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Recently, with the rapid development of autonomous driving technology, it prompts the vehicle detection tech-
nology to continuously improve its accuracy, stability and reliability to better meet the needs of self-driving. 
However, due to the interference of adverse factors in adverse weather, the decrease of detection accuracy of 
autonomous vehicle is led to the phenomenon of missing and wrong detection, which has a serious impact on 
the safety of autonomous vehicles. Therefore, we propose REWeather to solve such problems of autonomous 
vehicles in multiple adverse weather conditions. Firstly, to classify the types of adverse weather, distinguishing 
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among foggy, rainy and snowy weather, Broad Learning System (BLS) which is simple and efficient is used in 
REWeather. Due to the impact of these adverse weathers on sensors, simple dark channel and guided filtering 
methods is used to preprocess foggy and rainy images, respectively. Then, we put the processed images into 
the Real-Enhanced Super-Resolution Generative Adversarial Networks (Real-ESRGAN) for further denoising 
and enhancing the details of detected objects, enabling the sensor to recognize other targets on the road fast-
er and better in adverse weather. To ensure the best detection results, we also use latest Realtime Detection 
Transformer (RT-DETR) as the detector to validate our work and the final model is deployed on the edge device. 
Moreover, we use several public datasets and our own collected data to make a real world dataset containing a 
variety of adverse weathers to train and test our proposed framework, which makes it closer to the real situa-
tion. The results demonstrate that our framework achieves a 3.8% improvement in mAP, significantly enhanc-
ing the detection capability of autonomous vehicles under adverse weather conditions.
KEYWORDS: Vehicles Detection, Adverse Weather Removal, Broad Learning System, Realtime Detection 
Transformer, Super-Resolution Generative Adversarial Networks

1. Introduction
With the progressive progress of artificial intelli-
gence technology, autonomous vehicle technology 
is becoming mature gradually. Effective detection of 
objects on the lane is a fundamental prerequisite for 
the implementation of self-driving. Benefiting from 
advancement of object detection technology, cur-
rent mainstream detectors for autonomous driving 
have shown good results in some simple daily situa-
tions [30]. However, as the application scenarios of 
autonomous vehicles become more and more com-
plex, these detectors often fail to achieve the ideal 
detection effect in the face of complex scenarios or 
without large enough data for training. Moreover, 
existing mainstream detecting methods are biased 
towards clear weather conditions mostly. Due to 
various adverse factors on the sensor image inter-
ference, especially in bad weather such as heavy 
snow, dense fog and rain, which lead to blurred de-
tails on the target in the lane that are difficult to de-
tect [25]. Therefore, the adverse effects of adverse 
weather conditions on autonomous driving images 
have led to missing and false detection, resulting in 
safety hazards in autonomous driving. Thus, it is es-
pecially important to research sensor performance 
in inclement weather for the safety of autonomous 
vehicle technology.
Firstly, the restoration and enhancement of cor-
responding images are crucial for improving the 
safety of autonomous driving in adverse weather 
conditions. Rainy, foggy, and snowy weather can 
result in the functionality of cameras and lidar to 

decrease significantly [4]. Most of existing 2D detec-
tion methods are aimed at single weather or single 
situation under adverse weather and propose the 
corresponding denoising and restoring the deteri-
orated image solution. For snow conditions, recent 
approaches have employed snow particle segmenta-
tion and multi-spectral fusion techniques to address 
the unique challenges posed by snow accumulation 
and reflection. Hodges et al. [8] proposed a single 
image dehazing method based on deep neural net-
work. A Rain Intensity Controlling Network (RIC-
Net) is presented by Ni et al. [14]. It consists of three 
sub-networks: a background extraction network, a 
high-frequency rain-streak elimination network, 
and the main controlling network. This allows for 
continuous interpolation control of rain images with 
varying intensities. To eliminate rain streaks from a 
picture, Fu et al. [5] used a deep convolutional neu-
ral network (CNN). However, most of these methods 
only provide solutions for a specific type of severe 
weather, and are lacking in universality in the face of 
realistic and changeable weather conditions.
On the other hand, in addition to improving and en-
hancing the image, the accuracy and real-time per-
formance of the detector are also crucial for main-
taining the safety of autonomous driving in adverse 
weather conditions. SINet [9] has got fast detection 
via implementing a scale insensitive network. How-
ever, most detection models cannot meet the high 
requirements for both accuracy and real-time speed 
in specific adverse weather conditions. In addition, 
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database under adverse weather conditions is diffi-
cult to obtain, many methods use synthetic data to 
train and test model. Sakaridis et al. [19] used a model 
based on CNN to add synthetic fog on real road traffic 
images to study the de-fog algorithm in traffic envi-
ronment. Although these existing methods for syn-
thesizing adverse weather data can fill the amount 
of data to a certain extent, the trained model is still 
different from the real degradation of images in real 
adverse weather. Relatively, models trained using 
real data are more stable and robust. Therefore, a 
framework that can solve the problem of false detec-
tion in automatic driving detection under real-world 
various bad weather conditions is really important to 
enhance the safety of automatic driving.
With above motivations, we propose the framework 
which can reduce noise dete-rioration of images un-
der adverse weather and enhance details of vehicles 
features to improve detection accuracy, and use the 
existing public data set and the data we collected 
ourselves to make a non-synthetic data set contain-
ing three kinds of real adverse weather scenarios 
(details in Section 4). REWeather framework use 
the lightweight network BLS proposed by Chen et 
al. [2] to classify the real adverse weather images 
quickly, and then carry out different processing ac-
cording to different adverse weather types, then put 
them in Real-ESRGAN proposed by Wang et al. [22] 
to carry out super-resolution enhancement process-
ing, and the newest RT-DETR is used as final unified 
detection. BLS model classification model has the 
ability to quickly and accurately classify different 
kinds of adverse weather. After classification, we 
can do different processing on the deterioration of 
different kinds of weather. All data are classified by 
BLS into three categories: rainy, snowy and foggy. 
Then we use dark channel fog removal [7] to process 
fog images to lessen the impact of fog on the road 
target, and use guided filtering [24] to process rainy 
images to reduce the influence of raindrops. This is 
because although Real-ESRGAN has good capability 
of image restoration and feature enhancement, if it 
directly enhances the image of bad weather, the in-
terference of unfavorable factors in the original im-
age will be amplified, so it is necessary to classify and 
carry out different simple processing. Taking into 
account the real-time requirements of automatic 
driving, RT-DETR is used as the detector of the RE-
Weather. Finally, we deploy the REWeather frame-

work on edge device, ensuring the practicality of 
our framework. The goal of the paper is to combine 
unified data processing and detection for different 
kinds of real adverse weather, as well as deployment 
on edge-end devices. The main contributions of this 
paper are as follows:
	_ 	We combine Real-ESRGAN and RT-DETR for the 

first time and use the frame- work for automatic 
driving detection under adverse weather, effectively 
reducing the deterioration of detection images 
caused by various adverse factors in bad weather 
and improving the problem of wrong detection and 
missing detection of autonomous vehicles.

	_ 	For the first time, we use RT-DETR for autonomous 
driving in adverse weather. The lightweight 
network Broad Learning System is used to classify 
three kinds of adverse weather, and different 
processing methods are carried out according to 
different adverse weather. The REWeather can 
be deployed on the edge device, which reduces 
the occupation of resources and improves the 
efficiency of automatic driving.

	_ 	Experiments show that, based on enhanced real and 
non-synthetic data under various adverse weather 
conditions, our framework improves the detection 
ability of 2D sensors of autonomous vehicles under 
adverse weather, which is 3.8% higher than that of 
mAP using unprocessed training data. In addition, 
the BLS classification network has more advantages 
in training time than other deep learning networks. 
Moreover, RT-DETR has higher accuracy than 
conventional mainstream detectors.

To better describe our framework: Section 2 is used 
to summarize the related work of this paper. The de-
tailed model will be presented in Section 3. Section 4 
is comprehensive and details experiments about the 
framework in this paper. Finally, a conclusion is con-
cluded by us in Section 5.

2. Related Work
2.1. Broad Learning System
Due to the large amount of computation and high 
computational cost of deep learning, BLS, a light-
weight network structure is proposed to solve this 
problem. Compared with traditional deep network 
structure, BLS does not need complex network 
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depth, and enhance the network ability by increas-
ing the network width, that is, increasing feature 
nodes, rather than deep learning continuously in-
creasing the depth of the network. Secondly, when 
the training data increase, deep learning network 
usually needs to retrain the whole network model, 
while BLS can use incremental learning. The system 
can be transformed by incremental learning without 
retraining the model, which greatly saves training 
time and improves the efficiency of network learn-
ing. BLS is widely used in real-world classification 
applications due to its efficient and concise net-
work structure. BLS is utilized by Zhao et al. [26] to 
achieve fault detection, which effectively completed 
the rotor system fault classification. Peng et al. [15] 
proposed a lightweight vehicle classification meth-
od that used BLS. The results show that the training 
speed of this method can be increased by almost 10 
times compared to general CNN- based methods. In 
summary, BLS has great potential in scenarios that 
require fast and accurate classification.

2.2. Adverse Weather Removal and 
Enhancement
2.2.1. Single Adverse Weather Image Removal
Adverse weather such as dense fog, heavy snow and 
torrential rain reduce visibility and destroy the in-
formation captured by the images. This greatly af-
fects the performance of computer vision systems. 
Therefore, to make these computer vision systems 
more reliable, adverse weather effects must be re-
moved from the images. Early methods of eliminat-
ing adverse weather effect included prior modeling 

of weather conditions using empirical observations. 
These priors must be modeled separately for each 
weather condition and a common prior for all inval-
id weather conditions. For example, He et al. [7] sug-
gested a technique for dark channel dehazing that 
is both straightforward and efficient. Xu et al. use a 
guidance filtering method [24] using special guid-
ance images to remove noise from rainy images. In 
addition to this, recently CNN-based methods have 
also been widely researched for removing snowfall, 
fog, and raindrops. However, the simple processing 
methods are not sufficient to cope with complex se-
vere weather degradation situations.

2.2.2. Super-resolution Generative Adversarial 
Network
Super-resolution Generative Adversarial Network 
(SRGAN) [11] makes GAN have the ability of su-
per-resolution firstly. Later studies based on the 
model improvement of SRGAN proposed ESRGAN 
[21] and Real-ESRGAN. Real-ESRGAN is the latest 
super-resolution GAN with strong super-resolution 
ability proposed in recent years. To replicate the 
real deterioration, Real-ESRGAN suggested a high-
er-order degradation mechanism. Furthermore, Re-
al-ESRGAN can recover actual photos, which is more 
applicable in the real world than previous super-res-
olution models. Super-resolution networks have 
gained popularity recently for practical uses. Zheng 
et al. [27] used Real-ESRGAN to enhance cropped 
forest fire images to secure timeliness and accuracy 
of forest fire monitoring. Zhu et al. [29] enhanced the 
super-resolution image effect and reduced training 

Figure 1   
Architecture of the proposed framework.
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time by changing the degradation process and dis-
criminator. However, this enhancement method is 
not suitable for severely degraded original images, as 
directly processing the original image would actually 
increase the impact of adverse factors on the image.

2.3. Object Detection in Automatic Driving

Object detection technology is the core content of 
automatic driving. How to detect other vehicles 
quickly and accurately is the key to realize the safe-
ty and reliability of automatic driving technology. 
Since deep learning has advanced, the progress of 
object detection technology also makes automatic 
driving technology more mature.
Nowadays, object detection algorithms such as faster 
region convolutional neural network (Faster R-CNN) 
[18], You-Only-Look-Once (YOLO) [17] and Single 
shot multibox detector (SSD) [13] are widely used in 
the field of automatic driving. Wang et al. [23] pro-
posed a universal object detection framework called 
UniDetector which can augment the generalization 
ability of framework and solve problem of detection 
in real-world complex scenarios. In addition, end-to-
end object detection with transformers [1] also have 
gained great attention recently due to their simpler 
model framework and excellent detection perfor-
mance. CNN is used to extract features immediately 
for classification and regression in one-stage algo-
rithms like YOLO and SSD, which equally carry out 
extensive sampling at diverse parts of the picture and 
adopt varying sizes and aspect ratios, so its speed is 
fast, but the accuracy is relatively low. On the other 
hand, the two-stage method, such as Faster-RCNN, 
first generates sparse candidate boxes, and then clas-
sifies and does the regression of them, which has 
higher accuracy but lacks of real-time detection capa-
bility. DETR predicts the final detection result direct-
ly (in parallel) by combining the common CNN with 
the transformer architecture [20]. Deformable DETR 
[28] is intended to address these problems by focus-
ing its attention module solely on a limited number 
of significant sampling points surrounding the refer-
ence. With ten times less training time than DETR, 
deformable DETR can outperform DETR, particular-
ly on tiny targets. Group DETR [3] introduces multi-
ple object queries to retain the advantages of DETR’s 
end-to-end reasoning while taking advantage of the 
one-to-many advantages in training to improve per-

formance and speed up model convergence. Consid-
ering the background of autonomous driving, in ad-
dition to the requirement for accuracy, the real-time 
performance of the detector is also crucial.
The above methods are only for a specific link in 
the actual situation, lacking effective combination 
in real-world application. Different from the above 
methods, our REWeather takes advantage of the ad-
vantages of various methods and makes up for their 
respective shortcomings by combining them. The 
framework realizes the effective detection of road 
targets by autonomous vehicles in a variety of ad-
verse weather scenarios.

3. System Framework
In this section, the details of REWeather framework 
are given in Figure 1. BLS in classification module is 
used to classify different kinds of adverse weather 
images so that it can perform different de-noising 
processes before uniformly putting into Real-ES-
RGAN features enhancements in adverse weather 
removal block. Simple network structure, fast and 
effective classification capability and incremental 
learning of BLS are easy to expand meet our needs 
for fast classification of adverse weather, so BLS is 
used as the classifier of our framework. Because dif-
ferent kinds of adverse weather will cause different 
kinds of effects on the automatic driving images ob-
tained by the sensor, if the same super-resolution 
enhancement is carried out on these images directly, 
the impact of adverse factors on the images will be 
increased, so we need to classify different kinds of 
adverse weather. Next, simple processing is carried 
out for different kinds of bad weather images. Dark 
channel is used to de-fog images in foggy days, and 
guided filtering to reduce the interference of rain-
drops in rainy days. In addition, the test proved that 
the snowy images without preliminary processing 
and directly take super-resolution enhancement 
still has good results, so we did not do another pro-
cessing on the snowy images. After the above steps, 
Real-ESRGAN is used to enhance the features and 
further de-noising the adverse weather images. Due 
to its powerful super-resolution capability, the fea-
tures of lane targets, such as pedestrians and vehi-
cles are greatly enhanced and easier to detect. Final-
ly, RT-DETR is used as the detector of REWeather.
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3.1. Classification Module
In daily life, autonomous vehicles will encounter a 
variety of adverse weather factors on the road, and 
different weather interferes with sensors in different 
ways. Therefore, it is very important to quickly clas-
sify adverse weather and handle corresponding dif-
ferent situations. Nowadays, CNN-based methods 
have shown good results, but due to the character-
istics of deep learning, the training is time-consum-
ing, and when the network requirements change, it 
has to be retrained, which is not conducive to expan-
sion. BLS is a flat network consisting of mapped fea-
tures and enhancement nodes, which is easier to ex-
tend. We can see BLS network from Figure 2. For the 
model in this paper, the images of adverse weather 
are transformed into the matrix after a series of data 
processing, which is denoting O as the input data, 
and the pseudo-inverse of the feature nodes and en-
hancement nodes to the goal value is then calculated 
to provide output data P. Input data O is a matrix of 
n × m, n represents the number of samples of input, 
and m represents the dimension of each sample. 
Firstly, the input O is processed for forming the 
mapping node Jz. Each mapping node can generate 
q feature mappings, and each feature mapping has w 
corresponding nodes. At first, input O is mapped into 
Jz by Equation (1):
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mentability of network. It can be expressed as fol-
lows in Equation (6):
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where βx+1 and χβx+1
 are also randomly generated ma-

trices. By calculating pseudo- inverses in the same 
way, we can get a new model after using incremental 
learning without retraining the whole network.

3.2. Adverse Weather Removal and 
Enhancement Module
In this section, we will provide a detailed intro-
duction to dark channel dehazing, guided filtering 
for rain removal, and the structural principles of 
Real-ESRGAN. We will discuss how to restore and 
enhance features of severe weather images, remove 
real-world noise, and enhance the detailed features 
of road detection objects. Due to the particularity of 
foggy and rainy images, direct super-resolution en-
hancement will increase the interference of noise. 
This is because in foggy and rainy weather, fog oc-
clusion and raindrop rain marks have a serious im-
pact on road targets. Although Real-ESRGAN has 
strong enhancement ability, directly enhancing un-
processed image information in severe weather im-
ages will actually increase the influence of adverse 
factors on the image. Therefore, simple and effec-
tive dark channel dehazing algorithm and guided 
filtering algorithm are used to reduce the impact of 
thick fog and rainfall on the image to a certain ex-
tent, and then uses Real-ESRGAN to uniformly en-
hance the preliminary processed image and snowy 
image together.
Certain pixels will always have at least one low-val-
ue color channel in the majority of non-sky picture 
zones. The mathematical definition of this concept 
is as follows, in Equation (7):
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zones. The mathematical definition of this concept 
is as follows, in Equation (7): 

�dark(�) = min
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where Rc represents each channel of color image, 
Ω(i) is a local patch centered at i.  
A flalign commonly used to describe images with 
fog is expressed as follows in Equation (8): 

� (�) = �(�)�(�) + �(1 − �(�)), 8  
where F(i) represents fog image, R(i)J represents 
fog-free image to be restored, E is the global 
atmospheric light component, and s(i) is the 
transmittance.  
According to Equations (7)-(8), the final Equation 
(9) is as follows:  

�(�) = � (�) − �
max(�(�), �0)

+ �, 9  

where t0 represents the lower bound of 
transmittance.  
Through the above steps, we can achieve a simple 
fog removal result. Similarly, we use guided image 
filtering to reduce the impact of noise on images in 
rainy days. Guided filtering has very low time 
complexity and can effectively smooth the image. 
The method of guided filtering is using a guided 
image to generate weight, so as to process input 
image, and it can be expressed as follows in 
Equation (10): 

�� = ∑ ��ℎ(��) ⋅ �ℎ,
ℎ

10  

where l, Gi, R represents output image, guide image, 
and input image; g, h represents index of pixels in 
the image. It can be seen that the weight W in the 
above Equation (10) is only related to the guide 
image Gi, while the weight W in the bilateral 
filtering is determined by input image itself.  
The central assumption of the guide filter is that 
output and the guide image are locally linear models 
in the local window wk, the linear relationship 
between them can be expressed as follows in 
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(7)
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where F(i) represents fog image, R(i)J represents 
fog-free image to be restored, E is the global atmo-
spheric light component, and s(i) is the transmit-
tance. 

Algorithm 1: System framework

Input: Adverse Weather Images Iad contains rainy images 
Ir, foggy images If and snowy images Is
Output: Enhanced images after detection D(IEad)
1: Set Iad = {iadn |n = 1, 2, 3, ..., n}.
2: for iadn ← 0 to Iad do
3: if iadn in Ir then
4: Noise removal by guided images filtering method;
5: Enhancement by Real-ESRGAN;
6: return IEr;
7: else if iadn in If then
8: Noise removal by dark channel method;
9: Enhancement by Real-ESRGAN;
10: return IEf ;
11: else
12: Enhancement by Real-ESRGAN;
13: return IEs;
14: end if
15: end for
16: Set IEad = {IEr, IEf, IEs}.

17: Set iEad = {iEadm |m = 1, 2, 3, ..., n}.
18: for iEadm 0 to IEad do 19: Detected by RT-DETR; 
20: return D(IEad); 
21: end for
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Figure 3   
Real-ESRGAN generator network architecture.
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where ak, bk represents constant coefficient to be 
obtained by calculation. The formula is very simple 
but has the ability to retain the edge and the ability 
to smooth the noise, so we use this method in our 
framework. 
Next, we put the after fog and rain removal images 
and snowy images into Real- ESRGAN for unified 
enhancement which is used to enhance detailed 
features of vehicles. Generator of Real-ESRGAN 
builds the higher-order degradation process of the 
image, which can be better used in real-world 
application scenarios that shown in Figure 3. The 
generator uses pixel shuffle to reduce spatial size 
and expand channel size, and then feeds the input 
into the network. Therefore, most calculations are 
performed in a smaller resolution space, effectively 
reducing the consumption of GPU memory and 
computing resources. The traditional degradation 
model cannot adapt well to the complexity and 
variability of real-world degradation, such as 
inevitable compression noise caused by image 
transmission over the network. In order to solve these 
problems, Real-ESRGAN proposed the high-order 
degradation model as follows, in Equation (12): 

�(�) = [(� ⊗ � ) ↓�+ �]����, 12  
where G is unprocessed adverse weather image, V is 
the blur function, ↓r is the factor about 
downsampling, N is the noise and []jpeg is the adverse 
weather image compressed using the JPEG method. 
Equation (13) below gives a higher-order 
degradation process similar to Equation (12), 
Equation (13) is as follows: 
� = ��(�) = (�S. . . �1)(�), 13  
where L represents output of the degradation model 
and S represents the number of degradation steps. 
In addition, to solve the problem of ringing artifacts 
near the sharp edges in images, Real-ESRGAN uses 
a sinc filter, and the filter kernel can be expressed 
as follows in Equation (14): 
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where (m,n) denotes the kernel coordinate of the filter, 
sc denotes truncation frequency, and K1 denotes first-
order Bessel function. 

3.3 ��������� ������ 

Finally, we put the processed data into the RT-DETR 
for training and detecting which has higher accuracy 
and faster reaction time.  
DETR employs a CNN-based backbone for feature 
extraction and dimension reduction. The output 
feature maps are reshaped, with each token's high 
dimensionality first reduced via 1×1 convolution 
before entering the transformer. The self-attention 
mechanism performs global analysis on these 
features, where larger objects benefit from 
enhanced spatial relationship modeling. Positional 
encodings, added before each multi-head self-
attention layer, incorporate 2D spatial information 
through separately computed horizontal/vertical 
components. 
The decoder uses a fixed set of learnable tokens for 
parallel prediction. Unlike traditional methods 
generating redundant proposals, DETR directly 
outputs a fixed number of predictions with each 
decoded token processed by shared FFNs to predict 
normalized box coordinates and class scores. RT-
DETR enhances this architecture by optimizing 
encoder-decoder efficiency, achieving real-time 
performance while maintaining accuracy. 

First, RT-DETR extracts three scale outputs from 
the backbone network, whose output steps are 8, 16 
and 32, and we label them with M3, M4 and M5. RT-
DETR uses a layer of transformer encoder to 
process only the features outputed by backbone 
network. It turns the two-dimensional M5 features 
into vectors and then hands them to the AIFI 
module in Equation (15) for processing. Then, we 
change the output back to two dimensions N5 
features, so as to complete the subsequent cross-
scale feature fusion. 
� = � = � = �������(�5)  

    �5 = ���ℎ���(����(�, �, � )), 15  
where Attn represents the multi-head self-attention, 
and Reshape represents restoring the shape of the 
feature to the same as M5, which is the inverse 
operation of Flatten.  
The first target query for the decoder is then 
chosen by RT-DETR using IoU-Aware query 
selection based on a predetermined set of picture 
characteristics from the encoder output sequence. 
Constricting the model to provide a high 
classification score for features with high IoU scores 
and a low classification score for features with low 
IoU scores during training is how IoU-aware query 
selection is accomplished. As a result, both the 
classification score and the IoU score of the 
prediction box that corresponds to the Top-K 
encoder features based on the classification score 
are high. The optimization objective of the detector 
is expressed in Equation (16): 
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where rhat and r represent forecast and ground 

truth, rhat = eˆ, ŵ and r = c, b, c and b represent 
categories and bounding boxes, respectively.  
To achieve consistency restrictions on the 
classification and localization of positive samples, 
IoU scores are incorporated into the classification 
branch’s objective function. 
Finally, a decoder with an auxiliary prediction head 
iteratively optimizes the object query to generate 
boxes and confidence scores. 
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4. Experiment 
In this section, we introduce the self-driving dataset 
under adverse weather used in our paper, evaluate 
the BLS in our framework by contrast experiments, 
and verify the effectiveness of our framework by 
ablation experiments. BLS experiments are based on 
the server with I5-12500H CPU and RTX 3060 
laptop GPU. Detection experiments are based on 
the cloud server with NVIDIA RTX A4000 and 
Intel CPU E5-2686 v4. The test part of the 
experiment is carried out on the Huawei edge 
device Atlas 200I DK A2 which features an AI 
computing capability of 8 TOPS (INT8) and 4 
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to smooth the noise, so we use this method in our 
framework.
Next, we put the after fog and rain removal images 
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can be better used in real-world application scenar-
ios that shown in Figure 3. The generator uses pixel 
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lution space, effectively reducing the consumption 
of GPU memory and computing resources. The tra-
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such as inevitable compression noise caused by image 
transmission over the network. In order to solve these 
problems, Real-ESRGAN proposed the high-order 
degradation model as follows, in Equation (12):
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ilar to Equation (12), Equation (13) is as follows:
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image, which can be better used in real-world 
application scenarios that shown in Figure 3. The 
generator uses pixel shuffle to reduce spatial size 
and expand channel size, and then feeds the input 
into the network. Therefore, most calculations are 
performed in a smaller resolution space, effectively 
reducing the consumption of GPU memory and 
computing resources. The traditional degradation 
model cannot adapt well to the complexity and 
variability of real-world degradation, such as 
inevitable compression noise caused by image 
transmission over the network. In order to solve these 
problems, Real-ESRGAN proposed the high-order 
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where L represents output of the degradation model 
and S represents the number of degradation steps. 
In addition, to solve the problem of ringing artifacts 
near the sharp edges in images, Real-ESRGAN uses 
a sinc filter, and the filter kernel can be expressed 
as follows in Equation (14): 
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where (m,n) denotes the kernel coordinate of the filter, 
sc denotes truncation frequency, and K1 denotes first-
order Bessel function. 
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Finally, we put the processed data into the RT-DETR 
for training and detecting which has higher accuracy 
and faster reaction time.  
DETR employs a CNN-based backbone for feature 
extraction and dimension reduction. The output 
feature maps are reshaped, with each token's high 
dimensionality first reduced via 1×1 convolution 
before entering the transformer. The self-attention 
mechanism performs global analysis on these 
features, where larger objects benefit from 
enhanced spatial relationship modeling. Positional 
encodings, added before each multi-head self-
attention layer, incorporate 2D spatial information 
through separately computed horizontal/vertical 
components. 
The decoder uses a fixed set of learnable tokens for 
parallel prediction. Unlike traditional methods 
generating redundant proposals, DETR directly 
outputs a fixed number of predictions with each 
decoded token processed by shared FFNs to predict 
normalized box coordinates and class scores. RT-
DETR enhances this architecture by optimizing 
encoder-decoder efficiency, achieving real-time 
performance while maintaining accuracy. 

First, RT-DETR extracts three scale outputs from 
the backbone network, whose output steps are 8, 16 
and 32, and we label them with M3, M4 and M5. RT-
DETR uses a layer of transformer encoder to 
process only the features outputed by backbone 
network. It turns the two-dimensional M5 features 
into vectors and then hands them to the AIFI 
module in Equation (15) for processing. Then, we 
change the output back to two dimensions N5 
features, so as to complete the subsequent cross-
scale feature fusion. 
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where Attn represents the multi-head self-attention, 
and Reshape represents restoring the shape of the 
feature to the same as M5, which is the inverse 
operation of Flatten.  
The first target query for the decoder is then 
chosen by RT-DETR using IoU-Aware query 
selection based on a predetermined set of picture 
characteristics from the encoder output sequence. 
Constricting the model to provide a high 
classification score for features with high IoU scores 
and a low classification score for features with low 
IoU scores during training is how IoU-aware query 
selection is accomplished. As a result, both the 
classification score and the IoU score of the 
prediction box that corresponds to the Top-K 
encoder features based on the classification score 
are high. The optimization objective of the detector 
is expressed in Equation (16): 
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where L represents output of the degradation model 
and S represents the number of degradation steps.
In addition, to solve the problem of ringing artifacts 
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near the sharp edges in images, Real-ESRGAN uses 
a sinc filter, and the filter kernel can be expressed as 
follows in Equation (14):
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work. It turns the two-dimensional M5 features into 
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truth, rhat = eˆ, ŵ and r = c, b, c and b represent 
categories and bounding boxes, respectively.  
To achieve consistency restrictions on the 
classification and localization of positive samples, 
IoU scores are incorporated into the classification 
branch’s objective function. 
Finally, a decoder with an auxiliary prediction head 
iteratively optimizes the object query to generate 
boxes and confidence scores. 

 
������ 4 Edge facility Huawei Atlas 200I DK A2. 
4. Experiment 
In this section, we introduce the self-driving dataset 
under adverse weather used in our paper, evaluate 
the BLS in our framework by contrast experiments, 
and verify the effectiveness of our framework by 
ablation experiments. BLS experiments are based on 
the server with I5-12500H CPU and RTX 3060 
laptop GPU. Detection experiments are based on 
the cloud server with NVIDIA RTX A4000 and 
Intel CPU E5-2686 v4. The test part of the 
experiment is carried out on the Huawei edge 
device Atlas 200I DK A2 which features an AI 
computing capability of 8 TOPS (INT8) and 4 

 , (15)

where Attn represents the multi-head self-attention, 
and Reshape represents restoring the shape of the 
feature to the same as M5, which is the inverse oper-
ation of Flatten. 
The first target query for the decoder is then cho-
sen by RT-DETR using IoU-Aware query selection 
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Figure 4    
Edge facility Huawei Atlas 200I DK A2.
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To achieve consistency restrictions on the classifica-
tion and localization of positive samples, IoU scores 
are incorporated into the classification branch’s ob-
jective function.
Finally, a decoder with an auxiliary prediction head 
iteratively optimizes the object query to generate 
boxes and confidence scores.
 

4. Experiment
In this section, we introduce the self-driving dataset 
under adverse weather used in our paper, evaluate 
the BLS in our framework by contrast experiments, 
and verify the effectiveness of our framework by 
ablation experiments. BLS experiments are based 
on the server with I5-12500H CPU and RTX 3060 
laptop GPU. Detection experiments are based on 
the cloud server with NVIDIA RTX A4000 and In-
tel CPU E5-2686 v4. The test part of the experiment 
is carried out on the Huawei edge device Atlas 200I 
DK A2 which features an AI computing capability of 
8 TOPS (INT8) and 4 TFLOPS (FP16), complement-
ed by a 4GB LPDDR4X memory module. The device 
is equipped with a quad-core CPU operating at 1.0 
GHz, and supports multiple interfaces including 
HDMI and USB 3.0. With a compact form factor of 
44mm × 135mm × 120mm and a typical power con-
sumption of 40W, this hardware platform demon-
strates an optimal balance between computational 
performance and energy efficiency for embedded au-
tonomous driving applications, as shown in Figure 4. 
HUAWEI Atlas 200I DK A2 is based on the Ascend 
processor and is used for developing and deploying 
AI applications. Deploying the framework of this 
chapter on edge devices to simulate situations where 
actual computing resources are limited, in order to 
verify the application potential of the framework of 
this chapter.

4.1. Actual Adverse Weather Database
REWeather is aimed at the detection of different 
kinds of adverse weather in real-life situation, but 
most of the existing datasets of adverse weather 
autonomous driving are for one weather or a single 
condition, and many datasets use synthetic data, 
which cannot meet the complex situation of most of 
the real adverse weather. 

Therefore, from the existing single adverse weath-
er datasets and our own collected foggy images, we 
make a real-life adverse weather dataset contain-
ing foggy, rainy, snowy days. Among them, the data 
of snow days is from the images of snow days in the 
DAWN dataset [10] and part of the images of snow 
or containing large interference of snow conditions 
from the CADC dataset [16], the images of fog days 
are from the images of fog days in the DAWN dataset 
and the real thick fog images collected by ourselves, 
and the images of rainy days are from a Rain in Driv-
ing (RID) set [12]. Based on the above data, we use 
data augmentation to some images, and the images 
were re-labeled based on our detection require-
ments. Finally, we made an automatic driving data-
set containing a wide range of real adverse weather, 
including 5517 images, 1650 in snow, 1962 in fog, and 
1905 in rainy weather. The individual categories and 
their numbers are shown in Table 1. Among them, 
ordinary vehicles mainly include small sedans SUV, 
Vans, trucks, buses, coaches, etc. In addition, due to 
the presence of a very small number of bicycle and 
motorcycle categories in the image, they are not 
classified separately and are classified under the cat-
egory of ordinary vehicles. 

4.2. Experimental Process

The paper first performs road target annotation on 
the reconstructed data according to the require-
ments of the paper, and then applies it to the training 
of BLS and detectors, respectively. When conduct-
ing classification training, the labels of the images 
are divided into three categories: rain, snow, and fog. 
When training the detector, the image labels are the 
previously annotated road targets. The next step is to 
apply the data to the image processing method pro-
posed in our paper to form a new enhanced dataset, 
and then train the detector for detection to conduct 
comparative experiments to verify the effectiveness 
of the framework proposed in our paper. Finally, the 
models trained with enhanced data are combined to 
form the final framework.

Table 1 
Type Information of Database.

Type Car person truck

Number 21765 1471 3524
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4.3. Comparison Experiment of BLS 
Classifi cation
In this part, we adopt the accuracy rate to estimate 
the ability of the network to classify, and record 
training time of the network to evaluate the volume 
of network. Since the fi nal framework needs to be 
deployed on the edge side, we need lightweight net-
works, and BLS exactly meets this need. The follow-
ing Figures 5-6 indicate the improvement of accura-
cy by BLS incremental learning, and the comparison 
experiment of accuracy and training time of BLS 
with other common CNN classifi cation networks. 
We selected MobileNetV2, which represents CNN 
lightweight network, AlexNet, which is the classic 
and eff ective CNN network, and VggNet16, which is 
the mainstream classifi cation CNN network. 

Figure 5   
Comparison of detection results.

4.4. Detection Result
In this section, we fi rst train the RT-DETR with the 
pre-augmented dataset and the post-augmented 
dataset to evaluate whether enhancement based on 
framework is eff ective. Figure 5 is comparisons of de-
tection results before and after using REWeather. We 
use Mean Average Percision (mAP) that represents 
the average value of each type of AP as our metric, 
which is widely used to evaluate the performance of 
popular detectors like YOLO, Faster-RCNN, etc. AP 
represents the domain encompassed by Precision 
and Recall. Precision represents the rate of correctly 
predicted positive samples among all predicted pos-
itive samples and only attentions positive samples 
that makes it distinguishes from accuracy. Precision 
can be expressed as follows:
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where TP represents number of positive samples 
correctly discriminated as positive, and FP 
represents number of negative samples incorrectly 
discriminated as positive. FN represents that 
positive samples are incorrectly discriminated as 
negative. RT- DETR, YOLOv5, SSD, and Faster-
RCNN is trained respectively with raw data and 
data enhanced by our method to pick out the 
suitable detectors. The final training comparison 
results are shown in Table 2. 
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where TP represents number of positive samples 
correctly discriminated as positive, and FP rep-
resents number of negative samples incorrectly 

It can be seen from Figure 6 that incremental learning 
can increase the classifi cation accuracy of the BLS ef-
fectively. In only 43.7 seconds, through 50 rounds of 
incremental learning, the accuracy of the network 
classifi cation reached 88.23%, compared with other 
popular deep learning classifi cation networks, BLS 
has more advantages than the lightweight network 
MobileNetV2 in terms of accuracy and training time, 
Compared with AlexNet and VggNet16, the training 
time is saved by nearly 2 or even 4 times while the ac-
curacy is only 1.87% and 2.87% lower, respectively. 

Figure 6   
Comparison of Accuracy Rate and Train Time.
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discriminated as positive. FN represents that pos-
itive samples are incorrectly discriminated as neg-
ative. RT- DETR, YOLOv5, SSD, and Faster-RCNN 
is trained respectively with raw data and data en-
hanced by our method to pick out the suitable de-
tectors. The final training comparison results are 
shown in Table 2.
In order to minimize the model size and reduce de-
ployment difficulty as much as possible, we chose 
RT-DETR with resnet50 as the backbone network, 
compared to SSD and Faster RCNN using the op-
timal backbone network, as well as the most com-

Methods Backbone Database AP AP50 AP75 Snow Fog Rain

SSD ResNet50 Raw 31.1 51.9 33.2 63.9 61.8 30.5

SSD ResNet50 Enabled 29.7 50.9 32.0 62.9 60.4 29.3

Faster-RCNN ResNet101-FPN Raw 31.3 57.0 32.9 65.4 67.5 38.2

Faster-RCNN ResNet101-FPN Enabled 33.4 59.5 34.7 67.3 70.7 40.9

Yolov5-L - Raw 37.1 62.6 - 73.2 73.9 42.1

Yolov5-L - Enabled 39.4 65.5 - 74.2 76.3 46.7

Yolov8-L - Raw 40.8 65.1 42.5 73.8 76.0 47.8

Yolov8-L - Enabled 42.3 68.3 44.3 75.1 78.3 51.7

RT-DETR ResNet50 Raw 43.9 68.5 46.5 73.7 79.0 53.4

RT-DETR ResNet50 Enabled 46.4 72.3 49.5 77.9 82.8 57.4

Table 2 
Comparison of mAP value of the different kinds of detectors using raw data and enhanced data by our framework.

mon and latest Yolov5-L and Yolov8-L models in 
real-time detectors. As seen from Table 2, when 
the training data is the enhanced data obtained by 
our method, RT-DETR has the highest mAP among 
these mainstream detectors, so we choose RT-DETR 
as the detector in the framework. The improvement 
in accuracy of RT-DETR also demonstrates the ef-
fectiveness of our framework for data augmentation 
which makes road targets in adverse weather more 
easily detectable by detectors. Figure 7 shows the 
change of mAP index of the RT-DETR using raw 
data and enhanced data along with the training ep-
ochs increase. It is evident that after training the 
model with improved data, mAP of RT-DETR is al-
ways better than that trained with original data, and 
the experiment shows that mAP increased by 3.8 % 
by using our framework. In addition, we also tested 
different models based on data from a single adverse 
weather condition. According to the results in the 
table, our framework has the best performance un-
der any weather condition. 
In addition to comparing the accuracy of the detec-
tors, we also compared the number of parameters 
and Frames Per Second (FPS) of these detectors in 
Table 3. Because of the two-stage structure of Fast-
er-RCNN, although the number of parameters is 
small, the lowest FPS value is only 6 FPS, while SSD 
using VGG16 backbone network and YOLO-5-L have 
higher 18 FPS and 22 FPS but larger 138M and 47M 
parameters, in contrast, RT-DETR has the smallest 
number of 21M parameters and the highest 47 FPS 
among these mainstream detectors.

Figure 7   
Comparison of mAP value of the RT-DETR detector using 
raw data and enhanced data as the training epochs increase.
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4.5. Ablation Study of Framework
To demonstrate the legitimacy of each part of the 
framework, we used the method of ablation experi-
ment. In Table 4, we used the optimal model trained 
by the detector using the enhanced data obtained 
through the framework in this paper as the test mod-
el, and proved the rationality and effectiveness of 
the combination of various parts of our framework 
by removing each part separately.
Table 4 indicates our framework has the highest 
mAP value. When Real-ESRGAN enhancement is 
removed, the mAP value also increases, which shows 
the effectiveness of guided filtering and single-chan-
nel fog removal methods. Meanwhile, when Real- 
ESRGAN is used for feature enhancement, the mAP 
value is very limited when guided filtering is used to 
remove rain to process rainy images instead of dark 
channel to process foggy images. This is because 
when foggy images are not directly enhanced to re-
move fog, the vehicle features are not obvious, which 

Detector Faster-RCNN  
(ResNet101-FPN)

SSD  
(ResNet50) Yolov5-L Yolov8-L RT-DETR  

(ResNet50)

Params(M) 25.6 138 47 43 21

Image/Sec 6 18 22 31 47

Table 3 
Comparison of Detectors.

Guided Filter  
(Rain Removal)

Dark Channel  
(Fog Removal)

Real-ESRGAN 
(Enhancement) Detector mAP (%)

X X X RT-DETR 68.7

✓ X X RT-DETR 68.9

X ✓ X RT-DETR 69.4

✓ ✓ X RT-DETR 69.6

✓ X ✓ RT-DETR 68.8

X ✓ ✓ RT-DETR 69.9

X X ✓ RT-DETR 69.1

✓ ✓ ✓ SSD 51.0

✓ ✓ ✓ Faster-RCNN 56.34

✓ ✓ ✓ YOLOv5 61.27

✓ ✓ ✓ RT-DETR 72.3

leads to increased fog interference on images after 
enhancement. On the contrary, when dark channel 
is used to process foggy images instead of guided 
filtering to process rainy images, the mAP value is 
less affected after feature enhancement detection by 
Real-ESRGAN, because the number of images seri-
ously disturbed by raindrops in rainy day data set is 
relatively small. Overall, the ablation experiments 
demonstrate that our framework has the greatest 
display of abilities and effect of each single method 
or a combination of methods on the framework.

5. Conclusion
We propose REWeather framework for adverse 
weather, which has its classification based on BLS, 
enhanced and denoising based on the fusion of Re-
al-ESRGAN and simple denoising methods, and de-
tection based on RT-DETR. We used non-synthetic 
dataset to train and test framework and tested our 

Table 4 
Results of ablation study.
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framework by deploying it on the edge that is closer 
to reality. Through experiments, we proved the opti-
mization of our framework for adverse weather au-
tomatic driving images, and the experiment shows 
that our REWeather framework improves the prob-
lem of wrong detection and missing detection of au-
tonomous vehicles, elevating the safety of self-driv-
ing vehicles in adverse weather. Moreover, how to 
further reduce the size of the model to achieve a fast-
er and more effective method can be further studied, 
and we will improve and optimize in the future.
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