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Building information modeling leverages high-resolution satellite imagery and change detection for urban 
planning and disaster monitoring. This study enhances building information modeling accuracy by integrat-
ing coordinate attention with a Transformer hybrid architecture. Local feature extraction by convolutional 
neural network and global context modeling by Transformer are combined. Feature exchange techniques 
and a hollow space pyramid pooling module improve multi-scale change detection. Lightweight designs, in-
cluding depthwise separable convolutions and Ghost modules, reduce computational costs. Experimental 
results show the model stabilizes after 80 iterations, achieving 95% accuracy and a 1.37% mIoU improve-
ment. With a Kappa value of 0.795 and minimal parameters, the framework enables efficient synthetic aper-
ture radar-based building change detection, suitable for real-time urban monitoring. The raised model can 
achieve the task of building information modeling, laying the foundation for large-scale automatic recogni-
tion and classification of building images.
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1. Introduction 
As one of the symbols of urban construction, the 
reconstruction, demolition, growth, and reduction 
of buildings can largely represent the changes in 
the city [11]. At the same time, changes in buildings 
also have significant implications for land resource 
utilization and disaster damage detection. There-
fore, modeling building information and obtaining 

changes in buildings take a pivotal part in govern-
ment decision-making and economic development 
[15, 18, 21]. At present, the building coverage rate 
in urban areas of China has reached over 80%, but 
in the process of urbanization, a large number of il-
legal buildings and demolition problems have also 
emerged. In addition, in practical applications, the 



993Information Technology and Control 2025/3/54

investigation of urban buildings is still carried out 
manually and hard to satisfy the requirement of rap-
id and large-scale change detection. Synthetic Ap-
erture Radar (SAR) data is an effective method for 
solving the problem of urban building changes. How-
ever, due to the presence of coherent speckle noise, 
the resolution of SAR images decreases and the im-
ages become blurry, seriously affecting the change 
detection effect of SAR images. Convolutional neu-
ral networks (CNNs) have emerged as a powerful re-
search approach in recent years [8]. However, due to 
the lack of description of the overall context, the ac-
curacy of the building model is not high. The Trans-
former model, as a powerful global feature learning 
tool, can effectively capture and process global infor-
mation in remote sensing images (RSIs) through its 
self attention mechanism (SAM), thereby improv-
ing the accuracy and efficiency of building informa-
tion modeling (BIM). The application of this model 
solves the problem of insufficient global information 
capture in traditional CNNs when processing SAR 
data, showing significant advantages.
BIM is broadly applied within the construction in-
dustry, covering multiple stages such as design, con-
struction, and operation. By simulating the real in-
formation of buildings through digital information 
simulation, it achieves the management and optimi-
zation of the entire life cycle of buildings. Wahba M 
et al. used machine learning and an artificial neural 
network with a multi-layer perceptron architecture 
to quantify the building vulnerability index. They 
combined the building information model with en-
vironmental flood hazard assessment and classi-
fied building samples into five levels. The results 
showed that this method had high accuracy [14]. 
Falegari et al. [2] used BIM-life cycle analysis inte-
gration technology and passive design strategies to 
reduce the impact of buildings on the environment. 
They analyzed appropriate equipment and building 
materials that matched their respective climates, 
reducing the energy demand of the model by 30% of 
the original value [2]. Omaran et al. [9] developed a 
visualization system to help determine the cost and 
applicability of different construction projects. The 
system employed BIM and VR to improve the visu-
alization and processing capabilities of engineering 
cost prediction. The results showed that the system 
could reduce processing costs in construction proj-

ects [9]. Ismail [5] proposed a building information 
model based on the physical Internet to make the 
rigidity and displacement of the design of the beam 
column connection system meet the required qual-
ity and operation requirements. Through statistical 
literature and data analysis, it improved the im-
proper specifications and defects of concrete and 
steel members [5].
The Transformer model is a revolutionary neural 
network (RNN) architecture that significantly im-
proves the processing efficiency and accuracy of nat-
ural language processing tasks by introducing SAMs 
and parallel processing, solving the efficiency prob-
lem of traditional RNNs in processing long sequenc-
es. Gibril et al. [3] employed the Swin Transformer 
as the core network to facilitate the capture of exten-
sive semantic data and the extraction of multi-scale 
features, with the objective of extracting building in-
formation from expansive satellite images. The find-
ings denoted that the Transformer-based model was 
superior to the CNN-based model and had excellent 
generality [3]. To achieve remote sensing change de-
tection of buildings, Liang et al. [6] employed Trans-
former-based progressive sampling to direct the 
model's attention toward the object of interest. Ad-
ditionally, a proposal was put forth for an adaptive 
feature-merging module that would fully integrate 
the features of a CNN with those of a transformer. 
Following verification, the model denoted superior 
efficacy contrast to other advanced methods current-
ly in use [6]. Yiming et al. [17] addressed the issue of 
ViT model lacking shape information enhancement 
for building objects. They constructed an effective 
dual path visual segmentation framework based on 
Transformer model and used multi-shape convolu-
tion kernels to perceive and enhance the shape fea-
tures of buildings. The model achieved significant 
improvements in three public building datasets [17]. 
Liu et al. [7] put forth a novel approach to point cloud 
registration within the context of BIM. This method 
encoded the process of self-similarity matrix mul-
tiplication, integrating geometric insights from the 
levels of points, lines, and grids to mitigate the im-
pact of normal blurring. The results indicated that 
the method had good generalization ability among 
different types of point clouds [7]. The comparison 
of the method proposed in this paper with the exist-
ing literature is shown in Table 1.
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In summary, although existing studies have made 
some progress in BIM through CNN or Trans-
former, their performance is insufficient in cap-
turing long-distance dependencies, resulting in 
prominent false detection and missed detection 

of small-area building changes, which is difficult 
to meet the needs of high-precision urban mon-
itoring. Moreover, the traditional Transformer 
model has a large number of parameters and high 
computational complexity, making it difficult to 

Research Purpose Method Result Shortcomings Reference

Quantify building vul-
nerability index via BIM 
and environmental flood 

hazard assessment

Machine learning + 
multi-layer perceptron 

ANN

High accuracy in 
classifying building 
samples into 5 vul-

nerability levels

Limited focus on dy-
namic urban changes; 

requires extensive 
manual data labeling

Wahba et al. 
[14]

Reduce environmental 
impact of buildings via 
BIM-life cycle analysis

BIM integration with 
passive design strategies 
and climate-appropriate 

materials/equipment

Reduced energy 
demand by 30%

Complexity in re-
al-world implementa-
tion; lacks scalability 
for large-scale cities

Falegari et 
al. [2]

Improve cost and appli-
cability visualization in 

construction projects

BIM + VR for engineering 
cost prediction

Reduced processing 
costs

Limited adaptability to 
real-time data updates; 

high computational 
overhead

Omaran et 
al. [9]

Enhance beam-column 
connection design quality 

using BIM and physical 
Internet

Statistical analysis of con-
crete/steel specifications

Improved rigidity 
and displacement 

compliance

Narrow scope (specific 
structural elements); 
lacks multi-scale fea-

ture extraction

Ismail [5]

Extract building infor-
mation from satellite 

imagery

Swin Transformer for 
multi-scale feature ex-

traction

Superior to CNN-
based models in gen-
erality and accuracy

High computational 
complexity; unsuitable 

for edge devices

Gibril et al. 
[3]

Remote sensing building 
change detection

Hybrid CNN-Transform-
er with adaptive feature 

merging

Outperformed state-
of-the-art methods

Limited robustness 
under SAR noise; no 

lightweight design

Liang et al. 
[6]

Enhance building  
shape features in  

segmentation

Dual-path Transformer 
framework + multi-shape 

convolution kernels

Improved perfor-
mance on public 

datasets

Requires high-reso-
lution images; ignores 

small-area building 
changes

Yiming et al. 
[17]

Improve point cloud reg-
istration in BIM

Self-similarity matrix 
encoding + geometric 
insights from points/

lines/grids

Good generalization 
across point cloud 

types

Inefficient for real-time 
applications; lacks SAR 

data compatibility
Liu et al. [7]

Enhance SAR-based 
building change detec-

tion for urban monitoring

Hybrid CNN-Transformer 
+ CAM, DSC, Ghost mod-

ules, improved VSPP

95% accuracy, 
76.39% mIoU, 0.7955 

Kappa, 50% fewer 
parameters

/ This paper

Table 1 
A comparison of the proposed method with the existing literature.
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run in real time in edge devices. The speckle noise 
and low-resolution characteristics of SAR images 
exacerbate the problem of blurred building bound-
aries. The existing attention mechanisms fail to 
effectively combine the direction-aware features, 
resulting in insufficient background noise suppres-
sion ability. To this end, the study proposes a light-
weight CNN-Transformer hybrid architecture, 
aiming to solve the above problems and provide 
an efficient solution for real-time building change 
detection of SAR data. This study combined the 
local feature extraction strength of CNN with the 
global context modeling of Transformer, and then 
achieved lightweight through Depthwise Separable 
Convolutions (DSC) and Ghost modules. This en-
abled real-time city monitoring on edge devices. Fi-
nally, an improved Atrous Spatial Pyramid Pooling 
(ASPP) module was introduced to capture multi-
scale building features and ensure robust detection 
of different building sizes.
The innovation of this paper is mainly reflected in 
the following three aspects: (1) Hybrid architecture 
design: For the first time, the coordinate attention 
mechanism is combined with Transformer-UNET. 
The background noise of SAR images is suppressed 
through the Coordinate Attention Module (CAM), 
and at the same time, the global modeling ability of 
Transformer is utilized to capture long-distance de-
pendencies; (2) Lightweight optimization: By recon-
structing the decoder through DSC and Ghost mod-
ules, the computational cost is significantly reduced 
while maintaining accuracy, providing a technical 
foundation for real-time monitoring. (3) Multi-scale 
feature enhancement: Improve the ASPP module 
to introduce Strip Pooling, enhance the perception 
ability of narrow and long building structures, and 
reduce the missed detection rate.
The core contributions of this study include: (1) 
Proposing a hybrid architecture combining CAM 
and improved ASPP, which significantly improves 
the detection accuracy of changes in small-ar-
ea buildings through the enhancement of direc-
tion-aware features and multi-scale information 
fusion; (2) By introducing DSC and the Ghost mod-
ule, the model parameter count was reduced to 36% 
of the original Transformer, and the FLOPs was 
decreased to one-third, achieving efficient deploy-
ment of edge devices.

2. Methods and Materials
Research aims to design innovative models and 
modules to adapt to the characteristics of building 
RSIs, enabling them to extract rich contextual in-
formation from generated windows and learn better 
target representations. Additionally, deep separable 
convolution modules and Ghost modules are intro-
duced to lessen the computational cost and memory 
usage of Transformer models.

2.1. BIM Based on Improved Transformer 
Model
The method based on the combination of U-Net and 
Transformer has been broadly utilized in image seg-
mentation [13, 19, 1]. The main reason is that a sin-
gle Transformer model lacks low-level feature de-
tails, resulting in low localization accuracy; By using 
CNN-Transformer hybrid encoding, both overall and 
local information can be considered. Therefore, the 
study applied this method to building change detection 
in SAR images. However, due to the complexity of SAR 
images and changes in buildings, the original Trans-
former-UNet model still needs further improvement.
At present, due to the complexity of the variation 
characteristics information in SAR images and the 
high background noise, it is difficult to distinguish 
them from the surrounding environment. The Co-
ordinate Attention Module (CAM) can better elim-
inate background noise while maintaining valid in-
formation, effectively solving this problem [10, 22]. 
The structure of CAM is denoted in Figure 1, which 
depicts two principal stages: the embedding of coor-
dinate information and the generation of coordinate 
attention. At the stage of incorporating coordinate 
data, the module employs two 1D global pooling op-
erations to integrate features in both the horizontal 
and vertical dimensions, resulting in the generation 
of a pair of direction-aware Feature Maps (FMs). In 
the coordinate attention generation step, these FMs 
are combined and passed to a shared 1x1 convolu-
tional transformation function. After nonlinear ac-
tivation, they are divided into two separate tensors. 
Next, two 1x1 convolutional transformation func-
tions are used to generate attention maps in hori-
zontal and vertical directions. The final output is the 
product of the input FM and these attention maps, 
thereby enhancing the model's expressive power.
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Firstly, a global average pooling method is employed 
to extract FMs in the width and height dimensions. 
Specifically, on an input feature tensor X, the pool-
ing core with a lateral coordinate of size (H,1) is ap-
plied to encode the characteristics of each channel. 
Therefore, the height of the cth channel is h, and the 
output can be represented as Equation (1).

to encode the characteristics of each channel. 
Therefore, the height of the c th channel is 
h , and the output can be represented as 
Equation (1). 
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In Equation (1), W  is the width of the 
feature graph, that is, the dimension of the 
feature tensor in the horizontal direction. c  
is the channel index, which represents a 
particular channel or channel in the feature 
map. h  is a height index that represents a 
particular row in the feature graph. w  is 
the width index that represents a particular 

column in the feature graph. 
h
cy  represents 

the average characteristic value of channel 

c  at height h , where ,cx h i  is the value 
of the characteristic graph of channel c  
with height h  and width i . Similarly, the 
outputs of c  channels with w  width can 
be represented by Equation (2). 
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In Equation (2), 
w
cy  represents the average 

characteristic value of the c  channel in 

width w , ,cx j w  is the numerical value 
of the characteristic map of the c th channel 

with a height j  and width w , and H  is 
the height of the characteristic map. This 
method combines features from two 
directions of an image to form a pair of 
directional FMs. This process is distinct from 
channel attention, which transforms feature 
tensors into a unified feature vector via 2D 
global pooling. Coordinate attention 
represents a decomposition of channel 
attention into two 1D feature encoding 
processes, which aggregate features along 
two spatial directions. In this manner, 
long-range dependencies can be captured 
along one spatial direction while precise 
positional information is maintained along 
another. Subsequently, the generated FMs 
are encoded into a pair of direction-aware 
and position-sensitive attention maps, which 
can be complementarily applied to the 
inputting FM to promote the representation 
of the object of interest. 
By using Equations (1)-(2), accurate location 
information of the global perception field can 

be obtained effectively. After information 
embedding transformation, the aggregated 
FMs generated by Equations (1)-(2) are 
transformed using a 1x1 convolution 
transformation function F_{1} to gain the 

intermediate FM f  of the horizontally and 
vertically encoded spatial information, as 
shown in Equation (3). 
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In Equation (3),  means the 
concatenation operation at the spatial scale, 

 represents the nonlinear activation 

function, 
/C r H Wf R  represents the 

horizontal and vertical spatial information 
encoding, and r  represents the reduction 
rate of module size. Using the 

transformation functions hF  and wF , the 
hf  and 

wf  obtained by decomposing f  
are transformed into tensors X  with equal 
channel numbers, resulting in Equation (4). 
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The final output of CAM can be written as 
Equation (5). 
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Compared to existing attention modules, 
CAM is a technique that enables the capture 
of information between multiple channels 
simultaneously. Additionally, it allows for 
the capture of directional and positional 
information of interest, thereby 
strengthening the model's ability to precisely 
identify and localize objects of interest. 
Using dilated convolution can solve the 
problem of detail loss caused by resolution 
reduction (pooling or stride convolution), 
while also expanding the receptive field. 
Assuming that in the two-dimensional 
scenario, the corresponding outputs at each 
point i  are represented by q , and the 
weights  of the features are used to 
represent them. Then formula (6) is used to 
represent the convolution calculation of the 
input feature layer p . 

i kz l k
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In Equation (6), k  denotes the size of the 
convolution core, and l  means the dilation 
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In Equation (6), k denotes the size of the convolution 
core, and l means the dilation rate. In the case of l=1, 
it is the standard convolution. The Void Space Pyr-
amid Pool (VSPP) module aims to further extract 
multi-scale information. The design inspiration for 
this module comes from spatial pyramid pooling, 
but by introducing dilated convolutions at different 
rates, VSPP can capture a wider range of contextu-
al information. The improved VSPP structure pro-
posed by the research is shown in Figure 2. When an 
object is in the shape of a long strip (such as a new-
ly built building), it may contain interference from 
other unrelated areas. In Strip Pooling (SP), the 
rectangular sampling window can reduce the acqui-
sition of irrelevant information, thereby alleviating 
the impact of these problems to some extent.
In response to the small differences in the process 
of BIM, the study adopts SP for feature extraction. 
This method is different from the two-dimensional 
pooling method, as it calculates the average of all ei-
genvalues of rows and columns. In a spatial range of 
1×N or N×1, the output zh

 ϵ RH after the horizontal SP 
can be expressed using Equation (7).
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The SP module is constructed based on the 
strip pool operation, and its structure is 
shown in Figure 3. It considers a long and 
narrow kernel, namely 1×N or N×1. Based on 
SP, further research is conducted on spatial 
pooling architecture design. By introducing a 
novel SP, the backbone network can 
efficiently simulate long-distance 
dependencies. The introduction of a novel 
building block can facilitate more accurate 
detection of small and narrow buildings, as 
well as enhance the efficacy of building 
change detection. 
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introducing a novel SP, the backbone network can 
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The introduction of a novel building block can fa-
cilitate more accurate detection of small and nar-
row buildings, as well as enhance the efficacy of 
building change detection.
The structure of the optimized Transformer-UNet 
model is shown in Figure 4. To solve the problem 
of unclear edge detection caused by excessive back-
ground noise in the detection of building changes 
in SAR images, this paper integrates the CA mod-
ule into the encoder and decoder of the Transform-
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coordinate system, thereby distinguishing 
the background and the foreground more 
effectively and achieving a better semantic 
segmentation effect. Furthermore, due to the 
lightweight design of the CA module, it does 
not impose excessive computational burdens. 
In order to obtain the multi-scale information 
of the target, improve the accuracy of 

detecting changes in small-area buildings, 
and reduce missed and false detecsions, this 
paper also introduces the improved ASPP 
module between the encoder and decoder of 
Transformer-UNet, so as to obtain the 
multi-scale information of the target before 
upsampling. 
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2.2 The Lightweighting of 
Improved Transformer Models 
The traditional Transformer method has 
disadvantages such as large computational 
complexity, slow detection speed, and high 
requirements for instrument configuration. 
Therefore, research is being conducted on 
the lightweight design of existing 
Transformer models, aiming to maintain 

high detection accuracy while minimizing 
model parameters and computational 
complexity. DSCs are a kind of separable 
convolution that can handle both spatial and 
depth dimensions. This approach enables for 
the extraction of additional features and the 
reduction of more parameters [16, 4]. The 
diagram of the DSC network is presented in 
Figure 5. 
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and Transformer; In the decoder path, the CA is 
placed after all the convolutional layers. The intro-
duction of the CA module enables the model to pay 
more attention to the regions of interest and obtain 
broader information through effective positioning 
in the pixel coordinate system, thereby distinguish-
ing the background and the foreground more effec-
tively and achieving a better semantic segmenta-
tion effect. Furthermore, due to the lightweight 
design of the CA module, it does not impose exces-
sive computational burdens. In order to obtain the 
multi-scale information of the target, improve the 
accuracy of detecting changes in small-area build-
ings, and reduce missed and false detecsions, this 
paper also introduces the improved ASPP module 
between the encoder and decoder of Transform-
er-UNet, so as to obtain the multi-scale informa-
tion of the target before upsampling.

2.2. The Lightweighting of Improved 
Transformer Models
The traditional Transformer method has disadvan-
tages such as large computational complexity, slow 
detection speed, and high requirements for instru-
ment configuration. Therefore, research is being 
conducted on the lightweight design of existing 
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used for training neural networks but incur 
significant overhead. Ghost is a structure 
that generates massive FMs with minimal 
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models. This method employs a shortcut to 
establish a connection between the inputting 
and outputting of two Ghost modules. The 
second Ghost module does not require ReLU, 
while the rest is implemented through a 
batch of normalization (BN) and ReLU. 
Figure 6 shows the improved transformer 
model structure. To achieve the goal of 
model lightweighting, the study adopts DSC 
and Ghost model to improve detection 
efficiency while ensuring the accuracy of 
change detection. Firstly, the original 
convolution in the Transformer-UNet 
decoder is replaced, reducing its parameters, 
speeding up inference, and improving 
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positional representation capability of 
convolution (with zero padding) to perform 
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structure is executed by gradually reducing 
the number of tokens and replacing class 
tokens with an average pool. Therefore, with 
the support of multi-level features, 
Transformer can easily handle object 
detection and image segmentation tasks. 

Transformer models, aiming to maintain high detec-
tion accuracy while minimizing model parameters 
and computational complexity. DSCs are a kind of 
separable convolution that can handle both spatial 
and depth dimensions. This approach enables for 
the extraction of additional features and the reduc-
tion of more parameters [16, 4]. The diagram of the 
DSC network is presented in Figure 5.
It assumes that there exists a sample set with the 
shape D1×D2×D3 for depth wise separable convolu-
tion. First is to use the same amount of convolution 
kernels as the previous layer's channels as the first 
convolution. In deep learning, filters are the fun-
damental components of CNNs applied to extract 
local features from input data. When there is only 
one filter with a fixed size, it will slide along the 
width and height directions of the input data when 
processing it, and apply the same operation to each 
position. The result of this process is to generate an 
FM with the same number of channels as the input-
ting data, as each channel's data is independent-
ly filtered to generate a new FM. This processing 
method preserves all channel information of the 
input data, so the quantity of outputting FM is anal-
ogous to the quantity of channels in the inputting 
layer. This algorithm uses convolutional kernels to 
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weight and merge the features obtained in the pre-
vious step, forming a new FM. On this basis, a fea-
ture mapping method based on CNNs is proposed. 
The time complexity T of DSC can be calculated us-
ing equation (9).
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CNNs uses convolution functions as the 
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establish a connection between the inputting 
and outputting of two Ghost modules. The 
second Ghost module does not require ReLU, 
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Figure 6 shows the improved transformer 
model structure. To achieve the goal of 
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efficiency while ensuring the accuracy of 
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computational efficiency. The improved 
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The traditional feature extraction method of CNNs 
uses convolution functions as the operating units 
to perform operations on each input channel. How-

ever, stacking in multi-layer convolutions gener-
ates a large number of redundant features, which 
can be used for training neural networks but incur 
significant overhead. Ghost is a structure that gen-
erates massive FMs with minimal operations and is 
a method of compressing models. This method em-
ploys a shortcut to establish a connection between 
the inputting and outputting of two Ghost modules. 
The second Ghost module does not require ReLU, 
while the rest is implemented through a batch of 
normalization (BN) and ReLU.
Figure 6 shows the improved transformer model 
structure. To achieve the goal of model lightweight-
ing, the study adopts DSC and Ghost model to improve 
detection efficiency while ensuring the accuracy of 
change detection. Firstly, the original convolution in 
the Transformer-UNet decoder is replaced, reducing 
its parameters, speeding up inference, and improving 
computational efficiency. The improved Transformer 

Figure 6  
The framework of the lightweight improved Transformer model. 
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Before performing SAR image change 
detection, the original SAR image needs to 
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such as radiometric, atmospheric, and 
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correction can reduce radiation noise and 
atmospheric interference in SAR images. 
Geometric correction can eliminate 
geometric distortions in SAR images, 
enabling accurate comparison of SAR images 
at different time points. Filtering can reduce 
noise and clutter in SAR images and enhance 
the visibility of changing signals. The 
mathematical expression for SAR image 
logarithmic ratio differential image is 
denoted in Equation (11). 
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In Equation (11), 1X  and 2X  represent two 
different regional images, and eps  is a very 
small decimal. In addition, to enhance the 
difference between the changed and 
non-changed regions, the nonlinear 
transformation of the differential image is 
studied, expressed as Equation (12), where 

DI  is the enhanced differential image. 
1

1 DIDI
e

. (12) 

To avoid imbalanced samples of different 
types, which may lead to the network 
tending towards unchanged categories, the 

study used joint loss function, dice loss DL , 

and cross-entropy loss function (LCE) CEL  
to supervise the model. The joint loss L  is 
denoted as Equation (13). 

D CEL L L . (13) 
 

3. Results 
To prove the efficacy of the raised method, 
multiple evaluation criteria were used for 
quantitative assessment, including Mean 
Intersection over Union (MIoU), F1 value, 
accuracy, etc. These assessment criteria 
collectively constitute a comprehensive 
assessment of the model's efficacy, reflecting 
the accuracy, efficiency, and recognition 
ability of the model for different categories 
from different perspectives. 
 

3.1 Performance Analysis of 
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model utilizes the implicit positional representation 
capability of convolution (with zero padding) to per-
form conditional positional encoding on inputs of any 
size. Then, the hierarchical pyramid structure is exe-
cuted by gradually reducing the number of tokens and 
replacing class tokens with an average pool. There-
fore, with the support of multi-level features, Trans-
former can easily handle object detection and image 
segmentation tasks.
Before performing SAR image change detection, the 
original SAR image needs to be preprocessed first. 
This includes steps such as radiometric, atmospher-
ic, and geometric corrections, and filtering. Radio-
metric correction and atmospheric correction can 
reduce radiation noise and atmospheric interfer-
ence in SAR images. Geometric correction can elim-
inate geometric distortions in SAR images, enabling 
accurate comparison of SAR images at different 
time points. Filtering can reduce noise and clutter in 
SAR images and enhance the visibility of changing 
signals. The mathematical expression for SAR im-
age logarithmic ratio differential image is denoted in 
Equation (11).
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3. Results
To prove the efficacy of the raised method, multiple 
evaluation criteria were used for quantitative as-
sessment, including Mean Intersection over Union 
(MIoU), F1 value, accuracy, etc. These assessment 
criteria collectively constitute a comprehensive as-
sessment of the model's efficacy, reflecting the accu-
racy, efficiency, and recognition ability of the model 
for different categories from different perspectives.

3.1. Performance Analysis of Model Checking
The operating system used in this experiment was 
Ubuntu 18.04.5 LTS, and the CPU was Intel(R) 
Core(TM) i9-11900K @ 3 50GHz, 32GB of memory, 
GeForce RTX 3090 GPU. Deep learning framework 
was Pytorch 1.7.0+Jul10. The number of iterations 
was 200, and the batch size was set to 8. The initial 
learning rate was set to 0.001, and with each repeti-
tion, the learning rate would decrease to 90% of its 
original level. When the number of iterations was 100, 
the learning rate became 0.00001. The experiment 
used Adam optimization algorithm to optimize all 
training models. The experiment utilized the Data Ar-
chiving and Distribution Center of the Alaska Satel-
lite Facility (Alaska Satellite Facility Distributed Ac-
tive Archive Center). Acquisition of SAR images from 
Sentinel-1 satellite data of ASF DAAC (ASF DAAC: 
https://search.asf.alaska.edu/#/?zoom=3.495&cen-
ter=130.110, 20.186), covers the October 1, 2022 to 
June 1, 2023 China fuzhou two periods of data. The 
high-resolution (10m) and dual temporal (8-month 
interval) characteristics of this dataset enable precise 
capture of building contour dynamics; SAR imaging 
penetrates cloud layers and light limitations, suitable 
for monitoring in areas with multiple clouds and rain; 
Covering dense urban areas, suburbs, and mixed ter-
rain, simulating real and complex environments. This 
dataset has been optimized through preprocessing 
and diversified scene coverage, effectively verifying 
the performance of the model in noise suppression, 
small target detection, and multi-scale feature ex-
traction, ensuring the universality and practical value 
of the research conclusions.
The raw data is preprocessed to generate 4682 sam-
ple blocks of 512 × 512 pixels, which are divided 
into a training set (4214) and a testing set (468) in 
a 9:1 ratio. Some of the samples are shown in Figure 



Information Technology and Control 2025/3/541002

7. The data covers various types of building chang-
es such as new construction, demolition, and ren-
ovation, and includes dense urban, suburban, and 
mixed terrain scenarios to ensure the model's gen-
eralization ability. To improve model reliability and 
experimental reproducibility, this study refined the 
preprocessing process. The preprocessing steps in-
clude: (1) radiometric correction to eliminate sensor 
response bias; (2) Geometric correction (combined 
with SRTM 30m DEM), controlling registration er-
ror<1 pixel; (3) Lee filter (7 × 7 window) suppresses 
speckle noise; (4) Logarithmic ratio differential en-
hances contrast in the changing region; (5) Sample 
annotation (integrating OpenStreetMap and manual 
validation) ensures label accuracy>95%.
By training the loss function curve of the experimen-
tal model, it can be determined whether the settings 
of parameters such as learning rate of the experi-
mental model are reasonable. The loss values and 

Note: Picture shows the SAR images of the regions with 
latitudes and longitude [118°57ʹ36" E, 25°50ʹ39"N].
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search.asf.alaska.edu/#/?zoom=3.495¢er=130.110,20.186)
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(a) Plot of the loss function

parameter fine-tuning, thereby making the 
loss curve tend to be smooth. The initial 
learning rate is set at 0.001. It decays at a 90% 
ratio in each round of iteration and drops to 
0.00001 after 100 rounds. This exponential 
attenuation method avoids the optimization 
fluctuation caused by the sudden change of 
the learning rate, enabling the model to 
converge rapidly in the early stage of 
training and approach the optimal solution 
slowly in the later stage, further ensuring the 
stability of the loss curve. From Figure 8(a), 
the loss decreased sharply in the first 20 
epochs, stabilized after 80 epochs, and 
converged by 100 epochs. From the change 
curve of the loss value, during the iteration, 

as the training time prolonged, the value of 
the loss gradually decreased. However, the 
downward trend indicated that the model 
was in an ideal learning stage. If the value of 
the loss decreased to a certain extent and 
gradually stabilized, it meant that the 
training of the model has ended and certain 
results have been achieved. The epoch of this 
model was 100 times, and when the loss 
value reached 80, the loss value gradually 
stabilized and began to converge. From 
Figure 8(b), accuracy rose rapidly to 90% 
within 20 epochs, gradually approaching 
95% at 100 epochs. This indicates that the 
improved Transformer model can recognize 
different types of buildings.
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Figure 8 The loss value and precision of the model change during training. 
 

Under the weather interference of cloud 
cover and brightness changes, the model 
often experiences incorrect recognition of 
collapsed building backgrounds and 
incomplete recognition of non-collapsed 
buildings. In Figure 9, the improved 
Transformer model raised in the study 
improved the IoU accuracy of each category, 
with lower volatility than the 
Transformer-UNet model. At the same time, 
the maximum, median, and mIoU accuracy 
obtained on the test set were higher than 
those of the Transformer-UNet model, 
indicating that the robustness and stability of 
the proposed model were superior. 
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Figure 10 shows the visualization results of 
the comparative experiments of some 
samples. Figure 10(a) shows the original SAR 
image. By comparing Figure 10(b) to Figure 
10(d), it can be found that the improved 
Transformer model can effectively handle the 
blurrness problem of building boundaries, 
greatly promoting the missed detection and 
false detection problems of buildings in a 
small area, making it more consistent with 
the labeled graph. 
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training time prolonged, the value of the loss gradu-
ally decreased. However, the downward trend indi-
cated that the model was in an ideal learning stage. 
If the value of the loss decreased to a certain extent 
and gradually stabilized, it meant that the training of 
the model has ended and certain results have been 
achieved. The epoch of this model was 100 times, and 
when the loss value reached 80, the loss value grad-
ually stabilized and began to converge. From Figure 
8(b), accuracy rose rapidly to 90% within 20 epochs, 
gradually approaching 95% at 100 epochs. This indi-
cates that the improved Transformer model can rec-
ognize different types of buildings. 
Under the weather interference of cloud cover and 
brightness changes, the model often experiences 

Figure 9 
Comparison results of IoU values of different categories.
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stabilized and began to converge. From 
Figure 8(b), accuracy rose rapidly to 90% 
within 20 epochs, gradually approaching 
95% at 100 epochs. This indicates that the 
improved Transformer model can recognize 
different types of buildings.

 

0

2

4

6

8

10

Lo
ss

20 40 60 80 1000
Epoch

20 40 60 800
0

20

40

60

80

100

Pr
ec

isi
on

Test set
Training set

Epoch
(b) Precision graph(a) Plot of the loss function  

Figure 8 The loss value and precision of the model change during training. 
 

Under the weather interference of cloud 
cover and brightness changes, the model 
often experiences incorrect recognition of 
collapsed building backgrounds and 
incomplete recognition of non-collapsed 
buildings. In Figure 9, the improved 
Transformer model raised in the study 
improved the IoU accuracy of each category, 
with lower volatility than the 
Transformer-UNet model. At the same time, 
the maximum, median, and mIoU accuracy 
obtained on the test set were higher than 
those of the Transformer-UNet model, 
indicating that the robustness and stability of 
the proposed model were superior. 
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Figure 10 shows the visualization results of 
the comparative experiments of some 
samples. Figure 10(a) shows the original SAR 
image. By comparing Figure 10(b) to Figure 
10(d), it can be found that the improved 
Transformer model can effectively handle the 
blurrness problem of building boundaries, 
greatly promoting the missed detection and 
false detection problems of buildings in a 
small area, making it more consistent with 
the labeled graph. 

 

Note: Picture (a) shows the SAR images of the regions with latitudes and longitude [119°20 '00 "E, 26°08' 08" N], [119°12 
'06 "E, 25°56' 17" N], and [119°22 '38 "E, 25°59' 15" N].

Figure 10 
Comparative experimental visualization results (Picture (a) Source from:  
ASF DAAC: https://search.asf.alaska.edu/#/?zoom=3.495¢er=130.110,20.186)
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Figure 10 Comparative experimental visualization results (Picture (a) Source from: ASF DAAC

https://search.asf.alaska.edu/#/?zoom=3.495¢er=130.110,20.186) 

 
 

3.2 Ablation Experiment and 
Analysis of Lightweight Effect 
Table 1 presents the comparison results of 
the improved model with the baseline 
algorithm Transformer-UNet, as well as the 
method Swin Transformer-UNet proposed in 
reference [12] and the method Dual-Path 
CNN-Transformer proposed in reference [20] 
on 10 performance indicators. The model in 
this paper has achieved significant 
advantages in core indicators such as Mean 
Intersection over Union (mIoU), F1 Score, 
and Accuracy. Specifically, the mIoU and F1 
scores increased by 0.57% and 0.93% 
respectively compared with Swin 
Transformer-UNet, confirming the model's 
precise segmentation ability for the 
boundaries of architectural change areas. 
Meanwhile, its Recall Rate and False 
Negative Rate (FNR) are superior to all 
comparison methods. Especially in the 
detection of small area changes, the missed 
detection rate is significantly reduced. The 
Specificity of 99.92% and the False Positive 
Rate (FPR) of 0.08% reflect the strong 

reliability of the test results. Among the 
comparison methods, the Dual-Path 
CNN-Transformer achieves 91.20% and 
99.91% respectively in terms of accuracy and 
specificity by extracting dual-path features of 
local details and global semantics. However, 
its missed detection rate for road ancillary 
facilities is as high as 19.20%, exposing its 
limitations in complex scenarios. The model 
in this paper achieves breakthroughs 
through three aspects of improvement: 
introducing the class activation map CAM to 
suppress the background noise of SAR 
images, adopting the lightweight structure of 
depth-separable convolution DSC combined 
with the Ghost module to reduce the 
computational complexity, and optimizing 
the pyramid pooling ASPP module in the 
hollow space to enhance the multi-scale 
feature fusion ability. Experiments prove that 
this scheme surpasses the existing methods 
in terms of accuracy, computational 
efficiency and generalization, providing a 
better technical path for the detection of 
architectural changes in SAR images. 

(a) SAR images (b) Label  images (c) TransUNet junction (d) Improved  
Transformer model
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incorrect recognition of collapsed building back-
grounds and incomplete recognition of non-col-
lapsed buildings. In Figure 9, the improved Trans-
former model raised in the study improved the IoU 
accuracy of each category, with lower volatility than 
the Transformer-UNet model. At the same time, the 
maximum, median, and mIoU accuracy obtained on 
the test set were higher than those of the Transform-
er-UNet model, indicating that the robustness and 
stability of the proposed model were superior.
Figure 10 shows the visualization results of the 
comparative experiments of some samples. Figure 
10(a) shows the original SAR image. By comparing 
Figure 10(b) to Figure 10(d), it can be found that the 
improved Transformer model can effectively handle 
the blurrness problem of building boundaries, great-
ly promoting the missed detection and false detec-
tion problems of buildings in a small area, making it 
more consistent with the labeled graph.

3.2. Ablation Experiment and Analysis of 
Lightweight Effect
Table 1 presents the comparison results of the im-
proved model with the baseline algorithm Trans-
former-UNet, as well as the method Swin Trans-
former-UNet proposed in reference [12] and the 
method Dual-Path CNN-Transformer proposed in 
reference [20] on 10 performance indicators. The 
model in this paper has achieved significant advan-
tages in core indicators such as Mean Intersection 

over Union (mIoU), F1 Score, and Accuracy. Specif-
ically, the mIoU and F1 scores increased by 0.57% 
and 0.93% respectively compared with Swin Trans-
former-UNet, confirming the model's precise seg-
mentation ability for the boundaries of architectural 
change areas. Meanwhile, its Recall Rate and False 
Negative Rate (FNR) are superior to all comparison 
methods. Especially in the detection of small area 
changes, the missed detection rate is significant-
ly reduced. The Specificity of 99.92% and the False 
Positive Rate (FPR) of 0.08% reflect the strong re-
liability of the test results. Among the comparison 
methods, the Dual-Path CNN-Transformer achieves 
91.20% and 99.91% respectively in terms of accura-
cy and specificity by extracting dual-path features 
of local details and global semantics. However, its 
missed detection rate for road ancillary facilities is 
as high as 19.20%, exposing its limitations in com-
plex scenarios. The model in this paper achieves 
breakthroughs through three aspects of improve-
ment: introducing the class activation map CAM 
to suppress the background noise of SAR images, 
adopting the lightweight structure of depth-sepa-
rable convolution DSC combined with the Ghost 
module to reduce the computational complexity, 
and optimizing the pyramid pooling ASPP module in 
the hollow space to enhance the multi-scale feature 
fusion ability. Experiments prove that this scheme 
surpasses the existing methods in terms of accuracy, 
computational efficiency and generalization, provid-

Model Transformer-UNet Swin Transformer-UNet Dual-Path CNN-Trans This study

mIoU (%) 74.11 75.82 75.05 76.39

F1 (%) 84.1 85.3 84.95 86.23

Accuracy (%) 99.15 99.28 99.22 99.36

Kappa 0.7662 0.781 0.7748 0.7955

Precision (%) 89.23 90.45 91.2 92.15

Recall (%) 82.47 83.65 80.8 85.71

Specificity (%) 99.87 99.89 99.91 99.92

Dice (%) 83.74 85.1 84.5 87.34

FPR (%) 0.13 0.11 0.09 0.08

FNR (%) 17.53 16.35 19.2 14.29

Table 1 
Performance comparison between the improved model and the latest method.
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ing a better technical path for the detection of archi-
tectural changes in SAR images.
Research was conducted to optimize model pa-
rameters by incorporating DSC and Ghost mod-
ules. By analyzing the impact of DSC, Ghost, and 
other parameters on model parameterization, the 
differences in the number of parameters and com-
putation time were compared. Figure 11 shows the 
comparison results of different network parameter 
numbers and computational complexity. From the 
figure, replacing CNN with DSC could reduce the 
number of parameters in the Transformer model by 
half and the number of FLOPs by one-third of the 
original. Replacing CNN with Ghost significantly 
reduced the number of parameters in the Trans-
former model. The improved Transformer model 
proposed by the research, although incorporating 
CAM and improved ASPP modules, improved pa-
rameters and FLOPs contrast to the original Trans-
former model, but still had the least total amount 
of parameters and the least computational com-
plexity. The parameter count and FLOPs of the 
improved Transformer model after lightweighting 
were much lower than those of the original Trans-
former model.

The study combined other classic change detection 
models to qualitatively and quantitatively analyze 
SAR data, to validate the utilization value of the raised 
method in SAR images. The study selected sever-
al networks as comparative experiments, including 
FCN, UNet, UNet++, ResUnet, and Transformer-UN-
et. The first four algorithms were based on the classic 
CNN, while the latter one was implemented within the 
Transformer framework. The quantitative outcomes 
of various network modes are indicated in Table 2. 
From the table, there were significant differences in 
the objective accuracy index of each method's exper-
imental results. UNet and UNet++ adopted a skip con-
nection method, utilizing low-level features for spatial 
information fusion, which resulted in slightly inferior 
segmentation performance compared to Transform-
er-UNet. After multiple convolution processes, the 
residual data in ResUNet images could effectively ex-
tract spatial information from the images, while con-
taining less information about small-scale buildings. 
This method adopted the traditional CNN method, 
which combines the transformer with a standard con-
volutional network in order, resulting in a 0.98% im-
provement in the segmentation accuracy of the fused 
image compared to UNet. At the same time, it also had 

Figure 11 
Analysis of lightweight effect.
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Research was conducted to optimize model 
parameters by incorporating DSC and Ghost 
modules. By analyzing the impact of DSC, 
Ghost, and other parameters on model 
parameterization, the differences in the 
number of parameters and computation time 
were compared. Figure 11 shows the 
comparison results of different network 
parameter numbers and computational 
complexity. From the figure, replacing CNN 
with DSC could reduce the number of 
parameters in the Transformer model by half 
and the number of FLOPs by one-third of the 

original. Replacing CNN with Ghost 
significantly reduced the number of 
parameters in the Transformer model. The 
improved Transformer model proposed by 
the research, although incorporating CAM 
and improved ASPP modules, improved 
parameters and FLOPs contrast to the 
original Transformer model, but still had the 
least total amount of parameters and the 
least computational complexity. The 
parameter count and FLOPs of the improved 
Transformer model after lightweighting were 
much lower than those of the original 
Transformer model. 
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The study combined other classic change 
detection models to qualitatively and 
quantitatively analyze SAR data, to validate 
the utilization value of the raised method in 
SAR images. The study selected several 
networks as comparative experiments, 
including FCN, UNet, UNet++, ResUnet, and 
Transformer-UNet. The first four algorithms 
were based on the classic CNN, while the 
latter one was implemented within the 

Transformer framework. The quantitative 
outcomes of various network modes are 
indicated in Table 2. From the table, there 
were significant differences in the objective 
accuracy index of each method's 
experimental results. UNet and UNet++ 
adopted a skip connection method, utilizing 
low-level features for spatial information 
fusion, which resulted in slightly inferior 
segmentation performance compared to 
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certain improvements in the accuracy and Kappa of 
change detection. The findings show that combining 
CNN with Transformer is an effective method that 
can achieve good results. Compared with Transform-
er-UNet, the model proposed by the research had 
higher accuracy with a Kappa of 0.795, making it more 
suitable for building change detection in SAR data.

The visualization results of the improved method 
and the latest method are shown in Figure 12. It can 
be seen from the figure that compared with the orig-
inal TransUNet model, the last two columns have a 
better effect in the detection of changes in small-ar-
ea buildings. The detection effect of the method pro-
posed in this paper is significantly better than that of 

Table 2 
Building modeling performance comparison.

Model FCN ResUnet UNet++ Transformer-UNet UNet Proposal

mIoU (%) 71.82 72.93 73.42 74.11 73.21 76.39

Average F1 value (%) 82.22 83.51 83.71 84.1 83.62 86.23

Accuracy (%) 98.22 98.92 99.09 99.15 99.01 99.36

Kappa coefficient 0.709 0.7493 0.7605 0.7662 0.7532 0.7955

Total number of errors 26047 15423 9432 7823 11620 5644

Note: Picture (a) shows the SAR images of the regions with latitudes and longitude [119°12 '06 "E, 25°56' 53" N], [119°07 
'29 "E, 26°09' 19" N], and [119°06'49 "E, 26°07' 50" N]. 

Figure 12 
Visualization results of the improved method and the latest method (Picture (a) Source from: ASF DAAC: 
https://search.asf.alaska.edu/#/?zoom=3.495¢er=130.110,20.186)
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Figure 12 Visualization results of the improved method and the latest method (Picture (a) Source from: ASF DAAC
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4. Discussion and Conclusion 
A deep learning-based SAR urban building 
area overlay accurate detection method was 
proposed by combining the advantages of 
Transformer model and CNN. The method 
effectively extracted global and long-range 
features through SAM, and CNN had a 
strong ability to extract local features. It also 
mined inter channel overlay features and 
interferometric phase overlay features to 
raise the accuracy and robustness. The loss 
value of the proposed model by gradually 
stabilized after more than 80 iterations, and 
the accuracy reached over 95% after 100 
epochs. In terms of mIOU, the addition of 
the CA model improved the efficacy of the 
model by 1.37%. In terms of evaluating the 
Kappa coefficient, the addition of the CA 
model improved the accuracy of monitoring 
changes by 1.29%. Replacing traditional 
convolution with DSC reduced the total 
FLOPs to about one-third of the original 
model. When the CNN in the optimized 
Transformer model was replaced by the 
Ghost module, it could lessen the number of 

parameters in the neural network and 
decrease computational complexity. The 
improved Transformer model had the least 
number of parameters and the lowest 
computational complexity, with a Kappa 
value of 0.795. Experimental results showed 
that this algorithm was more suitable for 
detecting building changes in SAR images.  
By using DSC and Ghost modules to achieve 
model lightweighting and reduce the 
computational complexity and parameter 
count of the model, the proposed method 
becomes more feasible for deployment on 
resource constrained devices. For example, 
in urban planning, lightweight models can 
be integrated into mobile map systems to 
provide real-time updates on building 
changes, helping to quickly assess urban 
development or illegal construction activities. 
The reduction of computational overhead 
not only lowers deployment costs, but also 
speeds up inference time, making the model 
suitable for real-time applications. However, 
despite the advantages of SAR data in 
all-weather and all-day imaging capabilities, 
it is inherently noisy due to speckle 
interference. This type of noise can reduce 
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the Dual-Path CNN-Transformer. It can be seen that 
the selection of the sampling rate depends on the 
data set and even the model itself. The results show 
that the method proposed in this paper can capture 
multi-scale context information with the receptive 
field remaining unchanged, improve the detection 
ability of the image semantic segmentation network 
for the changes of small-area buildings, and enhance 
the detection accuracy. However, extreme weather 
conditions (such as heavy rain or snow accumula-
tion) may exacerbate image blurring and affect the 
detection accuracy; Furthermore, the model relies 
on fully supervised learning and requires a large 
amount of labeled data. However, in actual scenari-
os, obtaining high-quality labeled SAR data is costly. 
Although lightweight design reduces computational 
complexity, it is still necessary to optimize hardware 
compatibility and computing latency issues when 
dealing with large-scale urban monitoring in real 
time. In the future, multi-sensor fusion and self-su-
pervised learning need to be combined to enhance 
robustness.

4. Discussion and Conclusion
A deep learning-based SAR urban building area 
overlay accurate detection method was proposed 
by combining the advantages of Transformer mod-
el and CNN. The method effectively extracted global 
and long-range features through SAM, and CNN had 
a strong ability to extract local features. It also mined 
inter channel overlay features and interferometric 
phase overlay features to raise the accuracy and ro-
bustness. The loss value of the proposed model by 
gradually stabilized after more than 80 iterations, 
and the accuracy reached over 95% after 100 epochs. 
In terms of mIOU, the addition of the CA model im-
proved the efficacy of the model by 1.37%. In terms 
of evaluating the Kappa coefficient, the addition of 
the CA model improved the accuracy of monitor-
ing changes by 1.29%. Replacing traditional convo-
lution with DSC reduced the total FLOPs to about 
one-third of the original model. When the CNN in 
the optimized Transformer model was replaced by 
the Ghost module, it could lessen the number of pa-
rameters in the neural network and decrease com-
putational complexity. The improved Transformer 
model had the least number of parameters and the 

lowest computational complexity, with a Kappa val-
ue of 0.795. Experimental results showed that this 
algorithm was more suitable for detecting building 
changes in SAR images. 
By using DSC and Ghost modules to achieve model 
lightweighting and reduce the computational com-
plexity and parameter count of the model, the pro-
posed method becomes more feasible for deploy-
ment on resource constrained devices. For example, 
in urban planning, lightweight models can be inte-
grated into mobile map systems to provide real-time 
updates on building changes, helping to quickly as-
sess urban development or illegal construction ac-
tivities. The reduction of computational overhead 
not only lowers deployment costs, but also speeds 
up inference time, making the model suitable for 
real-time applications. However, despite the advan-
tages of SAR data in all-weather and all-day imaging 
capabilities, it is inherently noisy due to speckle in-
terference. This type of noise can reduce the quality 
of input data, especially in densely populated urban 
areas where buildings are located in close proximity, 
leading to potential misclassification or missed de-
tections. In addition, the performance of the model 
may be affected by extreme weather conditions such 
as heavy rain or snow, which may further blur SAR 
images and reduce the model's ability to accurately 
detect changes.
The current models rely on fully supervised learn-
ing, which requires a large amount of labeled data. 
Future work can explore weakly supervised or un-
supervised learning techniques to reduce reliance 
on labeled data. For example, self-supervised learn-
ing methods can be used to pre-train the model on 
a large amount of unlabeled SAR data, and then fine 
tune it on a smaller labeled dataset. Although the 
model has been optimized for SAR images, future 
research can explore its adaptability to other types 
of remote sensing data, such as optical images or 
LiDAR. Combining data from multiple sensors can 
provide complementary information and improve 
the model's ability to detect environmental changes 
in different cities.
In summary, the proposed Transformer-UNet mod-
el has been enhanced through coordinated attention 
mechanism and lightweight technology, providing a 
robust solution for urban building change detection 
using SAR images. The high accuracy and reduced 
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computational complexity of this model make it 
highly suitable for practical applications in urban 
planning and disaster monitoring.
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