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The most expected approach to Visual Question Answering tasks is to observe the scene and answer questions 
with human-like reasoning. Early multimodal fusion schemes focused more on the final result rather than the 
intermediate reasoning process. In contrast, the step-by-step reasoning method based on task decomposition 
is more capable of meeting the visual reasoning requirements in the task. Nevertheless, the real-world perfor-
mance of most current models based on step-by-step reasoning is inadequate due to the absence of required 
reasoning information and the incapability to generate appropriate solution approaches when confronting real 
scenes and natural language questions presented by humans. A VQA model based on scene information ex-
traction network (SIEN-VQA) is proposed to address the above issues. SIEN-VQA utilizes graph structured 
data and Task Decomposition Network to generate reasoning steps, extract relevant image scene information 
based on the reasoning steps for reasoning execution, and enhances the model's reasoning execution ability 
in natural language and real scenes. We conducted experimental validation on the CLEVR-Human and GQA 
datasets, and the validation results showed that our model is able to decompose and conquer problems accord-
ing to human-like logic, and extract effective scene information that is relevant to the task, which improves the 
accuracy of answering questions compared to the comparative model.
KEYWORDS: Visual question answering, scene information, visual reasoning, step-by-step reasoning, 
SIEN-VQA

1. Introduction
Visual Question Answering (VQA) is a comprehen-
sive machine vision task that has received widespread 
attention, the origin of question answering (QA) task 
can be traced back to the Turing test, the VQA task 

was first proposed in 2014 and has since then attract-
ed a lot of academic attention, especially after the rel-
evant dataset was proposed (DAQUAR, COCO-QA, 
VQA v2.0, etc.), in contrast with QA tasks, the com-
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plex scene analysis has been added in VQA tasks due 
to the necessity of obtaining and processing pertinent 
information from visual scenes as well as understand-
ing natural language [1], [19]. Thus, VQA tasks involve 
natural language understanding, scene understand-
ing, and visual reasoning, this task can be applied to 
various intelligent assistance fields, lies at the core of 
developing embodied intelligence in robotic systems 
as well [5], [26]. Especially when combined with ro-
bots, by bridging multimodal comprehension and re-
al-world interaction capabilities, VQA enables robots 
to dynamically adapt to environmental contexts and 
perform complex tasks—a fundamental requirement 
for achieving true embodied intelligence. The early 
solution for VQA tasks is generally multimodal fea-
ture fusion, which involves encoding and fusing nat-
ural language and image features, feeding the fused 
features into neural network for training, and select-
ing answers based on probability [34]. Considering the 
large amount of irrelevant information in the fusion 
process, scholars have adopted attention mechanisms 
to limit it, thereby improving the accuracy of answer 
selection. As a whole, the multimodal fusion scheme 
focuses more on the results of answering questions 
and neglects the process of visual reasoning [10], [51]. 
Visual reasoning aims to enable machines not only to 
recognize objects in images but also to understand log-
ical relationships within scenes, infer implicit infor-
mation, and make complex decisions [2]. Intermediate 
reasoning processes are critical to the logical integri-
ty of visual reasoning. On the one hand, intermediate 
steps make the decision-making path visible, enhanc-
ing the interpretability of the model for human under-
standing [39]. On the other hand, models that empha-
size reasoning processes are better equipped to handle 
more sophisticated reasoning tasks. In practical ap-
plications, explicitly defining intermediate reasoning 
steps facilitates fault diagnosis and error correction, 
ensuring robustness and reliability in real-world sce-
narios. Andreas et al. [3], [4] proposed a modular net-
work solution based on task decomposition, which 
essentially decomposes the overall natural language 
problem into a combination of multiple subtasks. By 
completing the subtasks, the overall task is completed 
to obtain the final answer. This approach places more 
emphasis on the reasoning process and has attracted 
the attention of most scholars since it was proposed. 
Especially when Stanford researchers proposed the 
CLEVR dataset, a large number of scholars began to 

focus on the visual reasoning process involved in VQA. 
In 2022, Google introduced the Chain-of-Thought 
(CoT) methodology for question-answering tasks, 
the core innovation of CoT lies in prompting large 
language models (LLMs) to generate not just final an-
swers but also the explicit reasoning pathways leading 
to those conclusions [45]. This paradigm deliberately 
mimics human cognitive processes by explicitly sim-
ulating the sequential reasoning patterns observed in 
human problem-solving. The demonstrated effective-
ness of CoT in improving answer accuracy reinforces 
the premise that making intermediate reasoning steps 
explicit enhances computational reasoning capabili-
ties, particularly when handling complex multi-step 
problems that require systematic information synthe-
sis, which aligning closely with the fundamental prin-
ciples of task-decomposition-based Visual Question 
Answering (VQA) approaches, both bridge perception 
and cognition through structured intermediate repre-
sentations (such as natural language steps or symbol-
ic logic), avoiding the "black box decision-making" of 
end-to-end models.
At present, three elements can be summarized from 
the VQA scheme based on task decomposition, in-
cluding relevant clue acquisition, reasoning step gen-
eration, and reasoning step execution. Each element 
will affect the final reasoning result. Currently, visual 
question answering models based on task decomposi-
tion mainly use scene graphs, sequence-to-sequence 
neural networks, and a set of meta operation func-
tions to complete the three elements, and verify them 
on a synthetic dataset. Therefore, when facing with 
real scenes and natural language problems raised by 
humans, problems often arise where relevant clues 
are not fully obtained and not adaptable to the flexi-
bility of natural language to generate correct reason-
ing steps, which affects the execution of reasoning. In 
this regard, this work proposes a step-by-step neu-
ral-symbolic reasoning method based on scene infor-
mation extraction for VQA tasks, which improves the 
reasoning execution ability by improving the accura-
cy of reasoning step generation and the completeness 
of task related scene information. We observed that 
the visual cues required to address a specific prob-
lem are often implicitly indicated within the question 
prompt. To leverage this, we analyze the question and 
utilize its inherent constraints to delineate the scope 
of relevant visual information, thereby minimizing 
interference from redundant data—a methodology we 
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define as task-guided visual information extraction.
Specifically, we have done the following work: We 
constructed a Task Decomposition Network for rea-
soning steps generation, using a graph-to-sequence 
structured network, and trained with graph struc-
tured data to improve the network's adaptability 
to natural languages, in addition, we constructed a 
Scene Information Extraction Network for scene 
information extraction, and using the generated rea-
soning steps as a kind of CoT-like prompt to obtain 
the most relevant reasoning information to the task 
and thus improve the reasoning execution ability.

2. Related Work
Prior to the deep learning revolution, visual reasoning 
predominantly relied on handcrafted feature descrip-
tors (SIFT, HOG, SURF) to encode low-level visual 
patterns—color histograms, edge orientations, and 
texture gradients. These methods enabled localized 
analysis of scene elements but struggled to capture 
semantic relationships or contextual dynamics. The 
advent of CNN-based architectures marked a para-
digm shift, achieving perceptual-level visual infer-
ence through foundational tasks like image classifica-
tion (object categorization), bounding box detection 
(spatial localization), pixel-wise segmentation (fine-
grained scene parsing). While effective in extracting 
atomic features (object types, geometric attributes, 
motion trajectories), these models operated as isolat-
ed perception engines—they lacked mechanisms for 
cognitive synthesis. True scene understanding neces-
sitates transcending perception to model including 
inter-object relations (spatial, functional, or causal 
dependencies), event dynamics (temporal causality 
between actions), contextual grounding (integrating 
domain-specific commonsense). The emergence of 
Visual Question Answering (VQA) introduced mul-
timodal paradigms, merging language queries with 
visual inputs to drive systematic reasoning. This 
transition from unimodal to cross-modal process-
ing addressed critical limitations. The VQA task was 
initially proposed by Malinowski et al. [32] as a new 
task to gauge the level of understanding of the scene. 
Addressing VQA tasks necessitates the featurization 
and the joint comprehension for both image and text, 
consequently, there have been extensive research on 
these aspects, leading to the development of VQA sys-

tems having diverse algorithms. In this section, we 
will introduce these VQA methods into two catego-
ries in relation to the answer generation procedure.

2.1. One-stage VQA Method based on End-to-
End Model

After proposing the VQA task, Malinowski et al. [33] 
approached it as a problem of solving for the posteri-
or probability P (A|Q, S) of answer A when presented 
with question Q and scene segmentation S. They sub-
sequently proposed the Neural-Image-QA model [33], 
which analyzes images using convolutional neural net-
works (CNN) and inputs the question together with vi-
sual representations into the Long Short-Term Memo-
ry (LSTM) network. Similarly, Ren et al. [37] proposed 
the VIS+LSTM model, they employed a linear or affine 
transformation to align the dimension between im-
age feature vectors and word embeddings, then treat-
ed images as one word of the question, together with 
question text handed over to the LSTM network for 
processing. Fukui et al. [12] applied Multimodal Com-
pact Bilinear pools the extracted multimodal feature 
vectors, and obtained answers by considering it as 
multi-class classification problem with 3000 possible 
categories. Ben-younes et al. [6] used a fully convolu-
tional neural network to describe the image content, 
and a GRU recurrent network for the question, then 
fusing them via Tucker decomposition. These VQA 
system directly generates answers through an end-to-
end network. The entire process can be summarized as 
follows: extracting feature vector from the image and 
the question, and send them into the end-to-end net-
work to fuse the two modalities to generate the answer. 
The key to this one-stage generation method lies in 
how to fuse multimodal features to achieve joint com-
prehension, hence a large number of studies are car-
ried out with this topic as the center. The commonality 
of all studies lies in extracting corresponding features 
from text and images through neural networks such as 
CNN and LSTM before fusion, and mapping the fea-
tures to a specified dimension [53], [23]. Typical mul-
timodal feature fusion methods mainly combine visual 
features and textual features through concatenation 
[18], [49], [50], element-wise addition [14], [30] and 
element-wise multiplication [44], [52]. The research 
found that in the process of feature fusion, both visual 
features and text features have elements that are not 
related to answering questions.
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Considering this, in order to further improve the ac-
curacy of answering questions, researchers have opti-
mized the VQA model by using attention mechanism 
to increase the importance of useful information in vi-
sual and text information. For example, Zhu et al. [55] 
combined attention methods with LSTM network. At 
the encoding stage, taking the image as the fi rst input 
token, taking image feature together with text fea-
ture as input then outputting the attention map for 
each step, and multiplying the attention map with vi-
sual features to generate new visual features. Shih et 
al. [40] directly multiplied visual features with text 
features to obtain attention weights, and the size of 
weights represents the importance of the regions. The 
improvement eff ect of attention mechanism on multi-
modal fusion models lies in aligning image information 
with problem information. Therefore, more changes 
have been made to the attention mechanism aimed at 
improving the alignment eff ect. Lu et al. [31] utilized 
co-attention to jointly learn the attention of images 
and texts, proposed parallel co-attention and alter-
nating co-attention that diff er in the order in which 
image and question attention maps are generated. Gao 
et al. [13] proposed a dynamic fusion model with intra 
modal and inter modal attention. This method dy-
namically uses the inter modal learns the cross-modal 
interactions between the image regions and question 
words and uses intra modal to model word-to-word 
relations and region-to-region relations. Yu et al. [48] 
proposed a visual question answering system MLAN 

based on a multi-level attention network. The atten-
tion in this system includes semantic attention, attri-
bute attention, and visual attention. The model focus-
es on semantic attributes and image regions related 
to the problem, narrowing the semantic gap between 
vision and language. After the addition of attention 
mechanism, the accuracy of VQA models has indeed 
improved, but the overall process of answering ques-
tions in the model is still a black box model that is un-
clear and lacks interpretability. Scholars have begun 
to consider whether these VQA models rely on data 
bias in the process of answering questions, rather than 
actually reasoning. How to establish an eff ective and 
interpretable universal model has always been a hot 
academic research topic. Nowadays, vision-language 
pre-training models based on self-attention architec-
tures, such as ALBEF [28], InstructBLIP [9], etc. are 
becoming more popular and these multimodal fusion 
large models have achieved remarkable results in the 
VQA fi eld. Moreover, with the rise of ChatGPT, LLM 
has attracted widespread attention. These models 
were trained on a large amount of data through prompt 
learning and reinforcement learning from human 
feedback, some of vision-language models was devel-
oped based on LLM’s capacity of facilitating natural 
language communication that leverages their distinct 
and complementary capabilities, such as MiniGPT-4 
[54], Cola [7] etc. However, both LLM and multimodal 
fusion large models still have limitations in its visual 
reasoning ability especially when facing multi-step 
reasoning problems.

2.2. Multi-stage VQA Method based on Task 
Decomposition

We would prefer the machine to answer these com-
plex questions based on human logic. Andreas was 
inspired by the fact that humans divide questions 
into several steps when answering them, and seri-
alized the reasoning process of visual question an-
swering models. The NMN [3],[4] (Neural Module 
Networks) model constructed multiple sub-modules 
required for answering questions, such as "fi nd", 
"transform", "combine", "describe", "measure", etc. 
Afterwards, according to the structure of the prob-
lem, the combination of sub-modules is automat-
ically generated for collaborative learning. This 
method is signifi cantly diff erent from the one-stage 
method based on multimodal mode fusion, as shown 

Figure 1
One-stage VQA method (at the top) and Multi-stage
VQA method (at the bottom).

(a)

(b)
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in the Figure.1, it is a multi-stage method that begins 
by analyzing the reasoning steps of the question, and 
then combines image information to reach the final 
result step by step.
In 2016, Stanford and Facebook jointly released the 
CLEVR dataset [25], which is called the Composite 
Language and Elementary Visual Reasoning diagnos-
tic dataset, the dataset carefully controls the potential 
bias and tests a range of visual reasoning abilities, re-
search has shown that many VQA methods based on 
modal fusion exhibit a significant decrease in perfor-
mance on CLEVR dataset. In 2017, Johnson et al. [24] 
proposed a new modular visual reasoning method for 
the CLEVR dataset, they argue that to successfully per-
form complex reasoning tasks, it might be necessary to 
explicitly incorporate compositional reasoning in the 
model structure. Due to the simple scene of the data-
set, only need to pay attention on the reasoning itself. 
As a result, researches on this composite dataset and 
VQA method based on task decomposition have grown 
rapidly and mainly focuses on NMN family, such as Hu 
et al. [15], [17] proposed an end-to-end modular net-
work (N2NMN) that can directly predict the module 
combination and layout of a problem without the help 
of a parser. However, both NMN and N2NMN require 
strong supervised information to pretrain or supervise 
layout strategies to obtain correct module layout and 
maintain good performance. If these supervised sig-
nals are lost, the model will experience significant per-
formance degradation or inability to converge. Based 
on this, Hu et al. [16] proposed a Stack-NMN method 
that automatically guides the required sub-task de-
composition for combinatorial reasoning without re-
lying on strong supervised signals. At the same time, 
it can also ensure that the layout strategy of the mod-
ule is differentiable, allowing for optimization using 
gradient descent method. Yamada et al. [46] proposed 
Transformer Module Network (TMN), it is a kind of 
NMN based on compositions of Transformer modules, 
combining the strengths of Transformers and NMNs 
in order to improve the systematic generalization ca-
pabilities of learning machines. Yi et al. [47] proposed 
Neural-Symbolic VQA (NS-VQA), which is a typical 
model composed of scene parser, problem parser, and 
program executors, laying the foundation for later vi-
sual reasoning models, compared to NMN, NS-VQA 
mainly simplifies the execution of sub-tasks. Eiter et 
al. [11] presented a neuro-symbolic VQA pipeline for 
CLEVR, it relies on answer-set programming (ASP) to 

infer the right answer given the neural network out-
put and a confidence threshold. The necessary stages 
mainly include object detection, confidence thresh-
olds, ASP encoding, the distinguishing feature of the 
pipeline is fixing the threshold based on the mean and 
the standard deviation of prediction scores so that 
restricting non-determinism of object detection pre-
diction, meanwhile, ASP offers a simple yet expressive 
modelling language and efficient solver technology. In 
Table 1, we summarize the advantages and disadvan-
tages of one-stage and multi-stage VQA methods. As 
shown in the comparison, multi-stage VQA methods 
place greater emphasis on reasoning processes and 
demonstrate better adaptability to hierarchical prob-
lems. In contrast, one-stage VQA methods are more 
suitable for tasks requiring real-time responses or 
those with low dependency on intermediate reasoning 
steps. For complex reasoning tasks, multi-stage VQA 
methods exhibit significant advantages due to their 
structured approach.

For VQA, the key objective is to acquire the reasoning 
steps, namely sub-task decomposition, which is a char-
acteristic of task decomposition VQA system. The gen-
eration of reasoning steps is the prerequisite for every-
thing, followed by precise execution of reasoning steps 
to obtain the expected result. The current VQA system 
built on task decomposition predominantly directs its 
attention to the training and testing of synthetic data-
sets, wherein the scene content is simplified and lan-
guage templates are employed to produce structured 
text as questions. When faced with real scenes and hu-
man natural language, there is difficulty in generating 
correct reasoning steps as well as a lack of reasoning 
information to infer the correct answer to the problem. 

Table 1
Comparison of one-stage and multi-stage VQA methods.

VQA method Advantages Disadvantages

One-stage

Computational effi-
ciency, end-to-end 

optimization, reduced 
error propagation.

Potential over-
simplification of 

complex reasoning 
chains, limited 

interpretability.

multi-stage

Explicit modeling of 
intermediate logic, 

better error diagnosis, 
adaptability to hierar-

chical problems.

Higher computa-
tional cost, risk of 
error accumula-

tion across stages.
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In contrast to the other approaches, our work has the 
benefit of considering not only word semantic infor-
mation but also implicit structural information in the 
language, graph structured data is much better at rep-
resenting and utilizing the implicit structural infor-
mation than serialized data, thus the Graph2Seq Task 
Decomposition Network learned from graph data can 
better adapt to non-normalized natural languages 
compared to Seq2Seq networks, improve the accuracy 
of VQA tasks by improving the generation effect of rea-
soning steps. Furthermore, we employ the generated 
reasoning steps as prompts to guide the construction 
of scene graphs, thereby reducing redundant informa-
tion retrieval and enhancing task-specific informa-
tion relevance. This approach ultimately improves the 
overall accuracy of VQA tasks—a framework we term 
task-guided visual information extracting.

3. Method
Our SIEN-VQA model has three components: the Task 
Decomposition Network (TDN), the Scene Informa-
tion Extracting Network (SIEN) and a set of reasoning 
execution components, the entire model structure has 

shown in Figure 2. For the visual reasoning required 
in VQA tasks, it is necessary to clarify the goals and 
steps of the reasoning, obtain relevant visual clues, 
and through a series of tinny reasoning operations to 
get the final result. The task decomposition network 
parsing the entire reasoning task into multiple rea-
soning steps based on input text, the scene informa-
tion extracting network is used to extract the visual 
information required for reasoning, and the reasoning 
execution component are a set of composable program 
modules that address specific sub-tasks and have rea-
soning capabilities. The relevant framework and prin-
ciples will be further introduced in detail below.

3.1. Task Decomposition Network
In VQA tasks, the reasoning task is decomposed by 
parsing the reasoning steps from the natural language 
question and the graph structured data are employed 
to express natural language. Our data is more com-
prehensive than serialized data, as it contains syn-
tactic structure information and other information. 
Therefore, we construct dependency graphs for ques-
tion text inputs, and use GCN and LSTM to form an 
Encoder-Decoder network with Graph-to-Sequence 
structure to process graph structured data.

Figure 2 
SIEN-VQA model. The model contains three components: the Task Decomposition Network (TDN), the Scene 
Information Extracting Network (SIEN) and a set of reasoning execution components，which correspond to the three 
elements of generating inference steps, obtaining relevant clues, and executing inference steps, respectively.
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3.1. Task Decomposition Network 

In VQA tasks, the reasoning task is decomposed 
by parsing the reasoning steps from the natural 
language question and the graph structured data 
are employed to express natural language. Our 
data is more comprehensive than serialized data, 
as it contains syntactic structure information and 
other information. Therefore, we construct 
dependency graphs for question text inputs, and 
use GCN and LSTM to form an Encoder-Decoder 
network with Graph-to-Sequence structure to 
process graph structured data. 

Building an introduced graph refers to 
building the graph structure during 
preprocessing by leveraging existing 
relationship resolution tools or manually 
defined rules. Dependency graphs can 
provide prior structures to participate in 
parsing as introduced graphs. A dependency 
graph mainly describes the dependencies 
between different words in a given sentence, 
the dependency graph for the question "Are 
there any red balls behind the cube?", as 
parsed by Stanford NLP, is shown in Figure 
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Building an introduced graph refers to building the 
graph structure during preprocessing by leveraging 
existing relationship resolution tools or manually 
defined rules. Dependency graphs can provide prior 
structures to participate in parsing as introduced 
graphs. A dependency graph mainly describes the 
dependencies between different words in a given 
sentence, the dependency graph for the question 
"Are there any red balls behind the cube?", as parsed 
by Stanford NLP, is shown in Figure 3.
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As we can see, the dependency graph contains 
multiple edges representing dependencies 
between words. The entire dependency graph will 
be used as a heterogeneous introduced graph to 
train the task decomposition network. During this 
process, the edges carrying syntactic information 
will play an important role in the transmission and 
updating of messages. The process is as follows: 

Node and edge embedding: For the input graph 
data G = (V, E), where V is the set of nodes and E is 
the set of edges, computing the adjacency matrix A 
and degree matrix D, and embedding the nodes 
and edges: 
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embedded feature vector of the i-th node, eij 
represents the edge between node vi and node vj, e* 

ij 
represents the embedded feature vector of edge eij, 
WN and WE respectively represent the weight 
matrix for node and edge embedding. Then, the set 
of embedded node features is V* and the set of 
embedded edge features is E*. 

Encoding with GCN: Constructing a L-layer GCN 
with input graph feature data set Gf = {A, D, cat (V*, 
E*)}, where cat represents the concatenation 
operation, and propagating and updating node 
and edge information layer by layer: 

1l l l lQ Q W b                    (2) 

1 1
2 2D D A D ,                       (3) 

where Q(l) represents the feature information of 
the l-th GCN layer, W(l)and b(l) represent the 
weight matrix and bias matrix of the l-th GCN 
layer,  denotes the nonlinear activation function, 
and  is the Laplacian matrix. 

Decoding with LSTM: Obtaining the hidden 
state ht at current time t through the LSTM 
network on the decoder side. 

1 1,t t th LSTM h y ,                   (4) 

where ht-1 denotes the hidden state vector 
from the preceding timestep t-1, while yt-1 
represents the predicted output symbol 
generated at the prior temporal iteration. The 
attention weight  is calculated from ht  

exp L
i t A ih W q ,                  (5) 

where, WA is the attention weight matrix, q(L) 
i is the i-th feature vector in Q(L), and i is the 
attention value for the i-th feature vector. 

Calculating the context vector ct at time t 
based on the data feature Q(L) calculated 
from the last GCN layer of the encoder and  
: 

n L
t i ii

c q .                      (6) 

Finally, the context vector, together with the 
decoder output, is passed to a fully connected 
layer with softmax activation to obtain the 
distribution for the predicted token  

| , max ,t t t t tp y h c soft h c .            (7) 

The overall loss function is as follows: 

logN
cross t tt

l y p ,                  (8) 

where y t is the true label of the t-th token, 
and pt is the distribution for the t-th predicted 
token, N represents the length of the final 
symbol sequence output by the network. 

3.2. Scene Information Extracting Network 

SIEN-VQA treats the VQA task as a 
reasoning task and analyze the scene 
information based on the generated reasoning 
steps to obtain the reasoning results. The 
scene information includes entity categories, 
entity attributes, and relationships between 
entities. The completeness of the scene 
information directly affects whether the 
reasoning steps can be executed accurately. 
The ideal situation is to be able to extract the 
most pertinent details to the reasoning task 
from the image, disregarding any 
inconsequential information in the image. 
Earlier approaches regularly employed object 
detection-based techniques to analyze 
images, i. e., object detection was performed 
initially followed by the further detection of 
the relationships between objects. This 
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and pt is the distribution for the t-th predicted 
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symbol sequence output by the network. 
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SIEN-VQA treats the VQA task as a 
reasoning task and analyze the scene 
information based on the generated reasoning 
steps to obtain the reasoning results. The 
scene information includes entity categories, 
entity attributes, and relationships between 
entities. The completeness of the scene 
information directly affects whether the 
reasoning steps can be executed accurately. 
The ideal situation is to be able to extract the 
most pertinent details to the reasoning task 
from the image, disregarding any 
inconsequential information in the image. 
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detection-based techniques to analyze 
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where y't is the true label of the t-th token, and pt is the 
distribution for the t-th predicted token, N represents the 
length of the final symbol sequence output by the network.

3.2. Scene Information Extracting Network
SIEN-VQA treats the VQA task as a reasoning task and 
analyze the scene information based on the generated 
reasoning steps to obtain the reasoning results. The 
scene information includes entity categories, entity 
attributes, and relationships between entities. The 
completeness of the scene information directly affects 
whether the reasoning steps can be executed accurate-
ly. The ideal situation is to be able to extract the most 
pertinent details to the reasoning task from the image, 

disregarding any inconsequential information in the 
image. Earlier approaches regularly employed object 
detection-based techniques to analyze images, i. e., 
object detection was performed initially followed by 
the further detection of the relationships between ob-
jects. This purposeless parsing may result in too much 
irrelevant information or a lack of key information. To 
address this issue, we construct a Scene Information 
Extraction Network, as shown in Figure 4.
We add the generation step as a prompt to the scene 
parsing process, thereby limiting the detection process. 
The specific implementation method is as follows:
To generate a scene graph, we first obtain the image 
feature encoding Z and a set of entity bounding boxes 
(n) BI from the image I. Then, Z and BI ​ are fed into an 
image entaity decoder to obtain the subject encodings 
Es​, object encodings Eo​, inbound edge encodings Ein, 
and outbound edge encodings Eout.

Figure 4 
Scene Information Extracting Network.
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By self-attention captures the context between triplets 
and the dependencies between all subjects and objects: 
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where Qs and Qo respectively represent subject and 
object features, WQ, WK, WV are learnable weight pa-
rameters, and d is a scaling factor.
Next, within the visual attention module and the en-
tity attention module, we construct node-centric fea-
ture maps and edge-centric feature maps, respectively, 
enabling information propagation and feature fusion 
across these two types of graph-structured networks.
Formally, given the current hidden states of nodes 
and edges, denoted as Hi and H(i,j), we define the mes-
sage for updating the i-th node as Mi, which is comput-
ed as a function of its own hidden state Hi, the hidden 
states of its outgoing edges H(i,j), and the hidden states 
of its incoming edges H(j,i). Similarly, the message for 
updating the edge from the i-th node to the j-th node 
is denoted as M(i,j), computed as a function of its own 
hidden state H(i,j), and the hidden states of its subject 
node Hi and object node Hj. More specifically, Mi and 
M(i,j) are calculated using the following two adaptive 
weighted message pooling functions:
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where[·] represents the cascade of vectors, w1, w2 and 
v1, v2 are learnable parameters. Next, the features are 
enhanced through task queries to restrict the content 
of the scene graph. Qt is a task query used to calculate 
the attention value of task semantics and the objects 
with relationships in the scene graph:
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First, calculate the attention value between the object 
and the task query:
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Then calculate the attention value between entity re-
lationships and task queries:
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where αi, α(i,j) are entity attention weight and relation-
ship attention weight, respectively. wi

q, wq
(i,j), wi

k, wk
(i,j), 

wi
v, wv

(i,j) are learnable weight parameters. After multiple 
iterations, the final values of Qs, Qo, Qin, Qout output are 
used to predict object categories and relationship types.

3.3. Compositional Reasoning Execution 
We have predefined the basic sub-functional mod-
ules, upon acquiring the relevant visual cues and es-
tablishing precise task decomposition, the symbolic 
reasoning framework systematically integrates these 
inputs through a structured process of combinatorial 
logic. This methodology employs a phased execution 
strategy, where specialized sub-functional modules 
are orchestrated to perform sequential sub-opera-
tions, ultimately synthesizing the intermediate re-
sults into a conclusive solution.

4. Experiment
To evaluate the performance of the VQA model based 
on the Scene Information Extraction Network (SIEN-
VQA) proposed in this work, experiments were per-
formed on both GQA and CLEVR-Human datasets 
and the performance of the VQA model was compared 
to other VQA models, an introduction to the experi-
mental setup and result analysis is provided below.

4.1. Datasets and Setting
A. Dataset Selection
CLEVR-Humans: The dataset was written by work-
ers on Amazon Mechanical Turk according to CLEVR 
images, different from CLEVR dataset, CLEVR-Hu-
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mans dataset has 32164 natural language ques-
tion-answer pairs which exhibit more linguistic va-
riety than synthetic CLEVR questions, and hence be 
more challenging.

B. Experimental Environment Setup
The model was trained on one NVIDIA RTX A4000 
GPU in a Linux Ubuntu 18.04 experimental environ-
ment, Python 3.8, CUDA 11.0, PyTorch 1.7.1. 

C. Evaluation Metrics
RSA: Reasoning step accuracy, measuring whether 
each intermediate reasoning step is correct.
Accuracy: Accuracy of answering questions, this 
metric measuring whether the final answer of the 
model output is correct or not, directly reflects the 
task completion effect.
BLEU: In addition to accuracy metrics, we also used 
the BLEU metric to evaluate the performance of our 
models. BLEU measures the similarity between two se-
quences, and it can be divided into four common indica-
tors: BLEU-1, BLEU-2, BLEU-3, and BLEU-4 based on 
n-gram, where n represents the number of consecutive 
elements in the sequence. We divided the generated 
sequence and standard sequence into multiple sub-se-
quence sets according to n-gram, and then investigated 
how many corresponding subsequences in these two 
sets. We used BLEU to evaluate the models' ability to 
select reasoning modules. BLEU is calculated as follows:
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Table 2 

Experiment result of reasoning step generation on GQA dataset. 
Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 RSA 

NS-VQA 0.984 0.971 0.959 0.946 80.2 

SIEN-VQA 0.990 0.979 0.969 0.958 84.0 

GQA [21]: The dataset is designed for real-world 
visual reasoning and combinatorial question 
answering, drawing inspiration from the CLEVR 
task and comprising 113000 images from COCO 
and Flickr and 22 million distinct questions, each 
image is annotated with a dense Scene Graph, 
representing the objects, attributes and relations it 
contains. Each question is associated with a 
functional program which lists the series of 
reasoning steps needed to be performed to arrive 
at the answer. Each answer is augmented with 
both textual and visual justifications, pointing to 
the relevant region within the image. GQA 
questions tend to involve more elements from the 
image compared to VQA questions, and are longer 
and more compositional as well. Conversely, VQA 
questions tend to be a bit more ambiguous and 
subjective, at times with no clear and conclusive 
answer. GQA provides more questions for each 
image and thus covers it more thoroughly than 
VQA. 

The GQA dataset captures real-world visual 
complexity through semantically diverse scenes, 
whereas CLEVR-Human provides a controlled 
synthetic environment with explicitly annotated 
structural dependencies. Specifically, CLEVR-
Human focuses on evaluating systematic 
structural reasoning capabilities through 
predefined compositional rules, while GQA 
emphasizes testing models' compositional 
generalization across open-domain visual-
linguistic interactions. This dual evaluation 
paradigm leveraging both real-world and synthetic 
benchmarks effectively mitigates overfitting risks 
to domain-specific biases while enhancing cross-
domain generalizability verification. Such 
complementary validation proves critical for 
developing robust visual reasoning systems 
capable of handling both structured logic 
operations and open-world semantic variations. 

B. Experimental Environment Setup 

The model was trained on one NVIDIA RTX A4000 
GPU in a Linux Ubuntu 18.04 experimental 

environment, Python 3.8 CUDA 11.0, 
PyTorch 1.7.1.  

C. Evaluation Metrics 
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whether each intermediate reasoning step is 
correct. 

Accuracy: Accuracy of answering questions, 
this metric measuring whether the final 
answer of the model output is correct or not, 
directly reflects the task completion effect. 

BLEU: In addition to accuracy metrics, we 
also used the BLEU metric to evaluate the 
performance of our models. BLEU measures 
the similarity between two sequences, and it 
can be divided into four common indicators: 
BLEU-1, BLEU-2, BLEU-3, and BLEU-4 based 
on n-gram, where n represents the number of 
consecutive elements in the sequence. We 
divided the generated sequence and standard 
sequence into multiple sub-sequence sets 
according to n-gram, and then investigated 
how many corresponding subsequences in 
these two sets. We used BLEU to evaluate the 
models' ability to select reasoning modules. 
BLEU is calculated as follows: 
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BLEU - N BP exp log

N
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where pn is the n-gram precision, n=1/N, and 
BP (brevity penalty) penalizes short answers. 

Standard metrics: GQA introduces a 
comprehensive evaluation framework that 
extends beyond conventional accuracy 
metrics, incorporating novel diagnostic 
measures to assess cross-context consistency, 
semantic validity, and response plausibility. 
This multi-dimensional metric suite enables 
granular behavioral analysis of reasoning 
models, exposing latent deficiencies in logical 
coherence and world knowledge grounding 
that traditional single-score evaluations 
might obscure. Consistency is a metric for the 
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where pn is the n-gram precision, ωn = 1/N, and BP 
(brevity penalty) penalizes short answers.
Standard metrics: GQA introduces a comprehensive 
evaluation framework that extends beyond conven-
tional accuracy metrics, incorporating novel diag-
nostic measures to assess cross-context consisten-
cy, semantic validity, and response plausibility. This 
multi-dimensional metric suite enables granular be-
havioral analysis of reasoning models, exposing latent 
deficiencies in logical coherence and world knowledge 
grounding that traditional single-score evaluations 
might obscure. Consistency is a metric for the level 
of consistency in responses across different ques-
tions. Validity measures whether the model gives 
valid answers, ones that can be theoretically correct 
for the question. plausibility measures whether the 
model responses are reasonable in the real world or 
not making sense. Distribution measures the overall 
match between the true answer distribution and the 
model predicted distribution.

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 RSA

NS-VQA 0.984 0.971 0.959 0.946 80.2

SIEN-VQA 0.990 0.979 0.969 0.958 84.0

Table 2
Experiment result of reasoning step generation on GQA 
dataset.

GQA [21]: The dataset is designed for real-world vi-
sual reasoning and combinatorial question answer-
ing, drawing inspiration from the CLEVR task and 
comprising 113000 images from COCO and Flickr 
and 22 million distinct questions, each image is an-
notated with a dense Scene Graph, representing the 
objects, attributes and relations it contains. Each 
question is associated with a functional program 
which lists the series of reasoning steps needed to 
be performed to arrive at the answer. Each answer 
is augmented with both textual and visual justifica-
tions, pointing to the relevant region within the im-
age. GQA questions tend to involve more elements 
from the image compared to VQA questions, and are 
longer and more compositional as well. Conversely, 
VQA questions tend to be a bit more ambiguous and 
subjective, at times with no clear and conclusive an-
swer. GQA provides more questions for each image 
and thus covers it more thoroughly than VQA.
The GQA dataset captures real-world visual com-
plexity through semantically diverse scenes, whereas 
CLEVR-Human provides a controlled synthetic en-
vironment with explicitly annotated structural de-
pendencies. Specifically, CLEVR-Human focuses on 
evaluating systematic structural reasoning capabil-
ities through predefined compositional rules, while 
GQA emphasizes testing models' compositional gen-
eralization across open-domain visual-linguistic in-
teractions. This dual evaluation paradigm leveraging 
both real-world and synthetic benchmarks effectively 
mitigates overfitting risks to domain-specific biases 
while enhancing cross-domain generalizability veri-
fication. Such complementary validation proves crit-
ical for developing robust visual reasoning systems 
capable of handling both structured logic operations 
and open-world semantic variations.
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Method Scene Graph Type Accuracy (%)

CRF [35] - 72.1

LXMERT [43] - 59.8

Lightweight [36] Annotated 77.9

SIEN-VQA Annotated 77.4

GraphVQA [29] Generated 29.7

SelfGraphVQA [42] Generated 54.0

SIEN-VQA Generated 63.6

Table 3
Experiment result on GQA dataset.

Method Consistency Validity Plausibility Distribution Accuracy

MAC [20] 81.6 84.5 96.2 5.3 54.1

LXMERT 89.6 84.5 96.4 5.7 59.8

NSM [22] 93.3 84.3 96.4 3.7 63.2

PVR [27] 91.4 84.8 96.5 6.0 59.8

SNMN [16] 85.1 84.8 96.4 5.1 56.1

MMN [8] 92.5 84.6 96.2 5.5 60.8

SIEN-VQA 94.4 86.0 95.5 5.2 63.6

Table 4
Experiment result on GQA dataset with standard metrics.

4.2. Evaluation and Analysis on GQA Dataset
Our VQA model SIEN-VQA underwent evaluation on 
the GQA dataset, the evaluation results were present-
ed in Tables 2-3. In the experimental process, we set 
the initial learning rates to 0.1, 0.01, and 0.001, respec-
tively, and recorded the changes in the loss function of 
the model during the training process as the number 
of epochs increased, as shown in the Figure 5. Final-
ly, we determined the initial learning rate to be 0.001, 
the overall training iteration was 30 epochs, and the 
batch size was set to 6.

Table 3 presents our evaluation of the model's accu-
racy in answering questions on the GQA dataset after 
generating reasoning steps, comparing SIEN-VQA 
with the other VQA model based on scene graphs. In 
the table, ‘-’means there is no scene graph used. ‘Anno-
tated’ indicates that the scene graph used by the model 
is well-annotated. ‘Generated’ indicates that the scene 
graph is generated by the model itself from the image. 
In addition, from the comparison in the table, it can be 
seen that the accuracy of the model using the generated 
scene map is lower than that of the model using anno-
tated data. This indicates that the bottleneck of the cur-
rent visual question answering task lies in the acqui-
sition of visual clues, and accurate detection of scene 
entities and their relationships is the key to improving 
the accuracy of question answering. Our model has an 
accuracy of 77.4% with annotated data and 63.6% with-
out annotated data, which is higher than other models 
that with generated scene graphs. This indicates that 
SIEN-VQA can obtain visual clues related to the task 
after parsing reasonable reasoning steps.
In Table 4, we present the evaluation results with 
standard metrics, and the results show that SIEN-

Figure 5 
Visualization of hyperparameter lr.
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As a first step, we evaluated the performance 
of the reasoning step generation on the 
validation set, Table 2 demonstrates that 
SIEN-VQA achieved an accuracy of 84.0%, 
which is 3.8% higher than that of the 
comparative model NS-VQA. SIEN-VQA 
outperforms the comparative model in terms 
of BLEU metric, indicating its ability to 
enhance reasoning step generation accuracy. 
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Experiment result on GQA dataset. 
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Table 3 presents our evaluation of the model's 
accuracy in answering questions on the GQA 
dataset after generating reasoning steps, 
comparing SIEN-VQA with the other VQA model 
based on scene graphs. In the table, ‘-’means there 
is no scene graph used. ‘Annotated’ indicates that 
the scene graph used by the model is well-
annotated. ‘Generated’ indicates that the scene 
graph is generated by the model itself from the 
image. In addition, from the comparison in the 
table, it can be seen that the accuracy of the model 
using the generated scene map is lower than that 
of the model using annotated data. This indicates 
that the bottleneck of the current visual question 
answering task lies in the acquisition of visual 
clues, and accurate detection of scene entities and 
their relationships is the key to improving the 
accuracy of question answering. Our model has an 
accuracy of 77.4% with annotated data and 63.6% 

without annotated data, which is higher than 
other models that with generated scene 
graphs. This indicates that SIEN-VQA can 
obtain visual clues related to the task after 
parsing reasonable reasoning steps. 

In Table 4, we present the evaluation results 
with standard metrics, and the results show 
that SIEN-VQA not only outperforms other 
comparative models in accuracy, but also 
performs better in consistency and validity. 
However, there is no significant advantage in 
plausibility and distribution. And we present 
the visualization results of the experiment in 
Figure 6. It can be seen that entities such as 
tables, people, windows, etc. have been 
located in the image, and the correct 
relationships between entities have been 
correctly predicted, and there is significant 
spatial correspondence between the 

As a first step, we evaluated the performance of the 
reasoning step generation on the validation set, 
Table 2 demonstrates that SIEN-VQA achieved an 
accuracy of 84.0%, which is 3.8% higher than that 
of the comparative model NS-VQA. SIEN-VQA out-
performs the comparative model in terms of BLEU 
metric, indicating its ability to enhance reasoning 
step generation accuracy.
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Figure 6 
Visualization results of experiment on GQA. (a) The visualization results of scene information extracting; 
(b) The visualization result of question answering.
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Figure 7 
Visualization results of experiment on CLEVR-Human. (a) The visualization result of scene information 
extracting;(b) The visualization result of question answering
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VQA not only outperforms other comparative mod-
els in accuracy, but also performs better in consis-
tency and validity. However, there is no significant 
advantage in plausibility and distribution. And we 
present the visualization results of the experiment 
in Figure 6. It can be seen that entities such as tables, 
people, windows, etc. have been located in the image, 
and the correct relationships between entities have 
been correctly predicted, and there is significant 
spatial correspondence between the heatmap's in-
tensity peaks and the core visual entities referenced 
in the interrogative clause, indicating that the model 
has indeed achieved scene visual information delin-
eation based on task constraints.

4.3. Evaluation and Analysis on  
CLEVR-Human Dataset
We also conducted experiments on CLEVR-Human. 
The CLEVR-Human dataset involves more flexible 
natural language and more complex reasoning, but 
the scene contents of images are simpler than that of 
GQA. The experiment results were shown in Table 5. 
The accuracy of SIEN-VQA in answering questions 
on CLEVR-Human is 68.5%, which is higher than 
NA-VQA by 1.5%. It can be seen that for simple ques-
tions the reasoning steps and scene graph generation 
are both effective. However, for complex reasoning 
problems, the completeness of scene information is 

also difficult to guarantee when it is unable to gen-
erate the correct reasoning steps. The visualization 
results are shown in Figure 7. The attention peak in 
the figure corresponds to the objects involved in the 
question stem, and based on this, the correct predic-
tion of the relationship between objects is given.

5. Conclusion
This work solved VQA task with a neural-symbolic 
method and proposed a VQA model based on Scene 
Information Extraction Network (SIEN-VQA), a Task 
Decomposition Network was constructed to generate 
reasoning steps about problems that improve task de-
composition efficiency by utilizing graph structured 
data with the syntactic structure information of natural 
language, besides that, a Scene Information Extraction 
Network was constructed to use the generated reason-
ing steps as prompts, enabling the network to extract 
task related information, including entity categories, 
relationships between entities, and ignore irrelevant 
information. Finally, the reasoning execution compo-
nents were called according to the reasoning steps to 
obtain the answer. The experiment results on the GQA 
and CLEVR-Human datasets indicate that SIEN-VQA 
performs well in generating reasoning steps and ex-
tracting task related information, and has higher ac-
curacy in answering questions than the comparative 
model.  The research in this work elaborated on the fact 
that reasonable reasoning steps, complete visual infor-
mation, and efficient execution of reasoning are crucial 
elements in VQA tasks, however, the overall reasoning 
ability of the system is limited by the underlying rea-
soning execution components. The model must gener-
ate reasoning steps within the scope of the reasoning 
execution components, otherwise reasoning cannot be 
executed. Therefore, how to further improve the rea-
soning execution components, expand the reasoning 
ability of the model, and enable it to solve more complex 
problems is a meaningful future direction.
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