
489Information Technology and Control 2025/2/54

1. Introduction
Colorectal cancer (CRC) is a common gastrointesti-
nal malignant tumor, and in terms of digestive sys-
tem cancers, its incidence ranks only behind liver, 
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Automatic polyp segmentation in endoscopic images holds critical clinical value for early colorectal cancer 
diagnosis. While existing segmentation models have achieved notable progress, two key challenges persist 
in algorithmic performance improvement. First, dynamic adjustments of colonoscope tip orientation during 
examinations induce viewpoint variations, which amplify polyp appearance diversity and hinder robust 
feature learning. Second, the inherent similarity between polyps and surrounding tissues leads to blurred 
boundaries. Although convolutional neural networks (CNNs) have demonstrated significant advancements, 
their limitations in modeling global dependencies and reliance on aggressive downsampling operations 
often cause redundant network structures and local detail loss. To address these bottlenecks, we propose 
Bi-Encoder Polyp Net – a novel parallel architecture integrating Pyramid Vision Transformer and ResNet. 
This dual-branch design effectively captures global contextual dependencies while preserving low-level spa-
tial details. A feature alignment module bridges the semantic gap between dual-branch feature maps, and 
an iterative semantic embedding unit further injects high-level semantic information into aligned low-level 
features. Extensive experiments across five public polyp segmentation benchmarks validate the network’s 
effectiveness, demonstrating superior capability in processing real-world colonoscopy images.
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gastric, and esophageal cancers. In the United States, 
colorectal cancer is one of the leading causes of 
cancer-related deaths. According to statistics from 
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2019, there were approximately 145,600 new cases 
of colorectal cancer, with over 50,000 people losing 
their lives as a result [23]. However, if detected and 
treated at an early stage, the five-year survival rate 
for colorectal cancer can reach about 90% [15]. This 
highlights the critical importance of early diagnosis 
and intervention for improving patient outcomes.
Colorectal polyps are protruding lesions that form 
on the surface of the intestinal mucosa and have the 
potential to evolve into colorectal cancer. Timely de-
tection and removal of these polyps are crucial for 
preventing such a transformation. Currently, colo-
noscopy is widely recognized as the most effective 
tool for screening and preventing colorectal cancer. 
Studies indicate that during routine colonoscopies, 
approximately 25% of polyps may be missed [17], 
which undoubtedly increases the risk of individu-
als developing colorectal cancer. Furthermore, due 
to the often unclear boundaries of polyps in videos, 
doctors may face difficulties in locating and excis-
ing these abnormal tissues, especially when dealing 
with complex cases. Hence, developing an algorithm 
that enables precise and effective automatic seg-
mentation of polyps during colonoscopies is essen-
tial for increasing the accuracy of diagnoses and the 
efficacy of treatments within clinical environments.
Automatic polyp segmentation remains an extremely 
challenging task to this day, primarily due to the follow-
ing reasons: (1) The variety of polyp types, with their 
sizes and shapes varying significantly (Figure 1a-b), 

and (2) the complexity of the anatomical environment 
in colonoscopy videos, which makes it particularly 
difficult to extract features that can effectively distin-
guish polyps from the background (Figure 1(c)-(d)).
Considerable efforts have been dedicated to tackling 
these issues. Conventional techniques usually focus 
on extracting different features for polyp detection, 
such as geometric attributes [41], [21], intensity pat-
terns [12], and volumetric properties [40], [9]. To be 
specific, Yoshida [41] and Näppi [21] applied geomet-
ric features, namely shape and curvature, in identify-
ing polyps. Conversely, Jerebko et al. [12] proposed 
leveraging integral transforms and edge detection 
operators to accurately define the contours of polyps. 
In summary, manual feature-based methods do not 
achieve clinical-grade accuracy in segmentation.
The development of CNNs has led to considerable 
advancements in numerous areas within computer 
vision over the last few years [16], [18], [25], [26], 
[10], [39], [11]. The key factor behind this success 
is the convolution process, which collects local fea-
tures hierarchically to create powerful representa-
tions of images. Although CNNs excel at extracting 
local features, they find it challenging to capture 
global representations, such as the long-range de-
pendencies between visual elements, which are of-
ten essential for advanced computer vision tasks. To 
tackle this issue, one intuitive strategy is to widen 
the receptive field, although this could require more 
intensive and possibly destructive pooling methods.

Figure 1 
Polyp Diversity and Background Complexity.
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The Transformer architecture [31] has recently 
been integrated into visual tasks [7], [35], [28], [43], 
[4], [5], [1], [45], [14]. The Vision Transformer(ViT) 
approach [7] involves splitting images into patches 
and adding position embeddings. This method forms 
sequences of tokens and employs successive Trans-
former blocks, utilizing them for the generation of 
vectors with parameters, enhancing effective visual 
representations. The self-attention mechanism en-
ables these models to manage complex spatial trans-
formations and long-range feature dependencies, 
facilitating the creation of global representations. 
Additionally, the MLP architecture contributes to 
this capability by further processing these features. 
However, it has been noted that visual Transformers 
often struggle to capture local feature details, which 
hinders their ability to effectively differentiate be-
tween background and foreground elements.
Effective differentiation between foreground and 
background is crucial for the success of polyp segmen-
tation tasks. Understanding the characteristics and 
challenges of both and adopting appropriate strate-
gies can improve the segmentation accuracy and reli-
ability of models. However, integrating local features 
with global representations accurately continues to 
be a challenge that has yet to be fully addressed.
In the current study, to combine the advantages of 
CNN and Transformer, a dual-network architecture 
called BiEncoder-Polyp-Net (BiPolypNet) is pro-
posed. This network aims to integrate the local fea-
ture extraction capabilities of ResNet [10] with the 
global representation learning abilities provided by 
PVT (Pyramid Vision Transformer) [33], thereby en-
hancing the model’s understanding and expression 
of polyp images. Through this design, BiPolypNet not 
only captures the fine boundaries and local details of 
polyps but also effectively models their global contex-
tual information, thus improving the accuracy and ro-
bustness of the polyp segmentation task. Considering 
the differences between ResNet and PVT features, a 
feature alignment module is designed to align the ex-
tracted ResNet and PVT features, ensuring consisten-
cy during the fusion process and ultimately producing 
outputs that embody the characteristics of both net-
works. Additionally, to address discrepancies between 
feature maps at different levels, an iterative semantic 
embedding unit is designed. This unit combines spa-
tial detail information from low-level feature maps 
with semantic information from high-level feature 

maps, further enhancing the model’s performance. 
This design not only improves the effectiveness of fea-
ture fusion but also provides more precise feature rep-
resentations for the polyp segmentation task.
The contributions of this paper include the following:
 _ Dual Encoder: combines the local feature ex-

traction capabilities of ResNet with the global 
representation learning ability provided by PVT, 
thereby enhancing the model’s understanding and 
expression of polyp images. 

 _ Feature Alignment Unit: fuses the local feature 
information from ResNet with the global feature 
representations from PVT using an interactive ap-
proach, thereby aligning the features extracted by 
ResNet and PVT, ensuring consistency during the 
fusion process and ultimately producing outputs 
that embody the characteristics of both networks. 

 _ Iterative Semantic Embedding Unit: combines 
spatial detail information from low-level feature 
maps with semantic information from high-level 
feature maps to further enhance the model’s per-
formance.

2. Related Work
Initially, medical image segmentation relied primar-
ily on previously established machine learning algo-
rithms [29]. However, with the introduction of deep 
convolutional neural networks (CNNs) [20], this 
field has moved beyond the limitations of traditional 
methods, achieving significant improvements. Deep 
CNNs have not only greatly enhanced the accuracy 
and processing efficiency of image segmentation but 
also reduced reliance on manually designed features. 
Effective segmentation outcomes have increasing-
ly depended on the use of CNNs and their variants, 
which have improved both accuracy and efficiency. 
Due to its clear-cut design and remarkable effective-
ness, the U-shaped architecture [22]  has become the 
preferred choice for medical image segmentation 
tasks. It boasts a balanced encoder-decoder struc-
ture enhanced with skip connections, which have 
demonstrated considerable efficacy. Techniques such 
as dilated convolutions [42]  and context-aware mod-
eling approaches [44] further enhance performance. 
Encoder-decoder frameworks with a U-shaped archi-
tecture, such as U-Net and its variants, have attracted 
significant attention for their ability to improve med-
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ical image analysis. Following this successful mod-
el, several similar architectures like ResUNet [38], 
DenseUNet [3], KiuNet [30], and UNet++ [46] have 
been developed. These variants introduce specific 
enhancements and adjustments targeted at diverse 
medical imaging applications. For example, UNet++ 
features dense inter-module skips connections that 
yield better segmentation outcomes. Hence, these 
architectural designs have proven highly effective 
across various medical domains. Although CNN-
based methods have led to significant progress in 
medical image segmentation, the accuracy and effi-
ciency remain limited by the local nature of convolu-
tion operations and complicated data access patterns.
Current research focuses on overcoming these limita-
tions to further improve the performance of medical 
image segmentation models. The Transformer model, 
which utilizes self-attention mechanisms and multi-
layer perceptrons (MLPs), has achieved outstanding 
success in various fields, particularly in natural lan-
guage processing. It has set new standards for perfor-
mance in applications like machine translation [31]. 
Moreover, the advent of the ViT [7] has expanded the 
application of Transformers to a wide range of visu-
al tasks. ViT achieves an excellent balance between 
speed and accuracy in image recognition, though it 
necessitates pre-training on large datasets. To address 
this limitation, researchers proposed DeiT [28], which 
enhances ViT's performance on ImageNet through 
advanced training strategies. The Swin Transformer 
[19] stands out as another important visual Trans-
former, offering a hierarchical structure that serves 
as an efficient and powerful foundation for visual pro-
cessing. With remarkable success in image classifica-
tion, object detection, and semantic segmentation, the 
Swin Transformer represents a major advancement. 
However, Transformer-based techniques may still 
face challenges in certain scenarios, particularly due 
to variations in viewpoint and the subtle appearance 
of polyps, which can hinder robust feature extraction.

3. Method
As shown in Figure 2, the BiPolypNet framework is 
made up of two parallel branches, each intended to 
handle information processing in a distinct manner. 
By leveraging its architecture of deep convolutional 
layers, the ResNet branch effectively captures the 

local features of the input image, such as edges, tex-
tures, and other low-level visual elements essential 
for polyp detection. On the other hand, the Pyramid 
Vision Transformer (PVT) branch empowers the 
model to grasp long-range dependencies across any 
two points in the image without being constrained 
by local neighborhoods. This capability allows it to 
excel in processing global information and efficient-
ly recognizing large-scale spatial patterns.
The features derived from the two branches possess 
identical resolutions but differ in their channel num-
bers. These corresponding hierarchical levels are then 
input into a feature alignment module, where the in-
put feature maps experience alignment and fusion. 
This process leverages spatial and channel attention 
mechanisms and a Hadamard product to purposefully 
integrate information. Subsequently, the multi-level 
aligned and fused feature maps are fed into an itera-
tive semantic embedding unit and combined with both 
shallow and deep aligned and fused feature maps to 
ensure more precise capture of the polyp’s edge details.

3.1 PVT Branch
A hierarchical Transformer architecture with a pyr-
amid structure forms the PVT branch, enabling the 
generation of multi-scale feature maps critical for 
dense prediction tasks like object detection and se-
mantic segmentation. The PVT consists of four stag-
es designed to generate multi-scale feature maps. All 
stages share a similar architecture, incorporating 
overlapping patch embedding layers and Transform-
er encoder layers. In the first stage, given an input 
image of size H×W×3, the image is first divided into 
patches. These patches are fed into a linear projec-
tion to obtain embedded patches. Subsequently, the 
embedded patches are input into the Transform-
er Encoder layer. Within the Transformer Encod-
er, the patch vectors first undergo a self-attention 
mechanism to capture global dependencies between 
patches. This is followed by a feedforward neural 
network for nonlinear transformations and feature 
extraction. Through this architecture, the model can 
flexibly adjust the scale of feature maps at each en-
coder stage to accommodate diverse tasks and data.
Specifically, in the initial stage, the input image 
H×W×3 is partitioned into 
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320, and 512, respectively. This hierarchical feature 
pyramid enables the PVT to adapt to diverse down-
stream tasks requiring multi-scale context.

3.2 ResNet Branch

ResNet builds upon the architecture of VGG19 but in-
troduces residual block via shortcut paths to address 
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the challenges of training deep networks, such as van-
ishing/exploding gradients. This breakthrough was first 
demonstrated in the context of large-scale ImageNet 
classification tasks, where it significantly improved 
model performance. As shown in Figure 4, residual 
blocks are designed to learn residual functions by in-
corporating input features into deeper layers through 
additive interactions. This mechanism enhances gra-
dient propagation and enables more efficient optimiza-
tion, thereby boosting overall model performance.
A typical residual block is composed of convolu-
tional layers, batch normalization, and non-linear 
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activation functions. The residual block's design 
enables the input to bypass intermediate layers and 
be summed with the output, allowing the network to 
focus on learning residual patterns. This skip con-
nection mechanism ensures gradients flow directly 
to earlier layers during backpropagation, addressing 
the vanishing gradient issue and improving training 
stability in deep architectures. The operation of a 
residual block is defined by the equation presented:
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In the process of feature extraction, ResNet grad-
ually builds multi-level feature representations 
through layer-by-layer convolution and batch nor-
malization operations. Each layer not only captures 
local features but also retains information from pre-
vious layers through skip connections. This design 
allows the feature maps to be more refined spatially, 
while effectively merging multi-scale information 
between different layers. The features are gradually 
downsampled to  
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, here C1, C2, C3 and C4 are 256, 512, 
1024, and 2048, whose outputs are fused with the 
results from PVT. Additionally, the CNN branch is 
very flexible and can utilize any off-the-shelf convo-
lutional network.
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Figure 7 
Efficient Global Context.
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Figure 6 
Polyp background contrast. 

 
 
Figure 7 
Efficient Global Context. 
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Figure 8  

Iterative Semantic Embedding Unit. 
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3.3 Feature Alignment Unit
For efficiently integrating the encoded feature maps 
generated by PVT and ResNet, a feature alignment 
unit (see Figure 5) has been designed, which includes 
spatial and channel attention mechanisms as well as 
a multi-backbone fusion mechanism. To fuse features 
of two different styles, the feature alignment module 
first aligns the channel dimensions. Considering that 
the ResNet and PVT branches are designed to cap-
ture local and global features respectively, the feature 
alignment module is embedded across various hierar-
chical blocks to progressively minimize the semantic 
discrepancies between them through interaction. This 
merging process notably improves the global aware-
ness of local features and enhances the local detail of 
global representations. Following alignment, the resul-
tant features possess attributes from both networks.
Specifically, to fuse the original feature maps extract-
ed by Pi and Ri, convolution is first performed to align 
the channel dimensions, followed by the Hadamard 
product. The feature maps that have undergone spa-
tial attention [34], channel attention [11], and the Ha-
damard product are then concatenated. The aligned 
feature map Fi is acquired after passing through a re-
sidual block. The fused feature representation Fi, for 
i=1,2,3,4, is acquired through these operations.
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 1( ) 1( )i iH Conv P Conv R  (2) 

 ( )iC ChannelAtt P  (3) 

 ( )iS SpatialAtt R  (4) 

        ( [ , , ])iF Residual Concat H C S , (5) 

where 1Conv  denotes  1 1 convolutional layer 
and batch normalization layer, ensuring 
channel alignment of the dual-branch feature 
maps. Although both operations are labeled as 

1Conv  for notational convenience, it is 
important to clarify that they are implemented 
with distinct convolutional parameters.  
represents the Hadamard product, which 
leverages element-wise multiplication to 
efficiently select and integrate critical 
information from the aligned feature maps 
while suppressing redundant 
components. ( )ChannelAtt denotes channel 
attention mechanism applied to ResNet feature 
maps. It dynamically allocates inter-channel 
weights to refine the spatial representation 

capability of each channel, thereby emphasizing 
critical semantic information through channel-
wise recalibration. pa ( )S tialAtt  represents 
spatial attention mechanism operating on PVT 
feature maps. By modeling long-range 
dependencies, it strengthens global contextual 
correlations and fully leverages PVT's inherent 
advantage in capturing distant spatial 
relationships. 

3.4 Iterative Semantic Embedding Unit 
The BiPolypNet extracts high-level features that 
are rich in semantic information. However, after 
encoding through multiple encoders, these 
high-level features may lose a significant 
amount of spatial detail, which is crucial for 
improving segmentation accuracy. In the task of 
polyp segmentation, this issue is particularly 
pronounced due to the typically low contrast 
between the polyps and the background, as 
shown in Figure 6. 

The iterative semantic embedding unit 
progressively embeds higher-level semantic 
information into low-level features through 
multiple iterations. The design of the iterative 
semantic embedding module contains two key 
components: the semantic embedding unit and 
the iteration process. To embed richer semantics 
into low-level features, this is achieved by 
stacking multiple semantic embedding units.  

The semantic embedding functionality in this 
work is achieved through the Efficient Global 
Context (EGC) [37], whose structure is shown in 
Figure 7. Feature maps from adjacent layers are 
fed into the semantic embedding unit as input 
for the next round of iteration. Through 
multiple rounds of iteration, the model can 
gradually embed richer and more abstract 
semantic information into the low-level feature 
maps. The design of the semantic embedding 
module helps the model better understand the 
input data and provides more powerful and 
accurate semantic representations across 
various tasks.  

As shown in Figure 8, the semantic embedding 
unit embeds adjacent high-level semantic 
information into low-level feature maps in an 
iterative manner. More specifically, in order to 
enrich low-level feature maps with 
comprehensive semantic information, the 
semantic embedding module uses the low-level 
feature map C H W

iX R  from the layer indexed 
by i and the higher-level feature map  
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layer indexed by i+1 as inputs. By passing through the 
EGC semantic embedding unit, these feature maps 
will continue to the subsequent iteration phase. The 
iteration can be performed repeatedly based on task 
demands, continuously infusing richer contextual 
meanings into the feature representations. The de-
sign of the entire iterative semantic embedding unit 
aims to enhance the semantic representation capa-
bility of low-level features through successive layers 
of feature fusion and semantic enhancement. In this 
way, the model reinforces the edges and borders of 
the targeted areas while simultaneously clarifying 
many vague image structures and backgrounds.
To improve the model’s performance and general-
ization ability on complex tasks, a supervisory signal 
mechanism is introduced at different levels of the Se-
mantic Embedding Module. After embedding seman-
tic information into the low-level features, the feature 
maps F11, F12 and F13 respectively generate prediction 
maps Predict1, Predict2, and Predict3. The final predic-
tion map is generated based on the aforementioned 
prediction maps, as shown in equation below:
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which calculates the difference between the 
predicted segmentation result Predict and the 
ground truth GroundTruth, as shown in 
Equation (8): 
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BCE  represent the weighted IoU 
loss and the weighted BCE loss, respectively. In 
polyp segmentation tasks, there is often an 
imbalance between the number of samples for 
normal tissue and polyp tissue. By combining 
these two loss functions, weighted IoU loss and 
weighted BCE loss, different weights are 
assigned to each sample based on the 
importance of the classes, allowing the model to 
focus more on the target regions. Lower 
weights are assigned to normal tissue samples, 
while higher weights are allocated to pixels in 
critical areas, thereby enhancing the model’s 
attention to the target regions. This weight 
allocation strategy helps improve the 

performance and accuracy of the segmentation 
model in polyp segmentation tasks. 
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conducted on datasets from multiple centers, 
including CVC-ColonDB (which contains 380 
images), ETIS (which has 196 images), and 
EndoScene (comprising 60 images). Given that 
these datasets stem from different medical 
centers, the model had not been exposed to 
them during training. By testing these unseen 
datasets, the model’s generalization and 
robustness were effectively evaluated, 
showcasing its performance across different 
contexts. 

4.2 Experimental Setup and Evaluation 
Metrics 
The experiments carried out in this research 
were based on the Ubuntu 20.04 platform and 
employed PyTorch 2.0.0. To boost computing 
performance, a setup including an RTX 4090 
GPU with 24GB of video memory was 
arranged. In terms of optimization, the AdamW 
optimizer was chosen, with both the learning 
rate and the weight decay factor set at 1 × 10 4. 
As for the learning rate scheduling, a 
CosineAnnealingLR scheduler was 
implemented to gradually lower the learning 
rate down to as low as 1×10 6. Throughout the 
experimentation, a batch size of 12 was used, 
and the training lasted through 50 epochs. 
Considering the diversity of image sizes within 
the dataset in practical applications, all input 
images are uniformly resized to 352 × 352 
pixels. However, to avoid potential information 
loss caused by single-scale processing, a multi-
scale training strategy is implemented during 
network training. Specifically, the input images 
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CosineAnnealingLR scheduler was 
implemented to gradually lower the learning 
rate down to as low as 1×10 6. Throughout the 
experimentation, a batch size of 12 was used, 
and the training lasted through 50 epochs. 
Considering the diversity of image sizes within 
the dataset in practical applications, all input 
images are uniformly resized to 352 × 352 
pixels. However, to avoid potential information 
loss caused by single-scale processing, a multi-
scale training strategy is implemented during 
network training. Specifically, the input images 

 represent the weighted IoU loss and 
the weighted BCE loss, respectively. In polyp segmen-
tation tasks, there is often an imbalance between the 
number of samples for normal tissue and polyp tissue. 
By combining these two loss functions, weighted IoU 
loss and weighted BCE loss, different weights are as-
signed to each sample based on the importance of the 
classes, allowing the model to focus more on the target 
regions. Lower weights are assigned to normal tissue 
samples, while higher weights are allocated to pixels 

in critical areas, thereby enhancing the model’s atten-
tion to the target regions. This weight allocation strat-
egy helps improve the performance and accuracy of 
the segmentation model in polyp segmentation tasks.

4.Experimental Results and Analysis

4.1 Dataset
To validate and evaluate the network’s effectiveness 
and generalization capacity, this work uses five fre-
quently adopted public datasets: Kvasir-SEG [13], 
CVC-ClinicDB [2], CVC-ColonDB [27], ETIS [24], 
and EndoScene [32]. The Kvasir-SEG dataset fea-
tures 1,000 polyp images, and the ClinicDB dataset 
includes 612 images. Randomly, 900 and 550 images 
were selected from Kvasir-SEG and CVC-ClinicDB 
for the training set, respectively, while the remaining 
100 and 62 images were used for the test set. To eval-
uate the model’s generalization capabilities, tests 
were conducted on datasets from multiple centers, 
including CVC-ColonDB (which contains 380 im-
ages), ETIS (which has 196 images), and EndoScene 
(comprising 60 images). Given that these datasets 
stem from different medical centers, the model had 
not been exposed to them during training. By testing 
these unseen datasets, the model’s generalization 
and robustness were effectively evaluated, showcas-
ing its performance across different contexts.

4.2 Experimental Setup and Evaluation 
Metrics
The experiments carried out in this research were 
based on the Ubuntu 20.04 platform and employed 
PyTorch 2.0.0. To boost computing performance, 
a setup including an RTX 4090 GPU with 24GB of 
video memory was arranged. In terms of optimiza-
tion, the AdamW optimizer was chosen, with both 
the learning rate and the weight decay factor set at 
1×10−4. As for the learning rate scheduling, a Cosin-
eAnnealingLR scheduler was implemented to grad-
ually lower the learning rate down to as low as 1×10−6. 
Throughout the experimentation, a batch size of 12 
was used, and the training lasted through 50 epochs. 
Considering the diversity of image sizes within the 
dataset in practical applications, all input images 
are uniformly resized to 352×352 pixels. However, 
to avoid potential information loss caused by sin-
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gle-scale processing, a multi-scale training strategy 
is implemented during network training. Specifi-
cally, the input images are scaled using scale factors 
of [0.75, 1, 1.25]. This approach helps alleviate the 
impact of variations in polyp sizes across different 
datasets, enhances the model's ability to recognize 
polyps at various scales, and improves the overall 
performance and robustness of the model.
Six widely used evaluation metrics were employed: 
mDice, mIoU, Fβ

w, Sα, mEξ and MAE. Among them, high-
er values of mDice, mIoU, Fβ

w, Sα and mEξ indicate bet-
ter model performance, while MAE is the opposite. 
mDice and mIoU are common similarity metrics for 
evaluating segmentation models. They assess the 
consistency between predicted segmentation results 
and ground truth segmentation results at the region 
level, primarily focusing on the internal consistency 
of the segmented objects. Fβ

w takes into account both 
recall and precision, eliminating the equal consider-
ation of each pixel in traditional metrics.  Sα empha-
sizes the structural similarity of the target foreground 
at the region and object levels. mEξ is used to evaluate 
segmentation results at the pixel and image levels. 
MAE is a metric for per-pixel comparison, represent-
ing the average absolute error between predicted val-
ues and ground truth values. In the evaluation of seg-
mentation models, MAE is used to measure the degree 

of difference between predicted segmentation results 
and ground truth segmentation results.

4.3 Qualitative Analysis of Model 
Performance
Taking the segmentation results of the algorithms 
on the Kvasir-SEG dataset as an example, the figure 
is organized as follows (see Figure 9): the first col-
umn displays the input images; columns two to six 
showcase the segmentation outcomes of other algo-
rithms; the seventh column presents the segmenta-
tion results of the proposed network in this paper; 
and the eighth column, labeled GT (Ground Truth), 
represents the manually annotated ground-truth 
maps. This arrangement facilitates a direct visual 
comparison between the proposed method and com-
peting algorithms against the reference standard.

4.4 Quantitative Analysis of Model 
Performance
The experiments validated BiPolypNet using the Kva-
sir-SEG and ClinicDB datasets, with the results shown 
in Tables 1 and 2. To evaluate the segmentation perfor-
mance of BiPolypNet, widely adopted methods such as 
U-Net [22], PraNet [8], Polyp-PVT [6], and META-Un-
et [36] were also included in the experiments. To ensure 
fairness, these architectures were implemented based 

Figure 9 
Segmentation on the Kvasir-SEG Dataset.
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Table 1  
Comparison of the models on Kvasir-SEG dataset. 

Model mDice  mIoU  wF  S  mE  MAE  

U-Net 0.820 0.735 0.762 0.860 0.890 0.057 

PraNet 0.900 0.843 0.888 0.911 0.947 0.026 

SANet 0.896 0.837 0.880 0.916 0.945 0.029 

Polyp-PVT 0.920 0.873 0.912 0.927 0.969 0.019 

META-Unet 0.878 0.818 0.866 0.900 0.924 0.037 

BiPolypNet 0.922 0.874 0.913 0.934 0.961 0.022 

 
Table 2  
Comparison of the models on ClinicDB dataset. 

Model mDice  mIoU  wF  S  mE  MAE  

U-Net 0.832 0.757 0.807 0.890 0.913 0.027 

PraNet 0.899 0.849 0.898 0.926 0.957 0.015 

SANet 0.902 0.849 0.894 0.936 0.961 0.011 

Polyp-PVT 0.910 0.860 0.904 0.939 0.965 0.008 

META-Unet 0.906 0.854 0.900 0.934 0.964 0.010 

BiPolypNet 0.928 0.880 0.927 0.948 0.977 0.013 
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on the published code and trained under the same con-
ditions. The weights from the model that achieved the 
best performance on the validation set were recorded 
for evaluation, with the quantitative results displayed 
in the tables below. The best performance is highlight-
ed in bold, while the second-best performance is un-
derlined, allowing readers to quickly discern the rela-
tive strengths of each algorithm.
From the data in Tables 1-2, it can be observed that 
on the Kvasir-SEG dataset, four metrics (mDice, 

mIoU, Fβ
w, Sα) surpassed the best-performing mod-

els in comparison, while evaluation metrics mEξ and  
MAE achieved second-best performance.
On the ClinicDB dataset, the BiPolypNet outper-
formed the second-best algorithms by 1.8%, 0.2%, 
2.3%, 0.9%, and 1.1% in the metrics of mDice, mIoU, 
Fβ

w, Sα, and mEξ, respectively. This demonstrates that 
BiPolypNet exhibits exceptional learning capabili-
ties and significant advantages in addressing polyp 
image segmentation tasks.

4.5 Comparison and Analysis of 
Generalization Performance
Since this paper uses Kvasir-SEG and ClinicDB as the 
training sets, generalization performance tests are con-
ducted on the CVC-ColonDB, ETIS, and EndoScene 
datasets. Through the analysis of Tables 3-5, it can be 
observed that compared to existing methods, the pro-
posed BiPolypNet exhibits weaker generalization per-
formance on multi-center datasets from heterogeneous 
domains. According to our analysis, this issue is pri-
marily attributed to data domain shift. The Kvasir-SEG 
and ClinicDB datasets used for training differ signifi-

Model mDice mIoU Fβ
w Sα mEξ MAE

U-Net 0.820 0.735 0.762 0.860 0.890 0.057

PraNet 0.900 0.843 0.888 0.911 0.947 0.026

SANet 0.896 0.837 0.880 0.916 0.945 0.029

Polyp-PVT 0.920 0.873 0.912 0.927 0.969 0.019

META-Unet 0.878 0.818 0.866 0.900 0.924 0.037

BiPolypNet 0.922 0.874 0.913 0.934 0.961 0.022

Model mDice mIoU Fβ
w Sα mEξ MAE

U-Net 0.832 0.757 0.807 0.890 0.913 0.027

PraNet 0.899 0.849 0.898 0.926 0.957 0.015

SANet 0.902 0.849 0.894 0.936 0.961 0.011

Polyp-PVT 0.910 0.860 0.904 0.939 0.965 0.008

META-Unet 0.906 0.854 0.900 0.934 0.964 0.010

BiPolypNet 0.928 0.880 0.927 0.948 0.977 0.013

Table 1 
Comparison of the models on Kvasir-SEG dataset.

Table 2 
Comparison of the models on ClinicDB dataset.

cantly from the CVC-ColonDB, ETIS, and EndoScene 
datasets used for testing in terms of image resolution, 
lighting conditions, annotation methods, and lesion 
appearance, leading to performance degradation when 
the model encounters data from new domains.
Furthermore, the architectural design of BiPolypNet 
tends to learn feature representations specific to the 
training data, lacking robust modeling of cross-do-
main variations, which may also exacerbate the 
problem. To alleviate this phenomenon, future work 
could consider incorporating domain adaptation 
strategies or enhancing data diversity.
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Table 3  
Comparison of the models on CVC-ColonDB dataset.

Model mDice mIoU Fβ
w Sα mEξ MAE

U-Net 0.629 0.535 0.581 0.766 0.797 0.057

PraNet 0.755 0.674 0.736 0.837 0.876 0.037

SANet 0.774 0.692 0.754 0.857 0.884 0.034

Polyp-PVT 0.806 0.727 0.786 0.865 0.906 0.031

META-Unet 0.725 0.641 0.708 0.822 0.854 0.039

BiPolypNet 0.781 0.701 0.759 0.856 0.893 0.036

Table 4 
Comparison of the models on ETIS dataset.

Model mDice mIoU Fβ
w Sα mEξ MAE

U-Net 0.390 0.320 0.319 0.657 0.655 0.059

PraNet 0.732 0.653 0.695 0.840 0.884 0.014

SANet 0.715 0.637 0.673 0.833 0.861 0.028

Polyp-PVT 0.798 0.716 0.754 0.881 0.906 0.016

META-Unet 0.726 0.645 0.688 0.841 0.864 0.020

BiPolypNet 0.781 0.701 0.736 0.876 0.893 0.017

Table 5  
Comparison of the models on EndoScene dataset.

Model mDice mIoU Fβ
w Sα mEξ MAE

U-Net 0.757 0.672 0.708 0.855 0.897 0.017

PraNet 0.874 0.803 0.847 0.922 0.948 0.008

SANet 0.889 0.819 0.866 0.934 0.963 0.007

Polyp-PVT 0.887 0.818 0.863 0.931 0.956 0.008

META-Unet 0.887 0.813 0.860 0.930 0.962 0.008

BiPolypNet 0.880 0.806 0.850 0.929 0.955 0.009

Table 6 
Comparison results of Ablation Study.

Model
Kvasir-SEG CVC-ColonDB

mDice mIoU mDice mIoU

BiPolypNet 0.926 0.875 0.818 0.734

BiPolypNet(w/o Bi) 0.916 0.865 0.787 0.705

BiPolypNet(w/oFAU) 0.904 0.848 0.806 0.727

BiPolypNet(w/oISEU) 0.917 0.863 0.795 0.709
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4.6 Analysis of Ablation Experiment Results
To further validate the effectiveness of the method pro-
posed in this paper, ablation experiments were conduct-
ed using the Kvasir-SEG and CVC-ColonDB datasets.
As shown in Table 6, in these experiments, the training, 
testing, and hyperparameter settings were the same as 
those mentioned above, with BiPolypNet serving as the 
baseline. For these experiments, the configurations for 
training and testing were identical to those described 
earlier, and the hyperparameters were set in a similar 
manner. BiPolypNet served as the baseline model. To 
evaluate the impact of components on model perfor-
mance, they were gradually removed or replaced. To 
analyze the effectiveness of the dual encoder, feature 
alignment unit, and iterative semantic embedding unit, 
ResNet, FAU, and ISEU were respectively removed 
from BiPolypNet, denoted as BiPolypNet (w/o Bi), Bi-
PolypNet (w/o FAU), and BiPolypNet (w/o ISEU). The 
experimental results are shown in Table 6. The results 
indicate that the removal of the ResNet branch, FAU, 
and ISEU from BiPolypNet led to varying degrees of 
performance decline in the model.

5.Conclusion
This paper proposes an innovative framework for polyp 
segmentation named BiPolypNet. The network inte-

grates ResNet and PVT backbone as encoders to extract 
multi-level feature maps. These feature maps are pro-
cessed by feature alignment units to generate aligned 
feature maps, which are then fed into our designed pol-
yp decoding head to obtain precise segmentation pre-
dictions. The BiPolypNet architecture fully leverages 
CNN’s inductive bias for modeling spatial correlations 
and the powerful capability of Transformers in captur-
ing global relationships. Compared with existing meth-
ods widely used for colorectal polyp segmentation, Bi-
PolypNet demonstrates superior performance across 
multiple evaluation metrics. This achievement not only 
validates the effectiveness of our approach but also high-
lights the potential of combining CNN and Transformer 
architectures in medical image segmentation tasks. 
Future studies could further optimize the structure 
of BiPolypNet, explore more efficient feature align-
ment mechanisms, and investigate its applications 
in other medical image analysis tasks. Through con-
tinuous innovation and improvement, we believe 
that methods based on the combination of CNN and 
Transformer will play a significant role in advancing 
medical image processing technologies.
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