
735Information Technology and Control 2025/2/54

Towards Real-World Power
Grid Scenarios: Video Action
Detection with Cross-scale
Selective Context Aggregation

ITC 2/54
Information Technology
and Control
Vol. 54 / No. 2/ 2025
pp. 735-750
DOI 10.5755/j01.itc.54.2.41005

Towards Real-World Power Grid Scenarios:
Video Action Detection with Cross-scale Selective Context Aggregation

Received 2025/03/27 Accepted after revision 2025/05/19

HOW TO CITE: Meng, L., Yu, S., Luo, S., Li, A. (2025). Towards Real-World Power Grid Scenarios:
Video Action Detection with Cross-scale Selective Context Aggregation. Information Technology
and Control, 54(2), 735-750. https://doi.org/10.5755/j01.itc.54.2.41005

Lingwen Meng*, Siwu Yu, Shasha Luo, Anjun Li
Electric Power Research Institute of Guizhou Power Grid Co. Ltd, Guiyang 450046, China

Corresponding author: mengyao@ncwu.edu.cn

In this study, we propose a single-stage model for video action detection and a real-world action detection
dataset POWER collected from real power operation scenarios. While previous studies have made signif-
icant progress in overall classification and localization performance, they often struggle with the actions
that have short duration, hindering the application of these approaches. To address this, we introduce the
Cross-scale Selective Context Aggregation Network (CSCAN), which focuses on improving the detection of
short actions. This network integrates three key components: 1) a cross-scale feature conduction structure
combined with a tailored alignment mechanism; 2) a selective context aggregation module based on gating
mechanism; and 3) an effective scale-invariant consistency training strategy to enable the model to learn
scale-invariant action representation. We evaluated our method on the self-collected dataset POWER and
on the most widely used action detection benchmarks THUMOS14 and ActivityNet v1.3. The extensive re-
sults show that our model outperforms other approaches, especially in detecting real-world short actions,
demonstrating the effectiveness of our approach.
KEYWORDS: Action Detection, Deep Learning, Video Understanding.

1. Introduction
Image-based Object Detection (OD) has been wide-
ly applied in diverse scenarios [11], [13]. However,
in power grid operation scenes, significant envi-

ronmental interference and complex relationships
among multiple targets make traditional OD tech-
niques are no longer sufficient to support the com-

Information Technology and Control 2025/2/54736

pliance audits of complex grid operations. There-
fore, the importance of Temporal Action Detection
(TAD) based on consecutive video frames is growing
increasingly signifi cant. TAD aims to identify and
localize human actions in untrimmed videos by as-
signing semantic labels and precise temporal bound-
aries (start and end points) to each action instance.
In our collected POWER dataset, action durations
are highly dispersed, as an example showing in Fig-
ure 1. Similar issues also exist in public datasets. Ex-
periments show that detecting short actions is often
more challenging even with the powerful TAD model
ActionFormer [44]. When we experimented with var-
ious baselines, we found that models which capture
context information more completely tend to perform
better in detecting short actions. Take several models
with similar structures as examples: TemporalMaxer
[30], ActionFormer [44], and ActionMamba [4]. Their
key backbone modules use max-pooling, local atten-
tion, and selective state space model (DB-Mamba [6],
a bi-directional recurrent structure) for context mod-
eling, respectively. Clearly, in terms of the complete-
ness of context information, ActionMamba [4] per-
forms the best, followed by ActionFormer [44], and
TemporalMaxer [30] performs the worst, as shown in
the Figure 2. The experimental results correspond to
their respective performances.
This phenomenon has inspired us to further enrich
the modeling of context. We attempted to conduct
context modeling from a broader perspective, where
shallower network layers can also obtain processed
contextual information from deeper layers, as shown
in the right of Figure 2. This is refl ected in the back

propagation of features from deeper to shallower
network layers. Based on this idea, we proposed the
Cross-scale Selective Context Aggregation Network
(CSCAN), which incorporates three key components:
_ First, a cross-scale feature conduction structure

named Top-Down Pathway (TDP) combined
with a tailored alignment mechanism in section
3.3. Overall, TDP is a macroscopic structure,
where features from upper layers are gradually
integrated into lower layers. This involves
an alignment mechanism to align features of
diff erent temporal sizes.

_ Second, a selective context fusion module based on
gating mechanism, Cross-scale Selective Fusion
(CSF), in section 3.4. Other reference fusion
methods often employ direct addition [17], [20]
or layer-level weights [43] on cross-scale features,
whereas we go a step further by using a point-to-
point level gating mechanism to control feature
fusion across diff erent scales.

_ Third, we use scale consistency training to promote
model learning scale-invariant representation in
section 3.6. This part introduces controlled scale
perturbations to the input data during training
through Gaussian sampling of scaling factors. This
forces the model to learn scale-invariant features,
reducing its bias towards detecting actions of
specifi c durations. The scaling is applied to both
the input features and corresponding labels,
ensuring consistency throughout the model.

In addition, we introduce the POWER dataset, which
comprises 430 hours of video footage captured from

Figure 1
An example from dataset POWER. In this video, four types of actions occur, as illustrated in the legend. Among these
four actions, the longest one is "Put Grounding Rod" (indicated by the green segment), while the shortest is "Verification"
(indicated by the blue segment).

In our collected POWER dataset, action durations
are highly dispersed, as an example showing in

Figure 1. Similar issues also exist in public
datasets. Experiments

Figure 1

An example from dataset POWER. In this video, four types of actions occur, as illustrated in the legend. Among these
four actions, the longest one is "Put Grounding Rod" (indicated by the green segment), while the shortest is "Verification"
(indicated by the blue segment).

Figure 2

show that detecting short actions is often more
challenging even with the powerful TAD model
ActionFormer [44]. When we experimented with
various baselines, we found that models which
capture context information more completely tend
to perform better in detecting short actions. Take
several models with similar structures as examples:
TemporalMaxer [30], ActionFormer [44], and
ActionMamba [4]. Their key backbone modules use
max-pooling, local attention, and selective state
space model (DB-Mamba [6], a bi-directional
recurrent structure) for context modeling,
respectively. Clearly, in terms of the completeness
of context information, ActionMamba [4] performs

the best, followed by ActionFormer [44], and
TemporalMaxer [30] performs the worst, as
shown in the Figure 2. The experimental
results correspond to their respective
performances.

737Information Technology and Control 2025/2/54

Figure 2
The difference of context modeling between our method and other TAD methods. The blue squares represent the features we
are currently focusing on, while the orange squares indicate the sources of information for the blue squares. In "Max Pooling,"
the colors are only white and dark brown, which means that the information only includes the most salient part of the features.
In "Local Attention," it is different; the information being passed is a weighted sum of features within a limited time interval
from the lower layer. In "Selective State Space," the information being passed includes all possible information from the past and
future, which has been causally modeled. In our method, we extend this modeling process to the upper-level features.

In our collected POWER dataset, action durations
are highly dispersed, as an example showing in

Figure 1. Similar issues also exist in public
datasets. Experiments

Figure 1

An example from dataset POWER. In this video, four types of actions occur, as illustrated in the legend. Among these
four actions, the longest one is "Put Grounding Rod" (indicated by the green segment), while the shortest is "Verification"
(indicated by the blue segment).

Figure 2

show that detecting short actions is often more
challenging even with the powerful TAD model
ActionFormer [44]. When we experimented with
various baselines, we found that models which
capture context information more completely tend
to perform better in detecting short actions. Take
several models with similar structures as examples:
TemporalMaxer [30], ActionFormer [44], and
ActionMamba [4]. Their key backbone modules use
max-pooling, local attention, and selective state
space model (DB-Mamba [6], a bi-directional
recurrent structure) for context modeling,
respectively. Clearly, in terms of the completeness
of context information, ActionMamba [4] performs

the best, followed by ActionFormer [44], and
TemporalMaxer [30] performs the worst, as
shown in the Figure 2. The experimental
results correspond to their respective
performances.

real-world scenarios of power grid operations. All
2011 videos are meticulously annotated. Tests of our
model on this dataset demonstrate its capability to
eff ectively address the issue of insuffi cient detection
performance for short actions in real scenarios.
Our model has also undergone extensive testing on
the public datasets THUMOS14 [14] and ActivityNet
v1.3 [12], where it outperformed previous state-of-
the-art models under various experimental settings.

2. Related Work
2.1 Temporal Action Detection
Temporal Action Detection (TAD) methods, as out-
lined in [33], are typically categorized into two-stage
and single-stage approaches. Two-stage methods,
such as those described in [2][18][41], initially gen-
erate candidate action proposals and subsequently
refi ne these proposals through boundary regres-
sion and action classifi cation. For instance, BMN
[18] introduces a boundary-matching mechanism to

produce fl exible and variable-length proposals with
reasonable confi dence scores. TCA-Net [3] enhanc-
es proposal quality by aggregating "local and global"
temporal contexts and refi ning boundaries progres-
sively. ContextLoc [49] models temporal features
from local, global, and inter-proposal perspectives,
while VSGN [46] leverages graph neural networks to
capture cross-scale relationships by training videos
and their rescaled counterparts. Proposals can be
generated using fi xed anchors of single or multiple
sizes [39], [40] or through direct boundary regres-
sion [37], [27]. Despite their elaborate fusion mech-
anisms, two-stage frameworks often suff er from
complex designs and error propagation in proposal
generation. In contrast, single-stage methods [2],
[9] directly predict temporal boundaries and action
categories for each instance. Innovations in this cat-
egory include AFSD [16], which introduces bound-
ary pooling to highlight salient features, and TadTR
[23] and TallFormer [5], which incorporate trans-
formers for improved performance. Anchor-free
models like ActionFormer [44] and TriDet [29] have
demonstrated surprising performance in TAD tasks.

Information Technology and Control 2025/2/54738

Notably, ActionMamba [4] replaces the transformer
block in ActionFormer [44] with a decomposed bidi-
rectional Mamba block, achieving high mAP scores
on TAD benchmark datasets.

2.2 Feature Aggregation in Image Task

Feature aggregation involves consolidating feature
maps produced by the backbone network into a uni-
fied feature vector that represents a target. Basic
techniques include max pooling and mean pooling.
R-MAC [31] extracts feature vectors by focusing on re-
gions with maximum activation, identifying the most
salient areas within an image. FPN [17] constructs a
top-down architecture with lateral connections to
capture high level semantic features across all scales.
PANet [20] enhances this approach by incorporating
a bottom-up path aggregation mechanism, facilitating
the transmission of low-level information to high-
er levels. NASFPN [10] employs neural architecture
search to identify an efficient FPN structure. FPT [45]
integrates transformers [32] to aggregate information
across different layers and transform features within
the current layer. CARAFE [34] serves as a lightweight

and efficient upsampling operator capable of aggregat-
ing information from large receptive fields. DRFPN
[25] uses attention mechanisms to adaptively merge
features both channel-wise and level-wise. SCPNet
[7] proposes a method for aggregating local features
through feature splicing and constructing a corre-
sponding loss function for learning. AFPN [43] intro-
duces an asymptotic feature aggregation approach for
image segmentation. Despite these advancements in
image tasks, few studies have explored the applica-
tion of feature aggregation techniques in TAD tasks.
Therefore, our research proposes a novel method that
combines feature aggregation with TAD techniques.

3. Model
3.1 Preliminary
When provided with an untrimmed video, the pri-
mary objective of TAD is to predict a set of action
instances. Each action can be denoted as Ψ ={c, ts,

te}, denoting the action category, start time, and end
time, respectively.

Figure 3
The pipeline of CSCAN. First, video frames are extracted by a pre-trained model to obtain raw features. Then, after
conversion by the feature projection module, the features are transformed into a low-dimensional subspace suitable for TAD
tasks. Subsequently, after a feature pyramid structure, we obtain a group of feature maps at different scales. After applying
our proposed structures, Top-Down Pathway (TDP) and Cross-scale Selective Fusion (CSF) to these feature maps, each layer
of features will integrate information from other layers. By collecting all the features and feeding them into the classification
and localization modules, we obtain the final predictions.

across different layers and transform features
within the current layer. CARAFE [34] serves as a

lightweight and efficient upsampling
operator capable of

Figure 3

The pipeline of CSCAN. First, video frames are extracted by a pre-trained model to obtain raw features. Then, after
conversion by the feature projection module, the features are transformed into a low-dimensional subspace suitable
for TAD tasks. Subsequently, after a feature pyramid structure, we obtain a group of feature maps at different scales.
After applying our proposed structures, Top-Down Pathway (TDP) and Cross-scale Selective Fusion (CSF) to these
feature maps, each layer of features will integrate information from other layers. By collecting all the features and feeding
them into the classification and localization modules, we obtain the final predictions.

aggregating information from large receptive
fields. DRFPN [25] uses attention mechanisms to
adaptively merge features both channel-wise and
level-wise. SCPNet [7] proposes a method for
aggregating local features through feature splicing
and constructing a corresponding loss function for
learning. AFPN [43] introduces an asymptotic
feature aggregation approach for image
segmentation. Despite these advancements in
image tasks, few studies have explored the
application of feature aggregation techniques in
TAD tasks. Therefore, our research proposes a
novel method that combines feature aggregation
with TAD techniques.

3. Model
3.1 Preliminary
When provided with an untrimmed video, the
primary objective of TAD is to predict a set of action
instances. Each action can be denoted as

{ , , }s ec t t , denoting the action category, start
time, and end time, respectively.

Training end-to-end with video data incurs

computational costs that are thousands of
times higher than those of corresponding
image tasks. Therefore, for computational
efficiency and fair comparison with other
baselines [44], [4], [29], [15], we use I3D [1] and
InternVideo [38] features pre-extracted by
other researchers for public datasets
THUMOS14 [14] and ActivityNet v1.3 [12].
For our collected dataset POWER, we use
VideoMAEv2-b [35] for feature extraction.
The extracted feature corresponding to each
video is EC Tx , where EC denotes the
number of output channels of video encoder
and T represents the temporal dimension and
is proportional to the video length.

Following ActionMamba [4], we construct a
basic feature pyramid consisting of L layers of
DB-Mamba block [4], where pooling or other
downsampling methods are applied. DB-
Mamba is an advanced module designed to
enhance the performance and efficiency of
data processing and feature extraction,
combining the strengths of bidirectional
processing with a unique dual-layer
architecture to capture both short-term and
long-term dependencies effectively.

739Information Technology and Control 2025/2/54

Training end-to-end with video data incurs compu-
tational costs that are thousands of times higher than
those of corresponding image tasks. Therefore, for
computational effi ciency and fair comparison with
other baselines [44], [4], [29], [15], we use I3D [1] and
InternVideo [38] features pre-extracted by other re-
searchers for public datasets THUMOS14 [14] and
ActivityNet v1.3 [12]. For our collected dataset POW-
ER, we use VideoMAEv2-b [35] for feature extraction.
The extracted feature corresponding to each video is
x∊RCE×T, where CE denotes the number of output chan-
nels of video encoder and T represents the temporal di-
mension and is proportional to the video length.
Following ActionMamba [4], we construct a basic
feature pyramid consisting of L layers of DB-Mam-
ba block [4], where pooling or other downsampling
methods are applied. DB-Mamba is an advanced
module designed to enhance the performance and
effi ciency of data processing and feature extraction,
combining the strengths of bidirectional processing
with a unique dual-layer architecture to capture both
short-term and long-term dependencies eff ectively.

3.2 Overview
The entire pipeline is briefl y illustrated in Figure 3
and its caption.

3.3 Top-Down Path
To address multi-scale action challenges, various
solutions have been proposed. Models like Action-
Former [44], TemporalMaxer [30], and TriDet [29]
use feature pyramids with layerwise downsampling
to expand high-level feature receptive fi elds. Yet,
this design only aggregates context from small to
large scales, and the contextual information of the
lowerlevel features is limited. To address this issue,
we propose a feature conduction structure named
Top-Down Pathway (TDP) which leverages coarse-
grained features’ rich contextual information to
complement fi ne-grained features, as shown in Fig-
ure 4. Unlike methods in object detection [17], [20],
our approach to contextual fusion involves bidirec-
tional information exchange each time and we de-
sign the new alignment mechanism.
The input for the TDP is the output of the feature
pyramid mentioned above, i.e., Zfpn. We will gradu-
ally incorporate the output information from each
upper layer into the input of the next lower layer.
Initially, there are two primary challenges: the first
is how to align features of different sizes, and the
second is how to fuse these aligned features. This
subsection tackles the first challenge, and next sub-
section address the second challenge. Alignment

Figure 4
The structure of TDP and implementation of the alignment mechanism. First, the outputs of all layers are fused from top
to bottom until the lowest layer. Each fusion occurs between adjacent layers. The fusion process is completed by the CSF
module shown in Figure 5.

3.2 Overview
The entire pipeline is briefly illustrated in Figure

3 and its caption.

Figure 4

The structure of TDP and implementation of the alignment mechanism. First, the outputs of all layers are fused from
top to bottom until the lowest layer. Each fusion occurs between adjacent layers. The fusion process is completed by the
CSF module shown in Figure 5.

3.3 Top-Down Path
To address multi-scale action challenges, various
solutions have been proposed. Models like
ActionFormer [44], TemporalMaxer [30], and
TriDet [29] use feature pyramids with layerwise
downsampling to expand high-level feature
receptive fields. Yet, this design only aggregates
context from small to large scales, and the
contextual information of the lowerlevel features is
limited. To address this issue, we propose a feature
conduction structure named Top-Down Pathway
(TDP) which leverages coarse-grained features’
rich contextual information to complement fine-
grained features, as shown in Figure 4. Unlike
methods in object detection [17], [20], our approach
to contextual fusion involves bidirectional
information exchange each time and we design the
new alignment mechanism.

Upward alignment involves reducing the size
of the feature map. We achieve this by using
MaxPooling to capture the main information
from the lower layer, combined with residual
information obtained from a stacked two-
layer convolutional network. Suppose we
have feature ()

0
lz from layer l with length T(l),

and we need to align the feature map ()
0
lz with

its counterpart from higher layer with length
T(l)/2. The subscript denotes the (1)

0
lz number

of times of fusion. The feature transformation
can be described as follows:

(1) () ()
0 0 2 1 0MAXPooling() (())l l l lz z z , (1)

where the kernel size of MaxPooling(·) is 3,
with a stride of 2. 1(·) denotes using depth-
wise convolution to conduct channel
transformation, and 2(·) represents the use of
a kernel size of 3 and a step size of 2 for 1d-
convolution to perform temporal
transformation.

Aligning down means to enlarge the feature
map, which requires aligning from the feature
map ()

0
lz to (1)

0
lz . Also, use a layer of depth-

wise Conv, (·), to obtain the residual
transformation, add it to ()

0
lz , and then use

nearest neighbor interpolation to resize the
feature map:

Information Technology and Control 2025/2/54740

can be categorized into upward alignment and
downward alignment.
Upward alignment involves reducing the size of the
feature map. We achieve this by using MaxPooling
to capture the main information from the lower lay-
er, combined with residual information obtained
from a stacked two-layer convolutional network.
Suppose we have feature z0

(l) from layer l with length
T (l), and we need to align the feature map z0

(l) with its
counterpart from higher layer with length T (l)/2. The
subscript denotes the z0

(l+1) number of times of fu-
sion. The feature transformation can be described
as follows:

3.2 Overview
The entire pipeline is briefly illustrated in Figure

3 and its caption.

Figure 4

The structure of TDP and implementation of the alignment mechanism. First, the outputs of all layers are fused from
top to bottom until the lowest layer. Each fusion occurs between adjacent layers. The fusion process is completed by the
CSF module shown in Figure 5.

3.3 Top-Down Path
To address multi-scale action challenges, various
solutions have been proposed. Models like
ActionFormer [44], TemporalMaxer [30], and
TriDet [29] use feature pyramids with layerwise
downsampling to expand high-level feature
receptive fields. Yet, this design only aggregates
context from small to large scales, and the
contextual information of the lowerlevel features is
limited. To address this issue, we propose a feature
conduction structure named Top-Down Pathway
(TDP) which leverages coarse-grained features’
rich contextual information to complement fine-
grained features, as shown in Figure 4. Unlike
methods in object detection [17], [20], our approach
to contextual fusion involves bidirectional
information exchange each time and we design the
new alignment mechanism.

Upward alignment involves reducing the size
of the feature map. We achieve this by using
MaxPooling to capture the main information
from the lower layer, combined with residual
information obtained from a stacked two-
layer convolutional network. Suppose we
have feature ()

0
lz from layer l with length T(l),

and we need to align the feature map ()
0
lz with

its counterpart from higher layer with length
T(l)/2. The subscript denotes the (1)

0
lz number

of times of fusion. The feature transformation
can be described as follows:

(1) () ()
0 0 2 1 0MAXPooling() (())l l l lz z z , (1)

where the kernel size of MaxPooling(·) is 3,
with a stride of 2. 1(·) denotes using depth-
wise convolution to conduct channel
transformation, and 2(·) represents the use of
a kernel size of 3 and a step size of 2 for 1d-
convolution to perform temporal
transformation.

Aligning down means to enlarge the feature
map, which requires aligning from the feature
map ()

0
lz to (1)

0
lz . Also, use a layer of depth-

wise Conv, (·), to obtain the residual
transformation, add it to ()

0
lz , and then use

nearest neighbor interpolation to resize the
feature map:

, (1)

where the kernel size of MaxPooling(·) is 3, with a
stride of 2. φ1(·) denotes using depth-wise convolu-
tion to conduct channel transformation, and φ2(·)
represents the use of a kernel size of 3 and a step
size of 2 for 1d-convolution to perform temporal
transformation.
Aligning down means to enlarge the feature map,
which requires aligning from the feature map z0

(l) to

z0
(l–1). Also, use a layer of depth-wise Conv, φ1(·), to

obtain the residufl transformation, add it to z0
(l), and

then use nearest neighbor interpolation to resize the
feature map:

(1) () (1)
0 0 0Interpolate(())l l l lz z z , (2)

where the source and target temporal size of the

interpolation operation are T(l), T(l-1),
respectively.

Figure 5

Illustration of CSF. CSF involves aggregating and fusing features from different scales, utilizing an cross attention
mechanism with a residual structure to effectively integrate information from various levels while preserving the
original information.

Subsequently, as shown in Figure 4, the
contextually aggregated features obtained
from the ()

0
lz and (1)

0
lz are denoted as ()

1
lz

and (1)
1
lz , where the subscripts represent the

number of times the feature has been
aggregated. Then, the aggregation of (1)

1
lz and

(2)
0
lz results in (1)

2
lz and (2)

1
lz . The concrete

implementation of cross-scale features is
introduced in the next subsection.

The primary innovation in our TDP lies in the
feature fusion process, where we have
introduced a cross-layer attention mechanism
which is introduced in the following
subsection. This mechanism allows the
network to dynamically weigh the importance
of features from different layers, thereby
enhancing the representation capability and
adaptability of the model. By incorporating
cross-layer attention, TDP can better capture
both local and global contextual information,
leading to improved performance in tasks
such as object detection and segmentation.

3.4 Cross-Scale Selective Fusion
For feature fusion, simple methods like
stitching or pointwise addition have

drawbacks: stitching increases computational
cost greatly, while pointwise addition
introduces noise. ASFF [39] proposed adaptive
fusion method to reduce channels to 8-16 to
express hierarchical importance, but still
retains noise. We propose that a residual-
based attention structure is better suited, as

The input of CSF is a couple of scale-aligned
features (1) ()

0 0{ , }l lz z from adjacent levels, for
example, where the subscript denotes the
number of fusion experiences. See the example
in Figure 5, to obtain (1)

1
lz and ()

1
lz , we first

need to convert (1)
0
lz and ()

0
lz into queries:

() () (1) (1)
0 0 0 0,l l l l

q qQ z Q zW W . (3)

Then, we need to obtain (1)
0
l lz and (1)

0
l lz

using Equations (1)-(2), respectively to get
their corresponding keys and values:

, (2)

where the source and target temporal size of the in-
terpolation operation are T (l), T (l-1), respectively.
Subsequently, as shown in Figure 4, the contextu-
ally aggregated features obtained from the z0

(l) and
z0

(l–1)are denoted as z1
(l) and z1

(l–1), where the subscripts
represent the number of times the feature has been
aggregated. Then, the aggregation of z1

(l–1) and z0
(l–2) re-

sults in z2
(l–1) and z1

(l–2). The concrete implementation
of cross-scale features is introduced in the next sub-
section.
The primary innovation in our TDP lies in the fea-
ture fusion process, where we have introduced a
cross-layer attention mechanism which is intro-
duced in the following subsection. This mechanism
allows the network to dynamically weigh the im-
portance of features from diff erent layers, thereby
enhancing the representation capability and adapt-

Figure 5
Illustration of CSF. CSF involves aggregating and fusing features from different scales, utilizing an cross attention mechanism
with a residual structure to effectively integrate information from various levels while preserving the original information.

(1) () (1)
0 0 0Interpolate(())l l l lz z z , (2)

where the source and target temporal size of the

interpolation operation are T(l), T(l-1),
respectively.

Figure 5

Illustration of CSF. CSF involves aggregating and fusing features from different scales, utilizing an cross attention
mechanism with a residual structure to effectively integrate information from various levels while preserving the
original information.

Subsequently, as shown in Figure 4, the
contextually aggregated features obtained
from the ()

0
lz and (1)

0
lz are denoted as ()

1
lz

and (1)
1
lz , where the subscripts represent the

number of times the feature has been
aggregated. Then, the aggregation of (1)

1
lz and

(2)
0
lz results in (1)

2
lz and (2)

1
lz . The concrete

implementation of cross-scale features is
introduced in the next subsection.

The primary innovation in our TDP lies in the
feature fusion process, where we have
introduced a cross-layer attention mechanism
which is introduced in the following
subsection. This mechanism allows the
network to dynamically weigh the importance
of features from different layers, thereby
enhancing the representation capability and
adaptability of the model. By incorporating
cross-layer attention, TDP can better capture
both local and global contextual information,
leading to improved performance in tasks
such as object detection and segmentation.

3.4 Cross-Scale Selective Fusion
For feature fusion, simple methods like
stitching or pointwise addition have

drawbacks: stitching increases computational
cost greatly, while pointwise addition
introduces noise. ASFF [39] proposed adaptive
fusion method to reduce channels to 8-16 to
express hierarchical importance, but still
retains noise. We propose that a residual-
based attention structure is better suited, as

The input of CSF is a couple of scale-aligned
features (1) ()

0 0{ , }l lz z from adjacent levels, for
example, where the subscript denotes the
number of fusion experiences. See the example
in Figure 5, to obtain (1)

1
lz and ()

1
lz , we first

need to convert (1)
0
lz and ()

0
lz into queries:

() () (1) (1)
0 0 0 0,l l l l

q qQ z Q zW W . (3)

Then, we need to obtain (1)
0
l lz and (1)

0
l lz

using Equations (1)-(2), respectively to get
their corresponding keys and values:

741Information Technology and Control 2025/2/54

ability of the model. By incorporating cross-layer
attention, TDP can better capture both local and
global contextual information, leading to improved
performance in tasks such as object detection and
segmentation.

3.4 Cross-Scale Selective Fusion
For feature fusion, simple methods like stitch-
ing or pointwise addition have drawbacks: stitch-
ing increases computational cost greatly, while
pointwise addition introduces noise. ASFF [39]
proposed adaptive fusion method to reduce chan-
nels to 8-16 to express hierarchical importance,
but still retains noise. We propose that a residu-
al-based attention structure is better suited, as re-
siduals preserve original features and make model
easy to converge, while attention module selective-
ly filters effective information. Thus, we designed
the Cross-scale Selective Fusion (CSF) for multi-
scale context aggregation.
The input of CSF is a couple of scale-aligned features
{z0

(l+1), z0
(l)} from adjacent levels, for example, where

the subscript denotes the number of fusion experi-
ences. See the example in Figure 5, to obtain z1

(l+1) and
z1

(l), we first need to convert z0
(l+1) and z0

(l) into queries:

(1) () (1)
0 0 0Interpolate(())l l l lz z z , (2)

where the source and target temporal size of the

interpolation operation are T(l), T(l-1),
respectively.

Figure 5

Illustration of CSF. CSF involves aggregating and fusing features from different scales, utilizing an cross attention
mechanism with a residual structure to effectively integrate information from various levels while preserving the
original information.

Subsequently, as shown in Figure 4, the
contextually aggregated features obtained
from the ()

0
lz and (1)

0
lz are denoted as ()

1
lz

and (1)
1
lz , where the subscripts represent the

number of times the feature has been
aggregated. Then, the aggregation of (1)

1
lz and

(2)
0
lz results in (1)

2
lz and (2)

1
lz . The concrete

implementation of cross-scale features is
introduced in the next subsection.

The primary innovation in our TDP lies in the
feature fusion process, where we have
introduced a cross-layer attention mechanism
which is introduced in the following
subsection. This mechanism allows the
network to dynamically weigh the importance
of features from different layers, thereby
enhancing the representation capability and
adaptability of the model. By incorporating
cross-layer attention, TDP can better capture
both local and global contextual information,
leading to improved performance in tasks
such as object detection and segmentation.

3.4 Cross-Scale Selective Fusion
For feature fusion, simple methods like
stitching or pointwise addition have

drawbacks: stitching increases computational
cost greatly, while pointwise addition
introduces noise. ASFF [39] proposed adaptive
fusion method to reduce channels to 8-16 to
express hierarchical importance, but still
retains noise. We propose that a residual-
based attention structure is better suited, as

The input of CSF is a couple of scale-aligned
features (1) ()

0 0{ , }l lz z from adjacent levels, for
example, where the subscript denotes the
number of fusion experiences. See the example
in Figure 5, to obtain (1)

1
lz and ()

1
lz , we first

need to convert (1)
0
lz and ()

0
lz into queries:

() () (1) (1)
0 0 0 0,l l l l

q qQ z Q zW W . (3)

Then, we need to obtain (1)
0
l lz and (1)

0
l lz

using Equations (1)-(2), respectively to get
their corresponding keys and values:

. (3)

Then, we need to obtain z0
(l→l+1) and z0

(l+1→l) using Equa-
tions (1)-(2), respectively to get their corresponding
keys and values:

(1) (1) (1) (1)
0 0 0 0
(1) (1) (1) (1)
0 0 0 0

, ,

, ,

l l l l l l l l
k v

l l l l l l l l
k v

K z V z

K z V z

W W

W W
 (4)

where , ,q k vW W W are trainable weights shared
across layers. Then, we use these tensors to
calculate the attention to further obtain
residual information which is denoted as z :

(1) () (1) (1)
0 0 0 0

(1) () (1) (1)
0 0 0 0

softmax(() /) ,

softmax(() /) ,

l l l l l T l l

l l l l l T l l

d

d

z Q K V

z Q K V

(5)

where d is the number of channels of these
attention components. We add these outputs
to ()

0
lz and (1)

0
lz to get ()

1
lz and ()

1 1
lz that

integrates information from another layers:
() () (1) (1) (1) (1)
1 0 0 1 0 0, .l l l l l l l lz z z z z z= + = + (6)

By repeating this operation from the top layer
down to the bottom layer, we ultimately
obtain a set of features

(1) (2) (3) (1) ()
1 2 2 2 1{ , , ,..., , }L Lz z z z z , using capital letter

Z to abbreviate it as
(1) (2) (3) ()

fpn { , , ,..., }Lz Z Z Z Z .

3.5 Detection Heads and Postprocess
The detection head consists of a classification
head and a localization head. The first part of
the classification head and localization head is
composed of stacked one-dimensional
convolutions, where we denote the operation
of one convolution layer as ()f :

() ReLU(LayerNorm(dwConv()))f z z , (7)

where the input of the detection head is fpnz
with time dimensions of 1{ , / 2,..., / 2 }LT T T ,
respectively. By concatenating them in time
series, we obtain predict

sumC T×z , where

0
/ 2L l

sum l
T T and C is the channel number.
According to the settings of the feature
extraction process, after simple calculations,
we can obtain the time scale of the feature at
each position in the video sum1 TP and the
size of the receptive field corresponding to the
current position sum2 TS .

For classification, we use two layers of 1d-conv
to obtain the classification score:

C K 2 1 predictdwConv (f (f ())),c cc z (8)

where ,sumK Tc × and K is the number of
action classes to be classified.

For localization, we use a similar operation,

but ultimately obtain the relative position
within the segment with a dimension of 2:

C 2 2 1 predictdwConv (f (f ())),r rr z (9)

where 2 ,sumTr × . The first row of elements
represents the relative start position of the
action within the segment, and the second row
of elements represents the relative end
position of the action within the segment.
Organize r , P and S , we can obtain sumT
absolute time coordinates b rP S . These
boundary predictions with their classification
scores are postprocessed using SoftNMS to
obtain the final N prediction results.

3.6 Scale Consistency Training
In order to better capture the scale-invariant
features in actions, we designed a temporal
scaling augmentation strategy based on
Gaussian sampling to assist our training.
Specifically, we first perform random
Gaussian sampling to obtain scaling factors
around 0. Subsequently, we map these factors
to an exponential space to obtain scaling ratios.
This process ensures that the scaling ratios are
symmetrically distributed in the logarithmic
space and within a reasonable range. By doing
so, controlled yet diverse scale perturbations
are introduced to the input data:

2 , ~ (0,),N (10)

where denotes the scaling ratio, refers to a
random number that follows a normal
distribution and is a parameter set to 1 by
default.

Before projection, we scale the temporal
dimension of EC T×x with probability p,
which ensures that we can learn the
information of the original samples.

' Interpolate ()T Tx x . (11)

At the same time, we also perform time-series
scaling on the training labels, and the
corresponding labels are changed from

{ , , }s ec t t to { , , }s ec t t . Through time-series

scaling, the time-series dimensions of all
subsequent features will change.

Our overall loss consists of classification loss,
localization loss, and scale loss. The
classification loss clsL uses focal loss [40], the
localization loss regL uses dioU [41], and the
design of the single prediction for the scale loss
is as follows:

(4)

where Wq, Wk, Wv are trainable weights shared across
layers. Then, we use these tensors to calculate the at-
tention to further obtain residual information which
is denoted as Δz:

(1) (1) (1) (1)
0 0 0 0
(1) (1) (1) (1)
0 0 0 0

, ,

, ,

l l l l l l l l
k v

l l l l l l l l
k v

K z V z

K z V z

W W

W W
 (4)

where , ,q k vW W W are trainable weights shared
across layers. Then, we use these tensors to
calculate the attention to further obtain
residual information which is denoted as z :

(1) () (1) (1)
0 0 0 0

(1) () (1) (1)
0 0 0 0

softmax(() /) ,

softmax(() /) ,

l l l l l T l l

l l l l l T l l

d

d

z Q K V

z Q K V

(5)

where d is the number of channels of these
attention components. We add these outputs
to ()

0
lz and (1)

0
lz to get ()

1
lz and ()

1 1
lz that

integrates information from another layers:
() () (1) (1) (1) (1)
1 0 0 1 0 0, .l l l l l l l lz z z z z z= + = + (6)

By repeating this operation from the top layer
down to the bottom layer, we ultimately
obtain a set of features

(1) (2) (3) (1) ()
1 2 2 2 1{ , , ,..., , }L Lz z z z z , using capital letter

Z to abbreviate it as
(1) (2) (3) ()

fpn { , , ,..., }Lz Z Z Z Z .

3.5 Detection Heads and Postprocess
The detection head consists of a classification
head and a localization head. The first part of
the classification head and localization head is
composed of stacked one-dimensional
convolutions, where we denote the operation
of one convolution layer as ()f :

() ReLU(LayerNorm(dwConv()))f z z , (7)

where the input of the detection head is fpnz
with time dimensions of 1{ , / 2,..., / 2 }LT T T ,
respectively. By concatenating them in time
series, we obtain predict

sumC T×z , where

0
/ 2L l

sum l
T T and C is the channel number.
According to the settings of the feature
extraction process, after simple calculations,
we can obtain the time scale of the feature at
each position in the video sum1 TP and the
size of the receptive field corresponding to the
current position sum2 TS .

For classification, we use two layers of 1d-conv
to obtain the classification score:

C K 2 1 predictdwConv (f (f ())),c cc z (8)

where ,sumK Tc × and K is the number of
action classes to be classified.

For localization, we use a similar operation,

but ultimately obtain the relative position
within the segment with a dimension of 2:

C 2 2 1 predictdwConv (f (f ())),r rr z (9)

where 2 ,sumTr × . The first row of elements
represents the relative start position of the
action within the segment, and the second row
of elements represents the relative end
position of the action within the segment.
Organize r , P and S , we can obtain sumT
absolute time coordinates b rP S . These
boundary predictions with their classification
scores are postprocessed using SoftNMS to
obtain the final N prediction results.

3.6 Scale Consistency Training
In order to better capture the scale-invariant
features in actions, we designed a temporal
scaling augmentation strategy based on
Gaussian sampling to assist our training.
Specifically, we first perform random
Gaussian sampling to obtain scaling factors
around 0. Subsequently, we map these factors
to an exponential space to obtain scaling ratios.
This process ensures that the scaling ratios are
symmetrically distributed in the logarithmic
space and within a reasonable range. By doing
so, controlled yet diverse scale perturbations
are introduced to the input data:

2 , ~ (0,),N (10)

where denotes the scaling ratio, refers to a
random number that follows a normal
distribution and is a parameter set to 1 by
default.

Before projection, we scale the temporal
dimension of EC T×x with probability p,
which ensures that we can learn the
information of the original samples.

' Interpolate ()T Tx x . (11)

At the same time, we also perform time-series
scaling on the training labels, and the
corresponding labels are changed from

{ , , }s ec t t to { , , }s ec t t . Through time-series

scaling, the time-series dimensions of all
subsequent features will change.

Our overall loss consists of classification loss,
localization loss, and scale loss. The
classification loss clsL uses focal loss [40], the
localization loss regL uses dioU [41], and the
design of the single prediction for the scale loss
is as follows:

(5)

where d is the number of channels of these attention
components. We add these outputs to z0

(l) and z0
(l+1) to

get z1
(l) and z (l)

1+1 that integrates information from an-
other layers:

(1) (1) (1) (1)
0 0 0 0
(1) (1) (1) (1)
0 0 0 0

, ,

, ,

l l l l l l l l
k v

l l l l l l l l
k v

K z V z

K z V z

W W

W W
 (4)

where , ,q k vW W W are trainable weights shared
across layers. Then, we use these tensors to
calculate the attention to further obtain
residual information which is denoted as z :

(1) () (1) (1)
0 0 0 0

(1) () (1) (1)
0 0 0 0

softmax(() /) ,

softmax(() /) ,

l l l l l T l l

l l l l l T l l

d

d

z Q K V

z Q K V

(5)

where d is the number of channels of these
attention components. We add these outputs
to ()

0
lz and (1)

0
lz to get ()

1
lz and ()

1 1
lz that

integrates information from another layers:
() () (1) (1) (1) (1)
1 0 0 1 0 0, .l l l l l l l lz z z z z z= + = + (6)

By repeating this operation from the top layer
down to the bottom layer, we ultimately
obtain a set of features

(1) (2) (3) (1) ()
1 2 2 2 1{ , , ,..., , }L Lz z z z z , using capital letter

Z to abbreviate it as
(1) (2) (3) ()

fpn { , , ,..., }Lz Z Z Z Z .

3.5 Detection Heads and Postprocess
The detection head consists of a classification
head and a localization head. The first part of
the classification head and localization head is
composed of stacked one-dimensional
convolutions, where we denote the operation
of one convolution layer as ()f :

() ReLU(LayerNorm(dwConv()))f z z , (7)

where the input of the detection head is fpnz
with time dimensions of 1{ , / 2,..., / 2 }LT T T ,
respectively. By concatenating them in time
series, we obtain predict

sumC T×z , where

0
/ 2L l

sum l
T T and C is the channel number.
According to the settings of the feature
extraction process, after simple calculations,
we can obtain the time scale of the feature at
each position in the video sum1 TP and the
size of the receptive field corresponding to the
current position sum2 TS .

For classification, we use two layers of 1d-conv
to obtain the classification score:

C K 2 1 predictdwConv (f (f ())),c cc z (8)

where ,sumK Tc × and K is the number of
action classes to be classified.

For localization, we use a similar operation,

but ultimately obtain the relative position
within the segment with a dimension of 2:

C 2 2 1 predictdwConv (f (f ())),r rr z (9)

where 2 ,sumTr × . The first row of elements
represents the relative start position of the
action within the segment, and the second row
of elements represents the relative end
position of the action within the segment.
Organize r , P and S , we can obtain sumT
absolute time coordinates b rP S . These
boundary predictions with their classification
scores are postprocessed using SoftNMS to
obtain the final N prediction results.

3.6 Scale Consistency Training
In order to better capture the scale-invariant
features in actions, we designed a temporal
scaling augmentation strategy based on
Gaussian sampling to assist our training.
Specifically, we first perform random
Gaussian sampling to obtain scaling factors
around 0. Subsequently, we map these factors
to an exponential space to obtain scaling ratios.
This process ensures that the scaling ratios are
symmetrically distributed in the logarithmic
space and within a reasonable range. By doing
so, controlled yet diverse scale perturbations
are introduced to the input data:

2 , ~ (0,),N (10)

where denotes the scaling ratio, refers to a
random number that follows a normal
distribution and is a parameter set to 1 by
default.

Before projection, we scale the temporal
dimension of EC T×x with probability p,
which ensures that we can learn the
information of the original samples.

' Interpolate ()T Tx x . (11)

At the same time, we also perform time-series
scaling on the training labels, and the
corresponding labels are changed from

{ , , }s ec t t to { , , }s ec t t . Through time-series

scaling, the time-series dimensions of all
subsequent features will change.

Our overall loss consists of classification loss,
localization loss, and scale loss. The
classification loss clsL uses focal loss [40], the
localization loss regL uses dioU [41], and the
design of the single prediction for the scale loss
is as follows:

. (6)

By repeating this operation from the top layer down
to the bottom layer, we ultimately obtain a set of fea-
tures

(1) (1) (1) (1)
0 0 0 0
(1) (1) (1) (1)
0 0 0 0

, ,

, ,

l l l l l l l l
k v

l l l l l l l l
k v

K z V z

K z V z

W W

W W
 (4)

where , ,q k vW W W are trainable weights shared
across layers. Then, we use these tensors to
calculate the attention to further obtain
residual information which is denoted as z :

(1) () (1) (1)
0 0 0 0

(1) () (1) (1)
0 0 0 0

softmax(() /) ,

softmax(() /) ,

l l l l l T l l

l l l l l T l l

d

d

z Q K V

z Q K V

(5)

where d is the number of channels of these
attention components. We add these outputs
to ()

0
lz and (1)

0
lz to get ()

1
lz and ()

1 1
lz that

integrates information from another layers:
() () (1) (1) (1) (1)
1 0 0 1 0 0, .l l l l l l l lz z z z z z= + = + (6)

By repeating this operation from the top layer
down to the bottom layer, we ultimately
obtain a set of features

(1) (2) (3) (1) ()
1 2 2 2 1{ , , ,..., , }L Lz z z z z , using capital letter

Z to abbreviate it as
(1) (2) (3) ()

fpn { , , ,..., }Lz Z Z Z Z .

3.5 Detection Heads and Postprocess
The detection head consists of a classification
head and a localization head. The first part of
the classification head and localization head is
composed of stacked one-dimensional
convolutions, where we denote the operation
of one convolution layer as ()f :

() ReLU(LayerNorm(dwConv()))f z z , (7)

where the input of the detection head is fpnz
with time dimensions of 1{ , / 2,..., / 2 }LT T T ,
respectively. By concatenating them in time
series, we obtain predict

sumC T×z , where

0
/ 2L l

sum l
T T and C is the channel number.
According to the settings of the feature
extraction process, after simple calculations,
we can obtain the time scale of the feature at
each position in the video sum1 TP and the
size of the receptive field corresponding to the
current position sum2 TS .

For classification, we use two layers of 1d-conv
to obtain the classification score:

C K 2 1 predictdwConv (f (f ())),c cc z (8)

where ,sumK Tc × and K is the number of
action classes to be classified.

For localization, we use a similar operation,

but ultimately obtain the relative position
within the segment with a dimension of 2:

C 2 2 1 predictdwConv (f (f ())),r rr z (9)

where 2 ,sumTr × . The first row of elements
represents the relative start position of the
action within the segment, and the second row
of elements represents the relative end
position of the action within the segment.
Organize r , P and S , we can obtain sumT
absolute time coordinates b rP S . These
boundary predictions with their classification
scores are postprocessed using SoftNMS to
obtain the final N prediction results.

3.6 Scale Consistency Training
In order to better capture the scale-invariant
features in actions, we designed a temporal
scaling augmentation strategy based on
Gaussian sampling to assist our training.
Specifically, we first perform random
Gaussian sampling to obtain scaling factors
around 0. Subsequently, we map these factors
to an exponential space to obtain scaling ratios.
This process ensures that the scaling ratios are
symmetrically distributed in the logarithmic
space and within a reasonable range. By doing
so, controlled yet diverse scale perturbations
are introduced to the input data:

2 , ~ (0,),N (10)

where denotes the scaling ratio, refers to a
random number that follows a normal
distribution and is a parameter set to 1 by
default.

Before projection, we scale the temporal
dimension of EC T×x with probability p,
which ensures that we can learn the
information of the original samples.

' Interpolate ()T Tx x . (11)

At the same time, we also perform time-series
scaling on the training labels, and the
corresponding labels are changed from

{ , , }s ec t t to { , , }s ec t t . Through time-series

scaling, the time-series dimensions of all
subsequent features will change.

Our overall loss consists of classification loss,
localization loss, and scale loss. The
classification loss clsL uses focal loss [40], the
localization loss regL uses dioU [41], and the
design of the single prediction for the scale loss
is as follows:

, using capital letter Z
to abbreviate it as

(1) (1) (1) (1)
0 0 0 0
(1) (1) (1) (1)
0 0 0 0

, ,

, ,

l l l l l l l l
k v

l l l l l l l l
k v

K z V z

K z V z

W W

W W
 (4)

where , ,q k vW W W are trainable weights shared
across layers. Then, we use these tensors to
calculate the attention to further obtain
residual information which is denoted as z :

(1) () (1) (1)
0 0 0 0

(1) () (1) (1)
0 0 0 0

softmax(() /) ,

softmax(() /) ,

l l l l l T l l

l l l l l T l l

d

d

z Q K V

z Q K V

(5)

where d is the number of channels of these
attention components. We add these outputs
to ()

0
lz and (1)

0
lz to get ()

1
lz and ()

1 1
lz that

integrates information from another layers:
() () (1) (1) (1) (1)
1 0 0 1 0 0, .l l l l l l l lz z z z z z= + = + (6)

By repeating this operation from the top layer
down to the bottom layer, we ultimately
obtain a set of features

(1) (2) (3) (1) ()
1 2 2 2 1{ , , ,..., , }L Lz z z z z , using capital letter

Z to abbreviate it as
(1) (2) (3) ()

fpn { , , ,..., }Lz Z Z Z Z .

3.5 Detection Heads and Postprocess
The detection head consists of a classification
head and a localization head. The first part of
the classification head and localization head is
composed of stacked one-dimensional
convolutions, where we denote the operation
of one convolution layer as ()f :

() ReLU(LayerNorm(dwConv()))f z z , (7)

where the input of the detection head is fpnz
with time dimensions of 1{ , / 2,..., / 2 }LT T T ,
respectively. By concatenating them in time
series, we obtain predict

sumC T×z , where

0
/ 2L l

sum l
T T and C is the channel number.
According to the settings of the feature
extraction process, after simple calculations,
we can obtain the time scale of the feature at
each position in the video sum1 TP and the
size of the receptive field corresponding to the
current position sum2 TS .

For classification, we use two layers of 1d-conv
to obtain the classification score:

C K 2 1 predictdwConv (f (f ())),c cc z (8)

where ,sumK Tc × and K is the number of
action classes to be classified.

For localization, we use a similar operation,

but ultimately obtain the relative position
within the segment with a dimension of 2:

C 2 2 1 predictdwConv (f (f ())),r rr z (9)

where 2 ,sumTr × . The first row of elements
represents the relative start position of the
action within the segment, and the second row
of elements represents the relative end
position of the action within the segment.
Organize r , P and S , we can obtain sumT
absolute time coordinates b rP S . These
boundary predictions with their classification
scores are postprocessed using SoftNMS to
obtain the final N prediction results.

3.6 Scale Consistency Training
In order to better capture the scale-invariant
features in actions, we designed a temporal
scaling augmentation strategy based on
Gaussian sampling to assist our training.
Specifically, we first perform random
Gaussian sampling to obtain scaling factors
around 0. Subsequently, we map these factors
to an exponential space to obtain scaling ratios.
This process ensures that the scaling ratios are
symmetrically distributed in the logarithmic
space and within a reasonable range. By doing
so, controlled yet diverse scale perturbations
are introduced to the input data:

2 , ~ (0,),N (10)

where denotes the scaling ratio, refers to a
random number that follows a normal
distribution and is a parameter set to 1 by
default.

Before projection, we scale the temporal
dimension of EC T×x with probability p,
which ensures that we can learn the
information of the original samples.

' Interpolate ()T Tx x . (11)

At the same time, we also perform time-series
scaling on the training labels, and the
corresponding labels are changed from

{ , , }s ec t t to { , , }s ec t t . Through time-series

scaling, the time-series dimensions of all
subsequent features will change.

Our overall loss consists of classification loss,
localization loss, and scale loss. The
classification loss clsL uses focal loss [40], the
localization loss regL uses dioU [41], and the
design of the single prediction for the scale loss
is as follows:

.

3.5 Detection Heads and Postprocess
The detection head consists of a classification
head and a localization head. The first part of the
classification head and localization head is com-
posed of stacked one-dimensional convolutions,
where we denote the operation of one convolution
layer as f (·):

(1) (1) (1) (1)
0 0 0 0
(1) (1) (1) (1)
0 0 0 0

, ,

, ,

l l l l l l l l
k v

l l l l l l l l
k v

K z V z

K z V z

W W

W W
 (4)

where , ,q k vW W W are trainable weights shared
across layers. Then, we use these tensors to
calculate the attention to further obtain
residual information which is denoted as z :

(1) () (1) (1)
0 0 0 0

(1) () (1) (1)
0 0 0 0

softmax(() /) ,

softmax(() /) ,

l l l l l T l l

l l l l l T l l

d

d

z Q K V

z Q K V

(5)

where d is the number of channels of these
attention components. We add these outputs
to ()

0
lz and (1)

0
lz to get ()

1
lz and ()

1 1
lz that

integrates information from another layers:
() () (1) (1) (1) (1)
1 0 0 1 0 0, .l l l l l l l lz z z z z z= + = + (6)

By repeating this operation from the top layer
down to the bottom layer, we ultimately
obtain a set of features

(1) (2) (3) (1) ()
1 2 2 2 1{ , , ,..., , }L Lz z z z z , using capital letter

Z to abbreviate it as
(1) (2) (3) ()

fpn { , , ,..., }Lz Z Z Z Z .

3.5 Detection Heads and Postprocess
The detection head consists of a classification
head and a localization head. The first part of
the classification head and localization head is
composed of stacked one-dimensional
convolutions, where we denote the operation
of one convolution layer as ()f :

() ReLU(LayerNorm(dwConv()))f z z , (7)

where the input of the detection head is fpnz
with time dimensions of 1{ , / 2,..., / 2 }LT T T ,
respectively. By concatenating them in time
series, we obtain predict

sumC T×z , where

0
/ 2L l

sum l
T T and C is the channel number.
According to the settings of the feature
extraction process, after simple calculations,
we can obtain the time scale of the feature at
each position in the video sum1 TP and the
size of the receptive field corresponding to the
current position sum2 TS .

For classification, we use two layers of 1d-conv
to obtain the classification score:

C K 2 1 predictdwConv (f (f ())),c cc z (8)

where ,sumK Tc × and K is the number of
action classes to be classified.

For localization, we use a similar operation,

but ultimately obtain the relative position
within the segment with a dimension of 2:

C 2 2 1 predictdwConv (f (f ())),r rr z (9)

where 2 ,sumTr × . The first row of elements
represents the relative start position of the
action within the segment, and the second row
of elements represents the relative end
position of the action within the segment.
Organize r , P and S , we can obtain sumT
absolute time coordinates b rP S . These
boundary predictions with their classification
scores are postprocessed using SoftNMS to
obtain the final N prediction results.

3.6 Scale Consistency Training
In order to better capture the scale-invariant
features in actions, we designed a temporal
scaling augmentation strategy based on
Gaussian sampling to assist our training.
Specifically, we first perform random
Gaussian sampling to obtain scaling factors
around 0. Subsequently, we map these factors
to an exponential space to obtain scaling ratios.
This process ensures that the scaling ratios are
symmetrically distributed in the logarithmic
space and within a reasonable range. By doing
so, controlled yet diverse scale perturbations
are introduced to the input data:

2 , ~ (0,),N (10)

where denotes the scaling ratio, refers to a
random number that follows a normal
distribution and is a parameter set to 1 by
default.

Before projection, we scale the temporal
dimension of EC T×x with probability p,
which ensures that we can learn the
information of the original samples.

' Interpolate ()T Tx x . (11)

At the same time, we also perform time-series
scaling on the training labels, and the
corresponding labels are changed from

{ , , }s ec t t to { , , }s ec t t . Through time-series

scaling, the time-series dimensions of all
subsequent features will change.

Our overall loss consists of classification loss,
localization loss, and scale loss. The
classification loss clsL uses focal loss [40], the
localization loss regL uses dioU [41], and the
design of the single prediction for the scale loss
is as follows:

, (7)

where the input of the detection head is zfpn with
time dimensions of {T, T / 2,...,T / 2L–1}, respective-
ly. By concatenating them in time series, we obtain
zpredict ∊ RC×Tsum, where

(1) (1) (1) (1)
0 0 0 0
(1) (1) (1) (1)
0 0 0 0

, ,

, ,

l l l l l l l l
k v

l l l l l l l l
k v

K z V z

K z V z

W W

W W
 (4)

where , ,q k vW W W are trainable weights shared
across layers. Then, we use these tensors to
calculate the attention to further obtain
residual information which is denoted as z :

(1) () (1) (1)
0 0 0 0

(1) () (1) (1)
0 0 0 0

softmax(() /) ,

softmax(() /) ,

l l l l l T l l

l l l l l T l l

d

d

z Q K V

z Q K V

(5)

where d is the number of channels of these
attention components. We add these outputs
to ()

0
lz and (1)

0
lz to get ()

1
lz and ()

1 1
lz that

integrates information from another layers:
() () (1) (1) (1) (1)
1 0 0 1 0 0, .l l l l l l l lz z z z z z= + = + (6)

By repeating this operation from the top layer
down to the bottom layer, we ultimately
obtain a set of features

(1) (2) (3) (1) ()
1 2 2 2 1{ , , ,..., , }L Lz z z z z , using capital letter

Z to abbreviate it as
(1) (2) (3) ()

fpn { , , ,..., }Lz Z Z Z Z .

3.5 Detection Heads and Postprocess
The detection head consists of a classification
head and a localization head. The first part of
the classification head and localization head is
composed of stacked one-dimensional
convolutions, where we denote the operation
of one convolution layer as ()f :

() ReLU(LayerNorm(dwConv()))f z z , (7)

where the input of the detection head is fpnz
with time dimensions of 1{ , / 2,..., / 2 }LT T T ,
respectively. By concatenating them in time
series, we obtain predict

sumC T×z , where

0
/ 2L l

sum l
T T and C is the channel number.
According to the settings of the feature
extraction process, after simple calculations,
we can obtain the time scale of the feature at
each position in the video sum1 TP and the
size of the receptive field corresponding to the
current position sum2 TS .

For classification, we use two layers of 1d-conv
to obtain the classification score:

C K 2 1 predictdwConv (f (f ())),c cc z (8)

where ,sumK Tc × and K is the number of
action classes to be classified.

For localization, we use a similar operation,

but ultimately obtain the relative position
within the segment with a dimension of 2:

C 2 2 1 predictdwConv (f (f ())),r rr z (9)

where 2 ,sumTr × . The first row of elements
represents the relative start position of the
action within the segment, and the second row
of elements represents the relative end
position of the action within the segment.
Organize r , P and S , we can obtain sumT
absolute time coordinates b rP S . These
boundary predictions with their classification
scores are postprocessed using SoftNMS to
obtain the final N prediction results.

3.6 Scale Consistency Training
In order to better capture the scale-invariant
features in actions, we designed a temporal
scaling augmentation strategy based on
Gaussian sampling to assist our training.
Specifically, we first perform random
Gaussian sampling to obtain scaling factors
around 0. Subsequently, we map these factors
to an exponential space to obtain scaling ratios.
This process ensures that the scaling ratios are
symmetrically distributed in the logarithmic
space and within a reasonable range. By doing
so, controlled yet diverse scale perturbations
are introduced to the input data:

2 , ~ (0,),N (10)

where denotes the scaling ratio, refers to a
random number that follows a normal
distribution and is a parameter set to 1 by
default.

Before projection, we scale the temporal
dimension of EC T×x with probability p,
which ensures that we can learn the
information of the original samples.

' Interpolate ()T Tx x . (11)

At the same time, we also perform time-series
scaling on the training labels, and the
corresponding labels are changed from

{ , , }s ec t t to { , , }s ec t t . Through time-series

scaling, the time-series dimensions of all
subsequent features will change.

Our overall loss consists of classification loss,
localization loss, and scale loss. The
classification loss clsL uses focal loss [40], the
localization loss regL uses dioU [41], and the
design of the single prediction for the scale loss
is as follows:

 and C is the
channel number. According to the settings of the
feature extraction process, after simple calculations,
we can obtain the time scale of the feature at each
position in the video P ∊ R1×Tsum and the size of the re-
ceptive field corresponding to the current position
S ∊ R2×Tsum.
For classification, we use two layers of 1d-conv to ob-
tain the classification score:

(1) (1) (1) (1)
0 0 0 0
(1) (1) (1) (1)
0 0 0 0

, ,

, ,

l l l l l l l l
k v

l l l l l l l l
k v

K z V z

K z V z

W W

W W
 (4)

where , ,q k vW W W are trainable weights shared
across layers. Then, we use these tensors to
calculate the attention to further obtain
residual information which is denoted as z :

(1) () (1) (1)
0 0 0 0

(1) () (1) (1)
0 0 0 0

softmax(() /) ,

softmax(() /) ,

l l l l l T l l

l l l l l T l l

d

d

z Q K V

z Q K V

(5)

where d is the number of channels of these
attention components. We add these outputs
to ()

0
lz and (1)

0
lz to get ()

1
lz and ()

1 1
lz that

integrates information from another layers:
() () (1) (1) (1) (1)
1 0 0 1 0 0, .l l l l l l l lz z z z z z= + = + (6)

By repeating this operation from the top layer
down to the bottom layer, we ultimately
obtain a set of features

(1) (2) (3) (1) ()
1 2 2 2 1{ , , ,..., , }L Lz z z z z , using capital letter

Z to abbreviate it as
(1) (2) (3) ()

fpn { , , ,..., }Lz Z Z Z Z .

3.5 Detection Heads and Postprocess
The detection head consists of a classification
head and a localization head. The first part of
the classification head and localization head is
composed of stacked one-dimensional
convolutions, where we denote the operation
of one convolution layer as ()f :

() ReLU(LayerNorm(dwConv()))f z z , (7)

where the input of the detection head is fpnz
with time dimensions of 1{ , / 2,..., / 2 }LT T T ,
respectively. By concatenating them in time
series, we obtain predict

sumC T×z , where

0
/ 2L l

sum l
T T and C is the channel number.
According to the settings of the feature
extraction process, after simple calculations,
we can obtain the time scale of the feature at
each position in the video sum1 TP and the
size of the receptive field corresponding to the
current position sum2 TS .

For classification, we use two layers of 1d-conv
to obtain the classification score:

C K 2 1 predictdwConv (f (f ())),c cc z (8)

where ,sumK Tc × and K is the number of
action classes to be classified.

For localization, we use a similar operation,

but ultimately obtain the relative position
within the segment with a dimension of 2:

C 2 2 1 predictdwConv (f (f ())),r rr z (9)

where 2 ,sumTr × . The first row of elements
represents the relative start position of the
action within the segment, and the second row
of elements represents the relative end
position of the action within the segment.
Organize r , P and S , we can obtain sumT
absolute time coordinates b rP S . These
boundary predictions with their classification
scores are postprocessed using SoftNMS to
obtain the final N prediction results.

3.6 Scale Consistency Training
In order to better capture the scale-invariant
features in actions, we designed a temporal
scaling augmentation strategy based on
Gaussian sampling to assist our training.
Specifically, we first perform random
Gaussian sampling to obtain scaling factors
around 0. Subsequently, we map these factors
to an exponential space to obtain scaling ratios.
This process ensures that the scaling ratios are
symmetrically distributed in the logarithmic
space and within a reasonable range. By doing
so, controlled yet diverse scale perturbations
are introduced to the input data:

2 , ~ (0,),N (10)

where denotes the scaling ratio, refers to a
random number that follows a normal
distribution and is a parameter set to 1 by
default.

Before projection, we scale the temporal
dimension of EC T×x with probability p,
which ensures that we can learn the
information of the original samples.

' Interpolate ()T Tx x . (11)

At the same time, we also perform time-series
scaling on the training labels, and the
corresponding labels are changed from

{ , , }s ec t t to { , , }s ec t t . Through time-series

scaling, the time-series dimensions of all
subsequent features will change.

Our overall loss consists of classification loss,
localization loss, and scale loss. The
classification loss clsL uses focal loss [40], the
localization loss regL uses dioU [41], and the
design of the single prediction for the scale loss
is as follows:

, (8)

where

(1) (1) (1) (1)
0 0 0 0
(1) (1) (1) (1)
0 0 0 0

, ,

, ,

l l l l l l l l
k v

l l l l l l l l
k v

K z V z

K z V z

W W

W W
 (4)

where , ,q k vW W W are trainable weights shared
across layers. Then, we use these tensors to
calculate the attention to further obtain
residual information which is denoted as z :

(1) () (1) (1)
0 0 0 0

(1) () (1) (1)
0 0 0 0

softmax(() /) ,

softmax(() /) ,

l l l l l T l l

l l l l l T l l

d

d

z Q K V

z Q K V

(5)

where d is the number of channels of these
attention components. We add these outputs
to ()

0
lz and (1)

0
lz to get ()

1
lz and ()

1 1
lz that

integrates information from another layers:
() () (1) (1) (1) (1)
1 0 0 1 0 0, .l l l l l l l lz z z z z z= + = + (6)

By repeating this operation from the top layer
down to the bottom layer, we ultimately
obtain a set of features

(1) (2) (3) (1) ()
1 2 2 2 1{ , , ,..., , }L Lz z z z z , using capital letter

Z to abbreviate it as
(1) (2) (3) ()

fpn { , , ,..., }Lz Z Z Z Z .

3.5 Detection Heads and Postprocess
The detection head consists of a classification
head and a localization head. The first part of
the classification head and localization head is
composed of stacked one-dimensional
convolutions, where we denote the operation
of one convolution layer as ()f :

() ReLU(LayerNorm(dwConv()))f z z , (7)

where the input of the detection head is fpnz
with time dimensions of 1{ , / 2,..., / 2 }LT T T ,
respectively. By concatenating them in time
series, we obtain predict

sumC T×z , where

0
/ 2L l

sum l
T T and C is the channel number.
According to the settings of the feature
extraction process, after simple calculations,
we can obtain the time scale of the feature at
each position in the video sum1 TP and the
size of the receptive field corresponding to the
current position sum2 TS .

For classification, we use two layers of 1d-conv
to obtain the classification score:

C K 2 1 predictdwConv (f (f ())),c cc z (8)

where ,sumK Tc × and K is the number of
action classes to be classified.

For localization, we use a similar operation,

but ultimately obtain the relative position
within the segment with a dimension of 2:

C 2 2 1 predictdwConv (f (f ())),r rr z (9)

where 2 ,sumTr × . The first row of elements
represents the relative start position of the
action within the segment, and the second row
of elements represents the relative end
position of the action within the segment.
Organize r , P and S , we can obtain sumT
absolute time coordinates b rP S . These
boundary predictions with their classification
scores are postprocessed using SoftNMS to
obtain the final N prediction results.

3.6 Scale Consistency Training
In order to better capture the scale-invariant
features in actions, we designed a temporal
scaling augmentation strategy based on
Gaussian sampling to assist our training.
Specifically, we first perform random
Gaussian sampling to obtain scaling factors
around 0. Subsequently, we map these factors
to an exponential space to obtain scaling ratios.
This process ensures that the scaling ratios are
symmetrically distributed in the logarithmic
space and within a reasonable range. By doing
so, controlled yet diverse scale perturbations
are introduced to the input data:

2 , ~ (0,),N (10)

where denotes the scaling ratio, refers to a
random number that follows a normal
distribution and is a parameter set to 1 by
default.

Before projection, we scale the temporal
dimension of EC T×x with probability p,
which ensures that we can learn the
information of the original samples.

' Interpolate ()T Tx x . (11)

At the same time, we also perform time-series
scaling on the training labels, and the
corresponding labels are changed from

{ , , }s ec t t to { , , }s ec t t . Through time-series

scaling, the time-series dimensions of all
subsequent features will change.

Our overall loss consists of classification loss,
localization loss, and scale loss. The
classification loss clsL uses focal loss [40], the
localization loss regL uses dioU [41], and the
design of the single prediction for the scale loss
is as follows:

 = RK×Tsum, and K is the number of action class-
es to be classified.
For localization, we use a similar operation, but ul-
timately obtain the relative position within the seg-
ment with a dimension of 2:

(1) (1) (1) (1)
0 0 0 0
(1) (1) (1) (1)
0 0 0 0

, ,

, ,

l l l l l l l l
k v

l l l l l l l l
k v

K z V z

K z V z

W W

W W
 (4)

where , ,q k vW W W are trainable weights shared
across layers. Then, we use these tensors to
calculate the attention to further obtain
residual information which is denoted as z :

(1) () (1) (1)
0 0 0 0

(1) () (1) (1)
0 0 0 0

softmax(() /) ,

softmax(() /) ,

l l l l l T l l

l l l l l T l l

d

d

z Q K V

z Q K V

(5)

where d is the number of channels of these
attention components. We add these outputs
to ()

0
lz and (1)

0
lz to get ()

1
lz and ()

1 1
lz that

integrates information from another layers:
() () (1) (1) (1) (1)
1 0 0 1 0 0, .l l l l l l l lz z z z z z= + = + (6)

By repeating this operation from the top layer
down to the bottom layer, we ultimately
obtain a set of features

(1) (2) (3) (1) ()
1 2 2 2 1{ , , ,..., , }L Lz z z z z , using capital letter

Z to abbreviate it as
(1) (2) (3) ()

fpn { , , ,..., }Lz Z Z Z Z .

3.5 Detection Heads and Postprocess
The detection head consists of a classification
head and a localization head. The first part of
the classification head and localization head is
composed of stacked one-dimensional
convolutions, where we denote the operation
of one convolution layer as ()f :

() ReLU(LayerNorm(dwConv()))f z z , (7)

where the input of the detection head is fpnz
with time dimensions of 1{ , / 2,..., / 2 }LT T T ,
respectively. By concatenating them in time
series, we obtain predict

sumC T×z , where

0
/ 2L l

sum l
T T and C is the channel number.
According to the settings of the feature
extraction process, after simple calculations,
we can obtain the time scale of the feature at
each position in the video sum1 TP and the
size of the receptive field corresponding to the
current position sum2 TS .

For classification, we use two layers of 1d-conv
to obtain the classification score:

C K 2 1 predictdwConv (f (f ())),c cc z (8)

where ,sumK Tc × and K is the number of
action classes to be classified.

For localization, we use a similar operation,

but ultimately obtain the relative position
within the segment with a dimension of 2:

C 2 2 1 predictdwConv (f (f ())),r rr z (9)

where 2 ,sumTr × . The first row of elements
represents the relative start position of the
action within the segment, and the second row
of elements represents the relative end
position of the action within the segment.
Organize r , P and S , we can obtain sumT
absolute time coordinates b rP S . These
boundary predictions with their classification
scores are postprocessed using SoftNMS to
obtain the final N prediction results.

3.6 Scale Consistency Training
In order to better capture the scale-invariant
features in actions, we designed a temporal
scaling augmentation strategy based on
Gaussian sampling to assist our training.
Specifically, we first perform random
Gaussian sampling to obtain scaling factors
around 0. Subsequently, we map these factors
to an exponential space to obtain scaling ratios.
This process ensures that the scaling ratios are
symmetrically distributed in the logarithmic
space and within a reasonable range. By doing
so, controlled yet diverse scale perturbations
are introduced to the input data:

2 , ~ (0,),N (10)

where denotes the scaling ratio, refers to a
random number that follows a normal
distribution and is a parameter set to 1 by
default.

Before projection, we scale the temporal
dimension of EC T×x with probability p,
which ensures that we can learn the
information of the original samples.

' Interpolate ()T Tx x . (11)

At the same time, we also perform time-series
scaling on the training labels, and the
corresponding labels are changed from

{ , , }s ec t t to { , , }s ec t t . Through time-series

scaling, the time-series dimensions of all
subsequent features will change.

Our overall loss consists of classification loss,
localization loss, and scale loss. The
classification loss clsL uses focal loss [40], the
localization loss regL uses dioU [41], and the
design of the single prediction for the scale loss
is as follows:

, (9)

where

(1) (1) (1) (1)
0 0 0 0
(1) (1) (1) (1)
0 0 0 0

, ,

, ,

l l l l l l l l
k v

l l l l l l l l
k v

K z V z

K z V z

W W

W W
 (4)

where , ,q k vW W W are trainable weights shared
across layers. Then, we use these tensors to
calculate the attention to further obtain
residual information which is denoted as z :

(1) () (1) (1)
0 0 0 0

(1) () (1) (1)
0 0 0 0

softmax(() /) ,

softmax(() /) ,

l l l l l T l l

l l l l l T l l

d

d

z Q K V

z Q K V

(5)

where d is the number of channels of these
attention components. We add these outputs
to ()

0
lz and (1)

0
lz to get ()

1
lz and ()

1 1
lz that

integrates information from another layers:
() () (1) (1) (1) (1)
1 0 0 1 0 0, .l l l l l l l lz z z z z z= + = + (6)

By repeating this operation from the top layer
down to the bottom layer, we ultimately
obtain a set of features

(1) (2) (3) (1) ()
1 2 2 2 1{ , , ,..., , }L Lz z z z z , using capital letter

Z to abbreviate it as
(1) (2) (3) ()

fpn { , , ,..., }Lz Z Z Z Z .

3.5 Detection Heads and Postprocess
The detection head consists of a classification
head and a localization head. The first part of
the classification head and localization head is
composed of stacked one-dimensional
convolutions, where we denote the operation
of one convolution layer as ()f :

() ReLU(LayerNorm(dwConv()))f z z , (7)

where the input of the detection head is fpnz
with time dimensions of 1{ , / 2,..., / 2 }LT T T ,
respectively. By concatenating them in time
series, we obtain predict

sumC T×z , where

0
/ 2L l

sum l
T T and C is the channel number.
According to the settings of the feature
extraction process, after simple calculations,
we can obtain the time scale of the feature at
each position in the video sum1 TP and the
size of the receptive field corresponding to the
current position sum2 TS .

For classification, we use two layers of 1d-conv
to obtain the classification score:

C K 2 1 predictdwConv (f (f ())),c cc z (8)

where ,sumK Tc × and K is the number of
action classes to be classified.

For localization, we use a similar operation,

but ultimately obtain the relative position
within the segment with a dimension of 2:

C 2 2 1 predictdwConv (f (f ())),r rr z (9)

where 2 ,sumTr × . The first row of elements
represents the relative start position of the
action within the segment, and the second row
of elements represents the relative end
position of the action within the segment.
Organize r , P and S , we can obtain sumT
absolute time coordinates b rP S . These
boundary predictions with their classification
scores are postprocessed using SoftNMS to
obtain the final N prediction results.

3.6 Scale Consistency Training
In order to better capture the scale-invariant
features in actions, we designed a temporal
scaling augmentation strategy based on
Gaussian sampling to assist our training.
Specifically, we first perform random
Gaussian sampling to obtain scaling factors
around 0. Subsequently, we map these factors
to an exponential space to obtain scaling ratios.
This process ensures that the scaling ratios are
symmetrically distributed in the logarithmic
space and within a reasonable range. By doing
so, controlled yet diverse scale perturbations
are introduced to the input data:

2 , ~ (0,),N (10)

where denotes the scaling ratio, refers to a
random number that follows a normal
distribution and is a parameter set to 1 by
default.

Before projection, we scale the temporal
dimension of EC T×x with probability p,
which ensures that we can learn the
information of the original samples.

' Interpolate ()T Tx x . (11)

At the same time, we also perform time-series
scaling on the training labels, and the
corresponding labels are changed from

{ , , }s ec t t to { , , }s ec t t . Through time-series

scaling, the time-series dimensions of all
subsequent features will change.

Our overall loss consists of classification loss,
localization loss, and scale loss. The
classification loss clsL uses focal loss [40], the
localization loss regL uses dioU [41], and the
design of the single prediction for the scale loss
is as follows:

 = RK×Tsum. The first row of elements rep-
resents the relative start position of the action with-
in the segment, and the second row of elements rep-
resents the relative end position of the action within
the segment. Organize

(1) (1) (1) (1)
0 0 0 0
(1) (1) (1) (1)
0 0 0 0

, ,

, ,

l l l l l l l l
k v

l l l l l l l l
k v

K z V z

K z V z

W W

W W
 (4)

where , ,q k vW W W are trainable weights shared
across layers. Then, we use these tensors to
calculate the attention to further obtain
residual information which is denoted as z :

(1) () (1) (1)
0 0 0 0

(1) () (1) (1)
0 0 0 0

softmax(() /) ,

softmax(() /) ,

l l l l l T l l

l l l l l T l l

d

d

z Q K V

z Q K V

(5)

where d is the number of channels of these
attention components. We add these outputs
to ()

0
lz and (1)

0
lz to get ()

1
lz and ()

1 1
lz that

integrates information from another layers:
() () (1) (1) (1) (1)
1 0 0 1 0 0, .l l l l l l l lz z z z z z= + = + (6)

By repeating this operation from the top layer
down to the bottom layer, we ultimately
obtain a set of features

(1) (2) (3) (1) ()
1 2 2 2 1{ , , ,..., , }L Lz z z z z , using capital letter

Z to abbreviate it as
(1) (2) (3) ()

fpn { , , ,..., }Lz Z Z Z Z .

3.5 Detection Heads and Postprocess
The detection head consists of a classification
head and a localization head. The first part of
the classification head and localization head is
composed of stacked one-dimensional
convolutions, where we denote the operation
of one convolution layer as ()f :

() ReLU(LayerNorm(dwConv()))f z z , (7)

where the input of the detection head is fpnz
with time dimensions of 1{ , / 2,..., / 2 }LT T T ,
respectively. By concatenating them in time
series, we obtain predict

sumC T×z , where

0
/ 2L l

sum l
T T and C is the channel number.
According to the settings of the feature
extraction process, after simple calculations,
we can obtain the time scale of the feature at
each position in the video sum1 TP and the
size of the receptive field corresponding to the
current position sum2 TS .

For classification, we use two layers of 1d-conv
to obtain the classification score:

C K 2 1 predictdwConv (f (f ())),c cc z (8)

where ,sumK Tc × and K is the number of
action classes to be classified.

For localization, we use a similar operation,

but ultimately obtain the relative position
within the segment with a dimension of 2:

C 2 2 1 predictdwConv (f (f ())),r rr z (9)

where 2 ,sumTr × . The first row of elements
represents the relative start position of the
action within the segment, and the second row
of elements represents the relative end
position of the action within the segment.
Organize r , P and S , we can obtain sumT
absolute time coordinates b rP S . These
boundary predictions with their classification
scores are postprocessed using SoftNMS to
obtain the final N prediction results.

3.6 Scale Consistency Training
In order to better capture the scale-invariant
features in actions, we designed a temporal
scaling augmentation strategy based on
Gaussian sampling to assist our training.
Specifically, we first perform random
Gaussian sampling to obtain scaling factors
around 0. Subsequently, we map these factors
to an exponential space to obtain scaling ratios.
This process ensures that the scaling ratios are
symmetrically distributed in the logarithmic
space and within a reasonable range. By doing
so, controlled yet diverse scale perturbations
are introduced to the input data:

2 , ~ (0,),N (10)

where denotes the scaling ratio, refers to a
random number that follows a normal
distribution and is a parameter set to 1 by
default.

Before projection, we scale the temporal
dimension of EC T×x with probability p,
which ensures that we can learn the
information of the original samples.

' Interpolate ()T Tx x . (11)

At the same time, we also perform time-series
scaling on the training labels, and the
corresponding labels are changed from

{ , , }s ec t t to { , , }s ec t t . Through time-series

scaling, the time-series dimensions of all
subsequent features will change.

Our overall loss consists of classification loss,
localization loss, and scale loss. The
classification loss clsL uses focal loss [40], the
localization loss regL uses dioU [41], and the
design of the single prediction for the scale loss
is as follows:

, P and S, we can obtain Tsum
absolute time coordinates

(1) (1) (1) (1)
0 0 0 0
(1) (1) (1) (1)
0 0 0 0

, ,

, ,

l l l l l l l l
k v

l l l l l l l l
k v

K z V z

K z V z

W W

W W
 (4)

where , ,q k vW W W are trainable weights shared
across layers. Then, we use these tensors to
calculate the attention to further obtain
residual information which is denoted as z :

(1) () (1) (1)
0 0 0 0

(1) () (1) (1)
0 0 0 0

softmax(() /) ,

softmax(() /) ,

l l l l l T l l

l l l l l T l l

d

d

z Q K V

z Q K V

(5)

where d is the number of channels of these
attention components. We add these outputs
to ()

0
lz and (1)

0
lz to get ()

1
lz and ()

1 1
lz that

integrates information from another layers:
() () (1) (1) (1) (1)
1 0 0 1 0 0, .l l l l l l l lz z z z z z= + = + (6)

By repeating this operation from the top layer
down to the bottom layer, we ultimately
obtain a set of features

(1) (2) (3) (1) ()
1 2 2 2 1{ , , ,..., , }L Lz z z z z , using capital letter

Z to abbreviate it as
(1) (2) (3) ()

fpn { , , ,..., }Lz Z Z Z Z .

3.5 Detection Heads and Postprocess
The detection head consists of a classification
head and a localization head. The first part of
the classification head and localization head is
composed of stacked one-dimensional
convolutions, where we denote the operation
of one convolution layer as ()f :

() ReLU(LayerNorm(dwConv()))f z z , (7)

where the input of the detection head is fpnz
with time dimensions of 1{ , / 2,..., / 2 }LT T T ,
respectively. By concatenating them in time
series, we obtain predict

sumC T×z , where

0
/ 2L l

sum l
T T and C is the channel number.
According to the settings of the feature
extraction process, after simple calculations,
we can obtain the time scale of the feature at
each position in the video sum1 TP and the
size of the receptive field corresponding to the
current position sum2 TS .

For classification, we use two layers of 1d-conv
to obtain the classification score:

C K 2 1 predictdwConv (f (f ())),c cc z (8)

where ,sumK Tc × and K is the number of
action classes to be classified.

For localization, we use a similar operation,

but ultimately obtain the relative position
within the segment with a dimension of 2:

C 2 2 1 predictdwConv (f (f ())),r rr z (9)

where 2 ,sumTr × . The first row of elements
represents the relative start position of the
action within the segment, and the second row
of elements represents the relative end
position of the action within the segment.
Organize r , P and S , we can obtain sumT
absolute time coordinates b rP S . These
boundary predictions with their classification
scores are postprocessed using SoftNMS to
obtain the final N prediction results.

3.6 Scale Consistency Training
In order to better capture the scale-invariant
features in actions, we designed a temporal
scaling augmentation strategy based on
Gaussian sampling to assist our training.
Specifically, we first perform random
Gaussian sampling to obtain scaling factors
around 0. Subsequently, we map these factors
to an exponential space to obtain scaling ratios.
This process ensures that the scaling ratios are
symmetrically distributed in the logarithmic
space and within a reasonable range. By doing
so, controlled yet diverse scale perturbations
are introduced to the input data:

2 , ~ (0,),N (10)

where denotes the scaling ratio, refers to a
random number that follows a normal
distribution and is a parameter set to 1 by
default.

Before projection, we scale the temporal
dimension of EC T×x with probability p,
which ensures that we can learn the
information of the original samples.

' Interpolate ()T Tx x . (11)

At the same time, we also perform time-series
scaling on the training labels, and the
corresponding labels are changed from

{ , , }s ec t t to { , , }s ec t t . Through time-series

scaling, the time-series dimensions of all
subsequent features will change.

Our overall loss consists of classification loss,
localization loss, and scale loss. The
classification loss clsL uses focal loss [40], the
localization loss regL uses dioU [41], and the
design of the single prediction for the scale loss
is as follows:

. These bound-
ary predictions with their classification scores are

Information Technology and Control 2025/2/54742

postprocessed using SoftNMS to obtain the final N
prediction results.

3.6 Scale Consistency Training
In order to better capture the scale-invariant fea-
tures in actions, we designed a temporal scaling
augmentation strategy based on Gaussian sampling
to assist our training. Specifically, we first perform
random Gaussian sampling to obtain scaling fac-
tors around 0. Subsequently, we map these factors
to an exponential space to obtain scaling ratios.
This process ensures that the scaling ratios are
symmetrically distributed in the logarithmic space
and within a reasonable range. By doing so, con-
trolled yet diverse scale perturbations are intro-
duced to the input data:

(1) (1) (1) (1)
0 0 0 0
(1) (1) (1) (1)
0 0 0 0

, ,

, ,

l l l l l l l l
k v

l l l l l l l l
k v

K z V z

K z V z

W W

W W
 (4)

where , ,q k vW W W are trainable weights shared
across layers. Then, we use these tensors to
calculate the attention to further obtain
residual information which is denoted as z :

(1) () (1) (1)
0 0 0 0

(1) () (1) (1)
0 0 0 0

softmax(() /) ,

softmax(() /) ,

l l l l l T l l

l l l l l T l l

d

d

z Q K V

z Q K V

(5)

where d is the number of channels of these
attention components. We add these outputs
to ()

0
lz and (1)

0
lz to get ()

1
lz and ()

1 1
lz that

integrates information from another layers:
() () (1) (1) (1) (1)
1 0 0 1 0 0, .l l l l l l l lz z z z z z= + = + (6)

By repeating this operation from the top layer
down to the bottom layer, we ultimately
obtain a set of features

(1) (2) (3) (1) ()
1 2 2 2 1{ , , ,..., , }L Lz z z z z , using capital letter

Z to abbreviate it as
(1) (2) (3) ()

fpn { , , ,..., }Lz Z Z Z Z .

3.5 Detection Heads and Postprocess
The detection head consists of a classification
head and a localization head. The first part of
the classification head and localization head is
composed of stacked one-dimensional
convolutions, where we denote the operation
of one convolution layer as ()f :

() ReLU(LayerNorm(dwConv()))f z z , (7)

where the input of the detection head is fpnz
with time dimensions of 1{ , / 2,..., / 2 }LT T T ,
respectively. By concatenating them in time
series, we obtain predict

sumC T×z , where

0
/ 2L l

sum l
T T and C is the channel number.
According to the settings of the feature
extraction process, after simple calculations,
we can obtain the time scale of the feature at
each position in the video sum1 TP and the
size of the receptive field corresponding to the
current position sum2 TS .

For classification, we use two layers of 1d-conv
to obtain the classification score:

C K 2 1 predictdwConv (f (f ())),c cc z (8)

where ,sumK Tc × and K is the number of
action classes to be classified.

For localization, we use a similar operation,

but ultimately obtain the relative position
within the segment with a dimension of 2:

C 2 2 1 predictdwConv (f (f ())),r rr z (9)

where 2 ,sumTr × . The first row of elements
represents the relative start position of the
action within the segment, and the second row
of elements represents the relative end
position of the action within the segment.
Organize r , P and S , we can obtain sumT
absolute time coordinates b rP S . These
boundary predictions with their classification
scores are postprocessed using SoftNMS to
obtain the final N prediction results.

3.6 Scale Consistency Training
In order to better capture the scale-invariant
features in actions, we designed a temporal
scaling augmentation strategy based on
Gaussian sampling to assist our training.
Specifically, we first perform random
Gaussian sampling to obtain scaling factors
around 0. Subsequently, we map these factors
to an exponential space to obtain scaling ratios.
This process ensures that the scaling ratios are
symmetrically distributed in the logarithmic
space and within a reasonable range. By doing
so, controlled yet diverse scale perturbations
are introduced to the input data:

2 , ~ (0,),N (10)

where denotes the scaling ratio, refers to a
random number that follows a normal
distribution and is a parameter set to 1 by
default.

Before projection, we scale the temporal
dimension of EC T×x with probability p,
which ensures that we can learn the
information of the original samples.

' Interpolate ()T Tx x . (11)

At the same time, we also perform time-series
scaling on the training labels, and the
corresponding labels are changed from

{ , , }s ec t t to { , , }s ec t t . Through time-series

scaling, the time-series dimensions of all
subsequent features will change.

Our overall loss consists of classification loss,
localization loss, and scale loss. The
classification loss clsL uses focal loss [40], the
localization loss regL uses dioU [41], and the
design of the single prediction for the scale loss
is as follows:

, (10)

where γ denotes the scaling ratio, ξ refers to a ran-
dom number that follows a normal distribution and
δ is a parameter set to 1 by default.
Before projection, we scale the temporal dimension
of x ∊ RCE×T with probability p, which ensures that we
can learn the information of the original samples.

(1) (1) (1) (1)
0 0 0 0
(1) (1) (1) (1)
0 0 0 0

, ,

, ,

l l l l l l l l
k v

l l l l l l l l
k v

K z V z

K z V z

W W

W W
 (4)

where , ,q k vW W W are trainable weights shared
across layers. Then, we use these tensors to
calculate the attention to further obtain
residual information which is denoted as z :

(1) () (1) (1)
0 0 0 0

(1) () (1) (1)
0 0 0 0

softmax(() /) ,

softmax(() /) ,

l l l l l T l l

l l l l l T l l

d

d

z Q K V

z Q K V

(5)

where d is the number of channels of these
attention components. We add these outputs
to ()

0
lz and (1)

0
lz to get ()

1
lz and ()

1 1
lz that

integrates information from another layers:
() () (1) (1) (1) (1)
1 0 0 1 0 0, .l l l l l l l lz z z z z z= + = + (6)

By repeating this operation from the top layer
down to the bottom layer, we ultimately
obtain a set of features

(1) (2) (3) (1) ()
1 2 2 2 1{ , , ,..., , }L Lz z z z z , using capital letter

Z to abbreviate it as
(1) (2) (3) ()

fpn { , , ,..., }Lz Z Z Z Z .

3.5 Detection Heads and Postprocess
The detection head consists of a classification
head and a localization head. The first part of
the classification head and localization head is
composed of stacked one-dimensional
convolutions, where we denote the operation
of one convolution layer as ()f :

() ReLU(LayerNorm(dwConv()))f z z , (7)

where the input of the detection head is fpnz
with time dimensions of 1{ , / 2,..., / 2 }LT T T ,
respectively. By concatenating them in time
series, we obtain predict

sumC T×z , where

0
/ 2L l

sum l
T T and C is the channel number.
According to the settings of the feature
extraction process, after simple calculations,
we can obtain the time scale of the feature at
each position in the video sum1 TP and the
size of the receptive field corresponding to the
current position sum2 TS .

For classification, we use two layers of 1d-conv
to obtain the classification score:

C K 2 1 predictdwConv (f (f ())),c cc z (8)

where ,sumK Tc × and K is the number of
action classes to be classified.

For localization, we use a similar operation,

but ultimately obtain the relative position
within the segment with a dimension of 2:

C 2 2 1 predictdwConv (f (f ())),r rr z (9)

where 2 ,sumTr × . The first row of elements
represents the relative start position of the
action within the segment, and the second row
of elements represents the relative end
position of the action within the segment.
Organize r , P and S , we can obtain sumT
absolute time coordinates b rP S . These
boundary predictions with their classification
scores are postprocessed using SoftNMS to
obtain the final N prediction results.

3.6 Scale Consistency Training
In order to better capture the scale-invariant
features in actions, we designed a temporal
scaling augmentation strategy based on
Gaussian sampling to assist our training.
Specifically, we first perform random
Gaussian sampling to obtain scaling factors
around 0. Subsequently, we map these factors
to an exponential space to obtain scaling ratios.
This process ensures that the scaling ratios are
symmetrically distributed in the logarithmic
space and within a reasonable range. By doing
so, controlled yet diverse scale perturbations
are introduced to the input data:

2 , ~ (0,),N (10)

where denotes the scaling ratio, refers to a
random number that follows a normal
distribution and is a parameter set to 1 by
default.

Before projection, we scale the temporal
dimension of EC T×x with probability p,
which ensures that we can learn the
information of the original samples.

' Interpolate ()T Tx x . (11)

At the same time, we also perform time-series
scaling on the training labels, and the
corresponding labels are changed from

{ , , }s ec t t to { , , }s ec t t . Through time-series

scaling, the time-series dimensions of all
subsequent features will change.

Our overall loss consists of classification loss,
localization loss, and scale loss. The
classification loss clsL uses focal loss [40], the
localization loss regL uses dioU [41], and the
design of the single prediction for the scale loss
is as follows:

. (11)

At the same time, we also perform time-series scal-
ing on the training labels, and the corresponding la-
bels are changed from {c, ts, te} to {c, γts, γte}. Through
time-series scaling, the time-series dimensions of
all subsequent features will change.
Our overall loss consists of classification loss, local-
ization loss, and scale loss. The classification loss
Lcls uses focal loss [40], the localization loss Lreg uses
dioU [41], and the design of the single prediction for
the scale loss is as follows:

, , , , ,
1 (log() log()),
2scale i e i s i e i s iL t t t t (12)

where N denotes the number of predictions.
Finally, the overall training loss is calculated
by:

,cls cls reg reg scaleL L L L (13)

among which cls and reg are the hyper-
parameters, both of them are set to 1 by default.

4. Experiments
4.1 Datasets
In order to assess the efficacy of our method,
akin to the majority of prior studies, we carried
out comprehensive experiments on two
prominent TAD benchmarks: THUMOS14
and ActivityNet-1.3. In addition, we
conducted extensive experiments on our self-
collected dataset, POWER, for validation. We
employed the mean average precision (mAP)
metric, calculated across various temporal
intersection over union (tIoU) thresholds, as it
is a universally accepted standard for
evaluating the performance of TAD models,
thereby serving as the cornerstone for
evaluating our proposed approach.

THUMOS14 contains 200 untrimmed videos
labeled for training and 213 for testing,
spanning 20 sports categories. The actions
within these videos are notably shorter and
more densely concentrated in terms of their
quantity per video, presenting a formidable
obstacle for TAD. With an average video
duration of 4.4 minutes and action instances
averaging just 5 seconds, THUMOS14 also
features background segments occupying an
average of 71% of each video’s length. To
evaluate our method’s performance on this
dataset, consistent with the majority of
baseline models, we utilize mAP at tIoU
thresholds ranging from 0.3 to 0.7 with an
interval of 0.1, along with the overall average
mAP.

ActivityNet v1.3 comprises 10,024 untrimmed
videos from 200 daily activity categories
designated for training and 4,926 videos for
testing. In comparison to THUMOS14, the
action instances featured in ActivityNet-1.3
are notably longer and distributed more
sparsely within each video in terms of quantity.
The average duration of each video is 2
minutes, while the average length of an action

instance stands at 48 seconds. On average,
each video encompasses 1.41 activities. In
accordance with established conventions,
mAP@[0.50:0.05:0.95] is employed as the
evaluation metric for ActivityNet-1.3, and we
report both the overall average mAP as well as
mAPs specifically at the thresholds of 0.5, 0.75,
and 0.95.

EPIC-KITCHENS 100 is an extension of the
original EPIC-KITCHENS dataset. It contains
over 3,500 hours of first-person video footage
captured in natural kitchen settings, involving
a wide range of everyday activities such as
cooking, cleaning, and food preparation. The
dataset is unique in its scale and the richness
of the annotations provided.

POWER dataset mainly involves workers
performing tasks on utility poles during
power outages. The dataset contains 2,011
videos captured under various lighting and
filming conditions, documenting power
outage operations. It includes five types of
actions: climbing, voltage testing, grounding
wire installation, grounding wire removal,
and descending from the pole, totaling 4,696
action instances. The average length of each
instance is 66 seconds, and the total duration
of all videos is 430 hours. The metric of
POWER is the same as that of THUMOS14.
The specific information of this dataset is
presented in Table 1.

Table 1

Detailed information about the POWER
dataset.

Item Training Test All
Videos 1694 311 2011

Instances 3863 833 4696
Duration 359.63 70.84 430.48
Action Training Test All Duration

ClimbUp 1360 344 1704 67.3
Verification 360 94 454 27.9

Put
Grounding

Rod
451 111 562 116

Descending 1362 223 1585 52.8
Take

Grounding
Rod

330 61 391 83.2

All 3863 833 4696 66

4.2 Implementation Details
For THUMOS14 [14] and ActivityNet v1.3 [12],

, (12)

where N denotes the number of predictions. Finally,
the overall training loss is calculated by:

, , , , ,
1 (log() log()),
2scale i e i s i e i s iL t t t t (12)

where N denotes the number of predictions.
Finally, the overall training loss is calculated
by:

,cls cls reg reg scaleL L L L (13)

among which cls and reg are the hyper-
parameters, both of them are set to 1 by default.

4. Experiments
4.1 Datasets
In order to assess the efficacy of our method,
akin to the majority of prior studies, we carried
out comprehensive experiments on two
prominent TAD benchmarks: THUMOS14
and ActivityNet-1.3. In addition, we
conducted extensive experiments on our self-
collected dataset, POWER, for validation. We
employed the mean average precision (mAP)
metric, calculated across various temporal
intersection over union (tIoU) thresholds, as it
is a universally accepted standard for
evaluating the performance of TAD models,
thereby serving as the cornerstone for
evaluating our proposed approach.

THUMOS14 contains 200 untrimmed videos
labeled for training and 213 for testing,
spanning 20 sports categories. The actions
within these videos are notably shorter and
more densely concentrated in terms of their
quantity per video, presenting a formidable
obstacle for TAD. With an average video
duration of 4.4 minutes and action instances
averaging just 5 seconds, THUMOS14 also
features background segments occupying an
average of 71% of each video’s length. To
evaluate our method’s performance on this
dataset, consistent with the majority of
baseline models, we utilize mAP at tIoU
thresholds ranging from 0.3 to 0.7 with an
interval of 0.1, along with the overall average
mAP.

ActivityNet v1.3 comprises 10,024 untrimmed
videos from 200 daily activity categories
designated for training and 4,926 videos for
testing. In comparison to THUMOS14, the
action instances featured in ActivityNet-1.3
are notably longer and distributed more
sparsely within each video in terms of quantity.
The average duration of each video is 2
minutes, while the average length of an action

instance stands at 48 seconds. On average,
each video encompasses 1.41 activities. In
accordance with established conventions,
mAP@[0.50:0.05:0.95] is employed as the
evaluation metric for ActivityNet-1.3, and we
report both the overall average mAP as well as
mAPs specifically at the thresholds of 0.5, 0.75,
and 0.95.

EPIC-KITCHENS 100 is an extension of the
original EPIC-KITCHENS dataset. It contains
over 3,500 hours of first-person video footage
captured in natural kitchen settings, involving
a wide range of everyday activities such as
cooking, cleaning, and food preparation. The
dataset is unique in its scale and the richness
of the annotations provided.

POWER dataset mainly involves workers
performing tasks on utility poles during
power outages. The dataset contains 2,011
videos captured under various lighting and
filming conditions, documenting power
outage operations. It includes five types of
actions: climbing, voltage testing, grounding
wire installation, grounding wire removal,
and descending from the pole, totaling 4,696
action instances. The average length of each
instance is 66 seconds, and the total duration
of all videos is 430 hours. The metric of
POWER is the same as that of THUMOS14.
The specific information of this dataset is
presented in Table 1.

Table 1

Detailed information about the POWER
dataset.

Item Training Test All
Videos 1694 311 2011

Instances 3863 833 4696
Duration 359.63 70.84 430.48
Action Training Test All Duration

ClimbUp 1360 344 1704 67.3
Verification 360 94 454 27.9

Put
Grounding

Rod
451 111 562 116

Descending 1362 223 1585 52.8
Take

Grounding
Rod

330 61 391 83.2

All 3863 833 4696 66

4.2 Implementation Details
For THUMOS14 [14] and ActivityNet v1.3 [12],

, (13)

among which λcls and λreg are the hyper-parameters,
both of them are set to 1 by default.

4. Experiments
4.1 Datasets
In order to assess the efficacy of our method, akin to
the majority of prior studies, we carried out compre-
hensive experiments on two prominent TAD bench-
marks: THUMOS14 and ActivityNet-1.3. In addi-
tion, we conducted extensive experiments on our
self-collected dataset, POWER, for validation. We
employed the mean average precision (mAP) metric,
calculated across various temporal intersection over
union (tIoU) thresholds, as it is a universally accept-
ed standard for evaluating the performance of TAD
models, thereby serving as the cornerstone for eval-
uating our proposed approach.
THUMOS14 contains 200 untrimmed videos la-
beled for training and 213 for testing, spanning 20
sports categories. The actions within these videos
are notably shorter and more densely concentrat-
ed in terms of their quantity per video, presenting a
formidable obstacle for TAD. With an average video
duration of 4.4 minutes and action instances averag-
ing just 5 seconds, THUMOS14 also features back-
ground segments occupying an average of 71% of
each video’s length. To evaluate our method’s perfor-
mance on this dataset, consistent with the majority
of baseline models, we utilize mAP at tIoU thresh-
olds ranging from 0.3 to 0.7 with an interval of 0.1,
along with the overall average mAP.
ActivityNet v1.3 comprises 10,024 untrimmed
videos from 200 daily activity categories designated
for training and 4,926 videos for testing. In compari-
son to THUMOS14, the action instances featured in
ActivityNet-1.3 are notably longer and distributed
more sparsely within each video in terms of quanti-
ty. The average duration of each video is 2 minutes,
while the average length of an action instance stands
at 48 seconds. On average, each video encompasses
1.41 activities. In accordance with established con-
ventions, mAP@[0.50:0.05:0.95] is employed as the
evaluation metric for ActivityNet-1.3, and we report
both the overall average mAP as well as mAPs specif-
ically at the thresholds of 0.5, 0.75, and 0.95.
EPIC-KITCHENS 100 is an extension of the orig-
inal EPIC-KITCHENS dataset. It contains over
3,500 hours of first-person video footage captured
in natural kitchen settings, involving a wide range

743Information Technology and Control 2025/2/54

of everyday activities such as cooking, cleaning, and
food preparation. The dataset is unique in its scale
and the richness of the annotations provided.
POWER dataset mainly involves workers perform-
ing tasks on utility poles during power outages. The
dataset contains 2,011 videos captured under var-
ious lighting and filming conditions, documenting
power outage operations. It includes five types of
actions: climbing, voltage testing, grounding wire
installation, grounding wire removal, and descend-
ing from the pole, totaling 4,696 action instances.
The average length of each instance is 66 seconds,
and the total duration of all videos is 430 hours.
The metric of POWER is the same as that of THU-
MOS14. The specific information of this dataset is
presented in Table 1.

4.2 Implementation Details
For THUMOS14 [14] and ActivityNet v1.3 [12], con-
sistent with most TAD models [44], [22], we use In-

Item Training Test All

Videos 1694 311 2011

Instances 3863 833 4696

Duration 359.63 70.84 430.48

Action Training Test All Duration

ClimbUp 1360 344 1704 67.3

Verification 360 94 454 27.9

Put
Grounding

Rod
451 111 562 116

Descending 1362 223 1585 52.8

Take
Grounding

Rod
330 61 391 83.2

All 3863 833 4696 66

Table 1
Detailed information about the POWER dataset.

Method Feature
THUMOS14 [14] ActivityNet v1.3 [12]

0.3 0.4 0.5 0.6 0.7 Avg 0.5 0.75 0.95 Avg

BMN [18] TSN [36] 56.0 47.4 38.8 29.7 20.5 38.5 50.1 34.8 8.3 33.9

G-TAD [42] TSN [36] 56.0 47.4 38.8 29.7 20.5 38.5 50.1 34.8 8.3 33.9

TCA-Net [3] TSN [36] 60.6 53.2 44.6 36.8 26.7 44.3 52.3 36.7 6.9 35.5

VSGN [46] TSN [36] 66.7 60.4 52.4 41.0 30.4 50.2 52.4 36.0 8.4 35.1

ContextLoc [49] I3D [1] 68.3 63.8 54.3 41.8 26.2 50.9 56.0 35.2 3.6 34.2

RCL [37] I3D [1] 70.1 62.3 52.9 42.7 30.7 51.0 51.7 35.3 8.0 34.4

AFSD [16] I3D [1] 67.3 62.4 55.5 43.7 31.1 52.0 52.4 35.3 6.5 34.4

TAGS [26] I3D [1] 68.6 63.8 57.0 46.3 31.8 52.8 56.3 36.8 9.6 36.5

MUSES [24] I3D [1] 68.9 64.0 56.9 46.3 31.0 53.4 50.0 35.0 6.6 34.0

TALLFormer [5] I3D [1] 68.4 - 57.6 - 30.8 53.9 41.3 27.3 6.3 27.2

TadTR [23] I3D [1] 74.8 69.1 60.1 46.6 32.8 56.7 52.8 37.1 10.8 36.1

ActionFormer [44] I3D [1] 82.1 77.8 71.0 59.4 43.9 66.8 53.5 36.2 8.2 35.6

ASL [28] I3D [1] 83.1 79.0 71.7 59.7 45.8 67.9 54.1 37.4 8.0 36.2

TriDet [29] I3D [1] 83.6 80.1 72.9 62.4 47.4 69.3 - - - -

CSCAN(Ours) I3D [1] 84.3 80.7 73.2 62.5 47.2 69.5 56.0 38.2 8.3 36.7

ActionFormer [44] InternVideo-6B [38] 82.3 81.9 75.1 65.8 50.3 71.9 61.5 44.6 12.7 41.2

ActionMamba [4] InternVideo-6B [38] 86.9 83.1 76.9 65.9 50.8 72.7 62.4 43.5 10.2 42.0

CSCAN(Ours) InternVideo-6B [38] 88.3 84.4 78.6 67.0 51.8 74.0 63.9 45.2 12.8 42.9

Table 2
Performance comparison with other TAD methods on THUMOS14 and ActivityNet v1.3.

Information Technology and Control 2025/2/54744

ternVideo [38] and I3D pre-trained on Kinetics [1]
as inputs. For THUMOS14, 16-frame clips at 30 fps
with a stride of 4 are used, and feature sequences are
standardized to 2048 via cropping or padding. For
ActivityNet-1.3, videos are resampled to 30 fps, split
into 16-frame clips with a stride of 16, and sequenc-
es are set to 256. All frames are center-cropped and
resized to 224×224. For dataset POWER, we apply
VideoMAEv2-b [35] as video encoder, using clip size
of 16 and clip stride of 4. For EPIC-KITCHEN, we
adopt SlowFast as backbone feature.
For THUMOS14, the model was trained for 35 ep-
ochs with a learning rate of 0.0001, including a
5-epoch warm-up and 30epoch cosine annealing. A
mini-batch size of 2 and AdamW optimizer (weight
decay 0.01) were used. For ActivityNet v1.3, training
lasted 20 epochs with a learning rate of 1e-3, a 5-ep-
och warm-up, and 15-epoch cosine annealing, with a
mini-batch size of 16. Other settings matched THU-
MOS14. A 6-layer pyramid structure was employed,

Table 3
Performance comparison with other TAD methods on EPIC-KITCHEN.

Dataset Method Feature
POWER

0.1 0.2 0.3 0.4 0.5 Avg.

EPIC-KITCHEN
Verb

BMN[18] SlowFast [8] 10.8 8.8 8.4 7.1 5.6 8.4

ActionFormer [44] SlowFast [8] 26.6 25.4 24.2 22.3 19.1 23.5

Tridet[29] SlowFast [8] 28.6 27.4 26.1 24.2 20.8 25.4

CSCAN(Ours) SlowFast [8] 29.9 28.6 26.2 25.6 21.4 26.3

EPIC-KITCHEN
Noun

BMN[18] SlowFast [8] 10.3 8.3 6.2 4.5 3.4 6.5

ActionFormer [44] SlowFast [8] 25.2 24.1 22.7 20.5 17.0 21.9

Tridet[29] SlowFast [8] 27.4 26.3 24.6 22.2 18.3 23.8

CSCAN(Ours) SlowFast [8] 28.3 27.1 25.9 23.0 19.1 24.7

Method Feature
POWER

0.3 0.4 0.5 0.6 0.7 Avg.

TemporalMaxer [30] VideoMAEv2-b [35] 68.2 64.2 54.7 41.3 26.2 50.9

TriDet [29] VideoMAEv2-b [35] 70.9 66.2 58.7 46.7 32.2 54.9

ActionFormer [44] VideoMAEv2-b [35] 71.6 66.7 60.4 48.5 31.6 55.7

ActionMamba [4] VideoMAEv2-b [35] 75.8 71.0 62.7 50.8 34.1 58.9

CSCAN(Ours) VideoMAEv2-b [35] 78.2 73.7 65.9 53.2 36.5 61.6

Table 4
Performance comparison with other TAD methods on POWER.

with each layer’s length scaled by 2 and feature di-
mension fixed at 512. Feature temporal scaling was
applied with p = 0.5. For POWER, training lasted
35 epochs with a learning rate of 0.0002, The other
settings are the same as those used for training on
THUMOS14. For EPIC-KITCHEN, learning rate is
set to 0.0002 and training epoch is set to 23 and 19
for “verb” and “noun”, respectively.

4.3 Comparison to Other TAD Methods
In the context of THUMOS14, as demonstrated in
Table 2 (left), by leveraging features derived from
I3D, our approach achieves an exceptional average
mAP of 69.5%, marking a +2.7% improvement over
the previously most frequently used baseline, Ac-
tionFormer [44], which employs the same features.
Furthermore, it surpasses TriDet [29], which utilizes
well-designed Triend heads for post-processing, by a
slight margin of 0.2% mAP. Specifically, at a tempo-
ral intersection over union (tIoU) of 0.5, our method

745Information Technology and Control 2025/2/54

attains an mAP of 73.2%, surpassing previous state-
of-the-art meth ods such as ActionFormer by +2.2%
and TriDet by +0.3%. When utilizing InternVideo
features, our proposed CSCAN on THUMOS14 per-
forms significantly better than with I3D features,
owing to its superior temporal-spatial modeling ca-
pability gained from masked auto-encoding training.
CSCAN achieves a 74.0% mAP, which outperforms
the last two methods that have used InternVideo
features in all evaluation metrics.
Regarding ActivityNet v1.3, as shown in Table
2(right), our method also exhibits strong perfor-
mance on the larger dataset, both for widely used
I3D features and newly used InternVideo features.
This further corroborates the effectiveness and su-
periority of our method. Our method achieves the
best performance using InternVideo features, con-
sistent with the results on THUMOS14. Specifically,
with InternVideo features, our method achieves an
average mAP of 42.9%, which is 0.9% higher than the
state-of-the-art method, ActionMamba [4].
In our evaluation on the EPIC-KITCHEN dataset,
we primarily compare our approach with TriDet [29],
which has previously shown strong performance.
The results are summarized in Table 3. Our method
achieves substantial enhancements in both subtasks,
namely verb and noun recognition, attaining average
mAP scores of 26.3% and 24.7%, respectively.
On the POWER dataset, CSCAN demonstrates a sig-
nificant advantage over other TAD models, as shown
in Table 4. This advantage is more pronounced com-
pared to its performance on THUMOS14 and Activ-
ityNet v1.3.
In summary, the model CSCAN demonstrates im-
proved positioning accuracy due to multi-scale fea-
ture fusion. Addi tional ablation experiments have
confirmed the effectiveness of each module.

5. Ablation Study and Discussion
For brevity, we will refer to THUMOS14 as THU-
MOS and ActivityNet v1.3 as ANET in the following
text. We use I3D features for THUMOS and ANET
and use VideoMAEv2-b features for POWER.
We design the ablation experiments to test the ef-
fectiveness of each module in our proposed CSCAN

on THUMOS, ANET and POWER. The ablation ex-
periments for each module are presented in Table
5. It can be seen that the addition of the TDP and
CSF modules can bring an average mAP improve-
ment of 2.7/0.9/2.2% for three datasets, respec-
tively. Further adding scale consistency loss Lscale,
the contribution of all modules of our CSCAN can
reach a comprehensive 3.0/1.3/2.9% mAP. For spe-
cific experiments of each module, please refer to
the following context.

5.1 Impact of Feature Conduction Path
Our TDP merges adjacent-level feature maps top-
down. Table 6 evaluates merge strategies for CSCAN:
(1) no merge, (2) FPN-style aggregation, and (3) lay-
er-wise dense connection like AFPN [9]. On THU-
MOS, FPN-style improves average mAP by 2.4% over
no merge (ID 2 vs. ID 1), while AFPNstyle improves
it by 1.5% (ID 3 vs. ID 1). On ANET, FPNstyle and
AFPN-style boost average mAP by 0.7% and 0.5%,
respectively, compared to no merge. TDP, combining
both strategies, enhances average mAP by 2.7% and
0.9% on the two datasets. On the POWER dataset,
the design of TDP is reliable as well.

TDP CSF Lscale THUMOS ANET POWER

1 66.5 35.4 58.9

2 √ √ 69.2 36.3 61.1

3 √ 67.4 35.8 60.1

4 √ √ √ 69.5 36.7 61.6

Table 5
Ablation study of components of CSCAN.

5.2 Impact of Cross-Scale Selective Fusion
Our CSF module fuses multi-layer information into
a single layer. We compare it with three baselines:

Table 6
Ablation study on effectiveness of merging path

Config THUMOS ANET POWER

1 66.5 35.4 58.9

2 FPN [17] 68.9 36.1 59.9

3 AFPN [43] 68.0 35.9 60.1

4 TDP 69.2 36.3 61.1

Information Technology and Control 2025/2/54746

average weight, adaptive weight [21], and self-atten-
tion (replacing crosslayer queries with self-queries).
Average weight introduces unnecessary noise, while
self-attention fails to identify useful features from
other layers. Adaptive weight [21] in this context re-
fers to the use of a linear layer's output to compute
the weights between diff erent layers dynamically. As
shown in Table 7, CSF uses current-layer features as
queries to fi lter useful features from other layers. On
Three datasets, CSF outperforms average weight by
2.6/1.3/5.2% mAP, adaptive weight by 1.0/0.6/3.5%
mAP, and self-attention by 1.2/0.6/3.3% mAP, re-
spectively.

Table 7
Ablation study on effectiveness of fusion module.

Confi g THUMOS ANET POWER

1 Average Weight 66.9 35.4 56.4

2 Adaptive Weight [21] 68.5 36.1 58.1

3 Self-Attention 68.3 36.1 58.3

4 CSF 69.5 36.7 61.6

5.3 Ablation Study of Scaling Strategy in
Scale Consistency Training
For the scale consistency training, we tried two scal-
ing strategies. One is linear interpolation, and the
other is nearest interpolation. We found that the
performance of the two is similar, and the exper-
imental results are shown in Table 8. We tried dif-
ferent σ and p under a fi xed random seed, and found
that performance is best when σ is 1 and p equal to
0.5, but this pair is not signifi cantly better than other
pairs. However, it is certain that the eff ect of using
temporal scaling is signifi cantly better than that of
not using temporal scaling (others v.s. ID 1).

5.4 Discussion on Training Convergence
In Figure 6, we visualize the curve of training loss-
es of three models (CSCAN, ActionFormer, and Ac-
tionMamba). It is observed that at the beginning of
training, due to the increased overall complexity
introduced by our module, the overall loss is rela-
tively high. However, as the experiment progresses,
the loss of CSCAN drops rapidly and remains supe-
rior to the other two models throughout the subse-
quent process.

5.5 Effi ciency Analysis
Although there have been advancements in network
technology [48], current application scenarios still
place high demands on the inference performance of
models. Therefore, it is necessary to compare the ef-
fi ciency diff erences among various models to guide
future improvements. We have evaluated the perfor-
mance of diff erent models on the POWER dataset.
Figure 7 illustrates the relationship between infer-
ence latency and performance. The size of the circle
for each model refl ects its computational cost. It can

Setting THUMOS ANET POWER

1 W/OL scale

(p = 0) 69.2 36.3 61.1

2 Linear
(p = 0.5, σ = 1) 69.4 36.5 61.3

3 Linear
(p = 0.5, σ = 2) 69.5 36.5 61.8

4 Linear
(p = 1, σ = 1) 69.6 36.6 61.5

5 Nearest
(p = 0.5, σ = 1) 69.5 36.7 61.6

6 Nearest
(p = 0.5, σ = 2) 69.4 36.6 61.7

7 Nearest
(p = 1, σ = 1) 69.2 36.4 61.3

Table 8
Ablation study on effectiveness of fusion module.

Figure 6
Training loss of three models on POWER.

7 Nearest
(p 69.2 36.4 61.3

Figure 6

Training loss of three models on POWER.

5.5 Efficiency Analysis
Although there have been advancements in
network technology [48], current application
scenarios still place high demands on the
inference performance of models. Therefore, it
is necessary to compare the efficiency
differences among various models to guide
future improvements. We have evaluated the
performance of different models on the
POWER dataset. Figure 7 illustrates the
relationship between inference latency and
performance. The size of the circle for each
model reflects its computational cost. It can be
observed that CSAN outperforms the baseline
ActionFormer in all aspects.

Figure 7

Efficiency analysis of different models on POWER.

5.6 Statistical Analysis: Improvement and
Potential Limitation

We conduct a statistical analysis of the
prediction results of ActionMamba [4] and
CSCAN in Figure 8 and Figure 9, respectively.
It is evident that shorter actions are more
difficult to detect, and the recognition rate for
short actions of CSCAN is significantly higher
than that of ActionMamba. For actions with a
duration of less than 30 seconds (size S), the

proportion of False-Negative predictions
decreased substantially from 76% to 56%. This
improvement is reflected in the per-class
action mAP shown in Table 9, where the mAP
for voltage testing, which has an average
duration of 28 seconds, increased from 35.55%
to 46.08%.

It is important to note that among the five
actions in POWER, ClimbUp and Descending
are the simplest, so the advantage of CSCAN
is not as pronounced for these two actions. In
contrast, Verification, PutGroundingRod, and
TakeGroundingRod are relatively more
complex, and CSCAN shows more significant
improvements, particularly for short action
Verification with average duration of 27.9
seconds.

As shown in Figure 10, the primary errors in
the predictions are localization errors and
background error (False Positive). This
highlights two key directions for future
research: first, improving the recall rate of
diverse action categories, where there is still a
10% improvement potential. Second,
designing more reliable localization
mechanisms or modules to enhance the overall
localization accuracy of the model, which
offers approximately an 18% improvement
potential.

Figure 8

False-Negative evaluation results of ActionMamba
[4] trained on POWER. Coverage represents the
proportion of action to video duration. Length
means the duration of action instance.

Figure 9

False-Negative evaluation results of CSCAN
trained on POWER. Coverage represents the
proportion of action to video duration. Length
means the duration of action instance.

747Information Technology and Control 2025/2/54

be observed that CSAN outperforms the baseline
ActionFormer in all aspects.

5.6 Statistical Analysis: Improvement and
Potential Limitation
We conduct a statistical analysis of the prediction
results of ActionMamba [4] and CSCAN in Figure 8
and Figure 9, respectively. It is evident that shorter
actions are more diffi cult to detect, and the recogni-
tion rate for short actions of CSCAN is signifi cantly
higher than that of ActionMamba. For actions with
a duration of less than 30 seconds (size S), the pro-
portion of False-Negative predictions decreased
substantially from 76% to 56%. This improvement is
refl ected in the per-class action mAP shown in Ta-
ble 9, where the mAP for voltage testing, which has
an average duration of 28 seconds, increased from
35.55% to 46.08%.
It is important to note that among the five actions
in POWER, ClimbUp and Descending are the sim-
plest, so the advantage of CSCAN is not as pro-
nounced for these two actions. In contrast, Verifi-
cation, PutGroundingRod, and TakeGroundingRod
are relatively more complex, and CSCAN shows
more significant improvements, particularly for
short action Verification with average duration of
27.9 seconds.
As shown in Figure 10, the primary errors in the
predictions are localization errors and background
error (False Positive). This highlights two key direc-
tions for future research: fi rst, improving the recall
rate of diverse action categories, where there is still

Figure 7
Efficiency analysis of different models on POWER.

7 Nearest
(p 69.2 36.4 61.3

Figure 6

Training loss of three models on POWER.

5.5 Efficiency Analysis
Although there have been advancements in
network technology [48], current application
scenarios still place high demands on the
inference performance of models. Therefore, it
is necessary to compare the efficiency
differences among various models to guide
future improvements. We have evaluated the
performance of different models on the
POWER dataset. Figure 7 illustrates the
relationship between inference latency and
performance. The size of the circle for each
model reflects its computational cost. It can be
observed that CSAN outperforms the baseline
ActionFormer in all aspects.

Figure 7

Efficiency analysis of different models on POWER.

5.6 Statistical Analysis: Improvement and

Potential Limitation
We conduct a statistical analysis of the
prediction results of ActionMamba [4] and
CSCAN in Figure 8 and Figure 9, respectively.
It is evident that shorter actions are more
difficult to detect, and the recognition rate for
short actions of CSCAN is significantly higher
than that of ActionMamba. For actions with a
duration of less than 30 seconds (size S), the

proportion of False-Negative predictions
decreased substantially from 76% to 56%. This
improvement is reflected in the per-class
action mAP shown in Table 9, where the mAP
for voltage testing, which has an average
duration of 28 seconds, increased from 35.55%
to 46.08%.

It is important to note that among the five
actions in POWER, ClimbUp and Descending
are the simplest, so the advantage of CSCAN
is not as pronounced for these two actions. In
contrast, Verification, PutGroundingRod, and
TakeGroundingRod are relatively more
complex, and CSCAN shows more significant
improvements, particularly for short action
Verification with average duration of 27.9
seconds.

As shown in Figure 10, the primary errors in
the predictions are localization errors and
background error (False Positive). This
highlights two key directions for future
research: first, improving the recall rate of
diverse action categories, where there is still a
10% improvement potential. Second,
designing more reliable localization
mechanisms or modules to enhance the overall
localization accuracy of the model, which
offers approximately an 18% improvement
potential.

Figure 8

False-Negative evaluation results of ActionMamba
[4] trained on POWER. Coverage represents the
proportion of action to video duration. Length
means the duration of action instance.

Figure 9

False-Negative evaluation results of CSCAN
trained on POWER. Coverage represents the
proportion of action to video duration. Length
means the duration of action instance.

Figure 8
False-Negative evaluation results of ActionMamba [4] trained
on POWER. Coverage represents the proportion of action to
video duration. Length means the duration of action instance.

7 Nearest
(p 69.2 36.4 61.3

Figure 6

Training loss of three models on POWER.

5.5 Efficiency Analysis
Although there have been advancements in
network technology [48], current application
scenarios still place high demands on the
inference performance of models. Therefore, it
is necessary to compare the efficiency
differences among various models to guide
future improvements. We have evaluated the
performance of different models on the
POWER dataset. Figure 7 illustrates the
relationship between inference latency and
performance. The size of the circle for each
model reflects its computational cost. It can be
observed that CSAN outperforms the baseline
ActionFormer in all aspects.

Figure 7

Efficiency analysis of different models on POWER.

5.6 Statistical Analysis: Improvement and
Potential Limitation

We conduct a statistical analysis of the
prediction results of ActionMamba [4] and
CSCAN in Figure 8 and Figure 9, respectively.
It is evident that shorter actions are more
difficult to detect, and the recognition rate for
short actions of CSCAN is significantly higher
than that of ActionMamba. For actions with a
duration of less than 30 seconds (size S), the

proportion of False-Negative predictions
decreased substantially from 76% to 56%. This
improvement is reflected in the per-class
action mAP shown in Table 9, where the mAP
for voltage testing, which has an average
duration of 28 seconds, increased from 35.55%
to 46.08%.

It is important to note that among the five
actions in POWER, ClimbUp and Descending
are the simplest, so the advantage of CSCAN
is not as pronounced for these two actions. In
contrast, Verification, PutGroundingRod, and
TakeGroundingRod are relatively more
complex, and CSCAN shows more significant
improvements, particularly for short action
Verification with average duration of 27.9
seconds.

As shown in Figure 10, the primary errors in
the predictions are localization errors and
background error (False Positive). This
highlights two key directions for future
research: first, improving the recall rate of
diverse action categories, where there is still a
10% improvement potential. Second,
designing more reliable localization
mechanisms or modules to enhance the overall
localization accuracy of the model, which
offers approximately an 18% improvement
potential.

Figure 8

False-Negative evaluation results of ActionMamba
[4] trained on POWER. Coverage represents the
proportion of action to video duration. Length
means the duration of action instance.

Figure 9

False-Negative evaluation results of CSCAN
trained on POWER. Coverage represents the
proportion of action to video duration. Length
means the duration of action instance.

Figure 9
False-Negative evaluation results of CSCAN trained on
POWER. Coverage represents the proportion of action
to video duration. Length means the duration of action
instance.

Figure 10

False-Positive Analysis of CSCAN trained on
POWER.

Table 9

Per-Class mAP on POWER. U: ClimbUp, V:
Verification, P: PutGroundingRod, D:
Descending, T: TakeGroundingRod.

Method Avg. U V P D T

TemporalMaxer
[4]

50.9 64.2 27.9 46.7 72.8 42.9

TriDet [27] 54.9 68.6 32.9 56.1 73.9 43.2
ActionFormer [3] 55.8 65.2 35.2 58.4 74.7 45.3
ActionMamba [5] 58.9 67.8 39.2 63.1 75.8 48.7

CSCAN(Ours) 61.6 68.5 46.1 63.7 75.1 54.4

6. Conclusion
In this paper, we introduce a Cross-scale
Selective Context Aggregation Network
(CSCAN) for video temporal action detection.
CSCAN models cross-layer information in fea-
ture pyramid architecture. CSCAN mainly
consists of three components. The first is Top-
Down Pathway (TDP), an ag- gregation path
at macro view, accompanied by a cross-scale
feature alignment mechanism. while the
second is Cross-scale Selective Fusion (CSF), a
well-designed block for merge information at
micro view, featured in its cross-layer query.
Third is the proposed scale consistency loss for
training, boosting the performance of this
model on THUMOS14, ActivityNet v1.3 and
POWER. We hope that CSCAN can make
some contributions to the community of TAD,
and help other scholars in their research.

Acknowledgement
This research was funded by Guizhou Power
Grid Co. Ltd, grant number
GZKJXM20222320.

Conflicting Interests
The author(s) declared no potential conflicts of
interest with respect to the research, author-
ship, and/or publication of this article.

Data Sharing Agreement
The datasets used and/or analyzed during the
current study are available from the
corresponding author on reasonable request.

References
1. Carreira, J., Zisserman, A. Quo Vadis, Action

Recognition? A New Model and the Kinetics Dataset.
In CVPR, 2017, 6299–6308.

2. Chao, Y. W., Vijayanarasimhan, S., Seybold, B., Ross,
D. A., Deng, J., Sukthankar, R. Rethinking the Faster
R-CNN Architecture for Temporal Action
Localization. In 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2018,
1130–1139.

3. Chen, D., Zha, Z. J., Liu, J., Xie, H., Zhang, E. R.,
Yongdong, W., Cheng, W. H., Yamasaki, T., Wang,
M., Ngo, C. W. Temporal-Contextual Attention
Network for Video-Based Person Re-Identification.
In Advances in Multimedia Information Processing—
PCM 2018. Cham: Springer International Publishing,
2018, 146–157.

4. Chen, G., Huang, Y., Xu, J., Pei, B., Chen, Z., Li, Z.,
Wang, J., Li, K., Lu, T., Wang, L. Video Mamba Suite:
State Space Model as a Versatile Alternative for Video
Understanding. arXiv preprint arXiv:2403.09626.

5. Cheng, F., Bertasius, G. TallFormer: Temporal Action
Localization with a Long-Memory Transformer. In
ECCV, 2022, 503–521.

6. Dao, T., Gu, A. Transformers Are SSMs: Generalized
Models and Efficient Algorithms Through Structured
State Space Duality. 2024. [Online]. Available:
https://arxiv.org/abs/2405.21060

7. Ding, Z., Wang, A., Chen, H., Zhang, Q., Liu, P., Bao,
Y., Yan, W., Han, J. Exploring Structured Semantic
Prior for Multi Label Recognition with Incomplete
Labels. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2023,
3398–3407.

8. Feichtenhofer, C., Fan, H., Malik, J., He, K. SlowFast
Networks for Video Recognition. In Feichtenhofer,
C., Haoq, F., Jitendra, M., and Kaiming, H. (Eds.),

Figure10
False-Positive Analysis of CSCAN trained on POWER.

Figure 10

False-Positive Analysis of CSCAN trained on
POWER.

Table 9

Per-Class mAP on POWER. U: ClimbUp, V:
Verification, P: PutGroundingRod, D:
Descending, T: TakeGroundingRod.

Method Avg. U V P D T

TemporalMaxer
[4]

50.9 64.2 27.9 46.7 72.8 42.9

TriDet [27] 54.9 68.6 32.9 56.1 73.9 43.2
ActionFormer [3] 55.8 65.2 35.2 58.4 74.7 45.3
ActionMamba [5] 58.9 67.8 39.2 63.1 75.8 48.7

CSCAN(Ours) 61.6 68.5 46.1 63.7 75.1 54.4

6. Conclusion
In this paper, we introduce a Cross-scale
Selective Context Aggregation Network
(CSCAN) for video temporal action detection.
CSCAN models cross-layer information in fea-
ture pyramid architecture. CSCAN mainly
consists of three components. The first is Top-
Down Pathway (TDP), an ag- gregation path
at macro view, accompanied by a cross-scale
feature alignment mechanism. while the
second is Cross-scale Selective Fusion (CSF), a
well-designed block for merge information at
micro view, featured in its cross-layer query.
Third is the proposed scale consistency loss for
training, boosting the performance of this
model on THUMOS14, ActivityNet v1.3 and
POWER. We hope that CSCAN can make
some contributions to the community of TAD,
and help other scholars in their research.

Acknowledgement
This research was funded by Guizhou Power
Grid Co. Ltd, grant number
GZKJXM20222320.

Conflicting Interests
The author(s) declared no potential conflicts of
interest with respect to the research, author-
ship, and/or publication of this article.

Data Sharing Agreement
The datasets used and/or analyzed during the
current study are available from the
corresponding author on reasonable request.

References
1. Carreira, J., Zisserman, A. Quo Vadis, Action

Recognition? A New Model and the Kinetics Dataset.
In CVPR, 2017, 6299–6308.

2. Chao, Y. W., Vijayanarasimhan, S., Seybold, B., Ross,
D. A., Deng, J., Sukthankar, R. Rethinking the Faster
R-CNN Architecture for Temporal Action
Localization. In 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2018,
1130–1139.

3. Chen, D., Zha, Z. J., Liu, J., Xie, H., Zhang, E. R.,
Yongdong, W., Cheng, W. H., Yamasaki, T., Wang,
M., Ngo, C. W. Temporal-Contextual Attention
Network for Video-Based Person Re-Identification.
In Advances in Multimedia Information Processing—
PCM 2018. Cham: Springer International Publishing,
2018, 146–157.

4. Chen, G., Huang, Y., Xu, J., Pei, B., Chen, Z., Li, Z.,
Wang, J., Li, K., Lu, T., Wang, L. Video Mamba Suite:
State Space Model as a Versatile Alternative for Video
Understanding. arXiv preprint arXiv:2403.09626.

5. Cheng, F., Bertasius, G. TallFormer: Temporal Action
Localization with a Long-Memory Transformer. In
ECCV, 2022, 503–521.

6. Dao, T., Gu, A. Transformers Are SSMs: Generalized
Models and Efficient Algorithms Through Structured
State Space Duality. 2024. [Online]. Available:
https://arxiv.org/abs/2405.21060

7. Ding, Z., Wang, A., Chen, H., Zhang, Q., Liu, P., Bao,
Y., Yan, W., Han, J. Exploring Structured Semantic
Prior for Multi Label Recognition with Incomplete
Labels. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2023,
3398–3407.

8. Feichtenhofer, C., Fan, H., Malik, J., He, K. SlowFast
Networks for Video Recognition. In Feichtenhofer,
C., Haoq, F., Jitendra, M., and Kaiming, H. (Eds.),

a 10% improvement potential. Second, designing
more reliable localization mechanisms or modules
to enhance the overall localization accuracy of the
model, which off ers approximately an 18% improve-
ment potential.

Information Technology and Control 2025/2/54748

Method Avg. U V P D T

TemporalMaxer [4] 50.9 64.2 27.9 46.7 72.8 42.9

TriDet [27] 54.9 68.6 32.9 56.1 73.9 43.2

ActionFormer [3] 55.8 65.2 35.2 58.4 74.7 45.3

ActionMamba [5] 58.9 67.8 39.2 63.1 75.8 48.7

CSCAN(Ours) 61.6 68.5 46.1 63.7 75.1 54.4

Table 9
Per-Class mAP on POWER. U: ClimbUp, V: Verification, P:
PutGroundingRod, D: Descending, T: TakeGroundingRod.

6. Conclusion
In this paper, we introduce a Cross-scale Selec-
tive Context Aggregation Network (CSCAN) for
video temporal action detection. CSCAN models
cross-layer information in fea- ture pyramid ar-
chitecture. CSCAN mainly consists of three com-
ponents. The first is Top-Down Pathway (TDP), an
ag- gregation path at macro view, accompanied by
a cross-scale feature alignment mechanism. while

the second is Cross-scale Selective Fusion (CSF), a
well-designed block for merge information at micro
view, featured in its cross-layer query. Third is the
proposed scale consistency loss for training, boost-
ing the performance of this model on THUMOS14,
ActivityNet v1.3 and POWER. We hope that CSCAN
can make some contributions to the community of
TAD, and help other scholars in their research.

Acknowledgement
This research was funded by Guizhou Power Grid
Co. Ltd, grant number GZKJXM20222320.

Conflicting Interests
The author(s) declared no potential conflicts of in-
terest with respect to the research, author-ship, and/
or publication of this article.

Data Sharing Agreement
The datasets used and/or analyzed during the cur-
rent study are available from the corresponding au-
thor on reasonable request.

References
1. Carreira, J., Zisserman, A. Quo Vadis, Action Rec-

ognition? A New Model and the Kinetics Dataset.
In CVPR, 2017, 6299-6308. https://doi.org/10.1109/
CVPR.2017.502

2. Chao, Y. W., Vijayanarasimhan, S., Seybold, B., Ross,
D. A., Deng, J., Sukthankar, R. Rethinking the Faster
R-CNN Architecture for Temporal Action Localization.
In 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2018, 1130-1139. https://doi.
org/10.1109/CVPR.2018.00124

3. Chen, D., Zha, Z. J., Liu, J., Xie, H., Zhang, E. R., Yong-
dong, W., Cheng, W. H., Yamasaki, T., Wang, M., Ngo,
C. W. Temporal-Contextual Attention Network for
Video-Based Person Re-Identification. In Advances
in Multimedia Information Processing-PCM 2018.
Cham: Springer International Publishing, 2018, 146-
157. https://doi.org/10.1007/978-3-030-00776-8_14

4. Chen, G., Huang, Y., Xu, J., Pei, B., Chen, Z., Li, Z., Wang,
J., Li, K., Lu, T., Wang, L. Video Mamba Suite: State
Space Model as a Versatile Alternative for Video Un-
derstanding. arXiv preprint arXiv:2403.09626.

5. Cheng, F., Bertasius, G. TallFormer: Temporal Action
Localization with a Long-Memory Transformer. In

ECCV, 2022, 503-521. https://doi.org/10.1007/978-3-
031-19830-4_29

6. Dao, T., Gu, A. Transformers Are SSMs: Generalized
Models and Efficient Algorithms Through Structured
State Space Duality. 2024. [Online]. Available: https://
arxiv.org/abs/2405.21060

7. Ding, Z., Wang, A., Chen, H., Zhang, Q., Liu, P., Bao, Y.,
Yan, W., Han, J. Exploring Structured Semantic Prior
for Multi Label Recognition with Incomplete Labels.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2023, 3398-3407.
https://doi.org/10.1109/CVPR52729.2023.00331

8. Feichtenhofer, C., Fan, H., Malik, J., He, K. SlowFast
Networks for Video Recognition. In Feichtenhofer, C.,
Haoq, F., Jitendra, M., and Kaiming, H. (Eds.), SlowFast
Networks for Video Recognition. 2019 IEEE/CVF Inter-
national Conference on Computer Vision (ICCV), 2018,
6201-6210. https://doi.org/10.1109/ICCV.2019.00630

9. Gao, J., Yang, Z., Sun, C., Chen, K., Nevatia, R. TURN
TAP: Temporal Unit Regression Network for Tempo-
ral Action Proposals. In 2017 IEEE International Con-
ference on Computer Vision (ICCV), 2017, 3648-3656.
https://doi.org/10.1109/ICCV.2017.392

749Information Technology and Control 2025/2/54

10. Ghiasi, G., Lin, T. Y., Le, Q. V. NAS-FPN: Learning Scala-
ble Feature Pyramid Architecture for Object Detection.
In 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2019, 7029-7038.
https://doi.org/10.1109/CVPR.2019.00720

11. He, L., Ge, X., Hao, C., Zhang, L., Chang, S. Identification
of Dress Code of Workers in Substation Based on YOLO
V5. Power Systems and Big Data, 2021, 24(10), 1-8.

12. Heilbron, F. C., Escorcia, V., Ghanem, B., Niebles, J. C. Ac-
tivityNet: A Large-Scale Video Benchmark for Human
Activity Understanding. In 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2015,
961-970. https://doi.org/10.1109/CVPR.2015.7298698

13. Jiang, C., Du, J., Nan, Z., Song, M. Fault Identification
System for Wind Turbine Tower Systems Based on
Improved YOLOv7 Algorithm. Power Systems and Big
Data, 2023, 26(10), 17-25.

14. Jiang, Y., Liu, J., Zamir, A. R., Toderici, G., Laptev, I.,
Shah, M., Sukthankar, R. THUMOS Challenge: Action
Recognition with a Large Number of Classes. 2014.

15. Jin, X., Zhang, T. MTSN: Multiscale Temporal Similari-
ty Network for Temporal Action Localization. Proceed-
ings of the 31st ACM International Conference on Multi-
media, 2023. https://doi.org/10.1145/3581783.3612455

16. Lin, C., Xu, C., Luo, D., Wang, Y., Tai, Y., Wang, C., Li, J.,
Huang, F., Fu, Y. Learning Salient Boundary Feature for
Anchor-Free Temporal Action Localization. In 2021
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2021, 3319-3328. https://doi.
org/10.1109/CVPR46437.2021.00333

17. Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B.,
Belongie, S. Feature Pyramid Networks for Object De-
tection. In 2017 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2017, 936-944.
https://doi.org/10.1109/CVPR.2017.106

18. Lin, T., Liu, X., Li, X., Ding, E., Wen, S. BMN: Bounda-
ry-Matching Network for Temporal Action Proposal
Generation. In 2019 IEEE/CVF International Confer-
ence on Computer Vision (ICCV), 2019, 3888-3897.
https://doi.org/10.1109/ICCV.2019.00399

19. Lin, T. Y., Goyal, P., Girshick, R., He, K., Dollár, P. Focal
Loss for Dense Object Detection. In 2017 IEEE Inter-
national Conference on Computer Vision (ICCV), 2017,
2999-3007. https://doi.org/10.1109/ICCV.2017.324

20. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J. Path Aggregation
Network for Instance Segmentation. In Proceedings
of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018. https://doi.org/10.1109/
CVPR.2018.00913

21. Liu, S., Huang, D., Wang, Y. Learning Spatial Fusion for Sin-
gle-Shot Object Detection. arXiv, vol. abs/1911.09516, 2019.

22. Liu, S., Zhang, C. L., Zhao, C., Ghanem, B. End-to-
End Temporal Action Detection With 1B Parameters
Across 1000 Frames. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition (CVPR), June 2024, 18591-18601. https://doi.
org/10.1109/CVPR52733.2024.01759

23. Liu, X., Wang, Q., Hu, Y., Tang, X., Zhang, S., Bai, X. End-
to-End Temporal Action Detection with Transformer.
IEEE Transactions on Image Processing (TIP), 2022.
https://doi.org/10.1109/TIP.2022.3195321

24. Liu, X., Hu, Y., Bai, S., Ding, F., Bai, X., Torr, P. H. Multi-Shot
Temporal Event Localization: A Benchmark. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), June 2021, 12596-
12606. https://doi.org/10.1109/CVPR46437.2021.01241

25. Ma, J., Chen, B. Dual Refinement Feature Pyramid Net-
works for Object Detection. 2020. arXiv preprint arX-
iv:2012.01733

26. Nag, S., Zhu, X., Song, Y. Z., Xiang, T. Proposal-Free Tem-
poral Action Detection via Global Segmentation Mask
Learning. In Computer Vision - ECCV 2022, Avidan, S.,
Brostow, G., Cissé, M., Farinella, G. M., and Hassner, T.
(Eds.), Cham: Springer Nature Switzerland, 2022, 645-
662. https://doi.org/10.1007/978-3-031-20062-5_37

27. Ning, R., Zhang, C., Zou, Y. SRF-Net: Selective Recep-
tive Field Network for Anchor-Free Temporal Action
Detection. In ICASSP 2021 - 2021 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2021, 2460-2464. https://doi.org/10.1109/
ICASSP39728.2021.9414253

28. Shao, J., Wang, X., Quan, R., Zheng, J., Yang, J., Yang, Y.
Action Sensitivity Learning for Temporal Action Local-
ization. 2023 IEEE/CVF International Conference on
Computer Vision (ICCV), 13411-13423, 2023. https://
doi.org/10.1109/ICCV51070.2023.01238

29. Shi, D., Zhong, Y., Cao, Q., Ma, L., Li, J., Tao, D. TriDet: Tem-
poral Action Detection with Relative Boundary Mod-
eling. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2023, 18857-
18866. https://doi.org/10.1109/CVPR52729.2023.01808

30. Tang, T. N., Kim, K., Sohn, K. TemporalMaxer: Max-
imize Temporal Context with Only Max Pooling for
Temporal Action Localization. arXiv preprint arX-
iv:2303.09055, 2023.

31. Tolias, G., Sicre, R., Jégou, H. Particular Object Re-
trieval with Integral Max-Pooling of CNN Activations.
CoRR, vol. abs/1511.05879, 2015.

Information Technology and Control 2025/2/54750

32. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L. Attention Is All You
Need. In Proceedings of the 31st International Confer-
ence on Neural Information Processing Systems, 2017,
6000-6010.

33. Wang, B., Zhao, Y., Yang, L., Long, T., Li, X. Temporal
Action Localization in the Deep Learning Era: A Sur-
vey. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 2024, 46(1), 2171-2190. https://doi.
org/10.1109/TPAMI.2023.3330794

34. Wang, J., Chen, K., Xu, R., Liu, Z., Loy, C. C., Lin, D. CA-
RAFE: Content-Aware Reassembly of Features. 2019
IEEE/CVF International Conference on Computer Vi-
sion (ICCV), 2019, 3007-3016. https://doi.org/10.1109/
ICCV.2019.00310

35. Wang, L., Huang, B., Zhao, Z., Tong, Z., He, Y., Wang, Y.,
Wang, Y., Qiao, Y.

36. VideoMAE V2: Scaling Video Masked Autoencod-
ers with Dual Masking. In Proceedings of the IEEE/
CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2023, 14549-14560. https://doi.
org/10.1109/CVPR52729.2023.01398

37. Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang, X.,
Gool, L. V.

38. Temporal Segment Networks: Towards Good Practices
for Deep Action Recognition. In ECCV, 2016.

39. Wang, Q., Zhang, Y., Zheng, Y., Pan, P. RCL: Recurrent
Continuous Localization for Temporal Action Detection.
In 2022 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2022, 13556-13565.
https://doi.org/10.1109/CVPR52688.2022.01320

40. Wang, Y., Li, K., Li, Y., He, Y., Huang, B., Zhao, Z., Zhang,
H., Xu, J., Liu, Y., Wang, Z., Xing, S., Chen, G., Pan, J., Yu,
J., Wang, Y., Qiao, Y.

41. InternVideo: General Video Foundation Models via
Generative and Discriminative Learning. arXiv pre-
print arXiv:2212.03191, 2022.

42. Xu, H., Das, A., Saenko, K. R-C3D: Region Convolutional
3D Network for Temporal Activity Detection. In Proceed-
ings of the International Conference on Computer Vision
(ICCV), 2017. https://doi.org/10.1109/ICCV.2017.617

43. Xu, H., Das, A., Saenko, K. Two-Stream Region Con-
volutional 3D Network for Temporal Activity Detec-
tion. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 2019,41(10), 2319-2332. https://doi.
org/10.1109/TPAMI.2019.2921539

44. Xu, L., Wang, X., Liu, W., Feng, B. Cascaded Boundary
Network for High-Quality Temporal Action Proposal
Generation. IEEE Transactions on Circuits and Sys-
tems for Video Technology, 2020, 30(10), 3702-3713.
https://doi.org/10.1109/TCSVT.2019.2944430

45. Xu, M., Zhao, C., Rojas, D. S., Thabet, A., Ghanem, B.
G-TAD: Sub-Graph Localization for Temporal Action De-
tection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June
2020. https://doi.org/10.1109/CVPR42600.2020.01017

46. Yang, G., Lei, J., Zhu, Z., Cheng, S., Feng, Z., Liang, R.
AFPN: Asymptotic Feature Pyramid Network for Ob-
ject Detection. arXiv preprint arXiv:2306.15988, 2023.
https://doi.org/10.1109/SMC53992.2023.10394415

47. Zhang, C. L., Wu, J., Li, Y. ActionFormer: Localizing Mo-
ments of Actions with Transformers. In European Con-
ference on Computer Vision, ser. LNCS, vol. 13664, 2022,
492-510. https://doi.org/10.1007/978-3-031-19772-7_29

48. Zhang, D., Zhang, H., Tang, J., Wang, M., Hua, X.,
Sun, Q. Feature Pyramid Transformer. Berlin, Hei-
delberg: Springer-Verlag, 2020, 323-339. https://doi.
org/10.1007/978-3-030-58604-1_20

49. Zhao, C., Thabet, A. K., Ghanem, B. Video Self-Stitching
Graph Network for Temporal Action Localization. In
Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, 2021, 13658-13667. https://
doi.org/10.1109/ICCV48922.2021.01340

50. Zheng, W., Liu, L., Ye, R. Distance-IoU Loss: Faster
and Better Learning for Bounding Box Regression.
In Proceedings of the AAAI Conference on Artificial
Intelligence, 2020, 34(07), 12993-13000. https://doi.
org/10.1609/aaai.v34i07.6999

51. Zhou, Z., Shojafar, M., Abawajy, J., Bashir, A. K. IADE:
An Improved Differential Evolution Algorithm to Pre-
serve Sustainability in a 6G Network. IEEE Trans-
actions on Green Communications and Network-
ing, 2021, 5(4), 1747-1760. https://doi.org/10.1109/
TGCN.2021.3111909

52. Zhu, Z., Tang, W., Wang, L., Zheng, N., Hua, G. Enriching
Local and Global Contexts for Temporal Action Local-
ization. 2021 IEEE/CVF International Conference on
Computer Vision (ICCV), 2021, 13496-13505. https://
doi.org/10.1109/ICCV48922.2021.0132

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

