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The text-prompt-based open-vocabulary object detection model effectively encapsulates the abstract con-
cepts of common objects, thereby overcoming the limitations of pre-trained models, which are restricted to 
detecting a fixed, predefined set of categories. However, due to data scarcity and the constraints of textual 
descriptions, representing rare or complex objects solely through text remains challenging. In this study, 
we propose an open-set detection model that supports both visual and textual prompt queries (VTP-OD) to 
enhance few-shot object detection. A small number of visual prompts not only provide rich class-wise visual 
features, which enhance class textual representations, but also enable flexible extension to new classes for 
different downstream tasks. Specifically, we incorporate two adaptation modules based on cross-attention 
to adapt the pre-trained vision-language model, allowing it to support both text and visual queries. These 
modules facilitate (i) visual fusion between a limited number of visual prompts and query images and (ii) vi-
sual-language fusion between class-aware visual features and textual representations of the classes. Subse-
quently, the model undergoes prompt tuning using the available few-shot downstream data to adapt to target 
detection tasks. Experimental results demonstrate that our model outperforms the pre-trained model on the 
LVIS and COCO benchmarks. Furthermore, we validate its effectiveness on the real-world CoalMine dataset.
KEYWORDS: Object Detection, Open-Set, Few-Shot, Vision-Language, Coalmine
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1.Introduction
Object detection is a fundamental task in computer 
vision that has significantly advanced over the past 
decade thanks to the research on deep learning [10, 15, 
31, 36]. Conventional deep learning-based object de-
tection methods typically rely on large-scale annotat-
ed datasets to achieve strong performance. However, 
in real-world applications, data scarcity is a common 
challenge. Few-shot object detection (FSOD) has 
been proposed as a promising approach to address 
this issue by enabling object detection with limited 
labeled samples.
Previous works on FSOD provide few exemplar imag-
es of novel classes to mimic baby learning and adapts 
the model trained on base classes to novel classes. 
However, these studies often follow a fixed dataset 
split—such as partitioning PASCAL VOC or COCO 
into base and novel classes—training on the base 
classes and evaluating on the novel ones. This setup 
poses significant limitations in terms of both practi-
cal applicability and generalization performance.
Recently, combining large-scale pre-trained models 
with few-shot learning techniques has become a key 
research direction, enabling rapid adaptation to var-
ious downstream tasks. In this work, we investigate 
how to leverage a pre-trained VL detection model and 
adapt it to downstream object detection tasks using 
only a few samples from the target domain.
Following the rapid progress of vision language 
pre-training, OVD [48] has been proposed to address 
the problem of detecting objects from novel cate-
gories beyond the base categories during training. 
Because the conventional detectors are trained and 
evaluated on a fixed, closed set that contains only a 
limited number of predefined categories, which sig-
nificantly limits the model’s application in complex 
real-world environments [20,26]. This new paradigm 
of object detection takes advantage of the general-
ization and flexibility of language and has gained in-
creasing attention from the community [7, 12, 19, 23, 
37]. Previous studies such as GLIP [19] and Ground-
ing-DINO1.5 have cross-modality deep feature fusion 
to align features of different modalities. Pre-training 
the model on large-scale datasets, such as Objects365 
[34], GoldG (0.8M human-annotated gold grounding 
data have been curated by MDETR [12]), and Cap4M, 
often results in better performance. While these 

works deliver remarkable performance on OVD tasks, 
they are computationally expensive and time-con-
suming. Some studies use knowledge from a pre-
trained vision-language (VL) model, such as CLIP 
[30], for knowledge distillation [7, 52, 37] or prompt 
learning [5,14,41]. However, these works only used 
split LVIS [8] and COCO [22] datasets for evaluation, 
lacking validation for different downstream datasets 
in the real world. Therefore, we use the deeply inte-
grated pre-trained VL model, GLIP, as the base model.
In general, open-vocabulary object detection queries 
the objects of interest in images using text. However, 
the text-only methods may not be the best for the fol-
lowing reasons: First, text-only may lead to concept 
ambiguity problems in case of homonyms, e.g., 'letter' 
may refer to either 'mail' or 'character'. Second, users 
may only be familiar with the main categories of cer-
tain rare objects, such as 'flower' versus 'datura flower', 
which could introduce additional descriptive informa-
tion. Third, the text may struggle to describe the differ-
ence in detail. Since a picture can convey a lot of infor-
mation, it can effectively illustrate the complex visual 
details of an object. Therefore, we explore a method 
that combines text and images while querying the im-
ages. Inspired by the meta-based learning mechanism 
of few-shot learning [9, 13, 25, 28, 38, 39, 40], where 
query images are combined with few support images 
to create episodes during training, we adopt a similar 
mode to couple query features with support features. 
The work in [18] also adopts a similar approach, which 
introduces a universal visual in-context prompting 
framework that leverages visual context to understand 
new categories, but the model only used visual unimo-
dality. As described in devit [50], both open-vocabulary 
and few-shot learning belong to the open set, with the 
primary difference being their category representa-
tions: language and images, respectively.
In this paper, by combining OVD and FSOD methods, 
we propose an open-set detection model that supports 
simultaneous querying through both visual and textu-
al prompts, using a small number of reference images. 
As shown in Figure 1, our model’s query prompts differ 
from those of vanilla OVD and FSOD approaches. It 
takes advantage of both the fine-grained information 
contained in images and the stronger generalization 
ability of text, which complement each other and col-
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lectively enhance the model’s generalizability. Based 
on the frozen pre-trained GLIP model, we insert ad-
aptation modules and train only the new modules on 
the Object365 dataset, thus avoiding the heavy train-
ing burden associated with training from scratch.
Specifically, objects in the training dataset images are 
cropped to obtain usable visual prompts. During train-
ing, at each iteration, k visual prompts are randomly 
selected for each class, and self-attention is applied 
to weight them, assigning different weights to the 
prompt features based on their semantic information. 
Then, a masked multi-head cross-attention (MHCA) 
is applied to fuse the query image and visual prompt 
images, resulting in query image-conditioned visu-
al prompt features. These features are then grouped 
by class to form conditioned rich class-aware vision 
features. Then, we integrate the conditioned class-
aware vision feature and language features using the 
module Class-aware Vision and Language Interleave 
(CVLI), which is added at the beginning of high lay-
ers of the language encoder. This interleave module 
consists of two blocks, each containing a cross-mo-
dality multi-head attention module (X-MHA) layer, 
correlating the hidden states of text with vision infor-
mation, followed by an extra dense feed-forward (FF) 
layer. A tanh-gating mechanism [11] is used to im-
prove training stability as we insert the module into 
a frozen pre-trained model and filter the low-quality 
visual features. To align the visual prompts and the 
predicted objects, a contrastive classification loss is 
used. To learn more knowledge from the conditioned 
class-aware vision features and avoid learning inertia 
problem, we use a random language token mask train-

ing strategy [47,42], which randomly masks the text 
tokens by a certain ratio to allow the corresponding 
vision queries to make predictions independently.
This study provides the following contributions:
 _ Building upon a frozen pre-trained vision-language 

(VL) detection model, we implement an open-set 
detection model that supports both textual and 
visual prompt queries through two cross-attention-
based modules adaptation: a Vision Perceiver 
module for integrating query images with visual 
prompts, and a class-aware VL interleave module 
for aligning visual and textual features.

 _ In the CVLI module, we introduce a gating 
mechanism to filter out low-quality images and 
employ a gated loss function to further enhance 
model performance.

 _ Experiments demonstrate that our method 
is more transferable to downstream datasets.  
It outperforms GLIP-T/-L by +4.6%/2.7%, 
+5.7%/8.1%, and +0.0%/1.2% AP on 'LVIS minival' 
(MiniVal), 'LVIS val v1.0' (LVISv1), and COCO 
without model fine-tuning. It also improves 
few-shot transfer scenarios, and we evaluate the 
model on a CoalMine dataset.

2. Related Works
2.1. Few-shot Object Detection
Few-Shot Object Detection (FSOD) method aims to 
train a generic detector to recognize novel object de-
tection with only a few training examples. The detec-

Figure 1 
Comparison of query prompts across different methods. OVD relies solely on textual prompt, FSOD performs queries based on 
support images, whereas our model utilizes both textual and visual prompts simultaneously.
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implement an open-set detection model that 
supports both textual and visual prompt 
queries through two cross-attention-based 
modules adaptation: a Vision Perceiver 
module for integrating query images with 
visual prompts, and a class-aware VL 
interleave module for aligning visual and 
textual features. 
• In the CVLI module, we introduce a 
gating mechanism to filter out low-quality 
images and employ a gated loss function to 

further enhance model performance. 
• Experiments demonstrate that our 
method is more transferable to downstream 
datasets.  It outperforms GLIP-T/-L by 
+4.6%/2.7%, +5.7%/8.1%, and +0.0%/1.2% AP 
on 'LVIS minival' (MiniVal), 'LVIS val v1.0' 
(LVISv1), and COCO without model fine-
tuning. It also improves few-shot transfer 
scenarios, and we evaluate the model on a 
CoalMine dataset. 
 

2. Related Works 
2.1. Few-shot Object Detection 
Few-Shot Object Detection (FSOD) method aims 
to train a generic detector to recognize novel 
object detection with only a few training 
examples. The detectors are typically trained 
with abundant samples of base classes and fine-
tuned on few-shot novel samples. There are two 
main streams of traditional image-only-based 
FSOD methods: meta-learning-based and 
transfer-learning-based methods. The meta-
learning-based methods simulate few-shot 
scenarios, containing two branches to process 
query and support images, respectively, and 
forming an episode format. FSRW [13] uses a 
meta-features learner to extract generalizable 
meta-features to detect novel objects. It uses a 
reweighting module to adjust meta-features and 
highlight more important and relevant ones to 
detect the target object. Meta R-CNN [43] 
performs meta-learning over the region of 
interest (RoI) features instead of a full image 
feature. Moreover, class-attentive vectors are 
generated using support images and are used to 
perform a channel-wise soft-attention on each 
RoI feature of query images, facilitating the 
predictor heads to detect or segment related 
class objects. FCT [9] also introduces a two-
branch approach. The first approach proposes 
the vision transformer-based FSOD model, a 
fully cross-transformer for both the feature 
backbone and the detection head, encouraging 
multi-level interactions between the query and 
support. ICPE [25] generates specific and 
representative prototypes for each query image. 
Query perceptual features are fed into a 
prototype dynamic aggregation module, 
consisting of intra- and inter-image dynamic 
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tors are typically trained with abundant samples of 
base classes and fine-tuned on few-shot novel samples. 
There are two main streams of traditional image-on-
ly-based FSOD methods: meta-learning-based and 
transfer-learning-based methods. The meta-learn-
ing-based methods simulate few-shot scenarios, con-
taining two branches to process query and support 
images, respectively, and forming an episode format. 
FSRW [13] uses a meta-features learner to extract 
generalizable meta-features to detect novel objects. 
It uses a reweighting module to adjust meta-features 
and highlight more important and relevant ones to de-
tect the target object. Meta R-CNN [43] performs me-
ta-learning over the region of interest (RoI) features 
instead of a full image feature. Moreover, class-atten-
tive vectors are generated using support images and 
are used to perform a channel-wise soft-attention on 
each RoI feature of query images, facilitating the pre-
dictor heads to detect or segment related class objects. 
FCT [9] also introduces a two-branch approach. The 
first approach proposes the vision transformer-based 
FSOD model, a fully cross-transformer for both the 
feature backbone and the detection head, encouraging 
multi-level interactions between the query and sup-
port. ICPE [25] generates specific and representative 
prototypes for each query image. Query perceptual 
features are fed into a prototype dynamic aggregation 
module, consisting of intra- and inter-image dynamic 
aggregation mechanisms to consolidate salient infor-
mation of prototypes.
Transfer-learning-based FSOD methods' popularity 
stems from their superior performance, their mod-
ules' simplicity, and removing episode mechanisms 
that are used in meta-learning methods. For exam-
ple, TFA [38] utilizes a cosine similarity-based clas-
sifier and only fine-tunes the last layer with novel 
examples, achieving comparable results with other 
complex methods. DeFRCN [29] employs gradient 
decoupled layers into Faster R-CNN for multi-stage 
decoupling, using an offline prototypical calibration 
block to refine the classification results. MFDC [40] 
designs a unified distillation framework based on a 
memory bank to distill three types (recognition-relat-
ed semantic, localization-related semantic, and dis-
tribution) of class-agnostic commonalities between 
base and novel classes explicitly. With the develop-
ment of transformer technology in vision, transform-
er learning-based methods in FSOD have attracted 

significant research interest, especially with the rise 
of the vision-language large model. 
We introduce the branch of visual prompts and use 
cross-attention to fuse the query image features, sim-
ilar to the first method above. However, our model is 
based on visual and language modalities using visual 
prompts/support images to augment query images 
and generate class-aware vision features instead of 
using features for classification.

2.2. Open-vocabulary Object Detection
Open-vocabulary object detection, as a novel formu-
lation of the object detection problem, was first pro-
posed in OVR-CNN [48]. It attempts to cover an un-
bounded vocabulary of object concepts with the help 
of a large number of image-caption pairs so that the 
detector is no longer limited to a few categories with 
labeled data, leading to more generalized object detec-
tion that can recognize novel object categories. Sub-
sequently, there was an increasing amount of work on 
OVD, and one pipeline is based on large-scale external 
image datasets [12, 19, 23, 51]. MDETR [12] trains an 
end-to-end model on existing multimodal datasets 
that explicitly align phrases in text and objects in 
images. GLIP [19] formulates object detection as a 
grounding problem. It leverages additional grounding 
data to learn aligned semantics at the phrase and re-
gion level, achieving even better performance on fully 
supervised detection benchmarks without fine-tun-
ing. GroundingDINO [23] integrates Transform-
er-based DINO [49] with grounded pre-training and 
designs three feature fusion approaches in the neck, 
query initialization, and head phrases to help the 
model achieve better performance on existing bench-
marks effectively. Our work is based on the GLIP 
model, an extension of these pipelines.
Another pipeline is to use the knowledge of large-
scale pre-trained vision-language models, such as 
CLIP, to improve performance for recognizing novel 
objects, alongside the external data [7, 27, 37, 41, 47, 
52]. ViLD [7] uses pre-trained CLIP (teacher) to dis-
till knowledge into a two-stage (R-CNN-like) object 
detector (student). Moreover, region embeddings of 
detected boxes from the student detector are aligned 
with the text and image embeddings inferred by the 
teacher. OV-DETR [47] uses image and text em-
beddings encoded from a CLIP model as queries to 
decode the category-specified boxes in the DETR 
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framework [2], which can detect any object, given its 
class name or an exemplar image. RegionCLIP [52] 
proposes a region-based vision-language pre-train-
ing method, which learns to match image regions as 
well as their descriptions that learn the visual repre-
sentation of regions from 'pseudo' region-text pairs 
from the CLIP model. HierKD [27] and OADP [37] 
employ knowledge distillation from CLIP. HierKD 
[27] explores a global-level knowledge distillation 
and combines it with the common instance-level 
knowledge distillation to learn the knowledge of 
seen and unseen categories simultaneously. OADP 
[37] employs object-level distillation and global and 
block distillation methods.
In the first pipeline of OVD, models are pre-trained 
on large-scale datasets from scratch, and the focus 
is on designing models for detection. Moreover, the 
second pipeline is based on CLIP, a model aimed at 
image classification, and it focuses on utilizing the 
knowledge of CLIP. Compared to the second pipe-
line, the first pipeline evaluates the model on public 
datasets, such as LVIS [8], COCO [22], and VOC [6]. 
It also assessed the model on the datasets in the wild, 
such as ODinW (Object Detection in the Wild). We 
follow the first, more practical pipeline in the real 
world and verify the model's ability to adapt to novel 
classes at low shots.

3. Method
This section details our method, starting with the 
OVD settings and GLIP review. Then, we introduce 
an overview of our model architecture, the newly 
added modules, and their utilities. Finally, we illus-
trate the pre-training and fine-tuning pipelines.

3.1. Preliminaries

In OVD, an object detector is typically trained on 
a base dataset Dtrain, which contains exhaustively 
annotated bounding box labels of base categories 
Cb. During inference, to detect the categories of 
both base categories Cb and novel categories Cn, i.e.,  
Ctest=Cb∪Cn. In academic research, evaluating a mod-
el's performance usually requires there to be no 
overlap between the base and novel categories, and 
only the performance on novel categories is evaluat-
ed. However, in the real world, it is common to trans-

fer to downstream datasets that include both base 
and novel categories, such as our DsLMF+ datasets.
The parallel vision and language formulation are the 
mainstream architecture of existing VL detection 
foundation models [3, 19, 23, 32]. It unifies detection 
and grounding by reformulating object detection as 
phrase grounding, which attempts to localize objects 
and align them with semantic concepts.
Training data in OVD is usually in the form of im-
age-text pairs (I,T). We concatenate all category 
names as text input for the object detection task, 
which contains a set of  unique classes. Then, we 
extract multi-scale image features with an image 
encoder EncI such as SwinTransformer [24] and text 
features with a text encoder EncL , such as BERT [4]:
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where T∊RM×d denotes the contextual word/token 
features from the language encoder. M is the num-
ber of (sub)-word tokens that are always larger than 
the number of phrases Nc (corresponding to classes 
numbers) in the text prompt.
Next, a deep fusion between image features O and 
text T is performed in the last few encode layers. 
This process uses the DyHead [3] as the image en-
coder and BERT [4] as the text encoder. It involves 
cross-modality fusion through a multi-head atten-
tion module (X-MHA), which outputs high-quality 
language-aware visual representations:
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where L is the number of DyHeadModules, L=6 for 
GLIP-T and L=8 for GLIP-L.
Single modality fusion and update as follows:
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Finally, normal box regression is applied for local-
ization, and a vision-language dot product layer re-
places the traditional linear classification layer to 
calculate the alignment scores between image re-
gions and words in the prompt:
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The GLIP model has been trained on massive data, 
demonstrating strong zero-shot and few-shot trans-
ferability to various object-level recognition tasks. 
We take this model as our baseline.

3.2. Model Architecture
Considering the limited description of text-only, we 
take advantage of the visual prompt to enrich visual 
cues, enhance language descriptive capabilities, in-
tegrate the advantage of text prompt in generality, 
and enhance abstraction capabilities. The model ar-
chitecture is shown in Figure2. Compared with the 
pre-trained model, the added components are indi-
cated with a dash-dot line.

3.2.1. Cache the Visual Prompt Features
Visual prompt features are extracted and cached to 
save training time, as our model is based on frozen 

image encoder (SwinTransformer), which makes it 
feasible. We extract all features from training data 
and cache them before starting training.
Given a training dataset Dtrain that include catego-
ries  C (pre-training: C = C b ; fine-tuning: C = C b+ C n). 
Then, the instance annotations are region-text 
pairs, O ={bi,ti}N

i=1 where ti is the corresponding text 
for the region box bi; ti can be the category namea, 
noun phrases, or object descriptions. As a result, we 
adopt the category names as text prompts during 
pre-training and fine-tuning. The caching procedure 
is shown in Figure3.
Specifically, for an image, a ground truth (GT) box 
b∊R4 of category ci is fed into the image encoder to 
obtain image features. Then, the box/object feature 
is aligned and fed into a RoI pooler [35] layer to gen-
erate object features f ci∊Rd. We enlarge the GT box of 
1.5 area to include more contextual information. Af-
terward, we aggregate these object features by cate-
gory and construct a cached bank in a dictionary for-

Figure 2 
Architecture of our model. We add two learnable modules: The first is vision fusion between the query image features and the 
visual prompts features through MHCA. The second is class-aware VL interleave inserted in high-level text encoder layers to 
pre-align class-level vision features with class text embedding.  

 

Visual prompt features are extracted and cached 
to save training time, as our model is based on 
frozen image encoder (SwinTransformer), 
which makes it feasible. We extract all features 
from training data and cache them before 
starting training. 

Given a training dataset Dtrain  that include 
categories C  (pre-training: C=Cb ; fine-tuning: 

C=Cb+Cn ). Then, the instance annotations are 
region-text pairs 1{ , }N

i i ib t , where it  is the 
corresponding text for the region box ib ; it can 
be the category name, noun phrases, or object 
descriptions. As a result, we adopt the category 
names as text prompts during pre-training and 
fine-tuning. The caching procedure is shown in 
Figure3. 

 

Figure 3 

Cache features of visual prompts. Extract image features with the shared frozen image encoder and pool them into 
1×1×d,(d=256) shape. To reduce the computation time, we use offline computation and then caching for features. 

 
Specifically, for an image, a ground truth (GT) 
box 4b of category ic  is fed into the image 
encoder to obtain image features. Then, the 
box/object feature is aligned and fed into a RoI 
pooler [35] layer to generate object features 

ic df . We enlarge the GT box of 1.5 area to 
include more contextual information. 
Afterward, we aggregate these object features 
by category and construct a cached bank in a 
dictionary format:  

1B }{ID :{ , , }},  {1, ,
i oc N cf f i N , where the 

class index ID
ic  serves as the key, and all 

object features of class ic   are stored as values. 

cN   denotes the total number of categories and 

oN represents the number of objects belonging 
to the category ic .  

During pre-training, as in GLIP [19], we limit the 
input length of BERT [4] to encode most 256 
tokens. Based on this, we cannot fit all category 
names into one prompt when the dataset 
contains many categories, such as Object365 and 
LVIS. We also split the category names into 
multiple prompts such as GLIP. Specifically, in 
a minibatch, the GT categories of query images 
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Figure 3 
Cache features of visual prompts. Extract image features with the shared frozen image encoder and pool them into 1×1×d, 
(d=256) shape. To reduce the computation time, we use offline computation and then caching for features.
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Specifically, for an image, a ground truth (GT) 
box 4b of category ic  is fed into the image 
encoder to obtain image features. Then, the 
box/object feature is aligned and fed into a RoI 
pooler [35] layer to generate object features 

ic df . We enlarge the GT box of 1.5 area to 
include more contextual information. 
Afterward, we aggregate these object features 
by category and construct a cached bank in a 
dictionary format:  

1B }{ID :{ , , }},  {1, ,
i oc N cf f i N , where the 

class index ID
ic  serves as the key, and all 

object features of class ic   are stored as values. 

cN   denotes the total number of categories and 

oN represents the number of objects belonging 
to the category ic .  

During pre-training, as in GLIP [19], we limit the 
input length of BERT [4] to encode most 256 
tokens. Based on this, we cannot fit all category 
names into one prompt when the dataset 
contains many categories, such as Object365 and 
LVIS. We also split the category names into 
multiple prompts such as GLIP. Specifically, in 
a minibatch, the GT categories of query images 

mat:  B ={IDci:{f1,..., fNo
}}, i∊{1,...,Nc}, where the class 

index IDci serves as the key, and all object features 
of class  ci are stored as values. Nc denotes the total 
number of categories and No represents the number 
of objects belonging to the category ci. 
During pre-training, as in GLIP [19], we limit the in-
put length of BERT [4] to encode most 256 tokens. 
Based on this, we cannot fit all category names into 
one prompt when the dataset contains many catego-
ries, such as Object365 and LVIS. We also split the 
category names into multiple prompts such as GLIP. 
Specifically, in a minibatch, the GT categories of que-
ry images are noted as positive categories Cpos, and 
their corresponding total tokens lengths are noted 
as Npos. We randomly selected Nneg= 85 or a random-
ly generated number from 1-85 among the remain-
ing categories C-Cpos with probability 0.5. Then, we 
append the tokens of these negative categories until 
the token length of all positive and negative reach-
es the maximum length 256-Nspecial -Npos, where Nspecial 
contains the start, end, and separation tokens. 
Finally, the selected negative categories Cneg with 
number N′neg ≤ Nneg, because some category names 
have multiple words or some single-word phrases 
are split into multiple (sub)-word tokens.
The selected categories of support images for the 
visual prompts branch are Cpos+Cneg. At the fine-tun-
ing stage, we simply concatenate all category names 
with a separator of '. '. when the dataset contains 
fewer categories, such as VOC or ODinW.

3.2.2. Visual Prompt Processing
Different visual prompts exert varying impacts on 
the prediction outcomes. Moreover, visual prompts 
of low quality can adversely affect the accuracy of 
predictions. Therefore, we employ self-attention 
mechanisms to capture the inter-feature correla-
tions within the visual prompt features Fp, adjust the 
weights of the feature representations accordingly, 
and obtain the reweighted visual prompt features F̂p. 
The process is shown in Equation (6):

  

are noted as positive categories Cpos, and their 
corresponding total tokens lengths are noted as 
Npos . We randomly selected Nneg=85  or a 
randomly generated number from 1-85 among 
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where d is the feature dimension and Nh is the 
number of heads. It is important to note that the 
above process is performed within features of 
the same class. 

During training, we randomly sample a small 
number (e.g., 5) of cropped objects as image 
prompts for each class, and update them in each 
iteration. The random sampling allows the 
model to adapt to cross-domain image prompts, 
thereby enhancing the model's generalization 
ability. 

3.2.3. Vision Perceiver Module 
In the Visual Perceiver module, the image 
features are fused to the weighted visual 
prompt features using a masked cross 
attention to get the query conditioned visual 
prompt features. 

 
Figure 4 

Fuse the query image and support image to generate query image features conditioned class-grouped vision features. 

 
As shown in Figure 4, the module consists of 
two blocks containing a multi-head cross-
attention layer, which attends to the query 
inputs, and an additional FF layer. We take the 
visual prompt features as Query denoted as 
ˆ qB M d

pF . Moreover, the key and value are 
from the query image features, denoted as 

kB M d
K ILP F  and vB M d

V ILP F , 

where B is the batch size, Mq is the number of 
visual prompt features, which could be k×Nc 
and Mv  is the flattened input image features 
after the FPN [21]. The process of the block is as 
follows: 

, (6)

where d is the feature dimension and Nh is the number 
of heads. It is important to note that the above process 
is performed within features of the same class.
During training, we randomly sample a small num-
ber (e.g., 5) of cropped objects as image prompts 
for each class, and update them in each iteration. 
The random sampling allows the model to adapt to 
cross-domain image prompts, thereby enhancing 
the model's generalization ability.

3.2.3. Vision Perceiver Module
In the Visual Perceiver module, the image features 
are fused to the weighted visual prompt features us-
ing a masked cross attention to get the query condi-
tioned visual prompt features.
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As shown in Figure 4, the module consists of two 
blocks containing a multi-head cross-attention lay-
er, which attends to the query inputs, and an addi-
tional FF layer. We take the visual prompt features 
as Query denoted as F̂p∊RB×Mq×d. Moreover, the key 
and value are from the query image features, denot-
ed as  LPK (FI) ∊ RB×Mk×d and LPV (FI) ∊ RB×Mv×d, where B 
is the batch size, Mq is the number of visual prompt 
features, which could be k×Nc and Mv is the flattened 
input image features after the FPN [21]. The process 
of the block is as follows:

ˆ( , ( ), ( ))
ˆ( )

( )

p K I V I

p

MHCA MHA F LP F LP F

CA MHCA MAP F
FF CA CA (7) 

Layer normalization is applied to the keys, 
values, and queries that are the input to the 
attention and FF input, and a linear transform is 
applied to them before cross-attention. The final 
fused vision is the input image coupled vision 
features, having both input image vision cues 
and class level vision cues, represented by class 
as follows: 

1: , , , {1, , }
ic k cv v i Nv . (8) 

The sequence length of class-wise vision 
features (k*Nc) is much lower than that of the 
input image features l ll

H W .

By averaging the k visual features, the class-level 
visual feature for each class is obtained. The 
class-level visual features for all classes are: 

{ }, {1, }
ic ci Nv    (9) 

3.2.4. Cross Modality Class-aware VL 
Interleave 
We insert gated cross-attention blocks at the 
beginning of high language encode layers, 
trained from scratch to improve the 
expressiveness of VLM and make it sufficient to 
condition on visual inputs, inspired by 
Flamingo [1]. Those blocks consist of a cross-
attention layer that attends the visual inputs 
with specific cross-attention masks, followed by 
an additional FF layer. The process is shown in 
Figure 5.  

Figure 5 

Class-aware vision-language interleave. 

The text encoder extracts text features for each 
category, 1{ } c

i

N
L c iEnc T t . Using the 

class-aware vision features generated from 

Equation (8), the cross modalities multi-head 
attention (X-MHA) between vision and 
language is formulated as follows: 

, , {1, , }
i i ic c c cv t i NX-MHA v  ,  (10)

where 
ict  is from the language modality and 

acts as the Query;  v
ic  is from the vision 

modality and acts as Key and Value.  

A tanh-gating mechanism [11] is used to ensure 
that the model output is consistent with the pre-
trained language model and yields the same 
results as the original language model. This 
process multiplies the output of the cross-
attention layer through right tanh  before 
adding it to the input representation from the 
residual connection, where  is a layer-specific 
learnable scalar initialized at 0. The gating 
mechanism maintains the training stability and 
improves the final performance. The interleaved 
category tokens are gated so that the frozen text 
encoder remains intact at initialization, 
maintaining stability and improving 
generalization performance. 

' tanh(( ( ))* )
i i i ic c c ct t MLP v v , (11) 

)tanh(( ( )
icMLP v  is 

dynamically adjusted according to the quality of 
visual cues from the fused vision features, 
which is evaluated through a three-layer 
perceptron (MLP). This framework gradually 
reduces the feature dimension to a layer-specific 
learnable scalar initialized at 0. Then, this 
learned scalar multiplies the multimodal feature 

icv  before adding it to the initial text token 
ict  

from the residual connection. The final output 
after FF is processed by: 

ff ga e_ t
i i ic c ct t FF t tanh (12) 

where ff_gate is a learnable parameter. 

3.2.5. Training, Fine-tuning, and Inference 
At the training stage, we train only the newly 
added modules while keeping the remaining 
parameters frozen. The training dataset used 
is Object365. The cache bank stores object-level 
image features for each class. A vision-
conditioned masked language prediction 
strategy, as introduced in MQ-Det [42], is 
employed to facilitate training. This approach 
enables the model to learn from vision as the 
new module is integrated into the frozen 
language branch of the foundation model. It 
addresses the learning inertia issue caused by 
the frozen detector, which prevents the model 
from aligning regions with text features 
without visual cues. Specifically, the strategy 
randomly masks text tokens at a certain ratio, 
allowing corresponding vision queries to 
make independent predictions, thereby 
incorporating sufficient visual information. 

(7)

Layer normalization is applied to the keys, values, 
and queries that are the input to the attention and 
FF input, and a linear transform is applied to them 
before cross-attention. The final fused vision is the 
input image coupled vision features, having both 
input image vision cues and class level vision cues, 
represented by class as follows:

Figure 4
Fuse the query image and support image to generate query image features conditioned class-grouped vision features.
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number of heads. It is important to note that the 
above process is performed within features of 
the same class. 

During training, we randomly sample a small 
number (e.g., 5) of cropped objects as image 
prompts for each class, and update them in each 
iteration. The random sampling allows the 
model to adapt to cross-domain image prompts, 
thereby enhancing the model's generalization 
ability. 

3.2.3. Vision Perceiver Module 
In the Visual Perceiver module, the image 
features are fused to the weighted visual 
prompt features using a masked cross 
attention to get the query conditioned visual 
prompt features. 

 
Figure 4 

Fuse the query image and support image to generate query image features conditioned class-grouped vision features. 

 
As shown in Figure 4, the module consists of 
two blocks containing a multi-head cross-
attention layer, which attends to the query 
inputs, and an additional FF layer. We take the 
visual prompt features as Query denoted as 
ˆ qB M d

pF . Moreover, the key and value are 
from the query image features, denoted as 

kB M d
K ILP F  and vB M d

V ILP F , 

where B is the batch size, Mq is the number of 
visual prompt features, which could be k×Nc 
and Mv  is the flattened input image features 
after the FPN [21]. The process of the block is as 
follows: 
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The sequence length of class-wise vision features 
(k×Nc) is much lower than that of the input image 
features �l Hl×Wl. 
By averaging the k visual features, the class-level vi-
sual feature for each class is obtained. The class-lev-
el visual features for all classes are:
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3.2.4. Cross Modality Class-aware VL Interleave
We insert gated cross-attention blocks at the begin-
ning of high language encode layers, trained from 
scratch to improve the expressiveness of VLM and 
make it sufficient to condition on visual inputs, in-
spired by Flamingo [1]. Those blocks consist of a 
cross-attention layer that attends the visual inputs 
with specific cross-attention masks, followed by an 
additional FF layer. The process is shown in Figure 5. 
The text encoder extracts text features for each cat-
egory, T = EncL(T) ={tci}Nc . Using the class-aware vi-
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sion features generated from Equation (8), the cross 
modalities multi-head attention (X-MHA) between 
vision and language is formulated as follows:
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where tci is from the language modality and acts as 
the Query; vci  is from the vision modality and acts as 
Key and Value. 
A tanh-gating mechanism [11] is used to ensure that 
the model output is consistent with the pre-trained 
language model and yields the same results as the 
original language model. This process multiplies 
the output of the cross-attention layer through right 
tanh(β) before adding it to the input representation 
from the residual connection, where β is a layer-spe-
cific learnable scalar initialized at 0. The gating 
mechanism maintains the training stability and im-
proves the final performance. The interleaved cate-
gory tokens are gated so that the frozen text encoder 
remains intact at initialization, maintaining stabili-
ty and improving generalization performance.
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where the gating value tanh((MLP(ṽci)) is dynamically 
adjusted according to the quality of visual cues from 
the fused vision features, which is evaluated through a 

three-layer perceptron (MLP). This framework grad-
ually reduces the feature dimension to a layer-specif-
ic learnable scalar initialized at 0. Then, this learned 
scalar multiplies the multimodal feature ṽci before 
adding it to the initial text token tci from the residual 
connection. The final output after FF is processed by:
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where ff_gate is a learnable parameter.

3.2.5. Training, Fine-tuning, and Inference
At the training stage, we train only the newly added 
modules while keeping the remaining parameters fro-
zen. The training dataset used is Object365. The cache 
bank stores object-level image features for each class. 
A vision-conditioned masked language prediction 
strategy, as introduced in MQ-Det [42], is employed 
to facilitate training. This approach enables the mod-
el to learn from vision as the new module is integrat-
ed into the frozen language branch of the foundation 
model. It addresses the learning inertia issue caused 
by the frozen detector, which prevents the model 
from aligning regions with text features without visu-
al cues. Specifically, the strategy randomly masks text 
tokens at a certain ratio, allowing corresponding vi-
sion queries to make independent predictions, there-
by incorporating sufficient visual information.
The total loss function is as follows:
The total loss function is as follows: 

(13) 

where loc  is the localization loss, which 
includes a GIoU loss [33] and a centerness loss 
[35].  

dot plays a critical role in the classification logits, 
a focal binary sigmoid loss.  

( , ),g ndot rou dTokenSigmoidFocalLoss S T where 
the logits  are the alignment scores in 
Equation (5), T' is the expanded target matrix.  

Additionally, to achieve object-level class 
feature alignment between the visual prompts 
and the predicted objects, a classification loss 
function is introduced, which uses a contrastive 
loss to accomplish this: 
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where No denotes the number of objects. 

gate  is gate loss in the CVLI module, written as 
follows: 
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where   is a hyperparameter; Ng  is the 
number of CVLI inserted into the text encoder 
layers. 

We freeze our pre-trained model and perform 
prompt fine-tuning at the few-shot fine-tuning 
stage, processing the data that are available for 
few-shot training. Due to the limited training 
data (k-shot for each class), the cache bank is 
constructed using all objects in the training set, 
and random select k-shot at each iteration. 

During the inference phase, when evaluating 
the performance of the trained and fine-tuned 
models, if operating under the fine-tune-free 
setting, only one visual prompt is used per class. 
In contrast, under the k-shot fine-tuning setting, 
the same visual prompts used during fine-
tuning are employed for evaluation. 

4. Experiments
4.1. Datasets and Evaluation Metrics 
4.1.1. Objects365 Dataset 
Objects365 dataset [34] is a large-scale object 
detection dataset with 365 object categories 
and over 600K training images. It is also 
widely used in the OVD models 
[19,23,45,46,51]. We use it to train our 
additional modules. 

4.1.2. LVIS and COCO Benchmark 
LVIS dataset [8], designed for researching 

Large Vocabulary Instance Segmentation, 
which involves collecting instance 
segmentation masks for 1203 entry-level object 
categories, is also widely used in OVD. 
Evaluation results on a dataset with a large set 
of diverse object categories would be more 
representative in terms of demonstrating 
generalization ability. The LVISv1 set contains 
19,809 images, while MiniVal is introduced in 
MDETR [12] with 5000 images. The MS-COCO 
(COCO) [22] object detection dataset contains 
80 common object categories. It is also used to 
verify the fine-tuning free transfer capabilities 
of the model. 

4.1.3. ODinW Benchmark and CoalMine 
Underground Dataset 
ODinW Benchmark [17] includes 13 object 
detection datasets, spanning fine-grained 
species detection, drone-view detection, and 
ego-centric detection. It is used to evaluate the 
model's transferability in diverse real-world 
tasks. Then, we evaluate the model's fine-
tuning-free performance on 13 ODinW 
datasets. Moreover, we select Pscal VOC from 
these 13 ODinW datasets to ensure a fair 
comparison with other methods for fine-
tuning analysis. Following the few-shot split 
of different seeds in GLIP, the datasets contain 
13,690 training images of 20 categories. 

We introduce another real-world 
underground mining dataset, reorganized 
based on DsLMF+ [44], to evaluate the model's 
performance in a world containing common 
and rare specialized categories. Specifically, 
we integrate images and resample images 
from all separate sub-datasets to construct a 
new dataset containing 4,824 training images 
and 1,342 validation images of 4 categories 
(coal miner, helmet, towline, and hydraulic 
support guard plate). This dataset is more 
challenging because of the following issues: 1) 
images have different domain attributes even 
under the same category, as shown in Figure 
6, and also have issues such as blurriness, 
darkness, and exposure; 2) the small object 
issue; and 3) new terminologies. Therefore, we 
use these two datasets to demonstrate the few-
shot transferability of our model. 

Figure 6 

Images comparison between pre-trained 
Objects365 dataset and downstream fine-tuning 
sub-DsLMF+ dataset. 
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where No denotes the number of objects. 
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number of CVLI inserted into the text encoder 
layers. 
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comparison with other methods for fine-
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13,690 training images of 20 categories. 

We introduce another real-world 
underground mining dataset, reorganized 
based on DsLMF+ [44], to evaluate the model's 
performance in a world containing common 
and rare specialized categories. Specifically, 
we integrate images and resample images 
from all separate sub-datasets to construct a 
new dataset containing 4,824 training images 
and 1,342 validation images of 4 categories 
(coal miner, helmet, towline, and hydraulic 
support guard plate). This dataset is more 
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Layer normalization is applied to the keys, 
values, and queries that are the input to the 
attention and FF input, and a linear transform is 
applied to them before cross-attention. The final 
fused vision is the input image coupled vision 
features, having both input image vision cues 
and class level vision cues, represented by class 
as follows: 

1: , , , {1, , }
ic k cv v i Nv . (8) 

The sequence length of class-wise vision 
features (k*Nc) is much lower than that of the 
input image features l ll

H W .  

By averaging the k visual features, the class-level 
visual feature for each class is obtained. The 
class-level visual features for all classes are: 

{ }, {1, }
ic ci Nv    (9) 

3.2.4. Cross Modality Class-aware VL 
Interleave 
We insert gated cross-attention blocks at the 
beginning of high language encode layers, 
trained from scratch to improve the 
expressiveness of VLM and make it sufficient to 
condition on visual inputs, inspired by 
Flamingo [1]. Those blocks consist of a cross-
attention layer that attends the visual inputs 
with specific cross-attention masks, followed by 
an additional FF layer. The process is shown in 
Figure 5.  
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Class-aware vision-language interleave. 

 

 

The text encoder extracts text features for each 
category, 1{ } c

i

N
L c iEnc T t . Using the 

class-aware vision features generated from 

Equation (8), the cross modalities multi-head 
attention (X-MHA) between vision and 
language is formulated as follows: 

, , {1, , }
i i ic c c cv t i NX-MHA v  ,  (10) 

where 
ict  is from the language modality and 

acts as the Query;  v
ic  is from the vision 

modality and acts as Key and Value.  

A tanh-gating mechanism [11] is used to ensure 
that the model output is consistent with the pre-
trained language model and yields the same 
results as the original language model. This 
process multiplies the output of the cross-
attention layer through right tanh  before 
adding it to the input representation from the 
residual connection, where  is a layer-specific 
learnable scalar initialized at 0. The gating 
mechanism maintains the training stability and 
improves the final performance. The interleaved 
category tokens are gated so that the frozen text 
encoder remains intact at initialization, 
maintaining stability and improving 
generalization performance. 

' tanh(( ( ))* )
i i i ic c c ct t MLP v v ,  (11) 

)tanh(( ( )
icMLP v  is 

dynamically adjusted according to the quality of 
visual cues from the fused vision features, 
which is evaluated through a three-layer 
perceptron (MLP). This framework gradually 
reduces the feature dimension to a layer-specific 
learnable scalar initialized at 0. Then, this 
learned scalar multiplies the multimodal feature 

icv  before adding it to the initial text token 
ict  

from the residual connection. The final output 
after FF is processed by: 

ff ga e_ t
i i ic c ct t FF t tanh  (12) 

where ff_gate is a learnable parameter. 

3.2.5. Training, Fine-tuning, and Inference 
At the training stage, we train only the newly 
added modules while keeping the remaining 
parameters frozen. The training dataset used 
is Object365. The cache bank stores object-level 
image features for each class. A vision-
conditioned masked language prediction 
strategy, as introduced in MQ-Det [42], is 
employed to facilitate training. This approach 
enables the model to learn from vision as the 
new module is integrated into the frozen 
language branch of the foundation model. It 
addresses the learning inertia issue caused by 
the frozen detector, which prevents the model 
from aligning regions with text features 
without visual cues. Specifically, the strategy 
randomly masks text tokens at a certain ratio, 
allowing corresponding vision queries to 
make independent predictions, thereby 
incorporating sufficient visual information. 
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where No denotes the number of objects.
Lgate is gate loss in the CVLI module, written as follows:
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where λ is a hyperparameter; Ng is the number of 
CVLI inserted into the text encoder layers.
We freeze our pre-trained model and perform 
prompt fine-tuning at the few-shot fine-tuning stage, 
processing the data that are available for few-shot 
training. Due to the limited training data (k-shot for 
each class), the cache bank is constructed using all 
objects in the training set, and random select k-shot 
at each iteration.
During the inference phase, when evaluating the 
performance of the trained and fine-tuned models, if 
operating under the fine-tune-free setting, only one 
visual prompt is used per class. In contrast, under the 
k-shot fine-tuning setting, the same visual prompts 
used during fine-tuning are employed for evaluation.

4. Experiments
4.1. Datasets and Evaluation Metrics
4.1.1. Objects365 Dataset
Objects365 dataset [34] is a large-scale object de-
tection dataset with 365 object categories and over 
600K training images. It is also widely used in the 
OVD models [19,23,45,46,51]. We use it to train our 
additional modules.

4.1.2. LVIS and COCO Benchmark
LVIS dataset [8], designed for researching Large 
Vocabulary Instance Segmentation, which involves 
collecting instance segmentation masks for 1203 
entry-level object categories, is also widely used in 
OVD. Evaluation results on a dataset with a large set 
of diverse object categories would be more repre-
sentative in terms of demonstrating generalization 
ability. The LVISv1 set contains 19,809 images, while 
MiniVal is introduced in MDETR [12] with 5000 im-
ages. The MS-COCO (COCO) [22] object detection 
dataset contains 80 common object categories. It is 
also used to verify the fine-tuning free transfer capa-
bilities of the model.

4.1.3. ODinW Benchmark and CoalMine 
Underground Dataset
ODinW Benchmark [17] includes 13 object detection 
datasets, spanning fine-grained species detection, 
drone-view detection, and ego-centric detection. It 
is used to evaluate the model's transferability in di-
verse real-world tasks. Then, we evaluate the model's 
fine-tuning-free performance on 13 ODinW datasets. 
Moreover, we select Pscal VOC from these 13 ODinW 
datasets to ensure a fair comparison with other 
methods for fine-tuning analysis. Following the few-
shot split of different seeds in GLIP, the datasets con-
tain 13,690 training images of 20 categories.
We introduce another real-world underground min-
ing dataset, reorganized based on DsLMF+ [44], to 
evaluate the model's performance in a world con-
taining common and rare specialized categories. 
Specifically, we integrate images and resample im-
ages from all separate sub-datasets to construct a 
new dataset containing 4,824 training images and 
1,342 validation images of 4 categories (coal miner, 
helmet, towline, and hydraulic support guard plate). 
This dataset is more challenging because of the fol-
lowing issues: 1) images have different domain at-
tributes even under the same category, as shown in 
Figure 6, and also have issues such as blurriness, 
darkness, and exposure; 2) the small object issue; 
and 3) new terminologies. Therefore, we use these 
two datasets to demonstrate the few-shot transfer-
ability of our model.

Figure 6 
Images comparison between pre-trained Objects365 dataset 
and downstream fine-tuning sub-DsLMF+ dataset.  

 

4.1.4. Evaluation Metrics 
We use the COCO AP (IoU = 0.50: 0.95) when 
conducting fine-tuning-free experiments. 
Moreover, we employ the mAP50 (IoU = 0.50) 
metrics for fine-tuning experiments to 
evaluate our algorithms, which can 
demonstrate the fluctuation among different 
seeds more clearly. 

4.2. Implementation Details 
We train the model on the Object365 training 
dataset during pre-training for only one epoch 
using 4 A40 GPUs, with a batch size of 16 and 8 
for the -T and -L models respectively. We use a 
base learning rate of 1×10-5  for the language 
backbone and query branch, 5×10-3  for gated 
learning, and 1×10-4  for all other parameters. 
The learning rate decreases by 0.1 at 95% of the 
total training steps.  

At the fine-tuning stage, where the pre-trained 
model is transferred to other datasets, we first 
conduct OVD under a fine-tuning-free setting 
on MiniVal and COCO, directly demonstrating 
the model's generalization. Then, we performed 
prompt tuning [16] concerning deployment 
efficiency, involving tuning the least parameters 
for the best performance. We train the model 
with a learning rate of 0.05, batch size of 4, and 
weight decay of 0.25. The visual prompts are 
extracted from the few/full-shot training set. 

4.3. Fine-tuning Free Transfer on COCO 
and LVIS 
4.3.1. Experimental Results 
We evaluate the model's transferability to 
common categories on the COCO val2017 
dataset. Under the zero-shot domain transfer 
setting, we evaluate models modified from 
GLIP-T and GLIP-L. Results are presented in 
Table 1, column 4, where strong zero-shot 
performance is achieved.

Table 1 

Fine-tuning free performance on MiniVal, LVISv1, and COCO val2017. APr / APc / APf indicate the AP values for rare,  

common, frequent categories, respectively. 

Model Backbone Pre-train data 
COCO MiniVal (%) LVISv1 (%) 
AP (%) Apr Apc Apf AP Apr Apc Apf AP 

MDETR RN101 GoldG,RefC - 20.9 24.9 24.3 24.2 7.4 22.7 25 22.5 
MaskRCNN RN101 - - 26.3 34 33.9 33.3 - - - - 
SuperRFS RN50 - - - - - - 12.3 24.3 32.4 25.4 
DyHead-T Swin-T O365 43.6  - - - - - - - - 
GLIP-T (C) Swin-T O365,GoldG 46.7  17.7  19.5  31.0  24.9  7.5  11.6  26.1  16.5  
GLIP-T Swin-T O365,GoldG,CC4M 46.5  20.8  21.4  31.0  26.0  10.1  12.5  25.5  17.2  
G-DINO-T Swin-T O365,GoldG,Cap4M 48.4  18.1  23.3  32.7  27.4  - - - - 
Ours-T Swin-T O365 46.5  23.9  27.0  35.0  30.6  16.3  18.6  30.6  22.9  
GLIP-L Swin-L FourODs,GoldG,Cap24M 49.8  28.2  34.3  41.5  37.3  17.1  23.3  35.4  26.9  
Ours-L Swin-L O365 51.0  32.0  37.2  44.1  40.0  27.8  31.9  41.6  35.0  

 

Moreover, we evaluate our pre-trained 
model's ability to detect rare and diverse 
objects on LVIS at zero-shot settings. We 
report performance on MiniVal and the full 
validation set v1.0. Results are presented in 
zero-shot domain transfer to MiniVal and 
LVISv1 without model fine-tuning. Results in 
Table 1 demonstrate that our model has strong 
transferability to other datasets with less 
training data. Our model also has fewer 

training parameters because we only trained 
the newly added modules which is more 
efficient. Compared to GLIP-T, our model 
obtains +4.6% AP on MiniVal, and +5.7% AP 
on LVISv1. It should be noted, however, that 
there are some categories of LVIS that overlap 
with Object365 and contain all the categories 
of COCO. Our model is trained based on 
frozen GLIP-T/-L, and although it is only 
trained on Object365, the model still preserves 
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4.1.4. Evaluation Metrics
We use the COCO AP (IoU = 0.50: 0.95) when con-
ducting fine-tuning-free experiments. Moreover, we 
employ the mAP50 (IoU = 0.50) metrics for fine-tun-
ing experiments to evaluate our algorithms, which 
can demonstrate the fluctuation among different 
seeds more clearly.

4.2. Implementation Details
We train the model on the Object365 training data-
set during pre-training for only one epoch using 4 
A40 GPUs, with a batch size of 16 and 8 for the -T 
and -L models respectively. We use a base learning 
rate of 1×10-5 for the language backbone and query 
branch, 5×10-3 for gated learning, and 1×10-4 for all 
other parameters. The learning rate decreases by 0.1 
at 95% of the total training steps. 
At the fine-tuning stage, where the pre-trained mod-
el is transferred to other datasets, we first conduct 
OVD under a fine-tuning-free setting on MiniVal and 
COCO, directly demonstrating the model's general-
ization. Then, we performed prompt tuning [16] con-
cerning deployment efficiency, involving tuning the 
least parameters for the best performance. We train 
the model with a learning rate of 0.05, batch size of 
4, and weight decay of 0.25. The visual prompts are 
extracted from the few/full-shot training set.
For the LVIS and Objects365 datasets, which have 

many categories, visual prompts are selected through 
a two-step process: First, categories are selected as 
determined by Cpos+Cneg. Second, the exemplars are 
randomly selected from the cached bank based on 
these categories. The ratio of masked language pre-
diction in the interleave module is set to 0.4.

4.3. Fine-tuning Free Transfer on COCO and 
LVIS
4.3.1. Experimental Results
We evaluate the model's transferability to common 
categories on the COCO val2017 dataset. Under 
the zero-shot domain transfer setting, we evaluate 
models modified from GLIP-T and GLIP-L. Results 
are presented in Table 1, column 4, where strong ze-
ro-shot performance is achieved.
Moreover, we evaluate our pre-trained model's abil-
ity to detect rare and diverse objects on LVIS at ze-
ro-shot settings. We report performance on MiniVal 
and the full validation set v1.0. Results are present-
ed in zero-shot domain transfer to MiniVal and 
LVISv1 without model fine-tuning. Results in Table 
1 demonstrate that our model has strong transfer-
ability to other datasets with less training data. Our 
model also has fewer training parameters because 
we only trained the newly added modules which is 
more efficient. Compared to GLIP-T, our model ob-
tains +4.6% AP on MiniVal, and +5.7% AP on LVISv1. 

Model Backbone Pre-train data
COCO MiniVal (%) LVISv1 (%)

AP (%) Apr Apc Apf AP Apr Apc Apf AP

MDETR RN101 GoldG,RefC - 20.9 24.9 24.3 24.2 7.4 22.7 25 22.5

MaskRCNN RN101 - - 26.3 34 33.9 33.3 - - - -

SuperRFS RN50 - - - - - - 12.3 24.3 32.4 25.4

DyHead-T Swin-T O365 43.6 - - - - - - - -

GLIP-T (C) Swin-T O365,GoldG 46.7 17.7 19.5 31.0 24.9 7.5 11.6 26.1 16.5 

GLIP-T Swin-T O365,GoldG,CC4M 46.5 20.8 21.4 31.0 26.0 10.1 12.5 25.5 17.2 

G-DINO-T Swin-T O365,GoldG,Cap4M 48.4 18.1 23.3 32.7 27.4 - - - -

Ours-T Swin-T O365 46.5 23.9 27.0 35.0 30.6 16.3 18.6 30.6 22.9 

GLIP-L Swin-L FourODs,GoldG,Cap24M 49.8 28.2 34.3 41.5 37.3 17.1 23.3 35.4 26.9 

Ours-L Swin-L O365 51.0 32.0 37.2 44.1 40.0 27.8 31.9 41.6 35.0

Table 1
Fine-tuning free performance on MiniVal, LVISv1, and COCO val2017. APr / APc / APf indicate the AP values for rare,  common, 
frequent categories, respectively.



723Information Technology and Control 2025/2/54

It should be noted, however, that there are some cat-
egories of LVIS that overlap with Object365 and con-
tain all the categories of COCO. Our model is trained 
based on frozen GLIP-T/-L, and although it is only 
trained on Object365, the model still preserves its 
generalizability and achieves a better performance.

4.3.2. Qualitative Analysis
Our model is only fine-tuned on Objects365. 

Model dataset 
size(M)

parameters(M)

Total Trainable

GLIP-(T/L) 5.5/27.5 231.8/430.4 231.8/429.2

Ours-(T/L) 0.7/0.7 277.4/476.1 45.7/45.7

Table 2
Dataset size and parameters comparison.

Model Backbone Pre-train data ODinW13 mAP (%)

MDETR ENB5 GoldG,RefC 25.1 

OWL-ViT ViT L/14(CLIP) O365,VG 40.9 

DetCLIP-T Swin-T O365,GoldG,YFCC1M 43.3 

OmDet ConvNeXt-B COCO,O365,LVIS,PhraseCut 43.6 

GLIP-T Swin-T O365,GoldG,CC4M 41.9

G-DINO-T Swin-T O365,GoldG,Cap4M 49.8 

GLIP-L Swin-L FourODs,GoldG,Cap24M 51.0 

Ours-T Swin-T O365 45.1 

Ours-L Swin-L O365 54.4

Table 3
Fine-tuning free performance on 13 datasets of ODinW.

Table 2 shows the size of the dataset size used for 
different models, the number of model parameters, 
and the number of trainable model parameters. 
Compared to pre-training, fine-tuning only the 
added modules can significantly reduce the train-
ing cost.

4.4. Object Detection in the Wild
4.4.1. Fine-tuning Free Results on 13 ODinW 
Detection Datasets
We further transfer our models to ODinW detection 
datasets by fine-tuning free mode to investigate the 
generalization ability. The Average APs of 13 data-
sets are shown in Table 3. Compared to the GLIP 
(-T/-L) baseline, our method shows performance 
improvements of 45.1 vs. 41.9 and 54.4 vs. 51.0, re-
spectively.

4.4.2. Fine-tuning on ODinW, VOC and CoalMine 
Datasets
We fine-tune our pre-trained model to evaluate its 
transferability to diverse real-world tasks. We select 
Pascal VOC to represent of ODinW because public 
baselines have been established on this dataset. We 
experiment with different amounts of task-specific 
annotated data, from zero-shot to few-shot and to all 
of the data in the training set. We sample the prompt 
image features from training data and perform 
prompt fine-tuning. Similar to the GLIP, we monitor 
the performance on validation and decay the learn-

ing rate by 0.1 when reaching the validation perfor-
mance plateaus. Results are shown in Table 4. Com-
pared to GLIP-T and GLIP-L, our models exhibited 
improved performances except for the 3-shot of the 
large (-L) model. Some commonalities can also be 
found from the Table: performance under 1-shot and 
3-shot settings are worse than zero-shot on GILP-T 
and Ours-T, indicating that when the sample size is 
extremely small, overfitting can easily lead to per-
formance degradation. Moreover, -L models have at 
least 5.0 and 5.2 points improvement over -T models, 
verifying that large models are more powerful.
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We then transfer our model to a real-world coal min-
ing dataset, DsLMF+. This dataset contains the cate-
gories of person (coal miner) and helmet, which ap-
pear in the base classes, and the categories of towline 
and hydraulic support guard plate, which are in the 
novel (unseen) classes. Similarly to the VOC dataset, 
we conduct experiments on the settings of zero-shot, 
few-shot, and full data. Results are shown in Table 5.

the relationships between different visual prompts 
and query images.
In Figure 7, before using the supported image, 'pickup 
truck' and 'limousine' had the same accuracy; 'jeep' 
and 'truck' had the same accuracy when only one dec-
imal place was kept. After using the visual prompts, 
the accuracy of the target is clearly distinguished. 
It can be observed that the confidence predicted by 
GLIP is generally overestimated, and it fails to distin-
guish between classes when their similarity is high. 
In contrast, our method effectively amplifies.
We analyze the effect of different visual prompts on 
the query image of the same class in Figure 8.
We evaluate the detection results with the text prompt 
of all LVIS class names under the LVIS fine-tuning 
free settings. We can see that the result is wrong if we 
evaluate the query image with zero-shot; the results 
in this case are 0.86 accuracy for 'ambulance' com-
pared to 0.82 accuracy for 'fire engine'. With the visu-
al prompts of 'head', 'tail' and 'whole', we could obtain 

Table 4
Results on Pascal VOC, under the settings of fine-tuning free 
eval (zero-shot), few-shot and full data prompt tuning (PT).

VOC
(AP50)

Zero-shot 
(%)

Few-shot (%)
1-shot 3-shot 5-shot 10-shot

Fulldata 
(%)

GLIP-T 70.2 66.5 70.0 71.1 73.9 82.5

Ours-T 72.3 66.9 71.3 72.6 75.3 83.4

GLIP-L 74.6 76.0 79.3 79.7 80.7 86.5

Ours-L 76.7 77.5 78.8 80.8 81.9 87.1

Table 5
Results on CoalMine, under the fine-tuning free eval (zero-
shot) settings, few-shot and full data prompt fine-tuning. 
LP: Linear Probling.

CoalMine
(AP50)

zero- 
shot
(%)

Few-shot (%)
full-data

(%)1- 
shot

3- 
shot

5- 
shot

10-
shot

GLIP-T(LP) 29.9 29.7 30 30.1 33.9 64.6

GLIP-T 29.9 46.8 55.3 56.2 70.6 85.3 

Ours-T 35.1 41.6 58.6 59.6 70.7 88.9 

GLIP-L 28.1 43.2 60.8 59.4 69.7 86.0 

Ours-L 37.4 48.2 65.7 62.0 74.0 90.4

From Tables 4-5, fine-tuning may lead to perfor-
mance degradation in extreme low-shot cases, over-
fitting low shots and undermining the model's abil-
ity. Moreover, more training data available tends to 
get better performance. Finally, large model tends to 
have better performance.

5. Ablation Studies
5.1. Importance of Visual Prompt
We perform experiments with and without visual 
prompts to analyze their impact on performance and 

Figure 7 
Comparing results with and without visual prompts on LVIS 
under settings of fine-tuning free.
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the correct results. However, the 'far' visual prompt 
still gives the wrong result, because of the ambiguity 
caused by small targets at a distance. The cosine sim-
ilarities between the query image and diff erent visual 
prompts are shown in Table 6.

5.3. Performance Steadiness Analysis
Following GLIP [19], Grounding DINO [23], we use 
seed 3, seed 30, and seed 300, which was provided 
on ODinW datasets. The average precision (AP) of 
diff erent categories and standard deviation (STD) 
among diff erent seeds and show the mean AP (mAP) 
of all categories for diff erent shots. The results are 
shown in Figure 9. We use AP50 ('metric (AP50) 
[IoU=0.50|area=all | maxDets=100]') for evaluation. 
In the fi gure, each point represents the average pre-
cision for a specifi c class across three random seeds, 
and the length of the error bar (2×STD) indicates the 
range of performance variation. By comparing Figure 
9(a) with Figure 9(b), we observe that the AP values 
gradually increase, while the corresponding STD val-
ues tend to decrease as the number of shots increases.

Table 6
Cosine similarities between the query image and different 
visual prompts.

Cosine
 Similarity

Support Images

Head Tail Far Whole

Query Image 0.865 0.859 0.388 0.846

5.2. Analysis of the Eff ect of Loss Function
We analyze the impact of the newly added loss func-
tions on model performance in Table 7, using the -T 
model on the Minival dataset. The results verify the 
eff ectiveness of the classifi cation loss function, and 
the model performance is optimal when both are 
used in combination.

Lgate Lcls

Minival (%)

APr APc APf AP

- - 20.8 21.4 31.0 26.0 

- 23.2 26.1 33.8 28.3 

23.9 27.0 35.0 30.6

Table 7
Analysis of the impact of classification loss and gate loss on 
performance.

We sample different training images from CoalM-
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sets, namely seed3, seed30, and seed300. We incre-
mentally expand the samples, e.g., 3-shot contains 
all 1-shot samples, 5-shot contains all 3-shot sam-
ples, and so forth, to compare the model's perfor-
mance under different shots more clearly. We per-
form experiments on fine-tuning free evaluation 
and prompt tuning on the settings of different shots 
with different seeds. Results are shown in Table 8 
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5.3. Performance Steadiness Analysis
Following GLIP [19], Grounding DINO [23], 
we use seed 3, seed 30, and seed 300, which 
was provided on ODinW datasets. The 
average precision (AP) of different categories 
and standard deviation (STD) among different 
seeds and show the mean AP (mAP) of all 
categories for different shots. The results are 
shown in Figure 9. We use AP50 ('metric 
(AP50) [IoU=0.50|area=all | maxDets=100]') 
for evaluation. In the figure, each point 
represents the average precision for a specific 
class across three random seeds, and the 
length of the error bar (2×STD) indicates the 
range of performance variation. By comparing 
Figure 9(a) with Figure 9(b), we observe that 
the AP values gradually increase, while the 
corresponding STD values tend to decrease as 
the number of shots increases.

Figure 9

AP and STD to represent the accuracy and its 
corresponding uncertainty.

(a) 1-shot and 3-shot

(b) 5-shot and 10-shot

We sample different training images from 
CoalMine and constructed three few-shot 
training datasets, namely seed3, seed30, and 
seed300. We incrementally expand the 
samples, e.g., 3-shot contains all 1-shot 
samples, 5-shot contains all 3-shot samples, 
and so forth, to compare the model's 
performance under different shots more 
clearly. We perform experiments on fine-
tuning free evaluation and prompt tuning on 
the settings of different shots with different 
seeds. Results are shown in Table 8 with the 
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categories when directly evaluated without 
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which exhibits greater diversity due to 

different perspectives of the samples as shown 
in Figure 6. Compared to zero-shot inference, 
1-shot fine-tuning degrades the model's 
performance on the person category. A similar 
result is found in CLIP, where zero-shot CLIP 
matches the average performance of a 4-shot 
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on the 'guard plate' vary greatly when using 
different samples because of the visual 
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egories when directly evaluated without fine-tun-
ing, especially on the 'guard plate', which exhibits 
greater diversity due to different perspectives of 
the samples as shown in Figure 6. Compared to 
zero-shot inference, 1-shot fine-tuning degrades 
the model's performance on the person category. 
A similar result is found in CLIP, where zero-shot 
CLIP matches the average performance of a 4-shot 

Few-Shots seeds Person 
(%)

Helmet 
(%)

Towline 
(%)

guard plate 
(%)

AVG 
(%)

Shots AVG 
(%)

0-eval - 57.0 63.8 18.6 0.9 35.1 -

1-shot

seed3 41.7 65.6 49.7 9.5 41.6 

47.2 seed30 55.3 68.5 39.8 20.1 45.9 

seed300 56.1 65.4 57.5 37.6 54.2 

3-shot

seed3 58.4 69.2 61.1 45.4 58.6 

58.1 seed30 62.9 67.8 68.1 25.2 56.0 

seed300 50.4 65.8 62.4 59.9 59.6 

5-shot

seed3 62.1 65.8 64.7 45.8 59.6 

61.7 seed30 61.0 65.2 64.1 41.2 57.9 

seed300 62.8 69.9 70.2 67.3 67.6 

10-shot

seed3 68.1 74.0 67.0 73.9 70.7 

67.2 seed30 67.6 65.3 71.1 42.5 61.6 

seed300 68.0 76.9 72.1 60.0 69.3 

Table 8
Few-shot performance under different seeds on CoalMine dataset.

linear classifier. We found that the AP values on the 
'guard plate' vary greatly when using different sam-
ples because of the visual variability in the images 
at different angles. For example, the plates entirely 
differ at 90 degrees and 0 degrees. In this case, fin-
er-grained classification is needed to divide the im-
ages of different angles into groups to improve the 
performance.

We compare the performance of diff erent catego-
ries among diff erent shots under seed-3 settings 
for CoalMine. As shown in Figure 10, the model has 
poor performance on zero-shot inference settings 
when confronted with novel objects in a specifi c 
domain, with only 0.9% accuracy on the 'hydraulic 
support plate' class despite GLIP's strong general 
object detection capabilities. When fi ne-tuning the 
model with few-shot samples, the more samples that 
are made available will result in better performance. 
From the Figure 10, we can see that the performance 
on the new categories ('towline' and 'hydraulic sup-
port plate') improves rapidly from 0-shot to 10-shot.

5.4. Qualitative Visualization on CoalMine
We visually compare the detection results in the dif-
ferent training datasets as shown in Figure 11. From 
the 0-shot column, it can be seen that the novel class-

Figure 10
Performance of different shots on different categories 
on the CoalMine dataset at seed3. The horizontal line 
indicates the average accuracy across all classes under 
different shot settings.

variability in the images at different angles. 
For example, the plates entirely differ at 90 
degrees and 0 degrees. In this case, finer-

grained classification is needed to divide the 
images of different angles into groups to 
improve the performance.

Table 8

Few-shot performance under different seeds on CoalMine dataset.
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(%)

Helmet
(%)

Towline
(%)

guard plate
(%)

AVG
(%)

Shots AVG
(%)

0-eval - 57.0 63.8 18.6 0.9 35.1 -

1-shot
seed3 41.7 65.6 49.7 9.5 41.6 

47.2 seed30 55.3 68.5 39.8 20.1 45.9 
seed300 56.1 65.4 57.5 37.6 54.2 

3-shot
seed3 58.4 69.2 61.1 45.4 58.6 

58.1 seed30 62.9 67.8 68.1 25.2 56.0 
seed300 50.4 65.8 62.4 59.9 59.6 

5-shot
seed3 62.1 65.8 64.7 45.8 59.6 

61.7 seed30 61.0 65.2 64.1 41.2 57.9 
seed300 62.8 69.9 70.2 67.3 67.6 

10-shot
seed3 68.1 74.0 67.0 73.9 70.7 

67.2 seed30 67.6 65.3 71.1 42.5 61.6 
seed300 68.0 76.9 72.1 60.0 69.3 

We compare the performance of different 
categories among different shots under seed-3 
settings for CoalMine. As shown in Figure 10, 
the model has poor performance on zero-shot 
inference settings when confronted with novel 
objects in a specific domain, with only 0.9% 
accuracy on the 'hydraulic support plate' class 
despite GLIP's strong general object detection 
capabilities. When fine-tuning the model with 
few-shot samples, the more samples that are 
made available will result in better 
performance. From the Figure 10, we can see 
that the performance on the new categories 
('towline' and 'hydraulic support plate') 
improves rapidly from 0-shot to 10-shot.
Figure 10

Performance of different shots on different 
categories on the CoalMine dataset at seed3. The 
horizontal line indicates the average accuracy 
across all classes under different shot settings.

5.4. Qualitative Visualization on CoalMine
We visually compare the detection results in 
the different training datasets as shown in 
Figure 11. From the 0-shot column, it can be 
seen that the novel classes are not detected and 
the person in the third row is also missed. 
Fine-tuning with more shots yields better 
detection results.

Figure 11

Visualization of different shot detection results on the CoalMine dataset.
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es are not detected and the person in the third row is 
also missed. Fine-tuning with more shots yields bet-
ter detection results.

5.5. Inference Time Comparisons
We compared inference time with baselines on 
COCO, CoalMine and VOC datasets under differ-
ent shots setttings. The results are shown in Table 
9. Due to the addition of new modules to the model, 
the inference time has increased along with the im-
provement in performance. 

5.6. VL Attention and Detection 
Generalizability Visualization
We extract the cross-attention weights between visual 
and language from the last VLFuse block of the VL deep 

Figure 11
Visualization of different shot detection results on the CoalMine dataset.  
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to the model, the inference time has increased 
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Table 9 
The inference time comparisons. The unit is seconds per image. 

Datasets Shots GLIP-T Ours-T GLIP-L Ours-L 
COCO ft-free 0.28  0.25  0.30  0.44  

CoalMine 

ft-free 0.28  0.27  0.30  0.44  
1-shot 0.18  0.26  0.31  0.44  

10-shot 0.18  0.26  0.30  0.44  
all-data 0.18  0.28  0.30  0.45  

VOC 

ft-free 0.17  0.20  0.46  0.40  
1-shot 0.17  0.24  0.29  0.37  

10-shot 0.17  0.24  0.29  0.41  
all-data 0.17  0.27  0.29  0.41  

5.6. VL Attention and Detection 
Generalizability Visualization 
We extract the cross-attention weights 
between visual and language from the last 
VLFuse block of the VL deep fusion module 
and compute its gradCAM to illustrate the 
accuracy of VL alignment. We could find the 
corresponding visual gradCAM values of 

tokenized words through the visual mask. We 
average the corresponding gradCAM for a 
word containing multiple sub-word tokens for 
visualization. For example, 'deck chair' is split 
into 'deck' and 'chair.' 'Parasol' is split into 
'para' and '\#\#sol' when tokenized with Bert 
encoder. Then, we average the gradCAM 
values of the corresponding 'deck' and 'chair' 
(or 'para' and '\#\#sol') for visualization. The 
results are shown in Figure 12.

 
Figure 12 

Grad-CAM visualization on the Visual-Language alignment maps corresponding to input captions. 

Datasets Shots GLIP-T Ours-T GLIP-L Ours-L

COCO ft-free 0.28 0.25 0.30 0.44 

CoalMine

ft-free 0.28 0.27 0.30 0.44 

1-shot 0.18 0.26 0.31 0.44 

10-shot 0.18 0.26 0.30 0.44 

all-data 0.18 0.28 0.30 0.45 

VOC

ft-free 0.17 0.20 0.46 0.40 

1-shot 0.17 0.24 0.29 0.37 

10-shot 0.17 0.24 0.29 0.41 

all-data 0.17 0.27 0.29 0.41

Table 9
The inference time comparisons. The unit is seconds 
per image.
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fusion module and compute its gradCAM to illustrate 
the accuracy of VL alignment. We could find the cor-
responding visual gradCAM values of tokenized words 
through the visual mask. We average the correspond-
ing gradCAM for a word containing multiple sub-word 
tokens for visualization. For example, 'deck chair' is 
split into 'deck' and 'chair.' 'Parasol' is split into 'para' 
and '\#\#sol' when tokenized with Bert encoder. Then, 
we average the gradCAM values of the corresponding 
'deck' and 'chair' (or 'para' and '\#\#sol') for visualiza-
tion. The results are shown in Figure 12.
One advantage of language-based detection models is 
that they can take advantage of the flexibility of lan-
guage to detect only the targets of interest from the 

Figure 12
Grad-CAM visualization on the Visual-Language alignment maps corresponding to input captions.  
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can input different captions to detect different 
objects. In general, the datasets that are used to 
train the large model contain a very large 
number of categories, such as the image-text 
pairs used in GLIP-L, which retains 58.4M 
unique noun phrases even after filtering with 
high confidence (>0.5). From the middle one in 

Figure 13, 'sand' and 'sea' were also detected, 
which verifies that the model retained the 
generalizability of the pre-trained foundation 
model. In addition to the concat class names 
used as text input, we also show the results of 
inference when sentences are entered, as 
shown in the last image of Figure 13. Nouns 
are extracted using the NLTK library and then 
detected on test images. 
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6. Discussion and Conclusion 
Text-based queries are introduced in OVD 
methods, allowing users to flexibly input 
descriptive phrases to search for specific 
objects. Building upon a pre-trained OVD 
model, we incorporate a visual prompt branch 
to develop a model that supports both text and 
image queries for a given test image. This 
dual-modality model fully leverages available 
few-shot datasets and improves the 
performance of downstream few-shot object 
detection tasks. However, its performance 
under single-modality input is lower 
compared to when both modalities are used 
simultaneously. Therefore, maintaining high 
performance with dual-modality input while 
enhancing performance in single-modality 
scenarios is one of our future research goals. 
Additionally, due to the large number of 
parameters in OVD models, designing a 

lightweight downstream detector to improve 
inference speed is also an important direction 
for future work.  

In this paper, we implement an efficient open-
set detection model that can leverage both text 
and few of visual prompts as input. It employs 
the frozen pre-trained foundation model by 
plugging in few modules plug-and-play, 
preserving the model's generalizability and 
saving the cost. Visual prompts serve as visual 
cues, enhancing visual information and 
mitigating the limitations of text-only 
prompts, which can be dynamically adjusted 
according to downstream tasks, thereby 
improving the performance of the 
downstream tasks. The model leverages the 
clear visual presentation of specific details and 
the generalizability of text prompts. The 
experimental results show the effective 
transferability of foundation models to 
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user. From Figure 13, we can input different captions 
to detect different objects. In general, the datasets 
that are used to train the large model contain a very 
large number of categories, such as the image-text 
pairs used in GLIP-L, which retains 58.4M unique 
noun phrases even after filtering with high confidence 
(>0.5). From the middle one in Figure 13, 'sand' and 
'sea' were also detected, which verifies that the model 
retained the generalizability of the pre-trained foun-
dation model. In addition to the concat class names 
used as text input, we also show the results of infer-
ence when sentences are entered, as shown in the 
last image of Figure 13. Nouns are extracted using the 
NLTK library and then detected on test images.
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6. Discussion and Conclusion
Text-based queries are introduced in OVD methods, 
allowing users to flexibly input descriptive phras-
es to search for specific objects. Building upon a 
pre-trained OVD model, we incorporate a visual 
prompt branch to develop a model that supports 
both text and image queries for a given test image. 
This dual-modality model fully leverages available 
few-shot datasets and improves the performance 
of downstream few-shot object detection tasks. 
However, its performance under single-modality 
input is lower compared to when both modalities 
are used simultaneously. Therefore, maintaining 
high performance with dual-modality input while 
enhancing performance in single-modality scenar-
ios is one of our future research goals. Additionally, 
due to the large number of parameters in OVD mod-
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COCO http://cocodataset.org/#download
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CoalMine https://pan.baidu.com/s/1nsoEA1MsOxjtUrbVfc9PaQ, extraction code: 1111. The recollected 
and labeled CoalMine dataset is available from Qinghua Yang upon reasonable request.

els, designing a lightweight downstream detector to 
improve inference speed is also an important direc-
tion for future work. 
In this paper, we implement an efficient open-set de-
tection model that can leverage both text and few of 
visual prompts as input. It employs the frozen pre-
trained foundation model by plugging in few mod-
ules plug-and-play, preserving the model's general-
izability and saving the cost. Visual prompts serve as 
visual cues, enhancing visual information and mit-
igating the limitations of text-only prompts, which 
can be dynamically adjusted according to down-
stream tasks, thereby improving the performance 
of the downstream tasks. The model leverages the 
clear visual presentation of specific details and the 
generalizability of text prompts. The experimental 
results show the effective transferability of founda-
tion models to different downstream datasets.

Appendix A

A1. Qualitative Visualization on COCO and LVIS
We visualize some detection results of model(-L) in 
Table A1. In the first row of COCO, our method can 
correct similar objects of misdetect problems in 
GLIP, such as the 'spoon' in the figure. In the second 

row of COCO, both GLIP and our method can correct 
erroneous ground truth annotations. However, some 
of the classes in the validation set are unlabeled (e.g., 
'person' and 'train') due to the unique setup of the 
LVIS dataset. However, the OVOD models can still 
detect these objects. Our model provides better per-
formance results than the detection results on Mini-
Val and LVISv1 with GLIP.
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A2. Qualitative Visualization on VOC
We conduct model(-T) fine-tuning free inference 
and model(-L) full-data fine-tuning visualization 
on the VOC dataset and then the results, as shown 
in Table A2. Similar to Table A1, we still find that 
GLIP mis-detects similar objects, and our model 

can alleviate this problem to obtain more accurate 
detection results. Both GLIP and our model can 
correct some errors in the ground truth, e.g., miss-
ing annotations of 'person' and 'chair' in the second 
row and missing 'chair' and 'potted plant' annota-
tions in the fourth row.

Table A1
Fine-tuning free detection results visualization on COCO Val, MiniVal and LIVSv1.
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A2. Qualitative Visualization on VOC 

We conduct model(-T) fine-tuning free 
inference and model(-L) full-data fine-tuning 
visualization on the VOC dataset and then the 
results, as shown in Table A2. Similar to Table 

A1, we still find that GLIP mis-detects similar 
objects, and our model can alleviate this 
problem to obtain more accurate detection 
results. Both GLIP and our model can correct 
some errors in the ground truth, e.g., missing 
annotations of 'person' and 'chair' in the 
second row and missing 'chair' and 'potted 
plant' annotations in the fourth row. 

 
Table A2 
Comparison of VOC detection results with model(-T) without tuning and model(-L) with full data tuning. 
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