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With the rapid development of unmanned aerial vehicle (UAV) technology, its applications in military and ci-
vilian fields are becoming increasingly widespread. However, realizing autonomous navigation of UAVs in com-
plex environments still faces numerous challenges, especially the three-dimensional path planning problem. 
This paper proposes an improved parrot optimization algorithm (IPO) by introducing Spatial Pyramid Match-
ing (SPM) chaotic mapping, Dynamic adaptive foraging mechanisms, adaptive switching factor, and hybrid 
Cauchy and Gaussian mutation strategies to enhance the algorithm's global search capability and convergence 
speed. The improved IPO is combined with the simulation platform to construct a complete three-dimensional 
path-planning solution framework. Extensive simulation experiments demonstrate that, compared with the 
standard parrot optimization and other optimization algorithms, this algorithm significantly improves opti-
mization accuracy, convergence speed, and path smoothness, showing good potential for engineering applica-
tions. The experimental results indicate that under the complex three-dimensional environment modelings of 
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the Beijing International Studies University campus, High-density urban core and Urban areas with rivers and 
bridges, the IPO can quickly and accurately find the optimal collision-free path with minimal flight cost, which 
demonstrates excellent prospects for engineering applications.
KEYWORDS: UAV three-dimensional path planning, improved parrot optimization algorithm, SPM cha-
otic mapping, adaptive switching factor, hybrid Cauchy and Gaussian mutation

1. Introduction
With the rapid development of unmanned aerial 
vehicle (UAV) technology, its applications in fields 
such as military reconnaissance, disaster relief, and 
logistics have become increasingly widespread [9]. 
In complex and dynamic environments, the autono-
mous flight path of UAVs has become a hot topic and 
challenge in current research. The core challenge 
lies in how to accurately plan a three-dimensional 
trajectory that is both collision-free and minimizes 
flight cost, which directly relates to the quality of the 
UAV's autonomous decision-making capability [15].
Traditional path planning algorithms, such as Dijk-
stra, A* search, and Rapidly-exploring Random Tree 
(RRT), often employ heuristic search or random 
sampling to explore feasible solutions in the state 
space. Building on this foundation, recent studies 
have increasingly explored intelligent optimization 
methods to further enhance the efficiency and ro-
bustness of UAV path planning. Bui et al. [4] applied 
Ant Colony Optimization to cooperative inspection 
path planning with multiple UAVs, enhancing both 
path quality and coordination efficiency. Arslan et 
al. [3] developed sampling-based motion planning 
algorithms that leverage closed-loop prediction to 
improve the optimality and reliability of UAV tra-
jectory planning. However, these algorithms often 
struggle to find satisfactory solutions within a limit-
ed time when dealing with large-scale, high-dimen-
sional problems and suffer from high computational 
complexity and blind search [11]. To address the in-
efficiency of conventional algorithms in large-scale, 
high-dimensional UAV coordination problems, Yan 
et al. [19] proposed an enhanced particle swarm opti-
mization (PSO) algorithm. Their approach incorpo-
rates partial matching crossover and secondary swap 
mutation—techniques borrowed from genetic algo-
rithms—to effectively tackle random task allocation 
and two-dimensional path planning in multi-UAV 
systems. Cabreira et al. [5] explored the advantages of 

different flight modes and cell decomposition meth-
ods under different scenario shapes, discussed the 
coverage performance of UAVs under different in-
formation conditions, and pointed out the challenges 
of improving the efficiency and robustness of multi-
UAV collaboration in future research.
At the same time, swarm intelligence optimization 
algorithms have received increasing attention in 
UAV path planning due to their good global search 
capability and robustness. Zhang et al. [22] pro-
posed a PSO-based real-time obstacle avoidance 
technique for UAVs, which performs well in spe-
cific situations but quickly falls into local optima 
in complex environments. To address this, Fu et al. 
[6] proposed a hybrid quantum-behaved particle 
swarm optimization (PSO) algorithm incorporating 
phase angle encoding, which effectively enhances 
solution quality and accelerates convergence. How-
ever, the algorithm’s performance is still sensitive 
to parameter tuning, posing a challenge for practi-
cal implementation. Zhu and Duan [24] proposed a 
chaotic predator–prey biogeography-based optimi-
zation (BBO) algorithm for unmanned combat ae-
rial vehicle (UCAV) path planning. By integrating 
chaotic maps and predator–prey dynamics into the 
BBO framework, the algorithm enhances population 
diversity and global search capability.  Li et al. [9] 
reviewed the use of UAVs in logistics, emphasizing 
their benefits in delivery efficiency, cost reduction, 
and accessibility. They classified applications into 
last-mile delivery, warehouse management, and 
emergency response, while noting challenges like 
airspace regulation, battery limitations, and public 
acceptance. Therefore, Alejo et al. [1] proposed an 
improved three-dimensional optimal reciprocal col-
lision avoidance algorithm (3D-ORCA) for real-time 
collision avoidance of multi-UAV systems in dy-
namic and static obstacle environments. Compared 
to the traditional ORCA algorithm, this method en-
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hances the handling of static obstacles and consid-
ers the dynamic constraints of UAVs. By integrating 
it into the Robot Operating System framework and 
conducting various simulation tests, the effective-
ness of the algorithm in complex environments is 
verified. Shao et al. [17] proposed a UAV swarm path 
planning method based on a distributed cooperative 
particle swarm optimization algorithm (DCPSO) to 
achieve simultaneous arrival and formation aggre-
gation of UAVs at designated locations. Zhao et al. 
[23] conducted a survey on computational-intelli-
gence-based UAV path planning, summarizing var-
ious heuristic and bio-inspired algorithms, and an-
alyzing their strengths, limitations, and application 
scenarios. Iacono et al. [8] proposed an autonomous 
UAV path following and obstacle avoidance method 
based on a depth camera. This method uses a depth 
camera to generate an environment map and adjusts 
the path in real time when the UAV detects obsta-
cles, ensuring the effectiveness of obstacle avoid-
ance and path following. Experimental results show 
that the method can effectively navigate in complex 
indoor environments with high computational effi-
ciency and scalability. It is suitable for various UAV 
autonomous navigation applications. Qu et al. [14] 
successfully applied an improved whale optimiza-
tion algorithm (WOA) to complex three-dimension-
al space trajectory planning for UAVs, significantly 
improving convergence speed and search accuracy 
compared to traditional intelligent algorithms. Yu 
et al. [20] combined grey wolf optimization (GWO) 
with differential evolution (DE) to form a hybrid me-
ta-heuristic algorithm, which achieved better opti-
mization effects than single intelligent algorithms in 
online UAV trajectory optimization. Phung et al. [13] 
proposed an enhanced discrete particle swarm op-
timization (DPSO) algorithm for UAV vision-based 
surface inspection path planning. The paper formu-
lates the path planning problem as an extended trav-
eling salesman problem (TSP), enhancing the path 
while satisfying coverage and obstacle avoidance 
constraints. The algorithm is parallelized on GPUs 
by introducing deterministic initialization, random 
mutation, and edge exchange techniques to improve 
computational efficiency. Experimental results 
demonstrate significant path quality and computa-
tion speed improvements for large-scale structural 
examinations. The algorithm suits UAV inspection 
tasks in complex environments, such as bridges.

However, existing intelligent optimization algo-
rithms still suffer from slow convergence speed, eas-
ily falling into local optima, and poor environmental 
adaptability, requiring further improvement. This 
paper proposes an improved parrot optimization al-
gorithm (IPO) to address the above issues and applies 
it to UAV three-dimensional path planning tasks. In 
this paper, we introduce four strategies: Spatial Pyr-
amid Matching chaotic mapping (SPM), Dynamic 
adaptive foraging mechanisms, adaptive switching 
factor, and hybrid Cauchy/Gaussian mutation to ad-
dress the shortcomings of the standard parrot opti-
mization algorithm. By comparing with today's more 
advanced optimization algorithms [14, 21, 10, 22, 23, 
16], through a series of simulation experiments, we 
verify the effectiveness of the improved algorithm in 
path-planning tasks and compare its performance 
with several other mainstream intelligent optimi-
zation algorithms. Then, on this basis, we establish 
a mathematical model for UAV path planning, com-
prehensively considering multiple optimization ob-
jectives such as flight distance, energy consumption, 
and safety distance. Finally, we model the campus 
of the authors' communication unit, Beijing Inter-
national Studies University (BISU), to construct a 
complex three-dimensional environment model and 
extract key waypoints as critical nodes for our path 
planning. Through experiments, we simulate its op-
eration in a real environment.

2. Model Establishment 
The three-dimensional path planning problem for 
UAVs in complex environments is essential. The 
UAV aims to start from a starting point, avoid ob-
stacles, and reach a predetermined endpoint. This 
paper utilizes an improved parrot optimization al-
gorithm to explore an optimization and evaluation 
method for UAV path planning by establishing a 
three-dimensional environment model and design-
ing a fitness function. This section will briefly intro-
duce the design and implementation of the environ-
ment modeling and fitness function.

2.1. Map Selection
To further simulate the application of UAV path op-
timization in real life, this paper selects the commu-
nication unit of the corresponding author and the 
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first author, Beijing International Studies Univer-
sity (BISU), for environment modeling. The reason 
for choosing this school for modeling is that it is a fa-
miliar living environment for the authors, and simu-
lated flight has decisive practical significance for the 
authors' university. Moreover, as a university in Bei-
jing, BISU has a relatively small area, making it easy 
to model. Therefore, we use the authors' institution 
for modeling. The effect diagram and modeling dia-
gram are as follows: 
As shown in the Figure 1, Figure 1(a) basically models 
all the buildings on the campus. In the model of Fig-
ure 1(b), the values of length, width, and height of the 
corresponding buildings are presented in the model-
ing map on a one-to-one equal scale. It can reflect and 
simulate the spatial structure of the school in reality.

2.2. Map Modeling and Design
First, we set the boundaries of the virtual map in 
the three-dimensional space. As shown in Figure 
2, we refer to the proportions of length, width, and 
height in real life and extend from the origin [0,0,0] 
to constrain the size of the map to [500×50×50]. The 
three values in the brackets represent the dimen-
sional limits on the x, y, and z axes, respectively, cor-

responding to the general situation of 500 meters in 
length from north to south and 350 meters in width 
in real life.
For [500×50×50], each length of 1 is called a phys-
ical unit.
As the map environment becomes larger, the exper-
imental efficiency decreases. To balance efficiency 
and experimental feasibility, we define the bound-
ary of the UAV flight as [300×300×20], which is the 
range specified in Figure 2. In real life, the main liv-
ing area of students is basically within the defined 
range, so the experimental results still have value. 
The map is divided into unit grids since obstacles 
should be represented in a discrete grid. Consider-
ing the final experimental efficiency, this paper sets 
the size of the map unit to [2×2×2]. Dividing the set 
UAV flight boundary size [300×300×20] by the map 
unit, we obtain the size of the new map after discret-
ization, which is represented as a three-dimension-
al matrix of [150×150×10]. The simulated UAV will 
work within the defined flight range, translating one 
map unit, i.e., flying two physical units, on the x, y, 
and z axes each time. In real life, each displacement 
can be understood as moving two meters, which we 
consider a reasonable unit flight distance.

Figure 1
Architectural rendering of Beijing International Studies University (a) and modeling result (b).
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Then, we design the obstacles in the Figure 2. To 
represent the initial state of the map (i.e., with-
out obstacles), we define an initial all-zero matrix 
(MapInitial) with all values set to 0. Subsequently, 
based on our obstacle selection, we mark the cor-
responding grid units as 1 to indicate that obstacles 
occupy these positions. The obstacles in the map 
are defined in a parameterized way. The definition 
of each obstacle includes its position (X, Y, Z) and 
size (L, W, H). For example, the definition of an 
obstacle is Obstacle(i) = [Xi, Yi, Zi, Li, Wi, Hi]. For this 
matrix, each row represents an obstacle, where Xi, 
Yi, Zi represents the initial position of the obstacle 
in the map, denoted as (xstart, ystart, zstart) in the follow-
ing text, and Li, Wi, Hi represent its length, width, 
and height, respectively. The endpoint v of each 
obstacle is calculated accordingly. In the obstacle 
matrix, each input row adds a new obstacle to the 
map, and the parameters can be repeatedly adjust-
ed to simulate the barriers, such as buildings, walls, 
and stands, in real-life scenarios. 
Therefore, to map the obstacles to the discrete 
grid, we fi rst need to divide the position and size of 
each Obstacle by the size of the unit grid to obtain 
the starting position and size of the obstacle in the 
grid. Then, based on the starting coordinates (xstart, 
ystart, zstart) and ending coordinates (xend, yend, zend) of 
the obstacle, we make the following judgment for all 
coordinates map(x, y, z) in the map, when the values 
of   (x, y, z) are all between the starting and ending 
coordinates of the obstacle, it means that the posi-
tion is within the range of the obstacle, so the value 

of map(x, y, z) is 1. Otherwise, the value of map(x, y, z)
is 0, indicating that the position is not occupied by 
an obstacle and is an empty unit grid that can be used 
for UAV fl ight.

2.3. Path Planning
Generally speaking, the goal of UAV three-dimen-
sional path planning is to fi nd the optimal path from 
the starting point S to the endpoint E in a complex 
environment through intelligent optimization algo-
rithms while ensuring that the UAV avoids all obsta-
cles along the path. 
To better simulate the scenarios that UAVs may en-
counter in real life, in our simulation experiments, 
we add two additional experimental requirements 
on top of the original task of fi nding the optimal 
path from the starting point to the endpoint: pass-
ing through a specifi ed mid-point and maintaining a 
specifi c fl ight attitude. 
The choice of a mid-point considers the situation 
where UAV transportation may involve a traveling 
salesman problem, i.e., in real life, UAVs need to fl y to 
multiple points to perform tasks in one go. Consider-
ing the experimental effi  ciency and practical require-
ments, this paper only designs one mid-point and di-
vides the path planning into two segments, as follows:
First segment path planning (starting point to mid-
point): In the fi rst segment path planning, the starting 
point is used as the initial position, the mid-point as 
the temporary endpoint, and the best path is obtained 
through optimization using the IPO algorithm. 
Second segment path planning (mid-point to end-
point): After completing the fi rst segment path plan-
ning, the mid-point is used as the new starting point, 
the endpoint position as the fi nal goal, and the sec-
ond segment path planning is performed using the 
same IPO algorithm.
Through the above method, we can achieve path 
planning after the mid-point. 
At the same time, the second requirement, setting a 
specifi ed fl ight attitude, is considered for the safety 
of UAV fl ight in real life. In this experiment, we spec-
ify the safe fl ight attitude of the UAV to be 8. The spe-
cifi c derivation process is as follows:
Assuming a UAV without air resistance loses control 
and crashes, its parachute will open 1 second after 
sensing free fall. It will fi rst undergo free fall, and its 

Figure 2 
Floor plan of Beijing International Studies University and 
the delineated experimental area.
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Figure 2 Floor plan of Beijing International Studies University and the delineated experimental area.

Then, we design the obstacles in the Figure 2. 
To represent the initial state of the map (i.e., 
without obstacles), we define an initial all-zero 

matrix ( ) with all values set to 0. 
Subsequently, based on our obstacle selection, 
we mark the corresponding grid units as 1 to 
indicate that obstacles occupy these positions. 
The obstacles in the map are defined in a 
parameterized way. The definition of each 

obstacle includes its position and size 

. For example, the definition of an 

obstacle is . 
For this matrix, each row represents an 

obstacle, where  represents the initial 

position of the obstacle in the map, denoted as 
( , , )start start startx y z in the following text, and 

represent its length, width, and 
height, respectively. The endpoint 

end end end( , , )x y z of each obstacle is calculated 
accordingly. In the obstacle matrix, each input 
row adds a new obstacle to the map, and the 
parameters can be repeatedly adjusted to 
simulate the barriers, such as buildings, walls, 
and stands, in real-life scenarios. 

Therefore, to map the obstacles to the discrete 
grid, we first need to divide the position and 

size of each by the size of the unit 
grid to obtain the starting position and size of 
the obstacle in the grid. Then, based on the 
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displacement h1 is 4.905 meters (where t = 1 second 
and g = 9.81 m/s2). After the parachute opens, the 
UAV will start to decelerate. But to avoid hitting peo-
ple on the ground, assuming the height of a person is 
h2 is 2 meters, the performance of the parachute can 
reduce the final velocity of the UAV to a safe speed 
that will not harm people within a certain falling dis-
tance after opening. Assuming this falling distance 
used for buffering is h3 is 1 meter, then the total mini-
mum safe altitude is hmin = h1 + h2 + h3 = 7.905m.
Therefore, to simulate a safe environment, the UAV 
in this experiment will maintain a flight altitude of at 
least 8 meters to avoid hitting people before the para-
chute opens due to an excessively long free-fall time. 
In summary, a complete UAV path planning process 
in this simulation experiment is as follows: After the 
UAV starts from the starting point, it rises vertical-
ly along the z-axis to reach the preset safe attitude. 
Then, it moves horizontally in the x-y plane at an atti-
tude not lower than the safe attitude (8 in this paper). 
When the UAV horizontally reaches the x-y coordi-
nates of the mid-point, it begins to descend vertically 
along the z-axis, then takes off again, repeats the above 
process, and reaches the z-coordinate of the endpoint.

2.4. Path Length Function Design
In the above text, each process of passing through 
the mid-point and finding the optimal path is split 
into two optimal paths. Therefore, for each part, we 
can first obtain the starting point and endpoint of the 
path defined as S(x0, y0, z0) and E(xN, yN, zN), use flag(i) 
to mark the validity of the current position and the 
position to be visited, initialize it to zero, and then 
update the status through checking, and use path(i) 
to record the current path, starting from the starting 
point. At the same time, some movable points are 
further defined to determine all possible movable 
points projected from the current position pre(xi, yi, 

zi) as the choice of the path. The formula is:

 , (1)

where nextN(i) represents the possible movable 
points of the next position,  which is based on the 
current location pre(xi, yi, zi) and next step direction. 
direction is a matrix containing multiple direction-
al vectors, with each row representing a possible 
movement direction. This matrix encompasses all 

basic movement directions the UAV can choose 
from during the path search process. We have select-
ed six basic directions, forward, backward, left, right, 
up, and down, to ensure that the UAV can adjust its 
position flexibly in three-dimensional space. The 
definition of the direction matrix is as follows:

(2)

In this matrix, the first row, (1,0,0), represents 
moving one unit in the positive x-axis direction, 
which means UVA "goes forward.". The second row, 
(-1,0,0), represents moving one unit in the negative 
x-axis direction, which means UVA "goes backward." 
The third row, (0,1,0), represents moving one unit 
in the positive y-axis direction, which means UVA 
"goes right" The fourth row, (0,-1,0), represents mov-
ing one unit in the negative y-axis direction which 
means UVA "goes left." The fifth row, (0,0,1), rep-
resents moving one unit in the positive z-axis direc-
tion, which means UVA "goes up," and the sixth row, 
(0,0,-1), represents moving one unit in the negative 
z-axis direction, which means UVA "goes down." 
This design allows the UAV to adjust its position 
in six basic directions in three-dimensional space 
and ensures flexibility in path searching. In the path 
planning algorithm, all possible candidate positions 
for the next step can be generated by adding each 
directional vector to the current point. Therefore, 
when selecting the next movement, the UAV will 
choose the optimal direction based on the priority of 
these candidate positions and their distance to the 
target, gradually approaching the target.
Meanwhile, to ensure that the UAV does not attempt 
to move beyond the defined environment boundary, 
we will eliminate some out-of-bounds points to en-
sure that the UAV's actions are within the feasible 
range, as shown in Equation (3): 

(3)
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where Mx, My, and Mz are the boundary values. The 
boundary set in this paper is [300×300×200]. If the 
point exceeds the environment boundary, flag(i) is 
set to 1, indicating that the point is invalid; other-
wise, it is 0. This step is the core of path selection, 
involving the calculation of the distance from the 
current point to the starting point and endpoint, 
combined with the priority index of the current 
point to determine the best movable point, as 
shown in equation 4:

. (4)

Calculate the Euclidean distance from each valid 
movable point to the starting point S and the end-
point E, denoted as D1(i) and D2(i), respectively, and 
set the priority  pri(i) to the value at the correspond-
ing position in the state array x. 
Then select one of the best movable points Norm(xi, 

yi, zi), and the calculation of its comprehensive objec-
tive function Score(i) = (D1(i) + D2(i)) · √

–pri(i). By find-
ing the point with the lowest score, update the cur-
rent location pre(i) and path(i) to ensure the accuracy 
of path recording and dynamic adjustment. Finally, 
it calculates the total length D of the entire path and 
set it as  .
By accumulating the distances between all path 
points, obtaining the total length is a reasonable 
way to calculate the fitness. The smaller the total 
path length, the higher the fitness, which is suitable 
for the planning goal of the UAV's three-dimen-
sional path.

3. Improvement of the Parrot 
Optimization 
Parrot optimization is a new type of meta-heuris-
tic optimization algorithm inspired by the behavior 
of parrots in nature. The design inspiration for this 
algorithm comes from the social behavior, foraging 
strategies, and adaptability to the environment of 
parrots. PO solves complex optimization problems 
by simulating the behavioral patterns of parrots in 
their natural environment, such as searching for 
food, group collaboration, and social learning.

3.1. Simple Parrot Optimization
Each parrot represents a possible path in the UAV 
3D path planning problem. In this problem, we ran-
domly select three scattered points of a path:

Population Initialization 
For the proposed PO optimization, we set the pop-
ulation size N, the maximum number of iterations  
Maxiter, and the search space boundaries lb (lower 
bound) and ub (upper bound). The initialization for-
mula is expressed as:

 , (5)

where rand(0,1) represents a random number be-
tween [0, 1], and x0

i represents the position of the  
i-th pigeon in the initial stage. We set the popula-
tion size to 30 and the maximum number of itera-
tions to 300.

Foraging Behavior
In foraging behavior, they mainly estimate the ap-
proximate location of food by observing the location 
or considering the location of their owner and then 
flying to their respective locations. The movement 
follows the equation:

. (6)

where Levy() represents the Levy distribution used 
to describe the flight of parrots. Xbest represents the 
best position searched from initialization to the cur-
rent iteration and also represents the current posi-
tion of the owner. The Levy flight strategy simulates 
the parrot's behavioral pattern of foraging, some-
times with small fine searches and sometimes with 
large jumps of exploration. This part simulates the 
parrot's exploratory flight based on self-experience 
(i.e., memory of optimal locations). the maximum 
Levy flight strategy expression as:

 , (7)
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where ϒ is the parameter of the Levy flight strate-
gy, set to 1.5; Γ is the gamma function. It is charac-
terized by fine searching in a small area most of the 
time, with an occasional long jump to explore. Here, 
it mimics the 'step length' and 'direction' of parrot 
flight, so that the parrot does not just fly in a straight 
line towards the owner, but rather searches in an 
exploratory, hopping manner in the vicinity of the 
owner.

 represents observing 
the overall position of the population to lock the di-
rection of food further, The weighting factor chang-
es dynamically as the number of iterations t increas-
es, which makes the population influence largest in 
the middle of the algorithm iteration and smaller in 
the beginning and end, which simulates that the par-
rot prefers to explore on its own at the beginning of 
the search process; in the middle it refers more to the 
population information; and at the end it reduces the 
dependence on the average position and focuses on 
the localized and fine-grained search when the opti-
mal solution may have been found.
The Foraging Behavior combines the parrot's in-
dividual exploration and social learning strategies, 
and the next position is the result of a combination 
of the “tendency to fly to the known population opti-
mum” and the “tendency to fly to the area where the 
majority of the individuals are located (the mean)”, 
simulating the process of its intelligent foraging. 

Staying Behavior
Parrots are highly social creatures, and their stay-
ing behavior mainly includes suddenly flying to any 
part of the owner's body and staying there for a pe-
riod of time.

 , (8)

where ones(·) represents an all-1 vector of dimen-
sion, Xbest · Levy(·) represents the process of flying 
to the owner, a single jump of the parrot towards 
the optimal position is simulated by means of the 
Levy flight operator. And rand(·) · ones(·) generated 
a small, dimensionally random displacement, which 
simulates that the parrot does not land precisely at 
the “center” of its owner, but stays at a random part 
of its body. This randomness allows the algorithm 
to perturb a very small neighborhood of the current 

optimal solution, which facilitates a fine-grained 
search and allows it to leapfrog out of a small local 
optimum. This section describes a process of “big 
steps to approach + small steps to fine-tune”, in 
which the parrot first makes a “leap” to reach rough-
ly the location of its owner (the optimal solution), 
and then makes a small random displacement to 
determine the final “stopping point”. Then a small 
random displacement is used to determine the final 
“stopping point”, which is represented in the algo-
rithm as a fast approach to the optimal solution and 
a fine-grained local search in its vicinity.

Communicating Behavior
Parrots are characterized by close communication 
within the group, including flying towards and away 
from the flock. It is assumed that the probability of 
these two behaviors occurring is equal, and using the 
average position of the current population to sym-
bolize the center of the group:

 
. (9)

When P is less than or equal to 0.5, the individual 
parrot will execute the first behavior, i.e., fly towards 
the center of the flock for communication, the whole 
equation represents that the position of an individ-
ual parrot will be adjusted according to its relative 
vector to the center of the group. When P  is greater 
than 0.5, the individual parrot will execute the other 
behavior, i.e., immediately fly away from the center 
of the flock after communication, the exp function 
makes this part rapidly smaller as the number of it-
erations increases, in effect giving the parrot a ran-
dom perturbation that decays over time, simulating 
the behavior of “ending the exchange and leaving”, 
not by flying in a super-specific direction, but by 
a small random “jumping out of the way Instead of 
flying in a super-specific direction, a small random 
“jump away” is used to explore new possibilities and 
avoid having all individuals clustered in the center. 
It plays the role of random decision-making.

Fear of Strangers' Behavior
Parrots show a natural fear of strangers, keeping 
their distance from unfamiliar individuals and seek-
ing a safe distance from their owners:
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, (10)

where the first half of the formula shows the pro-
cess of reorienting and flying towards the owner, 
Xbest – X t

i is a vector pointing from the parrot's cur-
rent position to the owner's position, which clear-
ly represents the direction of “flying to the owner”; 

 is a weight decreasing from 1 to 0 over 
time, which simulates that the parrot's fear will slow-
ly decrease over time, thus the urge to fly to the owner 
will become weaker. The parrot's fear decreases slow-
ly over time, so the urge to fly to the owner becomes 
weaker. while the second half of the equation shows 
the movement process of moving away from strangers, 
where X t

i – Xbest  represents the direction “away from 
the owner”;   cos(rand(·)·π) produces a random num-
ber between -1 and 1, simulating the parrot's irregu-
larities and hesitations in fear, which may suddenly 
fly a little bit further away from the owner, or may 

accelerate more towards the owner because of two 
negative numbers. may fly towards the owner more 
quickly because of the two negative numbers thus.
The flow chart of PO is shown in Figure 3.

3.2. Improved Parrot Optimization

Since the processing of the UAV 3D path planning 
problem is more complex than common path plan-
ning problems, to make the PO equally robust in UAV 
3D path planning, we improve the original PO.

3.2.1. SPM Chaotic Mapping
To improve the accuracy of the PO, we are consid-
ering introducing spatial pyramid matching (SPM) 
chaotic mapping for optimization. SPM chaotic map-
ping is an optimization method based on chaos theo-
ry, which has attracted attention due to its high ex-
ploratory and global search capabilities. SPM chaotic 
mapping can effectively avoid local optimal solutions 
in complex search spaces and improve the efficiency 
and accuracy of problem-solving. The chaotic dy-

Figure 3 
Flowchart of the parrot optimization.
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3.2 Improved Parrot Optimization 

Since the processing of the UAV 3D path 
planning problem is more complex than 
common path planning problems, to make the 
PO equally robust in UAV 3D path planning, 
we improve the original PO. 

3.2.1 SPM Chaotic Mapping 

To improve the accuracy of the PO, we are 
considering introducing spatial pyramid 
matching (SPM) chaotic mapping for 
optimization. SPM chaotic mapping is an 
optimization method based on chaos theory, 
which has attracted attention due to its high 
exploratory and global search capabilities. 
SPM chaotic mapping can effectively avoid 
local optimal solutions in complex search 

spaces and improve the efficiency and 
accuracy of problem-solving. The chaotic 
dynamic characteristics make the search 
process more flexible and changeable, thus 
increasing the possibility of finding optimized 
solutions in nonlinear and complex 
environments. By introducing SPM chaotic 
mapping, we can better handle high-
dimensional and highly complex problems 
and promote the development of various 
optimization tasks.  

When initializing the population, using SPM 
mapping for optimization can make the 
population distribution in space more 
uniform, thus compensating for the 
shortcomings of random initialization. 

.
(11) 

When , the system is in a 
chaotic state; r is a random number between 0-
1. 

The introduction of the SPM chaotic mapping 
enhances the randomness of the PO, thereby 
improving its global search capability. It 
effectively helps to avoid local optima and 

facilitates better path planning. 

3.2.2 Adaptive Switching Factor 

In PO, the behavior of individuals (foraging, 
staying, communicating, and fear of strangers) 
is determined by random selection. Fixed 
probability selection may lead to insufficient 
algorithm exploration ability in some cases, 
especially when the search space is large or 
complex.  

To improve the global search ability of the 
algorithm in the early stage, we introduce an 
adaptive switching factor H in the 
communication stage of parrots, which is 
dynamically adjusted according to the current 
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namic characteristics make the search process more 
flexible and changeable, thus increasing the possibil-
ity of finding optimized solutions in nonlinear and 
complex environments. By introducing SPM chaotic 
mapping, we can better handle high-dimensional and 
highly complex problems and promote the develop-
ment of various optimization tasks. 
When initializing the population, using SPM map-
ping for optimization can make the population dis-
tribution in space more uniform, thus compensating 
for the shortcomings of random initialization.

. (11)

When η ϵ (0,1), μ ϵ (0,1) the system is in a chaotic 
state; r is a random number between 0-1.
The introduction of the SPM chaotic mapping en-
hances the randomness of the PO, thereby improv-
ing its global search capability. It effectively helps to 
avoid local optima and facilitates better path plan-
ning.

3.2.2. Adaptive Switching Factor
In PO, the behavior of individuals (foraging, staying, 
communicating, and fear of strangers) is determined 
by random selection. Fixed probability selection 
may lead to insufficient algorithm exploration abili-
ty in some cases, especially when the search space is 
large or complex. 
To improve the global search ability of the algorithm 
in the early stage, we introduce an adaptive switch-
ing factor H in the communication stage of parrots, 
which is dynamically adjusted according to the cur-
rent number of iterations. The formula is as follows:

 . (12)

As the number of iterations increases, the value of   
 gradually decreases, which means that in the 

early stage, the value of H is larger, and individuals 
are more inclined to explore, while in the later stage, 
the value of  H is smaller, and individuals are more 
inclined to exploit the known optimal solution. 

Through this improvement, the algorithm can better 
explore the solution space, and in the later stage, it 
can better utilize the existing information, thereby 
improving the convergence speed and solution qual-
ity and enhancing the flexibility of the algorithm.

3.2.3. Dynamic Adaptive Foraging Mechanisms
Seeing the formula for Foraging Behavior in the orig-
inal PO (see 6), it can be seen that this behavior is 
mainly guided by  Xbest, and in the early stage of the al-
gorithm, if Xbest happens to be a locally optimal solu-
tion at the current stage, then the entire population 
prematurely approaches it, which will greatly in-
crease the risk of falling into a local optimum, weak-
ening the algorithm's ability to explore the whole 
world; and the formula uses X t

mean for calculation, 
which may cause the limitation of partial information 
guidance, in the swarm intelligence optimization al-
gorithm, the average position of the whole population 
Xmean is often chosen as a more meaningful guidance 
information, because it represents the central ten-
dency and collective wisdom of the whole population.
In order to solve this problem, we introduce a dynam-
ic adaptive foraging guidance strategy, the core idea 
of the strategy is: in different stages of the algorithm 
iteration, dynamically adjust the Foraging Behavior of 
the “learning object”, for the early iteration, the par-
rot should learn more from the average position Xmean, 
which is equivalent to the whole population to explore 
the center of the region. This is equivalent to exploring 
the center of the region where the whole population is 
doing well, which is beneficial to the global search and 
avoids falling into a local extreme point too early. As 
the optimal solution gets closer to the global optimal 
solution, the parrot should learn more from the glob-
al optimal position to accelerate the convergence and 
perform finer local search. To this end, we achieve this 
smooth transition by a nonlinearly decreasing weight 
factor w, the formula is as follows:

 
. (13)

The weights smoothly transition from 1 to 0 as the 
number of iterations i increases. A dynamic boot-
strap targeting mechanism is then constructed for 
the parrot's foraging behavior: guidance = w · Xmeaan + 
(1 – w) · Xbest, a modified Foraging Behavior updating 
equation:
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 . (14)

Each parrot performs a levy flight based on its cur-
rent position in a direction jointly determined by the 
dynamic guidance mechanism and the current posi-
tion it is in.

3.2.4. Hybrid Cauchy and Gaussian Mutation
In heuristic optimization algorithms, mutation op-
eration is essential to introduce diversity and avoid 
local optima, aiming to explore a wider search space. 
Traditional mutation methods may lead to instabil-
ity in the search process. By combining the Cauchy 
distribution's and Gaussian distribution's mutation 
strategy, the algorithm can adopt different mutation 
methods at different stages. The Cauchy distribution 
has a larger tail, which can produce larger mutation 
amplitudes, while the Gaussian distribution pro-
vides smaller, local mutations. 
Cauchy mutation uses the Cauchy distribution to 
generate random numbers with a heavier tail, allow-
ing it to explore more widely in the search space. The 
formula for Cauchy mutation is:

 , (15)

where VCauchy is the new position after the Cauchy 
mutation, Xt

i is the current position of the i-th indi-
vidual in the t-th iteration, ϒ is the parameter that 
controls the mutation amplitude, and U(0,1) is a 
unidformly distributed random number. 
Gaussian mutation uses a normal distribution to 
generate random numbers, which is suitable for 
fine-tuning around the current solution. The formu-
la for Gaussian mutation is:

 , (16)

where VGaussian is the new position after Gaussian mu-
tation, σ is the standard deviation, which controls 
the range of mutation, and N(0,1) is a standard nor-
mally distributed random number. 
We combine Cauchy and Gaussian mutations, and 
the formula is expressed as:

 , (17)

where Vmixed is the final mutation result, p is a weight 
factor used to control the proportion of Cauchy and 
Gaussian mutations. 
By mixing Cauchy and Gaussian mutations, larger 
mutations can be introduced in the early stage of 
the search to help the algorithm jump out of local 
optima, while smaller mutations can be used in the 
later stage of the search to fine-tune the solution, 
allowing the algorithm to achieve a better balance 
between global search and local search. Cauchy 
mutation provides strong global search capability, 
while Gaussian mutation ensures that fine-tuning 
can be performed after finding potential optimal 
solutions. By using different mutation strategies 
at various stages, the algorithm can converge fast-
er to the global optimal solution, more effectively 
avoiding local optimal solutions while maintaining 
a specific diversity and avoiding premature conver-
gence, thus increasing the probability of finding the 
global optimal solution.

4. Experiments and Discussion
4.1. Model Comparison
IPO with Simulated Annealing (SA), Siqi Lin. in 
2024 proposed Improved Artificial Bee Colony op-
timization (ABC) [10], Shan et al. in 2023 proposed 
Improved Whale Optimization Algorithm, IWOA) 
[16], and Improved Sparrow Search Algorithm 
(SSA) [21] newly proposed by Zhang et al. in 2024 
as a comparison. 
The most fundamental difference between IPO and 
SA is that one is a “group” and the other is an “indi-
vidual”, first of all, the search theme is different, IPO 
is a population-based algorithm, which maintains 
a population of N parrots at the same time, and the 
individuals interact with each other by imitating the 
optimal individual and referring to the mean value 
of the population. Individuals interact with each 
other by imitating the optimum, referring to the 
mean value of the population, etc., and jointly push 
the population to evolve to more regions, while SA 
is an algorithm based on a single solution, which 
maintains only one current solution at any moment, 
and the search process is the trajectory of a single 
solution in the solution space; secondly, the mecha-
nisms of escaping from the local optimum of the two 
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are also different, as IPO relies on the diversity of 
the population and the perturbations introduced by 
the behaviors of Levy's flights, such as long-distance 
jumps, to explore different regions, and thus jump 
out of the local optimum of the two. to explore differ-
ent regions and thus jump out of the local optimum, 
while the core mechanism of SA is probabilistic ac-
ceptance of poor solutions, according to a gradually 
decreasing temperature T, SA will accept a worse 
solution than the current one with a certain prob-
ability. At high temperatures it is more likely to ac-
cept poor solutions for extensive exploration, while 
at low temperatures it tends to accept only superior 
solutions for local convergence.
Although IPO and ABC and SSA are all swarm in-
telligence optimization algorithms, their, social 
structure and division of labor mechanisms are 
not different, ABC and SSA represent the social 
division of labor with a clear and fixed division of 
labor, and the populations in ABC are divided into 
three roles (Employed Bees, Onlooker Bees, and 
Scout Bees), and the populations in SSA are divid-
ed into (Producers, Scroungers, Vigilance). In IPO, 
the population is homogeneous without fixed roles, 
and in each iteration, any “parrot” may randomly 
perform any one of the four behaviors (Foraging, 
Staying, Communicating, Fear), and its behavioral 
pattern is probabilistic, not Their behavioral pat-
terns are probabilistic rather than determined by 
their “status” in the population.
Although both IPO and IWOA are group algorithms 
that simulate animal behavior, their core mathe-
matical models and exploration mechanisms are 
fundamentally different. Firstly, the core predation 
model is different, the most unique mechanism in 
IWOA is the simulation of humpback whale's spiral 

bubble net predation strategy, which corresponds 
to a unique logarithmic helix updating formula, and 
is the core of its localized accurate exploitation, 
while IPO exploration is mainly achieved by mim-
icking the optimal individual's “Staying Behavior” 
and “Communicating Behavior”, which are more 
generalized models; secondly, both of them have a 
group behavior model, which is more generalized. 
The exploration process of IPO is mainly realized by 
mimicking the “Staying Behavior” and “Communi-
cating Behavior” of the optimal individuals, which 
are more general models of group behavior; second-
ly, the global exploration mechanisms of IWOA and 
IPO are different. Secondly, the global exploration 
mechanisms of IWOA and IPOA are also different. 
IWOA has a very clear mechanism in its global ex-
ploration phase, i.e., the position of an individual is 
updated not by referring to the optimal solution, but 
by referring to another randomly selected individual 
from the population, and this strategy of forcing the 
individual to deviate from the optimal solution is the 
key to maintain the diversity of the population and 
to conduct the global search, while IPOA's global ex-
ploration relies on the Levy's flight of large random 
jumps and the  perturbations introduced in the “Fear 
of Strangers” behavior, which is a different explora-
tion strategy from the IWOA's guidance mechanism 
based on random individuals [2].
To improve the efficiency of the experiment, we sim-
ulated a three-dimensional environment map. The 
visualization of the three-dimensional map is shown 
in the Figure 4.
Matrix Laboratory (MATLAB) is used as a simula-
tion tool for testing. The experimental results are 
statistically analyzed, and the comparison results 
are shown in Table 1 and Figure 5.

Evaluation 
indicators parameters IPO SA IWOA SSA ABC

Fitness
Best 34.0450 86.0394 35.7060 33.2665 42.4339

Average 35.1202 96.5746 38.2419 34.0450 43.7053

convergence 
time(s)

Slowest 13.85 20.2 15.47 14.04 45.39

Average 11.21 16.78 14.61 13.29 44.15

Fastest 10.75 15.6 13.17 12.61 42.39

Table 1 
Compared Results.
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Figure 4 
Simulation environment.
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Figure 5 Iteration curve at 300 iterations ((a) for two-dimensional, and (b) for three-dimensional).
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The iteration curve comparison graph shows 
the fitness values change during the iteration 
process for five optimization algorithms (IPO, 
SA, ABC, IWOA, and SSA). The number of 
iterations is represented by the X-axis of the 
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value. It can be clearly observed that IPO has a 
significant decrease in the initial phase with a 
rapid decrease in fitness, indicating that it 
excels in its ability to search for the optimal 
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SA, ABC, IWOA, and SSA). The number of 
iterations is represented by the X-axis of the 

diagram, and the Y-axis represents the fitness 
value. It can be clearly observed that IPO has a 
significant decrease in the initial phase with a 
rapid decrease in fitness, indicating that it 
excels in its ability to search for the optimal 

(b)

The iteration curve comparison graph shows the fi t-
ness values change during the iteration process for 
fi ve optimization algorithms (IPO, SA, ABC, IWOA, 
and SSA). The number of iterations is represented by 
the X-axis of the diagram, and the Y-axis represents 
the fi tness value. It can be clearly observed that IPO 
has a signifi cant decrease in the initial phase with a 
rapid decrease in fi tness, indicating that it excels in 
its ability to search for the optimal solution and can 
fi nd a better solution within a shorter number of it-
erations. In comparison, the adaptation curves of 
IWOA and SSA are slightly fl atter, and although the 
fi nal results can converge better, the decrease rate is 
not as signifi cant as that of the IPO in the initial stage.
The performance of SA is even slower, with a 
smoother trend of improvement in fi tness, suggest-

ing that it may have adopted a more cautious strategy 
in exploring the optimal solution, which in turn may 
have led to a relatively slower overall convergence 
rate. Finally, ABC's fi tness curve stays in a high fi t-
ness range with a limited decrease, suggesting that 
it may have fallen into a local optimum during the 
search process, which ultimately fails to improve the 
results signifi cantly. Meanwhile, comparing the op-
timization curves of each optimization algorithm (as 
shown in Figure 6), it can be seen that IPO searches 
in the initial stage with clearer direction and rel-
atively fewer infl ection points, and the adaptation 
value is relatively lower, and the path search ability 
is better than each optimization algorithm.
In summary, IPO exhibits the best convergence 
speed and fi tness performance in most cases, while 
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solution and can find a better solution within a 
shorter number of iterations. In comparison, 
the adaptation curves of IWOA and SSA are 
slightly flatter, and although the final results 
can converge better, the decrease rate is not as 
significant as that of the IPO in the initial 
stage.

The performance of SA is even slower, with a 
smoother trend of improvement in fitness, 
suggesting that it may have adopted a more 
cautious strategy in exploring the optimal 
solution, which in turn may have led to a 
relatively slower overall convergence rate. 
Finally, ABC's fitness curve stays in a high 
fitness range with a limited decrease, 
suggesting that it may have fallen into a local 
optimum during the search process, which 
ultimately fails to improve the results 
significantly. Meanwhile, comparing the 
optimization curves of each optimization 
algorithm (as shown in Figure 6), it can be 
seen that IPO searches in the initial stage with 
clearer direction and relatively fewer 
inflection points, and the adaptation value is 
relatively lower, and the path search ability is 
better than each optimization algorithm.

In summary, IPO exhibits the best 
convergence speed and fitness performance in 
most cases, while IWOA and SSA perform 
well but slightly less than IPO, and ABC and 
SA are relatively weak in convergence ability 
and effectiveness [12].

Based on this, we use IPO for UAV three-
dimensional path planning, and the planned 
path is shown in Figure 7.

Figure 7 Roadmap of the Best Result of the 
IPO.

In order to further explore the robustness of the 
IPO for UAV 3D path planning in more complex 
environments, we adopt the mountain peak 
model as an obstacle for UAV flight, and the 3D 
surface model is used in modeling to make the 
generated mountain peak environment diverse 
and realistic, and the map is shown in Figure 8.
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Figure 13 SSA Optimal Path.

In this simulation scenario, the challenge is 
different from previous scenarios in that there 
are no discrete obstacles to navigate around, 
but rather a continuous, undulating costal 
surface, where the drone needs to find the 
shortest horizontal projection path while 
maintaining a safe flight altitude, while 
minimizing additional energy consumption 
due to climbing and descending, and avoiding 
unnecessary “going over the hill”. Comparing 

the planned paths of Figures 9-13, it can be 
seen that the paths planned by the IPO 
proposed in this paper are smoother and have 
fewer inflection points. Its path is very clever, 
finding a lower “saddle” to cross between the 
two main peaks, effectively avoiding the need 
for a major climb. the IPO's dynamic adaptive 
mechanisms allow it to explore the “col”
region early on, while Levy flights Levy Flight 
and Hybrid Mutation allow IPO to make large 
jumps, exploring from valley to valley rather 
than being trapped in a locally optimal 
“basin”, proving once again IPO's ability to 
strike a balance between global exploration 
and local exploitation [18].

4.2 Simulation Experiments of Three-
Dimensional UAV Path Planning Based on 
the BISU Map

Therefore, based on the above content, we 
selected two mid-points and four endpoints 
for our simulation experiments. The markings 
are shown in the Figure 14 and Tables 2-3
below. Numbers represent mid-points, and 
letters represent target points.

Table 2 Parameter values for the BISU map.

Figure 10
ABC Optimal Path.
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In this simulation scenario, the challenge is diff erent 
from previous scenarios in that there are no discrete 
obstacles to navigate around, but rather a continu-
ous, undulating costal surface, where the drone needs 
to fi nd the shortest horizontal projection path while 
maintaining a safe fl ight altitude, while minimizing 
additional energy consumption due to climbing and 
descending, and avoiding unnecessary “going over 
the hill”. Comparing the planned paths of Figures 
9-13, it can be seen that the paths planned by the IPO 
proposed in this paper are smoother and have few-
er infl ection points. Its path is very clever, fi nding a 
lower “saddle” to cross between the two main peaks, 
eff ectively avoiding the need for a major climb. the 
IPO's dynamic adaptive mechanisms allow it to ex-
plore the “col” region early on, while Levy fl ights Levy 
Flight and Hybrid Mutation allow IPO to make large 
jumps, exploring from valley to valley rather than be-
ing trapped in a locally optimal “basin”, proving once 
again IPO's ability to strike a balance between global 
exploration and local exploitation [18].

4.2. Simulation Experiments of 
Three-Dimensional UAV Path 
Planning Based on the BISU Map
Therefore, based on the above content, we selected 
two mid-points and four endpoints for our simula-
tion experiments. The markings are shown in the 
Figure 14 and Tables 2-3 below. Numbers represent 
mid-points, and letters represent target points. 
In the previous section, we discussed considering the 
traveling salesman problem as a realistic scenario for 
drone transportation. To refl ect the situation where 
drones often need to visit multiple locations in a single 
trip, we introduced the concept of transfer points. In 
our experimental design, the setup of transfer points 
holds practical signifi cance as it connects various cam-
pus facilities with student dormitories at BISU. Specif-
ically, the transfer points are located at the university's 
dining halls, while the endpoints are the dormitory 
buildings on campus, and the drones' starting point is 
the comprehensive living area of the university. In the 
future, when residential buildings have procurement 
needs, logistics drones can deliver the required items 
directly to the dormitories. For dining needs, items can 
fi rst be transferred to the dining halls via drones before 
being delivered to the dormitories, enabling effi  cient 
and convenient delivery of goods and meals.

Figure 11 SA Optimal Path.

Figure12 WOA Optimal Path.
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In this simulation scenario, the challenge is 
different from previous scenarios in that there 
are no discrete obstacles to navigate around, 
but rather a continuous, undulating costal 
surface, where the drone needs to find the 
shortest horizontal projection path while 
maintaining a safe flight altitude, while 
minimizing additional energy consumption 
due to climbing and descending, and avoiding 
unnecessary “going over the hill”. Comparing 

the planned paths of Figures 9-13, it can be 
seen that the paths planned by the IPO 
proposed in this paper are smoother and have 
fewer inflection points. Its path is very clever, 
finding a lower “saddle” to cross between the 
two main peaks, effectively avoiding the need 
for a major climb. the IPO's dynamic adaptive 
mechanisms allow it to explore the “col”
region early on, while Levy flights Levy Flight 
and Hybrid Mutation allow IPO to make large 
jumps, exploring from valley to valley rather 
than being trapped in a locally optimal 
“basin”, proving once again IPO's ability to 
strike a balance between global exploration 
and local exploitation [18].

4.2 Simulation Experiments of Three-
Dimensional UAV Path Planning Based on 
the BISU Map

Therefore, based on the above content, we 
selected two mid-points and four endpoints 
for our simulation experiments. The markings 
are shown in the Figure 14 and Tables 2-3
below. Numbers represent mid-points, and 
letters represent target points.
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Figure 13
SSA Optimal Path.
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Parameter Value

Map

Physical Units 1

Map Units 2

Physical Size 500*350*50

Experimental Area 300*300*20

Algorithm
Population Size 30

Iteration Count 50

Code Actual Meaning Coordinates

mid-point
1 Fengwei Canteen [208,234,2]

2 Xiangyu Canteen [126,238,2]

End Point

A Residential Building [220,50,2]

B Building 7 [20,200,2]

C Building 3 [184,106,2]

D Building 1 [76,84,2]

Therefore, it can be seen that the experiment simu-
lates the fl ight path of the UAV after fl ying to the can-
teen and then fl ying to the residential building and 
three dormitory buildings. There is a total of 2*4=8 
paths. After inputting the above coordinates in the 
relevant positions in our code, we can successively 
obtain our experimental results as shown in the fol-
lowing Figure 15.

The fi tness function curve illustrates the conver-
gence performance of the algorithm for each path 
during the iterative process. By introducing SPM 
chaotic mapping, adaptive switching factors, and 
a hybrid Cauchy/Gaussian mutation strategy, our 
method signifi cantly enhances the optimization ac-
curacy of path planning. Compared with tradition-
al algorithms, the IPO can fi nd shorter fl ight paths, 
thereby eff ectively reducing drone fl ight costs [7].
At the same time, the fi tness function curve also re-
veals that the IPO demonstrates rapid convergence 
in the early stages of iteration, requiring only a few 
iterations to achieve an optimal solution. It is at-
tributed to the global search advantages of SPM 
chaotic mapping and the dynamic adjustment ca-
pabilities provided by the adaptive switching fac-

Table 2 
Parameter values for the BISU map.

Table 3 
Parameter values for BISU flight experiments.

Parameter Value

Map

Physical Units 1
Map Units 2

Physical Size 500*350*50
Experimental Area 300*300*20

Algorithm
Population Size 30
Iteration Count 50

Table 3 Parameter values for BISU flight experiments.
Code Actual Meaning Coordinates

mid-point
1 Fengwei Canteen [208 234 2]
2 Xiangyu Canteen [126 238 2]

End Point

A Residential 
Building

[220 50 2]

B Building 7 [20 200 2]
C Building 3 [184 106 2]
D Building 1 [76 84 2]

Figure 14 Two-dimensional distribution of coordinates.

In the previous section, we discussed 
considering the traveling salesman problem as 
a realistic scenario for drone transportation. 
To reflect the situation where drones often 
need to visit multiple locations in a single trip, 
we introduced the concept of transfer points. 
In our experimental design, the setup of 
transfer points holds practical significance as it 
connects various campus facilities with 
student dormitories at BISU. Specifically, the 
transfer points are located at the university's 
dining halls, while the endpoints are the 
dormitory buildings on campus, and the 
drones' starting point is the comprehensive 
living area of the university. In the future, 
when residential buildings have procurement 

needs, logistics drones can deliver the 
required items directly to the dormitories. For 
dining needs, items can first be transferred to 
the dining halls via drones before being 
delivered to the dormitories, enabling efficient 
and convenient delivery of goods and meals.

Therefore, it can be seen that the experiment 
simulates the flight path of the UAV after 
flying to the canteen and then flying to the 
residential building and three dormitory 
buildings. There is a total of 2*4=8 paths. After 
inputting the above coordinates in the relevant 
positions in our code, we can successively 
obtain our experimental results as shown in 
the following Figure 15.

Figure 15 Fengwei Canteen to Residential Building ((a) is the flight path, and (b) is the fitness function 
curve).

Figure 14 
Two-dimensional distribution of coordinates.

Mid-Point

End-Point

Path

The Best Result of IPO:224.1787, Mid-Point:[208 234 2], End-point:[220 50 2]

0 10 20 30 40 50 60

0

100

200

300

400

500

600

700
(IPO)  - : [208  234    2], : [220   50    2]The Fitness Function of IPO- Mid-Point:[208 234 2], End-point   

Fi
tn

es
s

Start-point to Mid-point

Mid-point to End-point

(a)           (b)

The fitness function curve illustrates the 
convergence performance of the algorithm for 
each path during the iterative process. By 
introducing SPM chaotic mapping, adaptive 
switching factors, and a hybrid 
Cauchy/Gaussian mutation strategy, our 
method significantly enhances the 
optimization accuracy of path planning. 
Compared with traditional algorithms, the 
IPO can find shorter flight paths, thereby 
effectively reducing drone flight costs [7].

At the same time, the fitness function curve 
also reveals that the IPO demonstrates rapid 
convergence in the early stages of iteration, 
requiring only a few iterations to achieve an 
optimal solution. It is attributed to the global 
search advantages of SPM chaotic mapping 
and the dynamic adjustment capabilities 
provided by the adaptive switching factor. 
Additionally, the paths generated by the IPO 
in three-dimensional space are more 
optimized, significantly reducing the need for 
sharp turns and frequent attitude adjustments, 
contributing to improved flight stability and 
safety.

Besides these, in Section 2.3, we set the 
minimum flight altitude to 8 meters, but no 
upper limit was specified for the maximum 
flight altitude. Therefore, our flight 
experiment results also include situations 
where the drone flew over buildings. Our 
experiment contains those kinds of results, 
which can be found in Appendix Figures 9, 11, 
13, and 15. Moreover, based on the results 
from 9, 11, 13, and 15, we can see that the 
optimal flight paths to Building 7 and 
Building 1 are flying over the buildings 
obstructing their route.

In order to further analyze the effectiveness of 
IPO in different urban scenarios, we 
constructed two different scenarios to further 
demonstrate the effectiveness of the proposed 
method. Scenario A is a high-density urban 
core, characterized by tall and dense buildings 
with small building spacing, forming an 
“urban canyon”, as shown in Figures 15-16.

Figure 16 High-density urban core.

High-density urban cores mainly test the 
algorithm's pathfinding ability in the vertical 
dimension, obstacle avoidance in narrow 
spaces, and the efficiency of finding the 
globally optimal path among a large number 
of potential local optimal solutions (e.g., 
different paths to bypass a tall building). The 
fitness curves and optimized routes are shown 
in Figures 17-18.

Figure 17 Fitness Curve (High-Density 
Urban).

          
0 50 100 150 200 250 300 350

Iteration

40

60

80

100

120

140

160

180

200

220

Fi
tn

es
s

High-Density Urban Core

PO

SA

ABC

WOA

SSA
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method significantly enhances the 
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IPO can find shorter flight paths, thereby 
effectively reducing drone flight costs [7].

At the same time, the fitness function curve 
also reveals that the IPO demonstrates rapid 
convergence in the early stages of iteration, 
requiring only a few iterations to achieve an 
optimal solution. It is attributed to the global 
search advantages of SPM chaotic mapping 
and the dynamic adjustment capabilities 
provided by the adaptive switching factor. 
Additionally, the paths generated by the IPO 
in three-dimensional space are more 
optimized, significantly reducing the need for 
sharp turns and frequent attitude adjustments, 
contributing to improved flight stability and 
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Besides these, in Section 2.3, we set the 
minimum flight altitude to 8 meters, but no 
upper limit was specified for the maximum 
flight altitude. Therefore, our flight 
experiment results also include situations 
where the drone flew over buildings. Our 
experiment contains those kinds of results, 
which can be found in Appendix Figures 9, 11, 
13, and 15. Moreover, based on the results 
from 9, 11, 13, and 15, we can see that the 
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constructed two different scenarios to further 
demonstrate the effectiveness of the proposed 
method. Scenario A is a high-density urban 
core, characterized by tall and dense buildings 
with small building spacing, forming an 
“urban canyon”, as shown in Figures 15-16.
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The fitness function curve illustrates the 
convergence performance of the algorithm for 
each path during the iterative process. By 
introducing SPM chaotic mapping, adaptive 
switching factors, and a hybrid 
Cauchy/Gaussian mutation strategy, our 
method significantly enhances the 
optimization accuracy of path planning. 
Compared with traditional algorithms, the 
IPO can find shorter flight paths, thereby 
effectively reducing drone flight costs [7].

At the same time, the fitness function curve 
also reveals that the IPO demonstrates rapid 
convergence in the early stages of iteration, 
requiring only a few iterations to achieve an 
optimal solution. It is attributed to the global 
search advantages of SPM chaotic mapping 
and the dynamic adjustment capabilities 
provided by the adaptive switching factor. 
Additionally, the paths generated by the IPO 
in three-dimensional space are more 
optimized, significantly reducing the need for 
sharp turns and frequent attitude adjustments, 
contributing to improved flight stability and 
safety.

Besides these, in Section 2.3, we set the 
minimum flight altitude to 8 meters, but no 
upper limit was specified for the maximum 
flight altitude. Therefore, our flight 
experiment results also include situations 
where the drone flew over buildings. Our 
experiment contains those kinds of results, 
which can be found in Appendix Figures 9, 11, 
13, and 15. Moreover, based on the results 
from 9, 11, 13, and 15, we can see that the 
optimal flight paths to Building 7 and 
Building 1 are flying over the buildings 
obstructing their route.

In order to further analyze the effectiveness of 
IPO in different urban scenarios, we 
constructed two different scenarios to further 
demonstrate the effectiveness of the proposed 
method. Scenario A is a high-density urban 
core, characterized by tall and dense buildings 
with small building spacing, forming an 
“urban canyon”, as shown in Figures 15-16.

Figure 16 High-density urban core.

High-density urban cores mainly test the 
algorithm's pathfinding ability in the vertical 
dimension, obstacle avoidance in narrow 
spaces, and the efficiency of finding the 
globally optimal path among a large number 
of potential local optimal solutions (e.g., 
different paths to bypass a tall building). The 
fitness curves and optimized routes are shown 
in Figures 17-18.
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Figure 15 
Fengwei Canteen to Residential Building ((a) is the flight 
path, and (b) is the fitness function curve).
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tor. Additionally, the paths generated by the IPO 
in three-dimensional space are more optimized, 
signifi cantly reducing the need for sharp turns and 
frequent attitude adjustments, contributing to im-
proved fl ight stability and safety.
Besides these, in Section 2.3, we set the minimum 
fl ight altitude to 8 meters, but no upper limit was 
specifi ed for the maximum fl ight altitude. Therefore, 
our fl ight experiment results also include situations 
where the drone fl ew over buildings. Our experiment 
contains those kinds of results, which can be found 
in Appendix Figures 9, 11, 13, and 15. Moreover, based 
on the results from 9, 11, 13, and 15, we can see that 
the optimal fl ight paths to Building 7 and Building 1 
are fl ying over the buildings obstructing their route.
In order to further analyze the eff ectiveness of IPO 
in diff erent urban scenarios, we constructed two 
diff erent scenarios to further demonstrate the ef-
fectiveness of the proposed method. Scenario A is 
a high-density urban core, characterized by tall and 
dense buildings with small building spacing, form-
ing an “urban canyon”, as shown in Figures 15-16.

Seeing the convergence curves, IPO, IWOA, and SSA 
show high performance. They are all swarm intel-
ligent optimization algorithms, which can explore 
complex urban spaces in parallel using the entire pop-
ulation. IPO performs the most outstandingly. Its dy-
namic self – adaptive foraging guidance helps it quick-
ly locate high – quality areas of main roads in the early 
stage, and SPM chaotic mapping and Mixed variants 
provide population diversity and the ability to jump 
out of local optimal solutions. SA performs the worst 
and converges the slowest, indicating that individual 
search algorithms struggle to explore the whole map 
effi  ciently in complex and high - dimensional solution 
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Cauchy/Gaussian mutation strategy, our 
method significantly enhances the 
optimization accuracy of path planning. 
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effectively reducing drone flight costs [7].
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also reveals that the IPO demonstrates rapid 
convergence in the early stages of iteration, 
requiring only a few iterations to achieve an 
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and the dynamic adjustment capabilities 
provided by the adaptive switching factor. 
Additionally, the paths generated by the IPO 
in three-dimensional space are more 
optimized, significantly reducing the need for 
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experiment results also include situations 
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experiment contains those kinds of results, 
which can be found in Appendix Figures 9, 11, 
13, and 15. Moreover, based on the results 
from 9, 11, 13, and 15, we can see that the 
optimal flight paths to Building 7 and 
Building 1 are flying over the buildings 
obstructing their route.

In order to further analyze the effectiveness of 
IPO in different urban scenarios, we 
constructed two different scenarios to further 
demonstrate the effectiveness of the proposed 
method. Scenario A is a high-density urban 
core, characterized by tall and dense buildings 
with small building spacing, forming an 
“urban canyon”, as shown in Figures 15-16.
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Figure 16 
High-density urban core.

High-density urban cores mainly test the algorithm's 
pathfi nding ability in the vertical dimension, obstacle 
avoidance in narrow spaces, and the effi  ciency of fi nd-
ing the globally optimal path among a large number of 
potential local optimal solutions (e.g., diff erent paths 
to bypass a tall building). The fi tness curves and opti-
mized routes are shown in Figures 17-18.
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The fitness function curve illustrates the 
convergence performance of the algorithm for 
each path during the iterative process. By 
introducing SPM chaotic mapping, adaptive 
switching factors, and a hybrid 
Cauchy/Gaussian mutation strategy, our 
method significantly enhances the 
optimization accuracy of path planning. 
Compared with traditional algorithms, the 
IPO can find shorter flight paths, thereby 
effectively reducing drone flight costs [7].

At the same time, the fitness function curve 
also reveals that the IPO demonstrates rapid 
convergence in the early stages of iteration, 
requiring only a few iterations to achieve an 
optimal solution. It is attributed to the global 
search advantages of SPM chaotic mapping 
and the dynamic adjustment capabilities 
provided by the adaptive switching factor. 
Additionally, the paths generated by the IPO 
in three-dimensional space are more 
optimized, significantly reducing the need for 
sharp turns and frequent attitude adjustments, 
contributing to improved flight stability and 
safety.

Besides these, in Section 2.3, we set the 
minimum flight altitude to 8 meters, but no 
upper limit was specified for the maximum 
flight altitude. Therefore, our flight 
experiment results also include situations 
where the drone flew over buildings. Our 
experiment contains those kinds of results, 
which can be found in Appendix Figures 9, 11, 
13, and 15. Moreover, based on the results 
from 9, 11, 13, and 15, we can see that the 
optimal flight paths to Building 7 and 
Building 1 are flying over the buildings 
obstructing their route.

In order to further analyze the effectiveness of 
IPO in different urban scenarios, we 
constructed two different scenarios to further 
demonstrate the effectiveness of the proposed 
method. Scenario A is a high-density urban 
core, characterized by tall and dense buildings 
with small building spacing, forming an 
“urban canyon”, as shown in Figures 15-16.
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High-density urban cores mainly test the 
algorithm's pathfinding ability in the vertical 
dimension, obstacle avoidance in narrow 
spaces, and the efficiency of finding the 
globally optimal path among a large number 
of potential local optimal solutions (e.g., 
different paths to bypass a tall building). The 
fitness curves and optimized routes are shown 
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Figure 17
Fitness Curve (High-Density Urban).

Seeing the convergence curves, IPO, IWOA, 
and SSA show high performance. They are all 
swarm intelligent optimization algorithms, 
which can explore complex urban spaces in 
parallel using the entire population. IPO 
performs the most outstandingly. Its dynamic 
self – adaptive foraging guidance helps it 
quickly locate high – quality areas of main 
roads in the early stage, and SPM chaotic 
mapping and Mixed variants provide 
population diversity and the ability to jump 
out of local optimal solutions. SA performs the 
worst and converges the slowest, indicating 
that individual search algorithms struggle to 
explore the whole map efficiently in complex 
and high - dimensional solution spaces with 
only random wandering and probabilistic 
jumps of individual solutions. Meanwhile, 
observing the optimized route, IPO passes 
through the densest building center and finds 
a “shortcut”, proving the effectiveness of its 
improved strategy in avoiding local 
optimality. It finds the optimal core path 
instead of the longer peripheral path. 

Subsequently, Scenario B was constructed as 
an urban area with rivers and bridges, and 
this scenario introduced multiple levels of 
access space (over/under bridges) for testing 
the decision-making ability of IPOs in more 
complex three-dimensional spaces, as shown 
in the Figure19.

Figure 19 Urban Riverfront.

This map mainly tests the ability of the 
algorithms in dealing with irregularly shaped 

obstacles and multi-level (e.g., over/under 
bridge) path planning. The fitness curves of 
each optimization algorithm as well as the 
Optimal Path are shown in Figures 20-21.

Figure 20 Fitness Curve (Urban Riverfront).
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Figure 21 Optimal Path (Urban Riverfront).

The central challenge of this scenario is a 
major “strategic choice”: should the drone fly 
high over the bridges or stay low and pass 
through the open water between them? This 
choice divides optimization algorithms into 
two performance camps.

From Figure 20, IPO, SSA, and IWOA quickly 
converge to a low fitness interval, meaning 
they make the correct “macro - decision” of 
the “low crossing” strategy with a shorter 
flight distance. As swarm intelligence 
optimization algorithms, they show high 
accuracy. ABC converges to a worse plateau, 
indicating its population chooses the “fly over 
the bridge” strategy and falls into a local 
optimum. SA performs worst, reaching a high 
fitness of nearly 100 early. As an individual 
search algorithm, it likely makes a wrong 
start, like entering the river - bank building 
cluster, and gets trapped in a local optimum 
due to the high energy barrier, unable to 
correct its macroscopic route even at high 
temperatures.

The observation of the Optimal Path (Figure 
21) visually confirms the convergence curve 

Figure 18 
Optimal Path (High-Density Urban).
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spaces with only random wandering and probabilistic 
jumps of individual solutions. Meanwhile, observing 
the optimized route, IPO passes through the densest 
building center and fi nds a “shortcut”, proving the ef-
fectiveness of its improved strategy in avoiding local 
optimality. It fi nds the optimal core path instead of 
the longer peripheral path. 
Subsequently, Scenario B was constructed as an ur-
ban area with rivers and bridges, and this scenario 
introduced multiple levels of access space (over/un-
der bridges) for testing the decision-making ability 
of IPOs in more complex three-dimensional spaces, 
as shown in the Figure19.

ing its population chooses the “fl y over the bridge” 
strategy and falls into a local optimum. SA performs 
worst, reaching a high fi tness of nearly 100 early. 
As an individual search algorithm, it likely makes a 
wrong start, like entering the river - bank building 
cluster, and gets trapped in a local optimum due to 
the high energy barrier, unable to correct its macro-
scopic route even at high temperatures.
The observation of the Optimal Path (Figure 21) vi-
sually confi rms the convergence curve conclusion. 
The paths of IPO, SSA, and IWOA show they choose 
the “low altitude traversal” strategy, staying below 
the bridge height and fl ying through the open area. 

Seeing the convergence curves, IPO, IWOA, 
and SSA show high performance. They are all 
swarm intelligent optimization algorithms, 
which can explore complex urban spaces in 
parallel using the entire population. IPO 
performs the most outstandingly. Its dynamic 
self – adaptive foraging guidance helps it 
quickly locate high – quality areas of main 
roads in the early stage, and SPM chaotic 
mapping and Mixed variants provide 
population diversity and the ability to jump 
out of local optimal solutions. SA performs the 
worst and converges the slowest, indicating 
that individual search algorithms struggle to 
explore the whole map efficiently in complex 
and high - dimensional solution spaces with 
only random wandering and probabilistic 
jumps of individual solutions. Meanwhile, 
observing the optimized route, IPO passes 
through the densest building center and finds 
a “shortcut”, proving the effectiveness of its 
improved strategy in avoiding local 
optimality. It finds the optimal core path 
instead of the longer peripheral path. 

Subsequently, Scenario B was constructed as 
an urban area with rivers and bridges, and 
this scenario introduced multiple levels of 
access space (over/under bridges) for testing 
the decision-making ability of IPOs in more 
complex three-dimensional spaces, as shown 
in the Figure19.

Figure 19 Urban Riverfront.

This map mainly tests the ability of the 
algorithms in dealing with irregularly shaped 

obstacles and multi-level (e.g., over/under 
bridge) path planning. The fitness curves of 
each optimization algorithm as well as the 
Optimal Path are shown in Figures 20-21.

Figure 20 Fitness Curve (Urban Riverfront).
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The central challenge of this scenario is a 
major “strategic choice”: should the drone fly 
high over the bridges or stay low and pass 
through the open water between them? This 
choice divides optimization algorithms into 
two performance camps.

From Figure 20, IPO, SSA, and IWOA quickly 
converge to a low fitness interval, meaning 
they make the correct “macro - decision” of 
the “low crossing” strategy with a shorter 
flight distance. As swarm intelligence 
optimization algorithms, they show high 
accuracy. ABC converges to a worse plateau, 
indicating its population chooses the “fly over 
the bridge” strategy and falls into a local 
optimum. SA performs worst, reaching a high 
fitness of nearly 100 early. As an individual 
search algorithm, it likely makes a wrong 
start, like entering the river - bank building 
cluster, and gets trapped in a local optimum 
due to the high energy barrier, unable to 
correct its macroscopic route even at high 
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This map mainly tests the ability of the algorithms 
in dealing with irregularly shaped obstacles and 
multi-level (e.g., over/under bridge) path planning. 
The fi tness curves of each optimization algorithm as 
well as the Optimal Path are shown in Figures 20-21.
The central challenge of this scenario is a major 
“strategic choice”: should the drone fl y high over the 
bridges or stay low and pass through the open water 
between them? This choice divides optimization al-
gorithms into two performance camps.
From Figure 20, IPO, SSA, and IWOA quickly con-
verge to a low fi tness interval, meaning they make 
the correct “macro - decision” of the “low crossing” 
strategy with a shorter fl ight distance. As swarm in-
telligence optimization algorithms, they show high 
accuracy. ABC converges to a worse plateau, indicat-

Seeing the convergence curves, IPO, IWOA, 
and SSA show high performance. They are all 
swarm intelligent optimization algorithms, 
which can explore complex urban spaces in 
parallel using the entire population. IPO 
performs the most outstandingly. Its dynamic 
self – adaptive foraging guidance helps it 
quickly locate high – quality areas of main 
roads in the early stage, and SPM chaotic 
mapping and Mixed variants provide 
population diversity and the ability to jump 
out of local optimal solutions. SA performs the 
worst and converges the slowest, indicating 
that individual search algorithms struggle to 
explore the whole map efficiently in complex 
and high - dimensional solution spaces with 
only random wandering and probabilistic 
jumps of individual solutions. Meanwhile, 
observing the optimized route, IPO passes 
through the densest building center and finds 
a “shortcut”, proving the effectiveness of its 
improved strategy in avoiding local 
optimality. It finds the optimal core path 
instead of the longer peripheral path. 

Subsequently, Scenario B was constructed as 
an urban area with rivers and bridges, and 
this scenario introduced multiple levels of 
access space (over/under bridges) for testing 
the decision-making ability of IPOs in more 
complex three-dimensional spaces, as shown 
in the Figure19.

Figure 19 Urban Riverfront.

This map mainly tests the ability of the 
algorithms in dealing with irregularly shaped 

obstacles and multi-level (e.g., over/under 
bridge) path planning. The fitness curves of 
each optimization algorithm as well as the 
Optimal Path are shown in Figures 20-21.
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The central challenge of this scenario is a 
major “strategic choice”: should the drone fly 
high over the bridges or stay low and pass 
through the open water between them? This 
choice divides optimization algorithms into 
two performance camps.

From Figure 20, IPO, SSA, and IWOA quickly 
converge to a low fitness interval, meaning 
they make the correct “macro - decision” of 
the “low crossing” strategy with a shorter 
flight distance. As swarm intelligence 
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Seeing the convergence curves, IPO, IWOA, 
and SSA show high performance. They are all 
swarm intelligent optimization algorithms, 
which can explore complex urban spaces in 
parallel using the entire population. IPO 
performs the most outstandingly. Its dynamic 
self – adaptive foraging guidance helps it 
quickly locate high – quality areas of main 
roads in the early stage, and SPM chaotic 
mapping and Mixed variants provide 
population diversity and the ability to jump 
out of local optimal solutions. SA performs the 
worst and converges the slowest, indicating 
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explore the whole map efficiently in complex 
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jumps of individual solutions. Meanwhile, 
observing the optimized route, IPO passes 
through the densest building center and finds 
a “shortcut”, proving the effectiveness of its 
improved strategy in avoiding local 
optimality. It finds the optimal core path 
instead of the longer peripheral path. 

Subsequently, Scenario B was constructed as 
an urban area with rivers and bridges, and 
this scenario introduced multiple levels of 
access space (over/under bridges) for testing 
the decision-making ability of IPOs in more 
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The central challenge of this scenario is a 
major “strategic choice”: should the drone fly 
high over the bridges or stay low and pass 
through the open water between them? This 
choice divides optimization algorithms into 
two performance camps.

From Figure 20, IPO, SSA, and IWOA quickly 
converge to a low fitness interval, meaning 
they make the correct “macro - decision” of 
the “low crossing” strategy with a shorter 
flight distance. As swarm intelligence 
optimization algorithms, they show high 
accuracy. ABC converges to a worse plateau, 
indicating its population chooses the “fly over 
the bridge” strategy and falls into a local 
optimum. SA performs worst, reaching a high 
fitness of nearly 100 early. As an individual 
search algorithm, it likely makes a wrong 
start, like entering the river - bank building 
cluster, and gets trapped in a local optimum 
due to the high energy barrier, unable to 
correct its macroscopic route even at high 
temperatures.

The observation of the Optimal Path (Figure 
21) visually confirms the convergence curve 

Figure 21  
Optimal Path (Urban Riverfront).
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The IPO's path is the smoothest and most direct, al-
most a straight line, proving its effi  cient local path 
optimization after choosing the correct strategy. 
In conclusion, the 3D path planning simulation ex-
periments validate the eff ectiveness and robustness 
of the IPO in drone path planning. By incorporating 
multiple improvement strategies, the algorithm sig-
nifi cantly enhances optimization accuracy and con-
vergence speed and improves path smoothness, pro-
viding an effi  cient solution for autonomous drone 
navigation in complex environments, see Figure 23 
- Figure 28.

5. Conclusion
This paper addresses the 3D path planning problem 
of UAVs in complex urban environments and pro-
poses an Improved Parrot Optimizer algorithm. By 

introducing SPM chaotic mapping, dynamic adap-
tive foraging mechanisms, adaptive switching fac-
tors, and a hybrid Cauchy and Gaussian mutation 
strategy, the algorithm's global search and conver-
gence speed are enhanced. A 3D path planning solu-
tion framework is constructed with a simulation 
platform, and experiments show the improved algo-
rithm has notable improvements in accuracy, speed, 
and path smoothness.
The paper also models the BISU campus, High - 
Density Urban Core, and Urban Riverfront in 3D and 
conducts path planning simulations, validating the 
algorithm's potential in real - world environments. 
However, the research has limitations. Consider ex-
ploring the algorithm's application on parallel com-
puting platforms to enhance processing and adapt-
ability to large - scale problems. Apply it to multi 
- UAV collaborative scenarios for eff ective coordina-
tion. Study the algorithm's adaptability and robust-

(a) (b)

conclusion. The paths of IPO, SSA, and IWOA 
show they choose the “low altitude traversal”
strategy, staying below the bridge height and 
flying through the open area. The IPO's path is 
the smoothest and most direct, almost a 
straight line, proving its efficient local path 
optimization after choosing the correct 
strategy. 

In conclusion, the 3D path planning 
simulation experiments validate the 
effectiveness and robustness of the IPO in 
drone path planning. By incorporating 
multiple improvement strategies, the 
algorithm significantly enhances optimization 
accuracy and convergence speed and 
improves path smoothness, providing an 
efficient solution for autonomous drone 
navigation in complex environments, see 
Figure 23 - Figure 28.

5. Conclusion
This paper addresses the 3D path planning 
problem of UAVs in complex urban 
environments and proposes an Improved 
Parrot Optimizer algorithm. By introducing 
SPM chaotic mapping, dynamic adaptive 
foraging mechanisms, adaptive switching 
factors, and a hybrid Cauchy and Gaussian 
mutation strategy, the algorithm's global 
search and convergence speed are enhanced. 
A 3D path planning solution framework is 
constructed with a simulation platform, and 
experiments show the improved algorithm has
notable improvements in accuracy, speed, and 
path smoothness.

The paper also models the BISU campus, High 
- Density Urban Core, and Urban Riverfront in 
3D and conducts path planning simulations, 
validating the algorithm's potential in real -
world environments. However, the research 
has limitations. Consider exploring the 
algorithm's application on parallel computing 

platforms to enhance processing and 
adaptability to large - scale problems. Apply it 
to multi - UAV collaborative scenarios for 
effective coordination. Study the algorithm's 
adaptability and robustness under dynamic 
constraints like wind speed. Employ curve 
smoothing strategies and develop adaptive 
mechanisms for automatic parameter 
adjustment. Conduct actual UAV flight tests 
outside the lab.

The proposed improved IPO algorithm offers 
an effective solution for UAV 3D path 
planning with good engineering application 
prospects. Future research will further 
optimize and apply the algorithm to promote 
UAV technology development in more fields.
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The result of the Experiments of Three-
Dimensional UAV Path Planning Based on the 
BISU Map.

Figure 22 Fengwei Canteen to Building 7 ((a) is the flight path, and (b) is the fitness function curve).
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Figure 23Fengwei Canteen to Building 3 ((a) is the flight path, and (b) is the fitness function curve)

Figure 22 
Fengwei Canteen to Building 7 ((a) is the flight path, and (b) is the fitness function curve).
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Figure 24 Fengwei Canteen to Building 1 ((a) is the flight path, and (b) is the fitness function curve).
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Figure 25 Xiangyu Canteen to Residential Building ((a) is the flight path, and (b) is the fitness function 
curve).
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Figure 26 Xiangyu Canteen to Building 7 ((a) is the flight path, and (b) is the fitness function curve).
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Figure 27 Xiangyu Canteen to Building 3 ((a) is the flight path, and (b) is the fitness function curve).

Mid-Point

End-Point

Path

The Best Result of IPO:246.5656, Mid-Point:[126 238 2], End-point:[184 106 2]

0 10 20 30 40 50 60

100

150

200

250

300

350

400

450

500
(IPO)  - : [126  238    2], : [184  106    2]The Fitness Function of IPO- Mid-Point:[126 238 2], End-point:[   

Fi
tn

es
s

Start-point to Mid-point

Mid-point to End-point

(a)           (b)

Figure 28 Xiangyu Canteen Building 1 ((a) is the flight path, and (b) is the fitness function curve).

(a) (b)

Figure 23
Fengwei Canteen to Building 3 ((a) is the flight path, and (b) is the fitness function curve)
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Figure 24 Fengwei Canteen to Building 1 ((a) is the flight path, and (b) is the fitness function curve).
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Figure 25 Xiangyu Canteen to Residential Building ((a) is the flight path, and (b) is the fitness function 
curve).
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Figure 26 Xiangyu Canteen to Building 7 ((a) is the flight path, and (b) is the fitness function curve).
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Figure 27 Xiangyu Canteen to Building 3 ((a) is the flight path, and (b) is the fitness function curve).
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Figure 28 Xiangyu Canteen Building 1 ((a) is the flight path, and (b) is the fitness function curve).

Figure 25 
Xiangyu Canteen to Residential Building ((a) is the flight path, and (b) is the fitness function curve).
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Figure 24 Fengwei Canteen to Building 1 ((a) is the flight path, and (b) is the fitness function curve).
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Figure 25 Xiangyu Canteen to Residential Building ((a) is the flight path, and (b) is the fitness function 
curve).
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Figure 26 Xiangyu Canteen to Building 7 ((a) is the flight path, and (b) is the fitness function curve).
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Figure 27 Xiangyu Canteen to Building 3 ((a) is the flight path, and (b) is the fitness function curve).
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Figure 28 Xiangyu Canteen Building 1 ((a) is the flight path, and (b) is the fitness function curve).

Figure 26 
Xiangyu Canteen to Building 7 ((a) is the flight path, and (b) is the fitness function curve).

Figure 24 
Fengwei Canteen to Building 1 ((a) is the flight path, and (b) is the fitness function curve).
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Figure 24 Fengwei Canteen to Building 1 ((a) is the flight path, and (b) is the fitness function curve).
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Figure 25 Xiangyu Canteen to Residential Building ((a) is the flight path, and (b) is the fitness function 
curve).
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Figure 26 Xiangyu Canteen to Building 7 ((a) is the flight path, and (b) is the fitness function curve).
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Figure 27 Xiangyu Canteen to Building 3 ((a) is the flight path, and (b) is the fitness function curve).
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Figure 28 Xiangyu Canteen Building 1 ((a) is the flight path, and (b) is the fitness function curve).
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ness under dynamic constraints like wind speed. 
Employ curve smoothing strategies and develop 
adaptive mechanisms for automatic parameter ad-
justment. Conduct actual UAV fl ight tests outside 
the lab.
The proposed improved IPO algorithm off ers an ef-
fective solution for UAV 3D path planning with good 
engineering application prospects. Future research 
will further optimize and apply the algorithm to pro-
mote UAV technology development in more fi elds. 
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Appendix A
The result of the Experiments of Three-Dimension-
al UAV Path Planning Based on the BISU Map.
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Figure 24 Fengwei Canteen to Building 1 ((a) is the flight path, and (b) is the fitness function curve).
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Figure 25 Xiangyu Canteen to Residential Building ((a) is the flight path, and (b) is the fitness function 
curve).
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Figure 26 Xiangyu Canteen to Building 7 ((a) is the flight path, and (b) is the fitness function curve).
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Figure 27 Xiangyu Canteen to Building 3 ((a) is the flight path, and (b) is the fitness function curve).
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Figure 28 Xiangyu Canteen Building 1 ((a) is the flight path, and (b) is the fitness function curve).

Figure 27 
Xiangyu Canteen to Building 3 ((a) is the flight path, and (b) is the fitness function curve).
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