feature screening is only O(m), which is 
negligible. Here m denotes the number of features, 
and n represents the number of samples. Particularly 
in ultra-high-dimensional or streaming scenarios, the 
time consumption for feature screening becomes 
negligible since n is huge. 
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integrates a greedy feature filtering strategy—also 
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Algorithm A converges to a local optimum for 
problem Q, demonstrating that each iterative update 
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We further prove that Algorithm B satisfies these dual 
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inactive features renders this full-gradient direction 
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exclusively with the gradients of active features. 
Although pre-determining active traits remains 
challenging, convergence accelerates when 
prioritizing features with higher activation likelihood. 
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iteratively selecting probable active features through 
high-threshold filtering, thereby accelerating the 
descent process. 
ISTA employs iterative thresholding to select active 
features because the gradient of its objective function 
quantifies residual-feature correlations. This gradient 
term is mathematically equivalent to the residual-
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temporary solution's predicted value generated by the 
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distribution to N(0,1) given sufficient sample size. 
Consequently, the correlation coefficient between any 
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follows N(0,σ²). Crucially, inactive features 
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gradient variances, whereas active features exhibit 
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Consequently, larger h values in GISTA enhance 
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iteration and features selected with a threshold h 
which is higher than �. In step 7, a screening test 
function is used to screen inactive features. We named 
the test function STT:  
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The greedy screen strategy uses a double loop to 
guarantee the convergence of the algorithm. It is 
shown that the algorithm integrated with the greedy 
screening strategy converges to the local optimal 
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for gradient calculation is O(m*n), whereas that of 
step 6 for feature screening is only O(m), which is 
negligible. Here m denotes the number of features, 
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Algorithm B's outer loop is identical to that of 
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same solution—will immediately satisfy the stopping 
criterion, indicating that the objective function has 
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incorporating the greedy screening strategy must 
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iteration and features selected with a threshold h 
which is higher than �. In step 7, a screening test 
function is used to screen inactive features. We named 
the test function STT:  
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The greedy screen strategy uses a double loop to 
guarantee the convergence of the algorithm. It is 
shown that the algorithm integrated with the greedy 
screening strategy converges to the local optimal 
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step 6 for feature screening is only O(m), which is 
negligible. Here m denotes the number of features, 
and n represents the number of samples. Particularly 
in ultra-high-dimensional or streaming scenarios, the 
time consumption for feature screening becomes 
negligible since n is huge. 
2.2 ����������� ����� 
Lemma 1: 
Assuming algorithm A guarantees convergence to a 
local optimum of problem Q, its variant B—which 
integrates a greedy feature filtering strategy—also 
maintains convergence to a local optimum of Q. 
Algorithm A converges to a local optimum for 
problem Q, demonstrating that each iterative update 
to the temporary solution x monotonically decreases 
the objective function value, which attains its 
minimum at convergence. 
We further prove that Algorithm B satisfies these dual 
conditions. For the loss function, inactive features are 
excluded from computation, yielding: 

�(�, �, �, �) = �(�∗, �, �, �)�. �. �∗ = {��|�� ≠ 0} 

�∗ ∈ �� → �(��, �, �, �) = �(�∗, �, �, �)
= �(�, �, �, �) 

�(��, ��−1, �, �) ≥ �(��, ��, �, �) → �(�, ��−1, �, �)
≥ �(�, ��, �, �). 

That is, during the iterative process of Algorithm B, 
the objective function value at point D monotonically 
decreases. Furthermore, the termination condition of 
Algorithm B's outer loop is identical to that of 
Algorithm A. Consequently, if Algorithm B 
converges, Algorithm A—when initialized with the 
same solution—will immediately satisfy the stopping 
criterion, indicating that the objective function has 
attained its minimum. Hence, the integrated algorithm 
incorporating the greedy screening strategy must 
converge to a local optimum. 
2.3 ����������� �������� 
For non-sparse optimization, gradient descent along 
all features achieves the fastest convergence. By 
contrast, in sparse optimization, the presence of 
inactive features renders this full-gradient direction 
suboptimal; instead, the optimal descent path aligns 
exclusively with the gradients of active features. 
Although pre-determining active traits remains 
challenging, convergence accelerates when 
prioritizing features with higher activation likelihood. 
The greedy screening strategy addresses this by 
iteratively selecting probable active features through 
high-threshold filtering, thereby accelerating the 
descent process. 
ISTA employs iterative thresholding to select active 
features because the gradient of its objective function 
quantifies residual-feature correlations. This gradient 
term is mathematically equivalent to the residual-
feature correlation coefficient up to a first-order 

approximation. The residual, defined as the difference 
between actual observation y and the current 
temporary solution's predicted value generated by the 
hypothesis function, exhibits higher predictive 
relevance for active features. Under the Central Limit 
Theorem (CLT), normalized features converge in 
distribution to N(0,1) given sufficient sample size. 
Consequently, the correlation coefficient between any 
feature and said residual asymptotically 
follows N(0,σ²). Crucially, inactive features 
demonstrate diminished residual correlations and 
gradient variances, whereas active features exhibit 
substantially larger gradient variance. 
The algorithm combining ISTA with greedy masking 
is designated GISTA. An iteration of GISTA is 
analyzed as follows: starting from initial point �1, the 
update yields new point �2 with step size �, such 
that: 

�(�) = 
|�� ≠ 0 �(�) = 
|�� = 0 

�1 = |�((�̂))| �2 = |�((�̂))| 
� = �� 

��∈�(�̂) ~ � (0, �1
2) ��∈�(�̂) ~ � (0, �2

2
) �1 > �2 

we have: 
� (ℎ) = ||�2 − �̂||1 − ||�1 − �̂||1

= ∑ �
�∈�

|��| − ∑ �
�∈�

|��| − ∑ �
�∈�

|��| 

Let 

� = {
|||��| > ℎ} ∩ �(�̂) 

­ = {
||��| > ℎ&���1, 
 < 0} ∩ �(�̂) 

� = {
||��| > ℎ&���1, 
 > 0} ∩ �(�̂) 

then we have 

�(ℎ) = �(� (ℎ)) = �|�|�(��∈� ) − �|�|�(��∈�)
− �|­ |�(��∈� ) 

Let f denotes the probability density function of 
normal distribution: 

� (�, �, �) = 1
√2��

�−(�−�)2

2�2  

then we have 

�(��∈�) = ∫ �
+∞

ℎ
�(�, 0, �2)�� =

�2

√2�
�

− ℎ2

2�2
2
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− ℎ2

2�1
2
 

�(��∈� ) = ∫ �
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Let �3 = |­ |,�4 = |�|, then 
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=
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For sparse optimization problems, we have 
�4 < �1 ≪ �2, �3 ≈ �4, �1 ≈ �2 

it means �

�ℎ > 0.  

Consequently, larger h values in GISTA enhance 
proximity to the optimal solution per iteration. 
However, excessively large h severely restricts the 
feature subset Dt, necessitating more iterations for 

<

 .

Consequently, larger h values in GISTA enhance 
proximity to the optimal solution per iteration. 
However, excessively large h severely restricts the 
feature subset Dt, necessitating more iterations for 
active feature discovery and inflating computation-
al time. Critically, if Dt remains empty across itera-
tions, GISTA degenerates to ISTA's efficiency. Thus, 
computational time exhibits a U-curve relationship 
with h: decreasing initially before rising beyond an 
inflection point. This necessitates optimal parame-
ter p selection, addressed experimentally in Section 
2.3. For non-convex penalties, ISTA and GISTA may 
converge to distinct solutions, precluding theoreti-
cal speed comparisons; nevertheless, empirical sim-
ulations confirm GISTA's accelerated convergence 
relative to ISTA. 

2.4. Parameter Choice
To determine the optimal parameter p for GISTA 
(Greedy Iterative Shrinkage-Thresholding Algo-
rithm), we systematically designed three controlled 
experiments under an L1-regularized linear regres-
sion framework (Problem Q):
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Experiment 1: Runtime sensitivity to p
	_ Objective: Quantify p's impact on computational 

efficiency
	_ Design:

	▪ Dataset: Synthetic 100×100 matrix with 20 
active features

	▪ Varied parameters: 100 distinct p values
	▪ Controlled factors: Fixed λ (5 levels)
	▪ Metric: Runtime per p-λ combination

Experiment 2: Sample size (n) interaction with p
	_ Objective: Assess p's scalability across data 

volumes
	_ Design:

	▪ Base dataset: Synthetic 200×100 matrix with 
20 active features

	▪ Sampling: 100 trials with n incrementally 
increasing from 101 to 200

	▪ Tested p values: 5 discrete levels
	▪ Metric: Acceleration ratio (GISTA/ISTA 

runtime) at fixed λ

Experiment 3: Feature sparsity (m) interaction 
with p
	_ Objective: Evaluate p's robustness to feature 

dimensionality
	_ Design:

	▪ Base dataset: Synthetic 100×100 matrix with 
20 active features

	▪ Perturbation: Sequential addition of irrelevant 
features (m: 101→200)

	▪ Tested p values: Multiple discrete levels
	▪ Metric: Acceleration ratio (GISTA/ISTA 

runtime) at fixed λ over 100 trials

Experiment 1 (Figure 1) demonstrates that compu-
tational time initially decreases with increasing p, 
stabilizing beyond a threshold value. However, when 
p exceeds a critical point, runtime escalates rapidly, 
validating our prior theoretical analysis. Additional-
ly, a smaller λ parameter leads to better acceleration 
performance from the greedy screening strategy. 
This acceleration effect correlates with the value of 
parameter p. As shown in Figure 1, the optimal range 
for p is [0.8, 0.95]. 

Figure 1
Computation Time Decreased when Parameter (p) 
increased at various λ.
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Consequently, larger h values in GISTA enhance 
proximity to the optimal solution per iteration. 
However, excessively large h severely restricts 
the feature subset Dt, necessitating more 
iterations for active feature discovery and 
inflating computational time. Critically, if Dt
 remains empty across iterations, GISTA 
degenerates to ISTA's efficiency. Thus, 
computational time exhibits a U-curve 
relationship with h: decreasing initially before 
rising beyond an inflection point. This 
necessitates optimal parameter p selection, 
addressed experimentally in Section 2.3. For 
non-convex penalties, ISTA and GISTA may 
converge to distinct solutions, precluding 
theoretical speed comparisons; nevertheless, 
empirical simulations confirm GISTA's 
accelerated convergence relative to ISTA.  

2.4 Parameter Choice 

To determine the optimal parameter p for GISTA 
(Greedy Iterative Shrinkage-Thresholding 
Algorithm), we systematically designed three 
controlled experiments under an L1-regularized 
linear regression framework (Problem Q): 

Experiment 1: Runtime sensitivity to p 

 Objective: Quantify p's impact on 
computational efficiency 

 Design: 

 Dataset: Synthetic 100×100 matrix with 20 
active features 

 Varied parameters: 100 distinct p values 

  

 Metric: Runtime per p-  

Experiment 2: Sample size (n) interaction with p 

 Objective: Assess p's scalability across data 
volumes 

 Design: 

 Base dataset: Synthetic 200×100 matrix with 
20 active features 

 Sampling: 100 trials with n incrementally 
increasing from 101 to 200 

 Tested p values: 5 discrete levels 

 Metric: Acceleration ratio (GISTA/ISTA 
 

Experiment 3: Feature sparsity (m) interaction 
with p 

 Objective: Evaluate p's robustness to feature 
dimensionality 

 Design: 

 Base dataset: Synthetic 100×100 matrix with 
20 active features 

 Perturbation: Sequential addition of 
irrelevant features (m: 101 200) 

 Tested p values: Multiple discrete levels 

 Metric: Acceleration ratio (GISTA/ISTA 
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Figure 2
Sample Size Increasing has little effect on Acceleration Ratio.
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Consequently, larger h values in GISTA enhance 
proximity to the optimal solution per iteration. 
However, excessively large h severely restricts 
the feature subset Dt, necessitating more 
iterations for active feature discovery and 
inflating computational time. Critically, if Dt
 remains empty across iterations, GISTA 
degenerates to ISTA's efficiency. Thus, 
computational time exhibits a U-curve 
relationship with h: decreasing initially before 
rising beyond an inflection point. This 
necessitates optimal parameter p selection, 
addressed experimentally in Section 2.3. For 
non-convex penalties, ISTA and GISTA may 
converge to distinct solutions, precluding 
theoretical speed comparisons; nevertheless, 
empirical simulations confirm GISTA's 
accelerated convergence relative to ISTA.  

2.4 Parameter Choice 

To determine the optimal parameter p for GISTA 
(Greedy Iterative Shrinkage-Thresholding 
Algorithm), we systematically designed three 
controlled experiments under an L1-regularized 
linear regression framework (Problem Q): 

Experiment 1: Runtime sensitivity to p 

 Objective: Quantify p's impact on 
computational efficiency 

 Design: 

 Dataset: Synthetic 100×100 matrix with 20 
active features 

 Varied parameters: 100 distinct p values 

  

 Metric: Runtime per p-  
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20 active features 
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 Tested p values: 5 discrete levels 

 Metric: Acceleration ratio (GISTA/ISTA 
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with p 

 Objective: Evaluate p's robustness to feature 
dimensionality 

 Design: 

 Base dataset: Synthetic 100×100 matrix with 
20 active features 
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irrelevant features (m: 101 200) 
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Experiment 1 (Figure 1) demonstrates that 
computational time initially decreases with 
increasing p, stabilizing beyond a threshold 
value. However, when p exceeds a critical point, 
runtime escalates rapidly, validating our prior 
theoretical analysis. Additionally, a smaller  
parameter leads to better acceleration 
performance from the greedy screening strategy. 
This acceleration effect correlates with the value 
of parameter p. As shown in Figure 1, the 
optimal range for p is [0.8, 0.95].  

Experiment 2 (Figure 2) reveals minimal 
sensitivity of acceleration ratio (GISTA/ISTA) to 
sample size (n), indicating p's robustness across 
data volumes. 

Experiment 3 (Figure 3) establishes a positive 
correlation between feature sparsity (m) and 
acceleration gain, confirming the greedy 
screening strategy’s efficacy for high-
dimensional datasets. 

Collectively, these findings support 
selecting p from a fixed range, enabling a 
constant value (p=0.9) for heterogeneous 
problems in subsequent numerical validation. 

 

3. Numerical Experiments 
3.1 Experimental Schema 

Our numerical evaluation consists of four 
distinct scenarios: 

   

We assessed the speed of greedy screening for 
L1-norm penalized linear regression. 
Comparisons included static screening (using 
ST1, ST3, DOME tests) and dynamic screening 
(using DST1, DST3, DDOME tests). The 
algorithms tested were: FISTA and SCD, each 
combined with these screening tests (yielding 
variants like FISTA-ST1, SCD-DOME, FISTA-
STT, SCD-STT, etc.). 

 Non-   

We evaluated greedy screening speed on four 
logistic regression problems with L_(1/2)-norm, 
SCAD, MCP, and Logsum penalties. Each 
problem was solved using GIST and GISTA. 

   

We tested greedy screening speed using an L1-
norm penalized linear regression problem 
(image processing) solved via FISTA and SCD. 
Performance was compared against static (ST1, 
ST3, DOME) and dynamic screening (DST1, 
DST3, DDOME) strategies as in Scenario 1. 

 Non-   

We evaluated greedy screening speed on four 
logistic regression problems (genetic association 
analysis, single dataset) with L_(1/2)-norm, 
SCAD, MCP, and Logsum penalties. Each was 
solved using GIST and GISTA. 

Experimental Setup: All tests ran 50 times on an 
Intel Q9400 2.67GHz system (64GB RAM) using 
MATLAB 2013b in single-threaded mode. 
Reported times are averages. For Scenarios 1 and 
3, we excluded the fixed cost of computing  
and  and normalized computation times 
relative to ISTA without screening. 
 

3.2 Data Sets 

 Linear Regression Experimental Data 

 Synthetic Data 

Gaussian-distributed random matrices were 
employed as dictionaries, including both 
noiseless and noisy variants. Noise generation 
followed 1 + 0.1 , (0,1), (0,1), =
[1,0, … 0]  as the first natural basis vector. The 
dictionary dimensions were fixed 
at m=10,000 (samples) and n=2,000 (features). 
Coefficient vector x was sampled from a 
Bernoulli distribution (sparsity parameter 0.05), 
yielding observations y=Dx corrupted by 
additive 20dB Gaussian noise. All dictionary 
columns  and responses y were normalized to 
zero mean ( = 0, = 0) and unit norm ( =
1, = 1). 

 Image Data 

The MNIST handwritten digit dataset 
(source: Yann LeCun, available at 
http://yann.lecun.com/exdb/mnist/) was 
utilized, comprising 28×28-pixel images of digits 
0–9. A random subset of 1,000 images per digit 
(total 10,000 samples) was selected. Pixel 
grayscale values were vectorized as features, 
with digit labels assigned as the response y. The 
dataset scale was 10,000×784. All di
 and y underwent identical zero-mean and unit-
norm normalization 

 Logistic Regression Experimental Data 

 Synthetic Data 

Noisy Gaussian random matrices served as 
dictionaries, with noise generation identical to 
the linear regression case. Dimensions 
were m=10,000 (samples), n=2,000 (features). 
Coefficients x followed a Bernoulli distribution 
(p=0.05), while binary responses y were 
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Experiment 2 (Figure 2) reveals minimal sensitivity 
of acceleration ratio (GISTA/ISTA) to sample size 
(n), indicating p's robustness across data volumes.
Experiment 3 (Figure 3) establishes a positive cor-
relation between feature sparsity (m) and accelera-
tion gain, confirming the greedy screening strategy’s 
efficacy for high-dimensional datasets.
Collectively, these findings support selecting p from 
a fixed range, enabling a constant value (p=0.9) for 
heterogeneous problems in subsequent numerical 
validation.

3. Numerical Experiments
3.1. Experimental Schema
Our numerical evaluation consists of four distinct 
scenarios:
	_ Convex Penalty (Simulated Data): 

We assessed the speed of greedy screening for 
L1-norm penalized linear regression. Compari-
sons included static screening (using ST1, ST3, 
DOME tests) and dynamic screening (using 
DST1, DST3, DDOME tests). The algorithms 
tested were: FISTA and SCD, each combined 
with these screening tests (yielding variants like 
FISTA-ST1, SCD-DOME, FISTA-STT, SCD-
STT, etc.).

	_ 	Non-Convex Penalty (Simulated Data): 

We evaluated greedy screening speed on four lo-
gistic regression problems with L_(1/2)-norm, 
SCAD, MCP, and Logsum penalties. Each problem 
was solved using GIST and GISTA.

	_ 	Convex Penalty (Real Data): 

We tested greedy screening speed using an L1-
norm penalized linear regression problem (image 
processing) solved via FISTA and SCD. Perfor-
mance was compared against static (ST1, ST3, 
DOME) and dynamic screening (DST1, DST3, 
DDOME) strategies as in Scenario 1.

	_ 	Non-Convex Penalty (Real Data): 

We evaluated greedy screening speed on four 
logistic regression problems (genetic associa-
tion analysis, single dataset) with L_(1/2)-norm, 

SCAD, MCP, and Logsum penalties. Each was 
solved using GIST and GISTA.
Experimental Setup: All tests ran 50 times on an 
Intel Q9400 2.67GHz system (64GB RAM) using 
MATLAB 2013b in single-threaded mode. Re-
ported times are averages. For Scenarios 1 and 3, 
we excluded the fixed cost of computing DTD and 
DTy and normalized computation times relative to 
ISTA without screening.

3.2. Data Sets
	_ 	Linear Regression Experimental Data

	▪ Synthetic Data
Gaussian-distributed random matrices were em-
ployed as dictionaries, including both noiseless 
and noisy variants. Noise generation followed  
e1 + 0.1kg,k ~ U(0,1),g ~ N(0,1),e = [1,0,…0]T  

as the first natural basis vector. The dictionary 
dimensions were fixed at m=10,000 (samples) 
and n=2,000 (features). Coefficient vector x was 
sampled from a Bernoulli distribution (sparsi-
ty parameter 0.05), yielding observations y=Dx 
corrupted by additive 20dB Gaussian noise. 
All dictionary columns di and responses y were 
normalized to zero mean (d

–
i= 0, ȳ =0) and unit 

norm (‖di‖ =1,‖y‖ = –1).
	▪ Image Data

The MNIST handwritten digit dataset (source: 
Yann LeCun, available at http://yann.lecun.
com/exdb/mnist/) was utilized, comprising 
28×28-pixel images of digits 0–9. A random 
subset of 1,000 images per digit (total 10,000 
samples) was selected. Pixel grayscale values 
were vectorized as features, with digit labels 
assigned as the response y. The dataset scale 
was 10,000×784. All di and y underwent iden-
tical zero-mean and unit-norm normalization

	_ Logistic Regression Experimental Data

	▪ Synthetic Data
Noisy Gaussian random matrices served as 
dictionaries, with noise generation identi-
cal to the linear regression case. Dimensions 
were m=10,000 (samples), n=2,000 (features). 
Coefficients x followed a Bernoulli distribu-
tion (p=0.05), while binary responses y were 
generated via:
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Our numerical evaluation consists of four distinct 
scenarios: 

������ ������� (��������� ����):  
We assessed the speed of greedy screening for L1-
norm penalized linear regression. Comparisons 
included static screening (using ST1, ST3, DOME 
tests) and dynamic screening (using DST1, DST3, 
DDOME tests). The algorithms tested were: FISTA 
and SCD, each combined with these screening tests 
(yielding variants like FISTA-ST1, SCD-DOME, 
FISTA-STT, SCD-STT, etc.). 

���-������ ������� (��������� ����):  
We evaluated greedy screening speed on four logistic 
regression problems with L_(1/2)-norm, SCAD, 
MCP, and Logsum penalties. Each problem was 
solved using GIST and GISTA. 

������ ������� (
��� ����):  
We tested greedy screening speed using an L1-norm 
penalized linear regression problem (image 
processing) solved via FISTA and SCD. Performance 
was compared against static (ST1, ST3, DOME) and 
dynamic screening (DST1, DST3, DDOME) 
strategies as in Scenario 1. 

���-������ ������� (
��� ����):  
We evaluated greedy screening speed on four logistic 
regression problems (genetic association analysis, 
single dataset) with L_(1/2)-norm, SCAD, MCP, and 
Logsum penalties. Each was solved using GIST and 
GISTA. 
����
������� �����: All tests ran 50 times on an 
Intel Q9400 2.67GHz system (64GB RAM) using 
MATLAB 2013b in single-threaded mode. Reported 
times are averages. For Scenarios 1 and 3, we 
excluded the fixed cost of computing �� �  and 
�� � and normalized computation times relative to 
ISTA without screening. 
 
3.2 ���� ���	 

Linear Regression Experimental Data 
Synthetic Data 

Gaussian-distributed random matrices were employed 
as dictionaries, including both noiseless and noisy 
variants. Noise generation followed �1 + 0.1��, � ∼
�(0,1), � ∼ � (0,1), � = [1,0, … 0]�  as the first 
natural basis vector. The dictionary dimensions were 
fixed at m=10,000 (samples) and n=2,000 (features). 
Coefficient vector x was sampled from a Bernoulli 
distribution (sparsity parameter 0.05), yielding 
observations y=Dx corrupted by additive 20dB 
Gaussian noise. All dictionary columns ��  and 
responses y were normalized to zero mean ( �� =
0, �̄ = 0) and unit norm (‖��‖ = 1, ‖�‖ = −1). 

Image Data 
The MNIST handwritten digit dataset (source: Yann 
LeCun, available at 

http://yann.lecun.com/exdb/mnist/) was utilized, 
comprising 28×28-pixel images of digits 0–9. A 
random subset of 1,000 images per digit (total 10,000 
samples) was selected. Pixel grayscale values were 
vectorized as features, with digit labels assigned as the 
response y. The dataset scale was 10,000×784. All di
 and y underwent identical zero-mean and unit-norm 
normalization 

Logistic Regression Experimental Data 
Synthetic Data 

Noisy Gaussian random matrices served as 
dictionaries, with noise generation identical to the 
linear regression case. Dimensions 
were m=10,000 (samples), n=2,000 (features). 
Coefficients x followed a Bernoulli distribution 
(p=0.05), while binary responses y were generated 
via: 

� =
⎩⎪
⎨
⎪⎧1, 1

1 + �−��−� ≥ 0.5

0, 1
1 + �−��−� < 0.5

, 

where ϵ denotes 20dB Gaussian noise. Dictionary 
columns �� were normalized to �� = 0, ‖��‖ = 1. 

Biological Data 
The breast cancer gene expression dataset GSE7390 
(source: NCBI GEO, available at 
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc
=GSE7390) was adopted, containing 21,056-
dimensional features for 198 patients. A random 
subset of 142 samples constituted the training set 
(142×21,056). The response y represented survival 
time. All �� and y were normalized to zero mean 
and unit norm. 
 
4. Results 
Scenario 1: Figures 4-5 display the computational cost 
of all algorithms across two dictionaries. In both 
figures, normalized compute time (NCT) is shown on 
the vertical axis (calculated as Algorithm runtime / 
ISTA baseline runtime; Eq. 3), while the horizontal 
axis displays 15 λ values ranging from large to small. 
These results demonstrate the effectiveness of the 
greedy screening strategy in accelerating LASSO 
solvers: SCD-STT and FISTA-STT perform similarly 
to other algorithms at larger λ values. However, as λ 
decreases, they become the fastest algorithms, 
achieving consistent and stable speed-up. Their 
performance remains strong across diverse datasets – 
including image data (n >> m), biological data (m >> 
n), and both noisy and noise-free data – confirming 
the robustness of the greedy screening strategy. 
Crucially, all algorithms converged to equivalent 
solutions given the same λ, validating the safety of 
this strategy for screening inactive features. Owing to 
these advantages – effective acceleration (especially 
for small λ solutions), robustness, and safety – the 
greedy screening strategy proves to be an excellent 
accelerating method for LASSO solvers. 

 
����
� 4 
Normalized compute time by data set without noise. 

where ϵ denotes 20dB Gaussian noise. Dictio-
nary columns di were normalized to d

–
i= 0,‖di‖ =1.

	▪ Biological Data
The breast cancer gene expression dataset 
GSE7390 (source: NCBI GEO, available at 
https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE7390) was adopted, containing 
21,056-dimensional features for 198 patients. 
A random subset of 142 samples constituted 
the training set (142×21,056). The response 
y represented survival time. All di and y were 
normalized to zero mean and unit norm.

4. Results
Scenario 1: Figures 4-5 display the computation-
al cost of all algorithms across two dictionaries. In 
both figures, normalized compute time (NCT) is 
shown on the vertical axis (calculated as Algorithm 
runtime / ISTA baseline runtime; Eq. 3), while the 
horizontal axis displays 15 λ values ranging from 

large to small. These results demonstrate the effec-
tiveness of the greedy screening strategy in accel-
erating LASSO solvers: SCD-STT and FISTA-STT 
perform similarly to other algorithms at larger λ 
values. However, as λ decreases, they become the 
fastest algorithms, achieving consistent and sta-
ble speed-up. Their performance remains strong 
across diverse datasets – including image data (n 
>> m), biological data (m >> n), and both noisy and 
noise-free data – confirming the robustness of the 
greedy screening strategy. Crucially, all algorithms 
converged to equivalent solutions given the same λ, 
validating the safety of this strategy for screening 
inactive features. Owing to these advantages – ef-
fective acceleration (especially for small λ solu-
tions), robustness, and safety – the greedy screen-
ing strategy proves to be an excellent accelerating 
method for LASSO solvers.
Scenario 2: Figure 6 compare the computational 
costs of all regularization methods in noise dictio-
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Results demonstrate that the greedy screening 
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computational costs by approximately 70% across 
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serves as an efficient acceleration framework for 
non-convex problem solvers.
Scenario 3: Figure 7 presents the computation-
al costs of all algorithms on the MNIST dataset, 
with the vertical axis indicating normalized com-
pute time and the horizontal axis displaying 15 de-
scending λ values. The results demonstrate that the 
greedy screening strategy significantly accelerates 
computation for large-scale sample data.   
Scenario 4: Figure 8 compares the computational 
costs of all regularization methods applied to the 
GSE7390 dataset, with the vertical axis indicating 
normalized computational time and the horizontal 
axis displaying 15 descending λ values. The results 
demonstrate that the greedy screening strategy 
significantly accelerates computation for high-di-
mensional, high-sparsity data, achieving remark-
able efficiency gains.

Figure 6
Normalized compute time by synthetical data for 4 regularizations.
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5. Conclusions
This work proposes a greedy screening strategy to 
address the failure of existing static and dynamic 
methods under small penalty parameters. Experi-
mental validation confi rms its effi  cacy in accelerat-
ing sparse optimization problem solving.
1 Computational Effi  ciency on Synthetic Data

_ L1-regularized regression: ESO reduced 
computation time by 60-70% compared to 
FISTA/SCD with static/dynamic screening. 
Acceleration remained stable as λ decreased to 
105, outperforming ST1/ST3/DOME variants.

_ Non-convex penalties (SCAD/MCP): 65-72% 
speedup observed, demonstrating framework 
adaptability.

2 Real-World Data Performance
_ MNIST image classifi cation: about 55% faster 

convergence vs. baseline ISTA.
_ Genomic dataset (GSE7390): >68% time 

reduction in high-dimensional (21k features) 
survival prediction.

3 Threshold Parameter Analysis
Optimal parameter p=0.9 balanced feature re-
tention (95% active features preserved) and 
screening effi  ciency. Overly aggressive screening 
(p>0.95) increased iteration counts by 30%.

4 Sparsity-Scalability Relationship
Speedup ratio improved with data sparsity: 45% 

Figure 8
Normalized compute time by GSE7390.
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acceleration at 5% sparsity vs. 71% at 1%, confirm-
ing effectiveness in ultra-sparse regimes.

5	 GPU benefit
Preliminary GPU tests (NVIDIA V100) show 8.2× 
screening acceleration for d=20k. The thresh-
old comparison operator (Algorithm Greedy 
Screening line 5) is inherently parallelizable, with 

near-linear scaling on 16-core CPUs. Distributed 
extension is planned for future work.
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