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In this study, we propose a single-stage model for video action detection and a real-world action detection 
dataset POWER collected from real power operation scenarios. While previous studies have made signif-
icant progress in overall classification and localization performance, they often struggle with the actions 
that have short duration, hindering the application of these approaches. To address this, we introduce the 
Cross-scale Selective Context Aggregation Network (CSCAN), which focuses on improving the detection of 
short actions. This network integrates three key components: 1) a cross-scale feature conduction structure 
combined with a tailored alignment mechanism; 2) a selective context aggregation module based on gating 
mechanism; and 3) an effective scale-invariant consistency training strategy to enable the model to learn 
scale-invariant action representation. We evaluated our method on the self-collected dataset POWER and 
on the most widely used action detection benchmarks THUMOS14 and ActivityNet v1.3. The extensive re-
sults show that our model outperforms other approaches, especially in detecting real-world short actions, 
demonstrating the effectiveness of our approach.
KEYWORDS: Action Detection, Deep Learning, Video Understanding.

1. Introduction
Image-based Object Detection (OD) has been wide-
ly applied in diverse scenarios [11], [13]. However, 
in power grid operation scenes, significant envi-

ronmental interference and complex relationships 
among multiple targets make traditional OD tech-
niques are no longer sufficient to support the com-
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pliance audits of complex grid operations. There-
fore, the importance of Temporal Action Detection 
(TAD) based on consecutive video frames is growing 
increasingly signifi cant. TAD aims to identify and 
localize human actions in untrimmed videos by as-
signing semantic labels and precise temporal bound-
aries (start and end points) to each action instance.
In our collected POWER dataset, action durations 
are highly dispersed, as an example showing in Fig-
ure 1. Similar issues also exist in public datasets. Ex-
periments show that detecting short actions is often 
more challenging even with the powerful TAD model 
ActionFormer [44]. When we experimented with var-
ious baselines, we found that models which capture 
context information more completely tend to perform 
better in detecting short actions. Take several models 
with similar structures as examples: TemporalMaxer 
[30], ActionFormer [44], and ActionMamba [4]. Their 
key backbone modules use max-pooling, local atten-
tion, and selective state space model (DB-Mamba [6], 
a bi-directional recurrent structure) for context mod-
eling, respectively. Clearly, in terms of the complete-
ness of context information, ActionMamba [4] per-
forms the best, followed by ActionFormer [44], and 
TemporalMaxer [30] performs the worst, as shown in 
the Figure 2. The experimental results correspond to 
their respective performances.
This phenomenon has inspired us to further enrich 
the modeling of context. We attempted to conduct 
context modeling from a broader perspective, where 
shallower network layers can also obtain processed 
contextual information from deeper layers, as shown 
in the right of Figure 2. This is refl ected in the back 

propagation of features from deeper to shallower 
network layers. Based on this idea, we proposed the 
Cross-scale Selective Context Aggregation Network 
(CSCAN), which incorporates three key components:
_ First, a cross-scale feature conduction structure 

named Top-Down Pathway (TDP) combined 
with a tailored alignment mechanism in section 
3.3. Overall, TDP is a macroscopic structure, 
where features from upper layers are gradually 
integrated into lower layers. This involves 
an alignment mechanism to align features of 
diff erent temporal sizes.

_ Second, a selective context fusion module based  on 
gating mechanism, Cross-scale Selective Fusion 
(CSF), in section 3.4. Other reference fusion 
methods often employ direct addition [17], [20] 
or layer-level weights [43] on cross-scale features, 
whereas we go a step further by using a point-to-
point level gating mechanism to control feature 
fusion across diff erent scales.

_ Third, we use scale consistency training to  promote 
model learning scale-invariant representation in 
section 3.6. This part introduces controlled scale 
perturbations to the input data during training 
through Gaussian sampling of scaling factors. This 
forces the model to learn scale-invariant features, 
reducing its bias towards detecting actions of 
specifi c durations. The scaling is applied to both 
the input features and corresponding labels, 
ensuring consistency throughout the model.

In addition, we introduce the POWER dataset, which 
comprises 430 hours of video footage captured from 

Figure 1
An example from dataset POWER. In this video, four types of actions occur, as illustrated in the legend. Among these 
four actions, the longest one is "Put Grounding Rod" (indicated by the green segment), while the shortest is "Verification" 
(indicated by the blue segment).

In our collected POWER dataset, action durations 
are highly dispersed, as an example showing in 

Figure 1. Similar issues also exist in public 
datasets. Experiments
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show that detecting short actions is often more 
challenging even with the powerful TAD model 
ActionFormer [44]. When we experimented with 
various baselines, we found that models which 
capture context information more completely tend 
to perform better in detecting short actions. Take 
several models with similar structures as examples: 
TemporalMaxer [30], ActionFormer [44], and 
ActionMamba [4]. Their key backbone modules use 
max-pooling, local attention, and selective state 
space model (DB-Mamba [6], a bi-directional 
recurrent structure) for context modeling, 
respectively. Clearly, in terms of the completeness 
of context information, ActionMamba [4] performs 

the best, followed by ActionFormer [44], and 
TemporalMaxer [30] performs the worst, as 
shown in the Figure 2. The experimental 
results correspond to their respective 
performances.
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Figure 2
The difference of context modeling between our method and other TAD methods. The blue squares represent the features we 
are currently focusing on, while the orange squares indicate the sources of information for the blue squares. In "Max Pooling," 
the colors are only white and dark brown, which means that the information only includes the most salient part of the features. 
In "Local Attention," it is different; the information being passed is a weighted sum of features within a limited time interval 
from the lower layer. In "Selective State Space," the information being passed includes all possible information from the past and 
future, which has been causally modeled. In our method, we extend this modeling process to the upper-level features.

In our collected POWER dataset, action durations 
are highly dispersed, as an example showing in 

Figure 1. Similar issues also exist in public 
datasets. Experiments
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show that detecting short actions is often more 
challenging even with the powerful TAD model 
ActionFormer [44]. When we experimented with 
various baselines, we found that models which 
capture context information more completely tend 
to perform better in detecting short actions. Take 
several models with similar structures as examples: 
TemporalMaxer [30], ActionFormer [44], and 
ActionMamba [4]. Their key backbone modules use 
max-pooling, local attention, and selective state 
space model (DB-Mamba [6], a bi-directional 
recurrent structure) for context modeling, 
respectively. Clearly, in terms of the completeness 
of context information, ActionMamba [4] performs 

the best, followed by ActionFormer [44], and 
TemporalMaxer [30] performs the worst, as 
shown in the Figure 2. The experimental 
results correspond to their respective 
performances.

real-world scenarios of power grid operations. All 
2011 videos are meticulously annotated. Tests of our 
model on this dataset demonstrate its capability to 
eff ectively address the issue of insuffi  cient detection 
performance for short actions in real scenarios.
Our model has also undergone extensive testing on 
the public datasets THUMOS14 [14] and ActivityNet 
v1.3 [12], where it outperformed previous state-of-
the-art models under various experimental settings.
  

2. Related Work
2.1 Temporal Action Detection
Temporal Action Detection (TAD) methods, as out-
lined in [33], are typically categorized into two-stage 
and single-stage approaches. Two-stage methods, 
such as those described in [2][18][41], initially gen-
erate candidate action proposals and subsequently 
refi ne these proposals through boundary regres-
sion and action classifi cation. For instance, BMN 
[18] introduces a boundary-matching mechanism to 

produce fl exible and variable-length proposals with 
reasonable confi dence scores. TCA-Net [3] enhanc-
es proposal quality by aggregating "local and global" 
temporal contexts and refi ning boundaries progres-
sively. ContextLoc [49] models temporal features 
from local, global, and inter-proposal perspectives, 
while VSGN [46] leverages graph neural networks to 
capture cross-scale relationships by training videos 
and their rescaled counterparts. Proposals can be 
generated using fi xed anchors of single or multiple 
sizes [39], [40] or through direct boundary regres-
sion [37], [27]. Despite their elaborate fusion mech-
anisms, two-stage frameworks often suff er from 
complex designs and error propagation in proposal 
generation. In contrast, single-stage methods [2], 
[9] directly predict temporal boundaries and action 
categories for each instance. Innovations in this cat-
egory include AFSD [16], which introduces bound-
ary pooling to highlight salient features, and TadTR 
[23] and TallFormer [5], which incorporate trans-
formers for improved performance. Anchor-free 
models like ActionFormer [44] and TriDet [29] have 
demonstrated surprising performance in TAD tasks. 
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Notably, ActionMamba [4] replaces the transformer 
block in ActionFormer [44] with a decomposed bidi-
rectional Mamba block, achieving high mAP scores 
on TAD benchmark datasets.

2.2 Feature Aggregation in Image Task

Feature aggregation involves consolidating feature 
maps produced by the backbone network into a uni-
fied feature vector that represents a target. Basic 
techniques include max pooling and mean pooling. 
R-MAC [31] extracts feature vectors by focusing on re-
gions with maximum activation, identifying the most 
salient areas within an image. FPN [17] constructs a 
top-down architecture with lateral connections to 
capture high level semantic features across all scales. 
PANet [20] enhances this approach by incorporating 
a bottom-up path aggregation mechanism, facilitating 
the transmission of low-level information to high-
er levels. NASFPN [10] employs neural architecture 
search to identify an efficient FPN structure. FPT [45] 
integrates transformers [32] to aggregate information 
across different layers and transform features within 
the current layer. CARAFE [34] serves as a lightweight 

and efficient upsampling operator capable of aggregat-
ing information from large receptive fields. DRFPN 
[25] uses attention mechanisms to adaptively merge 
features both channel-wise and level-wise. SCPNet 
[7] proposes a method for aggregating local features 
through feature splicing and constructing a corre-
sponding loss function for learning. AFPN [43] intro-
duces an asymptotic feature aggregation approach for 
image segmentation. Despite these advancements in 
image tasks, few studies have explored the applica-
tion of feature aggregation techniques in TAD tasks. 
Therefore, our research proposes a novel method that 
combines feature aggregation with TAD techniques.

 

3. Model
3.1 Preliminary
When provided with an untrimmed video, the pri-
mary objective of TAD is to predict a set of action 
instances. Each action can be denoted as Ψ ={c, ts, 

te}, denoting the action category, start time, and end 
time, respectively.

Figure 3
The pipeline of CSCAN. First, video frames are extracted by a pre-trained model to obtain raw features. Then, after 
conversion by the feature projection module, the features are transformed into a low-dimensional subspace suitable for TAD 
tasks. Subsequently, after a feature pyramid structure, we obtain a group of feature maps at different scales. After applying 
our proposed structures, Top-Down Pathway (TDP) and Cross-scale Selective Fusion (CSF) to these feature maps, each layer 
of features will integrate information from other layers. By collecting all the features and feeding them into the classification 
and localization modules, we obtain the final predictions.
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aggregating information from large receptive 
fields. DRFPN [25] uses attention mechanisms to 
adaptively merge features both channel-wise and 
level-wise. SCPNet [7] proposes a method for 
aggregating local features through feature splicing 
and constructing a corresponding loss function for 
learning. AFPN [43] introduces an asymptotic 
feature aggregation approach for image 
segmentation. Despite these advancements in 
image tasks, few studies have explored the 
application of feature aggregation techniques in 
TAD tasks. Therefore, our research proposes a 
novel method that combines feature aggregation 
with TAD techniques. 

 
 

3. Model 
3.1 Preliminary 
When provided with an untrimmed video, the 
primary objective of TAD is to predict a set of action 
instances. Each action can be denoted as 

{ , , }s ec t t , denoting the action category, start 
time, and end time, respectively. 

Training end-to-end with video data incurs 

computational costs that are thousands of 
times higher than those of corresponding 
image tasks. Therefore, for computational 
efficiency and fair comparison with other 
baselines [44], [4], [29], [15], we use I3D [1] and 
InternVideo [38] features pre-extracted by 
other researchers for public datasets 
THUMOS14 [14] and ActivityNet v1.3 [12]. 
For our collected dataset POWER, we use 
VideoMAEv2-b [35] for feature extraction. 
The extracted feature corresponding to each 
video is EC Tx , where EC  denotes the 
number of output channels of video encoder 
and T represents the temporal dimension and 
is proportional to the video length. 

Following ActionMamba [4], we construct a 
basic feature pyramid consisting of L layers of 
DB-Mamba block [4], where pooling or other 
downsampling methods are applied. DB-
Mamba is an advanced module designed to 
enhance the performance and efficiency of 
data processing and feature extraction, 
combining the strengths of bidirectional 
processing with a unique dual-layer 
architecture to capture both short-term and 
long-term dependencies effectively. 
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Training end-to-end with video data incurs compu-
tational costs that are thousands of times higher than 
those of corresponding image tasks. Therefore, for 
computational effi  ciency and fair comparison with 
other baselines [44], [4], [29], [15], we use I3D [1] and 
InternVideo [38] features pre-extracted by other re-
searchers for public datasets THUMOS14 [14] and 
ActivityNet v1.3 [12]. For our collected dataset POW-
ER, we use VideoMAEv2-b [35] for feature extraction. 
The extracted feature corresponding to each video is  
x∊RCE×T, where CE denotes the number of output chan-
nels of video encoder and T represents the temporal di-
mension and is proportional to the video length.
Following ActionMamba [4], we construct a basic 
feature pyramid consisting of L layers of DB-Mam-
ba block [4], where pooling or other downsampling 
methods are applied. DB-Mamba is an advanced 
module designed to enhance the performance and 
effi  ciency of data processing and feature extraction, 
combining the strengths of bidirectional processing 
with a unique dual-layer architecture to capture both 
short-term and long-term dependencies eff ectively.

3.2 Overview
The entire pipeline is briefl y illustrated in Figure 3 
and its caption.

3.3 Top-Down Path
To address multi-scale action challenges, various 
solutions have been proposed. Models like Action-
Former [44], TemporalMaxer [30], and TriDet [29] 
use feature pyramids with layerwise downsampling 
to expand high-level feature receptive fi elds. Yet, 
this design only aggregates context from small to 
large scales, and the contextual information of the 
lowerlevel features is limited. To address this issue, 
we propose a feature conduction structure named 
Top-Down Pathway (TDP) which leverages coarse-
grained features’ rich contextual information to 
complement fi ne-grained features, as shown in Fig-
ure 4. Unlike methods in object detection [17], [20], 
our approach to contextual fusion involves bidirec-
tional information exchange each time and we de-
sign the new alignment mechanism.
The input for the TDP is the output of the feature 
pyramid mentioned above, i.e., Zfpn. We will gradu-
ally incorporate the output information from each 
upper layer into the input of the next lower layer. 
Initially, there are two primary challenges: the first 
is how to align features of different sizes, and the 
second is how to fuse these aligned features. This 
subsection tackles the first challenge, and next sub-
section address the second challenge. Alignment 

Figure 4
The structure of TDP and implementation of the alignment mechanism. First, the outputs of all layers are fused from top 
to bottom until the lowest layer. Each fusion occurs between adjacent layers. The fusion process is completed by the CSF 
module shown in Figure 5.
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3.3 Top-Down Path
To address multi-scale action challenges, various 
solutions have been proposed. Models like 
ActionFormer [44], TemporalMaxer [30], and 
TriDet [29] use feature pyramids with layerwise 
downsampling to expand high-level feature 
receptive fields. Yet, this design only aggregates 
context from small to large scales, and the 
contextual information of the lowerlevel features is 
limited. To address this issue, we propose a feature 
conduction structure named Top-Down Pathway 
(TDP) which leverages coarse-grained features’ 
rich contextual information to complement fine-
grained features, as shown in Figure 4. Unlike 
methods in object detection [17], [20], our approach 
to contextual fusion involves bidirectional 
information exchange each time and we design the 
new alignment mechanism.

Upward alignment involves reducing the size 
of the feature map. We achieve this by using 
MaxPooling to capture the main information 
from the lower layer, combined with residual 
information obtained from a stacked two-
layer convolutional network. Suppose we 
have feature ( )

0
lz from layer l with length T(l), 

and we need to align the feature map ( )
0
lz with 

its counterpart from higher layer   with length 
T(l)/2. The subscript denotes the ( 1)

0
lz number 

of times of fusion. The feature transformation 
can be described as follows:

( 1) ( ) ( )
0 0 2 1 0MAXPooling( ) ( ( ))l l l lz z z ,          (1)

where the kernel size of MaxPooling(·) is 3, 
with a stride of 2. 1(·) denotes using depth-
wise convolution to conduct channel 
transformation, and 2(·) represents the use of 
a kernel size of 3 and a step size of 2 for 1d-
convolution to perform temporal 
transformation.      

Aligning down means to enlarge the feature 
map, which requires aligning from the feature 
map ( )

0
lz to ( 1)

0
lz . Also, use a layer of depth-

wise Conv, (·), to obtain the residual 
transformation, add it to ( )

0
lz , and then use 

nearest neighbor interpolation to resize the 
feature map:
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can be categorized into upward alignment and 
downward alignment.
Upward alignment involves reducing the size of the 
feature map. We achieve this by using MaxPooling 
to capture the main information from the lower lay-
er, combined with residual information obtained 
from a stacked two-layer convolutional network. 
Suppose we have  feature z0

(l) from layer l with length 
T (l), and we need to align the feature map z0

(l) with its 
counterpart from higher layer   with length T (l)/2. The 
subscript denotes the z0

(l+1) number of times of fu-
sion. The feature transformation can be described 
as follows:
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introduces noise. ASFF [39] proposed adaptive 
fusion method to reduce channels to 8-16 to 
express hierarchical importance, but still 
retains noise. We propose that a residual-
based attention structure is better suited, as 

The input of CSF is a couple of scale-aligned 
features ( 1) ( )

0 0{ , }l lz z from adjacent levels, for 
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ability of the model. By incorporating cross-layer 
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scale context aggregation.
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(l), we first need to convert z0
(l+1) and z0
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Figure 5 

Illustration of CSF. CSF involves aggregating and fusing features from different scales, utilizing an cross attention 
mechanism with a residual structure to effectively integrate information from various levels while preserving the 
original information. 
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where , ,q k vW W W  are trainable weights shared 
across layers. Then, we use these tensors to 
calculate the attention to further obtain 
residual information which is denoted as z   : 
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where d is the number of channels of these 
attention components. We add these outputs 
to ( )

0
lz  and ( 1)

0
lz  to get ( )

1
lz  and ( )

1 1
lz  that 

integrates information from another layers: 
( ) ( ) ( 1 ) ( 1) ( 1) ( 1)
1 0 0 1 0 0, .l l l l l l l lz z z z z z= + = +             (6)  

By repeating this operation from the top layer 
down to the bottom layer, we ultimately 
obtain a set of features 

(1) (2) (3) ( 1) ( )
1 2 2 2 1{ , , ,..., , }L Lz z z z z , using capital letter 

Z to abbreviate it as 
(1) (2) (3) ( )

fpn { , , ,..., }Lz Z Z Z Z . 

3.5 Detection Heads and Postprocess 
The detection head consists of a classification 
head and a localization head. The first part of 
the classification head and localization head is 
composed of stacked one-dimensional 
convolutions, where we denote the operation 
of one convolution layer as ( )f : 

( ) ReLU(LayerNorm(dwConv( )))f z z ,                (7) 

where the input of the detection head is fpnz   
with time dimensions of 1{ , / 2,..., / 2 }LT T T , 
respectively. By concatenating them in time 
series, we obtain predict

sumC T×z , where 

0
/ 2L l

sum l
T T and C is the channel number. 
According to the settings of the feature 
extraction process, after simple calculations, 
we can obtain the time scale of the feature at 
each position in the video sum1 TP  and the 
size of the receptive field corresponding to the 
current position sum2 TS . 

For classification, we use two layers of 1d-conv 
to obtain the classification score: 

C K 2 1 predictdwConv (f (f ( ))),c cc z               (8) 

where ,sumK Tc ×  and K is the number of 
action classes to be classified. 

For localization, we use a similar operation, 

but ultimately obtain the relative position 
within the segment with a dimension of 2: 

C 2 2 1 predictdwConv (f (f ( ))),r rr z                        (9) 

where 2 ,sumTr ×  . The first row of elements 
represents the relative start position of the 
action within the segment, and the second row 
of elements represents the relative end 
position of the action within the segment. 
Organize r , P  and S , we can obtain sumT  
absolute time coordinates b rP S . These 
boundary predictions with their classification 
scores are postprocessed using SoftNMS to 
obtain the final N prediction results. 

3.6 Scale Consistency Training 
In order to better capture the scale-invariant 
features in actions, we designed a temporal 
scaling augmentation strategy based on 
Gaussian sampling to assist our training. 
Specifically, we first perform random 
Gaussian sampling to obtain scaling factors 
around 0. Subsequently, we map these factors 
to an exponential space to obtain scaling ratios. 
This process ensures that the scaling ratios are 
symmetrically distributed in the logarithmic 
space and within a reasonable range. By doing 
so, controlled yet diverse scale perturbations 
are introduced to the input data: 

2 , ~ (0, ),N                       (10) 

where  denotes the scaling ratio,  refers to a 
random number that follows a normal 
distribution and  is a parameter set to 1 by 
default. 

Before projection, we scale the temporal 
dimension of EC T×x  with probability p, 
which ensures that we can learn the 
information of the original samples. 

' Interpolate ( )T Tx x .                              (11) 

At the same time, we also perform time-series 
scaling on the training labels, and the 
corresponding labels are changed from 

{ , , }s ec t t  to { , , }s ec t t . Through time-series 

scaling, the time-series dimensions of all 
subsequent features will change. 

Our overall loss consists of classification loss, 
localization loss, and scale loss. The 
classification loss clsL  uses focal loss [40], the 
localization loss regL  uses dioU [41], and the 
design of the single prediction for the scale loss 
is as follows: 
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where d is the number of channels of these 
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where the input of the detection head is fpnz   
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respectively. By concatenating them in time 
series, we obtain predict

sumC T×z , where 
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T T and C is the channel number. 
According to the settings of the feature 
extraction process, after simple calculations, 
we can obtain the time scale of the feature at 
each position in the video sum1 TP  and the 
size of the receptive field corresponding to the 
current position sum2 TS . 

For classification, we use two layers of 1d-conv 
to obtain the classification score: 

C K 2 1 predictdwConv (f (f ( ))),c cc z               (8) 

where ,sumK Tc ×  and K is the number of 
action classes to be classified. 

For localization, we use a similar operation, 

but ultimately obtain the relative position 
within the segment with a dimension of 2: 

C 2 2 1 predictdwConv (f (f ( ))),r rr z                        (9) 

where 2 ,sumTr ×  . The first row of elements 
represents the relative start position of the 
action within the segment, and the second row 
of elements represents the relative end 
position of the action within the segment. 
Organize r , P  and S , we can obtain sumT  
absolute time coordinates b rP S . These 
boundary predictions with their classification 
scores are postprocessed using SoftNMS to 
obtain the final N prediction results. 

3.6 Scale Consistency Training 
In order to better capture the scale-invariant 
features in actions, we designed a temporal 
scaling augmentation strategy based on 
Gaussian sampling to assist our training. 
Specifically, we first perform random 
Gaussian sampling to obtain scaling factors 
around 0. Subsequently, we map these factors 
to an exponential space to obtain scaling ratios. 
This process ensures that the scaling ratios are 
symmetrically distributed in the logarithmic 
space and within a reasonable range. By doing 
so, controlled yet diverse scale perturbations 
are introduced to the input data: 
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where  denotes the scaling ratio,  refers to a 
random number that follows a normal 
distribution and  is a parameter set to 1 by 
default. 

Before projection, we scale the temporal 
dimension of EC T×x  with probability p, 
which ensures that we can learn the 
information of the original samples. 
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At the same time, we also perform time-series 
scaling on the training labels, and the 
corresponding labels are changed from 

{ , , }s ec t t  to { , , }s ec t t . Through time-series 

scaling, the time-series dimensions of all 
subsequent features will change. 
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classification loss clsL  uses focal loss [40], the 
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3.5 Detection Heads and Postprocess 
The detection head consists of a classification 
head and a localization head. The first part of 
the classification head and localization head is 
composed of stacked one-dimensional 
convolutions, where we denote the operation 
of one convolution layer as ( )f : 
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where the input of the detection head is fpnz   
with time dimensions of 1{ , / 2,..., / 2 }LT T T , 
respectively. By concatenating them in time 
series, we obtain predict

sumC T×z , where 
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T T and C is the channel number. 
According to the settings of the feature 
extraction process, after simple calculations, 
we can obtain the time scale of the feature at 
each position in the video sum1 TP  and the 
size of the receptive field corresponding to the 
current position sum2 TS . 

For classification, we use two layers of 1d-conv 
to obtain the classification score: 
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where ,sumK Tc ×  and K is the number of 
action classes to be classified. 

For localization, we use a similar operation, 

but ultimately obtain the relative position 
within the segment with a dimension of 2: 
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where 2 ,sumTr ×  . The first row of elements 
represents the relative start position of the 
action within the segment, and the second row 
of elements represents the relative end 
position of the action within the segment. 
Organize r , P  and S , we can obtain sumT  
absolute time coordinates b rP S . These 
boundary predictions with their classification 
scores are postprocessed using SoftNMS to 
obtain the final N prediction results. 

3.6 Scale Consistency Training 
In order to better capture the scale-invariant 
features in actions, we designed a temporal 
scaling augmentation strategy based on 
Gaussian sampling to assist our training. 
Specifically, we first perform random 
Gaussian sampling to obtain scaling factors 
around 0. Subsequently, we map these factors 
to an exponential space to obtain scaling ratios. 
This process ensures that the scaling ratios are 
symmetrically distributed in the logarithmic 
space and within a reasonable range. By doing 
so, controlled yet diverse scale perturbations 
are introduced to the input data: 
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where  denotes the scaling ratio,  refers to a 
random number that follows a normal 
distribution and  is a parameter set to 1 by 
default. 

Before projection, we scale the temporal 
dimension of EC T×x  with probability p, 
which ensures that we can learn the 
information of the original samples. 
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scaling on the training labels, and the 
corresponding labels are changed from 
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scaling, the time-series dimensions of all 
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classification loss clsL  uses focal loss [40], the 
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is as follows: 
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The detection head consists of a classification 
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composed of stacked one-dimensional 
convolutions, where we denote the operation 
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with time dimensions of 1{ , / 2,..., / 2 }LT T T , 
respectively. By concatenating them in time 
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extraction process, after simple calculations, 
we can obtain the time scale of the feature at 
each position in the video sum1 TP  and the 
size of the receptive field corresponding to the 
current position sum2 TS . 

For classification, we use two layers of 1d-conv 
to obtain the classification score: 
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where ,sumK Tc ×  and K is the number of 
action classes to be classified. 
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within the segment with a dimension of 2: 
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represents the relative start position of the 
action within the segment, and the second row 
of elements represents the relative end 
position of the action within the segment. 
Organize r , P  and S , we can obtain sumT  
absolute time coordinates b rP S . These 
boundary predictions with their classification 
scores are postprocessed using SoftNMS to 
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3.6 Scale Consistency Training 
In order to better capture the scale-invariant 
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so, controlled yet diverse scale perturbations 
are introduced to the input data: 
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space and within a reasonable range. By doing 
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action within the segment, and the second row 
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obtain the final N prediction results. 
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In order to better capture the scale-invariant 
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Gaussian sampling to assist our training. 
Specifically, we first perform random 
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which ensures that we can learn the 
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extraction process, after simple calculations, 
we can obtain the time scale of the feature at 
each position in the video sum1 TP  and the 
size of the receptive field corresponding to the 
current position sum2 TS . 

For classification, we use two layers of 1d-conv 
to obtain the classification score: 

C K 2 1 predictdwConv (f (f ( ))),c cc z               (8) 

where ,sumK Tc ×  and K is the number of 
action classes to be classified. 

For localization, we use a similar operation, 

but ultimately obtain the relative position 
within the segment with a dimension of 2: 

C 2 2 1 predictdwConv (f (f ( ))),r rr z                        (9) 

where 2 ,sumTr ×  . The first row of elements 
represents the relative start position of the 
action within the segment, and the second row 
of elements represents the relative end 
position of the action within the segment. 
Organize r , P  and S , we can obtain sumT  
absolute time coordinates b rP S . These 
boundary predictions with their classification 
scores are postprocessed using SoftNMS to 
obtain the final N prediction results. 

3.6 Scale Consistency Training 
In order to better capture the scale-invariant 
features in actions, we designed a temporal 
scaling augmentation strategy based on 
Gaussian sampling to assist our training. 
Specifically, we first perform random 
Gaussian sampling to obtain scaling factors 
around 0. Subsequently, we map these factors 
to an exponential space to obtain scaling ratios. 
This process ensures that the scaling ratios are 
symmetrically distributed in the logarithmic 
space and within a reasonable range. By doing 
so, controlled yet diverse scale perturbations 
are introduced to the input data: 

2 , ~ (0, ),N                       (10) 

where  denotes the scaling ratio,  refers to a 
random number that follows a normal 
distribution and  is a parameter set to 1 by 
default. 

Before projection, we scale the temporal 
dimension of EC T×x  with probability p, 
which ensures that we can learn the 
information of the original samples. 

' Interpolate ( )T Tx x .                              (11) 

At the same time, we also perform time-series 
scaling on the training labels, and the 
corresponding labels are changed from 

{ , , }s ec t t  to { , , }s ec t t . Through time-series 

scaling, the time-series dimensions of all 
subsequent features will change. 

Our overall loss consists of classification loss, 
localization loss, and scale loss. The 
classification loss clsL  uses focal loss [40], the 
localization loss regL  uses dioU [41], and the 
design of the single prediction for the scale loss 
is as follows: 
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where d is the number of channels of these 
attention components. We add these outputs 
to ( )

0
lz  and ( 1)

0
lz  to get ( )

1
lz  and ( )

1 1
lz  that 

integrates information from another layers: 
( ) ( ) ( 1 ) ( 1) ( 1) ( 1)
1 0 0 1 0 0, .l l l l l l l lz z z z z z= + = +             (6)  

By repeating this operation from the top layer 
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head and a localization head. The first part of 
the classification head and localization head is 
composed of stacked one-dimensional 
convolutions, where we denote the operation 
of one convolution layer as ( )f : 

( ) ReLU(LayerNorm(dwConv( )))f z z ,                (7) 

where the input of the detection head is fpnz   
with time dimensions of 1{ , / 2,..., / 2 }LT T T , 
respectively. By concatenating them in time 
series, we obtain predict

sumC T×z , where 
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T T and C is the channel number. 
According to the settings of the feature 
extraction process, after simple calculations, 
we can obtain the time scale of the feature at 
each position in the video sum1 TP  and the 
size of the receptive field corresponding to the 
current position sum2 TS . 

For classification, we use two layers of 1d-conv 
to obtain the classification score: 
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where ,sumK Tc ×  and K is the number of 
action classes to be classified. 

For localization, we use a similar operation, 
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represents the relative start position of the 
action within the segment, and the second row 
of elements represents the relative end 
position of the action within the segment. 
Organize r , P  and S , we can obtain sumT  
absolute time coordinates b rP S . These 
boundary predictions with their classification 
scores are postprocessed using SoftNMS to 
obtain the final N prediction results. 

3.6 Scale Consistency Training 
In order to better capture the scale-invariant 
features in actions, we designed a temporal 
scaling augmentation strategy based on 
Gaussian sampling to assist our training. 
Specifically, we first perform random 
Gaussian sampling to obtain scaling factors 
around 0. Subsequently, we map these factors 
to an exponential space to obtain scaling ratios. 
This process ensures that the scaling ratios are 
symmetrically distributed in the logarithmic 
space and within a reasonable range. By doing 
so, controlled yet diverse scale perturbations 
are introduced to the input data: 
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where  denotes the scaling ratio,  refers to a 
random number that follows a normal 
distribution and  is a parameter set to 1 by 
default. 

Before projection, we scale the temporal 
dimension of EC T×x  with probability p, 
which ensures that we can learn the 
information of the original samples. 
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where d is the number of channels of these 
attention components. We add these outputs 
to ( )

0
lz  and ( 1)

0
lz  to get ( )

1
lz  and ( )

1 1
lz  that 

integrates information from another layers: 
( ) ( ) ( 1 ) ( 1) ( 1) ( 1)
1 0 0 1 0 0, .l l l l l l l lz z z z z z= + = +             (6)  

By repeating this operation from the top layer 
down to the bottom layer, we ultimately 
obtain a set of features 

(1) (2) (3) ( 1) ( )
1 2 2 2 1{ , , ,..., , }L Lz z z z z , using capital letter 

Z to abbreviate it as 
(1) (2) (3) ( )

fpn { , , ,..., }Lz Z Z Z Z . 

3.5 Detection Heads and Postprocess 
The detection head consists of a classification 
head and a localization head. The first part of 
the classification head and localization head is 
composed of stacked one-dimensional 
convolutions, where we denote the operation 
of one convolution layer as ( )f : 

( ) ReLU(LayerNorm(dwConv( )))f z z ,                (7) 

where the input of the detection head is fpnz   
with time dimensions of 1{ , / 2,..., / 2 }LT T T , 
respectively. By concatenating them in time 
series, we obtain predict

sumC T×z , where 
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T T and C is the channel number. 
According to the settings of the feature 
extraction process, after simple calculations, 
we can obtain the time scale of the feature at 
each position in the video sum1 TP  and the 
size of the receptive field corresponding to the 
current position sum2 TS . 

For classification, we use two layers of 1d-conv 
to obtain the classification score: 

C K 2 1 predictdwConv (f (f ( ))),c cc z               (8) 

where ,sumK Tc ×  and K is the number of 
action classes to be classified. 

For localization, we use a similar operation, 

but ultimately obtain the relative position 
within the segment with a dimension of 2: 

C 2 2 1 predictdwConv (f (f ( ))),r rr z                        (9) 

where 2 ,sumTr ×  . The first row of elements 
represents the relative start position of the 
action within the segment, and the second row 
of elements represents the relative end 
position of the action within the segment. 
Organize r , P  and S , we can obtain sumT  
absolute time coordinates b rP S . These 
boundary predictions with their classification 
scores are postprocessed using SoftNMS to 
obtain the final N prediction results. 

3.6 Scale Consistency Training 
In order to better capture the scale-invariant 
features in actions, we designed a temporal 
scaling augmentation strategy based on 
Gaussian sampling to assist our training. 
Specifically, we first perform random 
Gaussian sampling to obtain scaling factors 
around 0. Subsequently, we map these factors 
to an exponential space to obtain scaling ratios. 
This process ensures that the scaling ratios are 
symmetrically distributed in the logarithmic 
space and within a reasonable range. By doing 
so, controlled yet diverse scale perturbations 
are introduced to the input data: 
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where  denotes the scaling ratio,  refers to a 
random number that follows a normal 
distribution and  is a parameter set to 1 by 
default. 
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dimension of EC T×x  with probability p, 
which ensures that we can learn the 
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postprocessed using SoftNMS to obtain the final N 
prediction results.

3.6 Scale Consistency Training
In order to better capture the scale-invariant fea-
tures in actions, we designed a temporal scaling 
augmentation strategy based on Gaussian sampling 
to assist our training. Specifically, we first perform 
random Gaussian sampling to obtain scaling fac-
tors around 0. Subsequently, we map these factors 
to an exponential space to obtain scaling ratios. 
This process ensures that the scaling ratios are 
symmetrically distributed in the logarithmic space 
and within a reasonable range. By doing so, con-
trolled yet diverse scale perturbations are intro-
duced to the input data:
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where d is the number of channels of these 
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3.5 Detection Heads and Postprocess 
The detection head consists of a classification 
head and a localization head. The first part of 
the classification head and localization head is 
composed of stacked one-dimensional 
convolutions, where we denote the operation 
of one convolution layer as ( )f : 

( ) ReLU(LayerNorm(dwConv( )))f z z ,                (7) 

where the input of the detection head is fpnz   
with time dimensions of 1{ , / 2,..., / 2 }LT T T , 
respectively. By concatenating them in time 
series, we obtain predict

sumC T×z , where 
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T T and C is the channel number. 
According to the settings of the feature 
extraction process, after simple calculations, 
we can obtain the time scale of the feature at 
each position in the video sum1 TP  and the 
size of the receptive field corresponding to the 
current position sum2 TS . 

For classification, we use two layers of 1d-conv 
to obtain the classification score: 

C K 2 1 predictdwConv (f (f ( ))),c cc z               (8) 

where ,sumK Tc ×  and K is the number of 
action classes to be classified. 

For localization, we use a similar operation, 

but ultimately obtain the relative position 
within the segment with a dimension of 2: 

C 2 2 1 predictdwConv (f (f ( ))),r rr z                        (9) 

where 2 ,sumTr ×  . The first row of elements 
represents the relative start position of the 
action within the segment, and the second row 
of elements represents the relative end 
position of the action within the segment. 
Organize r , P  and S , we can obtain sumT  
absolute time coordinates b rP S . These 
boundary predictions with their classification 
scores are postprocessed using SoftNMS to 
obtain the final N prediction results. 

3.6 Scale Consistency Training 
In order to better capture the scale-invariant 
features in actions, we designed a temporal 
scaling augmentation strategy based on 
Gaussian sampling to assist our training. 
Specifically, we first perform random 
Gaussian sampling to obtain scaling factors 
around 0. Subsequently, we map these factors 
to an exponential space to obtain scaling ratios. 
This process ensures that the scaling ratios are 
symmetrically distributed in the logarithmic 
space and within a reasonable range. By doing 
so, controlled yet diverse scale perturbations 
are introduced to the input data: 
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where  denotes the scaling ratio,  refers to a 
random number that follows a normal 
distribution and  is a parameter set to 1 by 
default. 

Before projection, we scale the temporal 
dimension of EC T×x  with probability p, 
which ensures that we can learn the 
information of the original samples. 

' Interpolate ( )T Tx x .                              (11) 

At the same time, we also perform time-series 
scaling on the training labels, and the 
corresponding labels are changed from 

{ , , }s ec t t  to { , , }s ec t t . Through time-series 

scaling, the time-series dimensions of all 
subsequent features will change. 

Our overall loss consists of classification loss, 
localization loss, and scale loss. The 
classification loss clsL  uses focal loss [40], the 
localization loss regL  uses dioU [41], and the 
design of the single prediction for the scale loss 
is as follows: 
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where γ denotes the scaling ratio, ξ refers to a ran-
dom number that follows a normal distribution and 
δ is a parameter set to 1 by default.
Before projection, we scale the temporal dimension 
of x ∊ RCE×T with probability p, which ensures that we 
can learn the information of the original samples.
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where d is the number of channels of these 
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down to the bottom layer, we ultimately 
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3.5 Detection Heads and Postprocess 
The detection head consists of a classification 
head and a localization head. The first part of 
the classification head and localization head is 
composed of stacked one-dimensional 
convolutions, where we denote the operation 
of one convolution layer as ( )f : 

( ) ReLU(LayerNorm(dwConv( )))f z z ,                (7) 

where the input of the detection head is fpnz   
with time dimensions of 1{ , / 2,..., / 2 }LT T T , 
respectively. By concatenating them in time 
series, we obtain predict

sumC T×z , where 
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T T and C is the channel number. 
According to the settings of the feature 
extraction process, after simple calculations, 
we can obtain the time scale of the feature at 
each position in the video sum1 TP  and the 
size of the receptive field corresponding to the 
current position sum2 TS . 

For classification, we use two layers of 1d-conv 
to obtain the classification score: 

C K 2 1 predictdwConv (f (f ( ))),c cc z               (8) 

where ,sumK Tc ×  and K is the number of 
action classes to be classified. 

For localization, we use a similar operation, 

but ultimately obtain the relative position 
within the segment with a dimension of 2: 

C 2 2 1 predictdwConv (f (f ( ))),r rr z                        (9) 

where 2 ,sumTr ×  . The first row of elements 
represents the relative start position of the 
action within the segment, and the second row 
of elements represents the relative end 
position of the action within the segment. 
Organize r , P  and S , we can obtain sumT  
absolute time coordinates b rP S . These 
boundary predictions with their classification 
scores are postprocessed using SoftNMS to 
obtain the final N prediction results. 

3.6 Scale Consistency Training 
In order to better capture the scale-invariant 
features in actions, we designed a temporal 
scaling augmentation strategy based on 
Gaussian sampling to assist our training. 
Specifically, we first perform random 
Gaussian sampling to obtain scaling factors 
around 0. Subsequently, we map these factors 
to an exponential space to obtain scaling ratios. 
This process ensures that the scaling ratios are 
symmetrically distributed in the logarithmic 
space and within a reasonable range. By doing 
so, controlled yet diverse scale perturbations 
are introduced to the input data: 
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where  denotes the scaling ratio,  refers to a 
random number that follows a normal 
distribution and  is a parameter set to 1 by 
default. 

Before projection, we scale the temporal 
dimension of EC T×x  with probability p, 
which ensures that we can learn the 
information of the original samples. 
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At the same time, we also perform time-series 
scaling on the training labels, and the 
corresponding labels are changed from 

{ , , }s ec t t  to { , , }s ec t t . Through time-series 

scaling, the time-series dimensions of all 
subsequent features will change. 

Our overall loss consists of classification loss, 
localization loss, and scale loss. The 
classification loss clsL  uses focal loss [40], the 
localization loss regL  uses dioU [41], and the 
design of the single prediction for the scale loss 
is as follows: 

. (11)

At the same time, we also perform time-series scal-
ing on the training labels, and the corresponding la-
bels are changed from {c, ts, te} to {c, γts, γte}. Through 
time-series scaling, the time-series dimensions of 
all subsequent features will change.
Our overall loss consists of classification loss, local-
ization loss, and scale loss. The classification loss   
Lcls uses focal loss [40], the localization loss Lreg uses 
dioU [41], and the design of the single prediction for 
the scale loss is as follows:
  

, , , , ,
1 (log( ) log( )),
2scale i e i s i e i s iL t t t t          (12) 

where N denotes the number of predictions. 
Finally, the overall training loss is calculated 
by: 

,cls cls reg reg scaleL L L L               (13) 

among which cls  and reg  are the hyper-
parameters, both of them are set to 1 by default. 

 
 

4. Experiments 
4.1 Datasets 
In order to assess the efficacy of our method, 
akin to the majority of prior studies, we carried 
out comprehensive experiments on two 
prominent TAD benchmarks: THUMOS14 
and ActivityNet-1.3. In addition, we 
conducted extensive experiments on our self-
collected dataset, POWER, for validation. We 
employed the mean average precision (mAP) 
metric, calculated across various temporal 
intersection over union (tIoU) thresholds, as it 
is a universally accepted standard for 
evaluating the performance of TAD models, 
thereby serving as the cornerstone for 
evaluating our proposed approach. 

THUMOS14 contains 200 untrimmed videos 
labeled for training and 213 for testing, 
spanning 20 sports categories. The actions 
within these videos are notably shorter and 
more densely concentrated in terms of their 
quantity per video, presenting a formidable 
obstacle for TAD. With an average video 
duration of 4.4 minutes and action instances 
averaging just 5 seconds, THUMOS14 also 
features background segments occupying an 
average of 71% of each video’s length. To 
evaluate our method’s performance on this 
dataset, consistent with the majority of 
baseline models, we utilize mAP at tIoU 
thresholds ranging from 0.3 to 0.7 with an 
interval of 0.1, along with the overall average 
mAP. 

ActivityNet v1.3 comprises 10,024 untrimmed 
videos from 200 daily activity categories 
designated for training and 4,926 videos for 
testing. In comparison to THUMOS14, the 
action instances featured in ActivityNet-1.3 
are notably longer and distributed more 
sparsely within each video in terms of quantity. 
The average duration of each video is 2 
minutes, while the average length of an action 

instance stands at 48 seconds. On average, 
each video encompasses 1.41 activities. In 
accordance with established conventions, 
mAP@[0.50:0.05:0.95] is employed as the 
evaluation metric for ActivityNet-1.3, and we 
report both the overall average mAP as well as 
mAPs specifically at the thresholds of 0.5, 0.75, 
and 0.95. 

EPIC-KITCHENS 100 is an extension of the 
original EPIC-KITCHENS dataset. It contains 
over 3,500 hours of first-person video footage 
captured in natural kitchen settings, involving 
a wide range of everyday activities such as 
cooking, cleaning, and food preparation. The 
dataset is unique in its scale and the richness 
of the annotations provided. 

POWER dataset mainly involves workers 
performing tasks on utility poles during 
power outages. The dataset contains 2,011 
videos captured under various lighting and 
filming conditions, documenting power 
outage operations. It includes five types of 
actions: climbing, voltage testing, grounding 
wire installation, grounding wire removal, 
and descending from the pole, totaling 4,696 
action instances. The average length of each 
instance is 66 seconds, and the total duration 
of all videos is 430 hours. The metric of 
POWER is the same as that of THUMOS14. 
The specific information of this dataset is 
presented in Table 1. 

 

Table 1 

Detailed information about the POWER 
dataset. 

Item Training Test All  
Videos 1694 311 2011  

Instances 3863 833 4696  
Duration 359.63 70.84 430.48  
Action Training Test All Duration 

ClimbUp 1360 344 1704 67.3 
Verification 360 94 454 27.9 

Put 
Grounding 

Rod 
451 111 562 116 

Descending 1362 223 1585 52.8 
Take 

Grounding 
Rod 

330 61 391 83.2 

All 3863 833 4696 66 

  

4.2 Implementation Details 
For THUMOS14 [14] and ActivityNet v1.3 [12], 

, (12)

where N denotes the number of predictions. Finally, 
the overall training loss is calculated by:
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by: 
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among which cls  and reg  are the hyper-
parameters, both of them are set to 1 by default. 
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within these videos are notably shorter and 
more densely concentrated in terms of their 
quantity per video, presenting a formidable 
obstacle for TAD. With an average video 
duration of 4.4 minutes and action instances 
averaging just 5 seconds, THUMOS14 also 
features background segments occupying an 
average of 71% of each video’s length. To 
evaluate our method’s performance on this 
dataset, consistent with the majority of 
baseline models, we utilize mAP at tIoU 
thresholds ranging from 0.3 to 0.7 with an 
interval of 0.1, along with the overall average 
mAP. 

ActivityNet v1.3 comprises 10,024 untrimmed 
videos from 200 daily activity categories 
designated for training and 4,926 videos for 
testing. In comparison to THUMOS14, the 
action instances featured in ActivityNet-1.3 
are notably longer and distributed more 
sparsely within each video in terms of quantity. 
The average duration of each video is 2 
minutes, while the average length of an action 

instance stands at 48 seconds. On average, 
each video encompasses 1.41 activities. In 
accordance with established conventions, 
mAP@[0.50:0.05:0.95] is employed as the 
evaluation metric for ActivityNet-1.3, and we 
report both the overall average mAP as well as 
mAPs specifically at the thresholds of 0.5, 0.75, 
and 0.95. 

EPIC-KITCHENS 100 is an extension of the 
original EPIC-KITCHENS dataset. It contains 
over 3,500 hours of first-person video footage 
captured in natural kitchen settings, involving 
a wide range of everyday activities such as 
cooking, cleaning, and food preparation. The 
dataset is unique in its scale and the richness 
of the annotations provided. 

POWER dataset mainly involves workers 
performing tasks on utility poles during 
power outages. The dataset contains 2,011 
videos captured under various lighting and 
filming conditions, documenting power 
outage operations. It includes five types of 
actions: climbing, voltage testing, grounding 
wire installation, grounding wire removal, 
and descending from the pole, totaling 4,696 
action instances. The average length of each 
instance is 66 seconds, and the total duration 
of all videos is 430 hours. The metric of 
POWER is the same as that of THUMOS14. 
The specific information of this dataset is 
presented in Table 1. 

 

Table 1 

Detailed information about the POWER 
dataset. 

Item Training Test All  
Videos 1694 311 2011  

Instances 3863 833 4696  
Duration 359.63 70.84 430.48  
Action Training Test All Duration 

ClimbUp 1360 344 1704 67.3 
Verification 360 94 454 27.9 

Put 
Grounding 

Rod 
451 111 562 116 

Descending 1362 223 1585 52.8 
Take 

Grounding 
Rod 

330 61 391 83.2 

All 3863 833 4696 66 

  

4.2 Implementation Details 
For THUMOS14 [14] and ActivityNet v1.3 [12], 

, (13)

among which λcls and λreg are the hyper-parameters, 
both of them are set to 1 by default.

4. Experiments
4.1 Datasets
In order to assess the efficacy of our method, akin to 
the majority of prior studies, we carried out compre-
hensive experiments on two prominent TAD bench-
marks: THUMOS14 and ActivityNet-1.3. In addi-
tion, we conducted extensive experiments on our 
self-collected dataset, POWER, for validation. We 
employed the mean average precision (mAP) metric, 
calculated across various temporal intersection over 
union (tIoU) thresholds, as it is a universally accept-
ed standard for evaluating the performance of TAD 
models, thereby serving as the cornerstone for eval-
uating our proposed approach.
THUMOS14 contains 200 untrimmed videos la-
beled for training and 213 for testing, spanning 20 
sports categories. The actions within these videos 
are notably shorter and more densely concentrat-
ed in terms of their quantity per video, presenting a 
formidable obstacle for TAD. With an average video 
duration of 4.4 minutes and action instances averag-
ing just 5 seconds, THUMOS14 also features back-
ground segments occupying an average of 71% of 
each video’s length. To evaluate our method’s perfor-
mance on this dataset, consistent with the majority 
of baseline models, we utilize mAP at tIoU thresh-
olds ranging from 0.3 to 0.7 with an interval of 0.1, 
along with the overall average mAP.
ActivityNet v1.3 comprises 10,024 untrimmed 
videos from 200 daily activity categories designated 
for training and 4,926 videos for testing. In compari-
son to THUMOS14, the action instances featured in 
ActivityNet-1.3 are notably longer and distributed 
more sparsely within each video in terms of quanti-
ty. The average duration of each video is 2 minutes, 
while the average length of an action instance stands 
at 48 seconds. On average, each video encompasses 
1.41 activities. In accordance with established con-
ventions, mAP@[0.50:0.05:0.95] is employed as the 
evaluation metric for ActivityNet-1.3, and we report 
both the overall average mAP as well as mAPs specif-
ically at the thresholds of 0.5, 0.75, and 0.95.
EPIC-KITCHENS 100 is an extension of the orig-
inal EPIC-KITCHENS dataset. It contains over 
3,500 hours of first-person video footage captured 
in natural kitchen settings, involving a wide range 



743Information Technology and Control 2025/2/54

of everyday activities such as cooking, cleaning, and 
food preparation. The dataset is unique in its scale 
and the richness of the annotations provided.
POWER dataset mainly involves workers perform-
ing tasks on utility poles during power outages. The 
dataset contains 2,011 videos captured under var-
ious lighting and filming conditions, documenting 
power outage operations. It includes five types of 
actions: climbing, voltage testing, grounding wire 
installation, grounding wire removal, and descend-
ing from the pole, totaling 4,696 action instances. 
The average length of each instance is 66 seconds, 
and the total duration of all videos is 430 hours. 
The metric of POWER is the same as that of THU-
MOS14. The specific information of this dataset is 
presented in Table 1.

4.2 Implementation Details
For THUMOS14 [14] and ActivityNet v1.3 [12], con-
sistent with most TAD models [44],  [22], we use In-

Item Training Test All

Videos 1694 311 2011

Instances 3863 833 4696

Duration 359.63 70.84 430.48

Action Training Test All Duration

ClimbUp 1360 344 1704 67.3

Verification 360 94 454 27.9

Put
Grounding

Rod
451 111 562 116

Descending 1362 223 1585 52.8

Take
Grounding

Rod
330 61 391 83.2

All 3863 833 4696 66

Table 1
Detailed information about the POWER dataset.

Method Feature
THUMOS14 [14] ActivityNet v1.3 [12]

0.3 0.4 0.5 0.6 0.7 Avg 0.5 0.75 0.95 Avg

BMN [18] TSN [36] 56.0 47.4 38.8 29.7 20.5 38.5 50.1 34.8 8.3 33.9

G-TAD [42] TSN [36] 56.0 47.4 38.8 29.7 20.5 38.5 50.1 34.8 8.3 33.9

TCA-Net [3] TSN [36] 60.6 53.2 44.6 36.8 26.7 44.3 52.3 36.7 6.9 35.5

VSGN [46] TSN [36] 66.7 60.4 52.4 41.0 30.4 50.2 52.4 36.0 8.4 35.1

ContextLoc [49] I3D [1] 68.3 63.8 54.3 41.8 26.2 50.9 56.0 35.2 3.6 34.2

RCL [37] I3D [1] 70.1 62.3 52.9 42.7 30.7 51.0 51.7 35.3 8.0 34.4

AFSD [16] I3D [1] 67.3 62.4 55.5 43.7 31.1 52.0 52.4 35.3 6.5 34.4

TAGS [26] I3D [1] 68.6 63.8 57.0 46.3 31.8 52.8 56.3 36.8 9.6 36.5

MUSES [24] I3D [1] 68.9 64.0 56.9 46.3 31.0 53.4 50.0 35.0 6.6 34.0

TALLFormer [5] I3D [1] 68.4 - 57.6 - 30.8 53.9 41.3 27.3 6.3 27.2

TadTR [23] I3D [1] 74.8 69.1 60.1 46.6 32.8 56.7 52.8 37.1 10.8 36.1

ActionFormer [44] I3D [1] 82.1 77.8 71.0 59.4 43.9 66.8 53.5 36.2 8.2 35.6

ASL [28] I3D [1] 83.1 79.0 71.7 59.7 45.8 67.9 54.1 37.4 8.0 36.2

TriDet [29] I3D [1] 83.6 80.1 72.9 62.4 47.4 69.3 - - - -

CSCAN(Ours) I3D [1] 84.3 80.7 73.2 62.5 47.2 69.5 56.0 38.2 8.3 36.7

ActionFormer [44] InternVideo-6B [38] 82.3 81.9 75.1 65.8 50.3 71.9 61.5 44.6 12.7 41.2

ActionMamba [4] InternVideo-6B [38] 86.9 83.1 76.9 65.9 50.8 72.7 62.4 43.5 10.2 42.0

CSCAN(Ours) InternVideo-6B [38] 88.3 84.4 78.6 67.0 51.8 74.0 63.9 45.2 12.8 42.9

Table 2
Performance comparison with other TAD methods on THUMOS14 and ActivityNet v1.3.
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ternVideo [38] and I3D pre-trained on Kinetics [1] 
as inputs. For THUMOS14, 16-frame clips at 30 fps 
with a stride of 4 are used, and feature sequences are 
standardized to 2048 via cropping or padding. For 
ActivityNet-1.3, videos are resampled to 30 fps, split 
into 16-frame clips with a stride of 16, and sequenc-
es are set to 256. All frames are center-cropped and 
resized to 224×224. For dataset POWER, we apply 
VideoMAEv2-b [35] as video encoder, using clip size 
of 16 and clip stride of 4. For EPIC-KITCHEN, we 
adopt SlowFast as backbone feature.
For THUMOS14, the model was trained for 35 ep-
ochs with a learning rate of 0.0001, including a 
5-epoch warm-up and 30epoch cosine annealing. A 
mini-batch size of 2 and AdamW optimizer (weight 
decay 0.01) were used. For ActivityNet v1.3, training 
lasted 20 epochs with a learning rate of 1e-3, a 5-ep-
och warm-up, and 15-epoch cosine annealing, with a 
mini-batch size of 16. Other settings matched THU-
MOS14. A 6-layer pyramid structure was employed, 

Table 3
Performance comparison with other TAD methods on EPIC-KITCHEN.

Dataset Method Feature
POWER

0.1 0.2 0.3 0.4 0.5 Avg.

EPIC-KITCHEN
Verb

BMN[18] SlowFast [8] 10.8 8.8 8.4 7.1 5.6 8.4

ActionFormer [44] SlowFast [8] 26.6 25.4 24.2 22.3 19.1 23.5

Tridet[29] SlowFast [8] 28.6 27.4 26.1 24.2 20.8 25.4

CSCAN(Ours) SlowFast [8] 29.9 28.6 26.2 25.6 21.4 26.3

EPIC-KITCHEN 
Noun

BMN[18] SlowFast [8] 10.3 8.3 6.2 4.5 3.4 6.5

ActionFormer [44] SlowFast [8] 25.2 24.1 22.7 20.5 17.0 21.9

Tridet[29] SlowFast [8] 27.4 26.3 24.6 22.2 18.3 23.8

CSCAN(Ours) SlowFast [8] 28.3 27.1 25.9 23.0 19.1 24.7

Method Feature
POWER

0.3 0.4 0.5 0.6 0.7 Avg.

TemporalMaxer [30] VideoMAEv2-b [35] 68.2 64.2 54.7 41.3 26.2 50.9

TriDet [29] VideoMAEv2-b [35] 70.9 66.2 58.7 46.7 32.2 54.9

ActionFormer [44] VideoMAEv2-b [35] 71.6 66.7 60.4 48.5 31.6 55.7

ActionMamba [4] VideoMAEv2-b [35] 75.8 71.0 62.7 50.8 34.1 58.9

CSCAN(Ours) VideoMAEv2-b [35] 78.2 73.7 65.9 53.2 36.5 61.6

Table 4
Performance comparison with other TAD methods on POWER.

with each layer’s length scaled by 2 and feature di-
mension fixed at 512. Feature temporal scaling was 
applied with p = 0.5. For POWER, training lasted 
35 epochs with a learning rate of 0.0002, The other 
settings are the same as those used for training on 
THUMOS14. For EPIC-KITCHEN, learning rate is 
set to 0.0002 and training epoch is set to 23 and 19 
for “verb” and “noun”, respectively.

4.3 Comparison to Other TAD Methods
In the context of THUMOS14, as demonstrated in 
Table 2 (left), by leveraging features derived from 
I3D, our approach achieves an exceptional average 
mAP of 69.5%, marking a +2.7% improvement over 
the previously most frequently used baseline, Ac-
tionFormer [44], which employs the same features. 
Furthermore, it surpasses TriDet [29], which utilizes 
well-designed Triend heads for post-processing, by a 
slight margin of 0.2% mAP. Specifically, at a tempo-
ral intersection over union (tIoU) of 0.5, our method 
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attains an mAP of 73.2%, surpassing previous state-
of-the-art meth ods such as ActionFormer by +2.2% 
and TriDet by +0.3%. When utilizing InternVideo 
features, our proposed CSCAN on THUMOS14 per-
forms significantly better than with I3D features, 
owing to its superior temporal-spatial modeling ca-
pability gained from masked auto-encoding training. 
CSCAN achieves a 74.0% mAP, which outperforms 
the last two methods that have used InternVideo 
features in all evaluation metrics.
Regarding ActivityNet v1.3, as shown in Table 
2(right), our method also exhibits strong perfor-
mance on the larger dataset, both for widely used 
I3D features and newly used InternVideo features. 
This further corroborates the effectiveness and su-
periority of our method. Our method achieves the 
best performance using InternVideo features, con-
sistent with the results on THUMOS14. Specifically, 
with InternVideo features, our method achieves an 
average mAP of 42.9%, which is 0.9% higher than the 
state-of-the-art method, ActionMamba [4].
In our evaluation on the EPIC-KITCHEN dataset, 
we primarily compare our approach with TriDet [29], 
which has previously shown strong performance. 
The results are summarized in Table 3. Our method 
achieves substantial enhancements in both subtasks, 
namely verb and noun recognition, attaining average 
mAP scores of 26.3% and 24.7%, respectively.
On the POWER dataset, CSCAN demonstrates a sig-
nificant advantage over other TAD models, as shown 
in Table 4. This advantage is more pronounced com-
pared to its performance on THUMOS14 and Activ-
ityNet v1.3.
In summary, the model CSCAN demonstrates im-
proved positioning accuracy due to multi-scale fea-
ture fusion. Addi tional ablation experiments have 
confirmed the effectiveness of each module.

 

5. Ablation Study and Discussion
For brevity, we will refer to THUMOS14 as THU-
MOS and ActivityNet v1.3 as ANET in the following 
text. We use I3D features for THUMOS and ANET 
and use VideoMAEv2-b features for POWER.
We design the ablation experiments to test the ef-
fectiveness of each module in our proposed CSCAN 

on THUMOS, ANET and POWER. The ablation ex-
periments for each module are presented in Table 
5. It can be seen that the addition of the TDP and 
CSF modules can bring an average mAP improve-
ment of 2.7/0.9/2.2% for three datasets, respec-
tively. Further adding scale consistency loss Lscale, 
the contribution of all modules of our CSCAN can 
reach a comprehensive 3.0/1.3/2.9% mAP. For spe-
cific experiments of each module, please refer to 
the following context.

5.1 Impact of Feature Conduction Path
Our TDP merges adjacent-level feature maps top-
down. Table 6 evaluates merge strategies for CSCAN: 
(1) no merge, (2) FPN-style aggregation, and (3) lay-
er-wise dense connection like AFPN [9]. On THU-
MOS, FPN-style improves average mAP by 2.4% over 
no merge (ID 2 vs. ID 1), while AFPNstyle improves 
it by 1.5% (ID 3 vs. ID 1). On ANET, FPNstyle and 
AFPN-style boost average mAP by 0.7% and 0.5%, 
respectively, compared to no merge. TDP, combining 
both strategies, enhances average mAP by 2.7% and 
0.9% on the two datasets. On the POWER dataset, 
the design of TDP is reliable as well.

# TDP CSF Lscale THUMOS ANET POWER

1 66.5 35.4 58.9

2 √ √ 69.2 36.3 61.1

3 √ 67.4 35.8 60.1

4 √ √ √ 69.5 36.7 61.6

Table 5
Ablation study of components of CSCAN.

5.2 Impact of Cross-Scale Selective Fusion
Our CSF module fuses multi-layer information into 
a single layer. We compare it with three baselines: 

Table 6
Ablation study on effectiveness of merging path

# Config THUMOS ANET POWER

1 66.5 35.4 58.9

2 FPN [17] 68.9 36.1 59.9

3 AFPN [43] 68.0 35.9 60.1

4 TDP 69.2 36.3 61.1
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average weight, adaptive weight [21], and self-atten-
tion (replacing crosslayer queries with self-queries). 
Average weight introduces unnecessary noise, while 
self-attention fails to identify useful features from 
other layers. Adaptive weight [21] in this context re-
fers to the use of a linear layer's output to compute 
the weights between diff erent layers dynamically. As 
shown in Table 7, CSF uses current-layer features as 
queries to fi lter useful features from other layers. On 
Three datasets, CSF outperforms average weight by 
2.6/1.3/5.2% mAP, adaptive weight by 1.0/0.6/3.5% 
mAP, and self-attention by 1.2/0.6/3.3% mAP, re-
spectively.

Table 7
Ablation study on effectiveness of fusion module.

# Confi g THUMOS ANET POWER

1 Average Weight 66.9 35.4 56.4

2 Adaptive Weight [21] 68.5 36.1 58.1

3 Self-Attention 68.3 36.1 58.3

4 CSF 69.5 36.7 61.6

5.3 Ablation Study of Scaling Strategy in 
Scale Consistency Training
For the scale consistency training, we tried two scal-
ing strategies. One is linear interpolation, and the 
other is nearest interpolation. We found that the 
performance of the two is similar, and the exper-
imental results are shown in Table 8. We tried dif-
ferent σ and p under a fi xed random seed, and found 
that performance is best when σ is 1 and p equal to 
0.5, but this pair is not signifi cantly better than other 
pairs. However, it is certain that the eff ect of using 
temporal scaling is signifi cantly better than that of 
not using temporal scaling (others v.s. ID 1).

5.4 Discussion on Training Convergence
In Figure 6, we visualize the curve of training loss-
es of three models (CSCAN, ActionFormer, and Ac-
tionMamba). It is observed that at the beginning of 
training, due to the increased overall complexity 
introduced by our module, the overall loss is rela-
tively high. However, as the experiment progresses, 
the loss of CSCAN drops rapidly and remains supe-
rior to the other two models throughout the subse-
quent process.

5.5 Effi  ciency Analysis
Although there have been advancements in network 
technology [48], current application scenarios still 
place high demands on the inference performance of 
models. Therefore, it is necessary to compare the ef-
fi ciency diff erences among various models to guide 
future improvements. We have evaluated the perfor-
mance of diff erent models on the POWER dataset. 
Figure 7 illustrates the relationship between infer-
ence latency and performance. The size of the circle 
for each model refl ects its computational cost. It can 

# Setting THUMOS ANET POWER

1 W/OL scale

(p = 0) 69.2 36.3 61.1

2 Linear
(p = 0.5, σ = 1) 69.4 36.5 61.3

3 Linear 
(p = 0.5, σ = 2) 69.5 36.5 61.8

4 Linear 
(p = 1, σ = 1) 69.6 36.6 61.5

5 Nearest 
(p = 0.5, σ = 1) 69.5 36.7 61.6

6 Nearest 
(p = 0.5, σ = 2) 69.4 36.6 61.7

7 Nearest 
(p = 1, σ = 1) 69.2 36.4 61.3

Table 8
Ablation study on effectiveness of fusion module.

Figure 6
Training loss of three models on POWER.

7 Nearest 
(p 69.2 36.4 61.3

Figure 6

Training loss of three models on POWER.

5.5 Efficiency Analysis
Although there have been advancements in 
network technology [48], current application 
scenarios still place high demands on the 
inference performance of models. Therefore, it 
is necessary to compare the efficiency 
differences among various models to guide 
future improvements. We have evaluated the 
performance of different models on the 
POWER dataset. Figure 7 illustrates the 
relationship between inference latency and 
performance. The size of the circle for each 
model reflects its computational cost. It can be 
observed that CSAN outperforms the baseline 
ActionFormer in all aspects.

Figure 7

Efficiency analysis of different models on POWER.

5.6 Statistical Analysis: Improvement and 
Potential Limitation

We conduct a statistical analysis of the 
prediction results of ActionMamba [4] and 
CSCAN in Figure 8 and Figure 9, respectively. 
It is evident that shorter actions are more 
difficult to detect, and the recognition rate for 
short actions of CSCAN is significantly higher 
than that of ActionMamba. For actions with a 
duration of less than 30 seconds (size S), the 

proportion of False-Negative predictions 
decreased substantially from 76% to 56%. This 
improvement is reflected in the per-class 
action mAP shown in Table 9, where the mAP 
for voltage testing, which has an average 
duration of 28 seconds, increased from 35.55% 
to 46.08%.

It is important to note that among the five 
actions in POWER, ClimbUp and Descending 
are the simplest, so the advantage of CSCAN 
is not as pronounced for these two actions. In 
contrast, Verification, PutGroundingRod, and 
TakeGroundingRod are relatively more 
complex, and CSCAN shows more significant 
improvements, particularly for short action 
Verification with average duration of 27.9 
seconds.

As shown in Figure 10, the primary errors in 
the predictions are localization errors and 
background error (False Positive). This 
highlights two key directions for future 
research: first, improving the recall rate of 
diverse action categories, where there is still a 
10% improvement potential. Second, 
designing more reliable localization 
mechanisms or modules to enhance the overall 
localization accuracy of the model, which 
offers approximately an 18% improvement 
potential.

Figure 8

False-Negative evaluation results of ActionMamba 
[4] trained on POWER. Coverage represents the 
proportion of action to video duration. Length 
means the duration of action instance.

Figure 9

False-Negative evaluation results of CSCAN 
trained on POWER. Coverage represents the 
proportion of action to video duration. Length 
means the duration of action instance.
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be observed that CSAN outperforms the baseline 
ActionFormer in all aspects.

5.6 Statistical Analysis: Improvement and 
Potential Limitation
We conduct a statistical analysis of the prediction 
results of ActionMamba [4] and CSCAN in Figure 8 
and Figure 9, respectively. It is evident that shorter 
actions are more diffi  cult to detect, and the recogni-
tion rate for short actions of CSCAN is signifi cantly 
higher than that of ActionMamba. For actions with 
a duration of less than 30 seconds (size S), the pro-
portion of False-Negative predictions decreased 
substantially from 76% to 56%. This improvement is 
refl ected in the per-class action mAP shown in Ta-
ble 9, where the mAP for voltage testing, which has 
an average duration of 28 seconds, increased from 
35.55% to 46.08%.
It is important to note that among the five actions 
in POWER, ClimbUp and Descending are the sim-
plest, so the advantage of CSCAN is not as pro-
nounced for these two actions. In contrast, Verifi-
cation, PutGroundingRod, and TakeGroundingRod 
are relatively more complex, and CSCAN shows 
more significant improvements, particularly for 
short action Verification with average duration of 
27.9 seconds.
As shown in Figure 10, the primary errors in the 
predictions are localization errors and background 
error (False Positive). This highlights two key direc-
tions for future research: fi rst, improving the recall 
rate of diverse action categories, where there is still 

Figure 7
Efficiency analysis of different models on POWER.
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Although there have been advancements in 
network technology [48], current application 
scenarios still place high demands on the 
inference performance of models. Therefore, it 
is necessary to compare the efficiency 
differences among various models to guide 
future improvements. We have evaluated the 
performance of different models on the 
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5.6 Statistical Analysis: Improvement and 
Potential Limitation

We conduct a statistical analysis of the 
prediction results of ActionMamba [4] and 
CSCAN in Figure 8 and Figure 9, respectively. 
It is evident that shorter actions are more 
difficult to detect, and the recognition rate for 
short actions of CSCAN is significantly higher 
than that of ActionMamba. For actions with a 
duration of less than 30 seconds (size S), the 

proportion of False-Negative predictions 
decreased substantially from 76% to 56%. This 
improvement is reflected in the per-class 
action mAP shown in Table 9, where the mAP 
for voltage testing, which has an average 
duration of 28 seconds, increased from 35.55% 
to 46.08%.

It is important to note that among the five 
actions in POWER, ClimbUp and Descending 
are the simplest, so the advantage of CSCAN 
is not as pronounced for these two actions. In 
contrast, Verification, PutGroundingRod, and 
TakeGroundingRod are relatively more 
complex, and CSCAN shows more significant 
improvements, particularly for short action 
Verification with average duration of 27.9 
seconds.

As shown in Figure 10, the primary errors in 
the predictions are localization errors and 
background error (False Positive). This 
highlights two key directions for future 
research: first, improving the recall rate of 
diverse action categories, where there is still a 
10% improvement potential. Second, 
designing more reliable localization 
mechanisms or modules to enhance the overall 
localization accuracy of the model, which 
offers approximately an 18% improvement 
potential.

Figure 8

False-Negative evaluation results of ActionMamba 
[4] trained on POWER. Coverage represents the 
proportion of action to video duration. Length 
means the duration of action instance.

Figure 9

False-Negative evaluation results of CSCAN 
trained on POWER. Coverage represents the 
proportion of action to video duration. Length 
means the duration of action instance.

Figure 9
False-Negative evaluation results of CSCAN trained on 
POWER. Coverage represents the proportion of action 
to video duration. Length means the duration of action 
instance.

Figure 10

False-Positive Analysis of CSCAN trained on 
POWER.

Table 9

Per-Class mAP on POWER. U: ClimbUp, V: 
Verification, P: PutGroundingRod, D: 
Descending, T: TakeGroundingRod.

Method Avg. U V P D T

TemporalMaxer 
[4]

50.9 64.2 27.9 46.7 72.8 42.9

TriDet [27] 54.9 68.6 32.9 56.1 73.9 43.2
ActionFormer [3] 55.8 65.2 35.2 58.4 74.7 45.3
ActionMamba [5] 58.9 67.8 39.2 63.1 75.8 48.7

CSCAN(Ours) 61.6 68.5 46.1 63.7 75.1 54.4

6. Conclusion
In this paper, we introduce a Cross-scale 
Selective Context Aggregation Network 
(CSCAN) for video temporal action detection. 
CSCAN models cross-layer information in fea-
ture pyramid architecture. CSCAN mainly 
consists of three components. The first is Top-
Down Pathway (TDP), an ag- gregation path 
at macro view, accompanied by a cross-scale 
feature alignment mechanism. while the 
second is Cross-scale Selective Fusion (CSF), a 
well-designed block for merge information at 
micro view, featured in its cross-layer query. 
Third is the proposed scale consistency loss for 
training, boosting the performance of this 
model on THUMOS14, ActivityNet v1.3 and 
POWER. We hope that CSCAN can make 
some contributions to the community of TAD, 
and help other scholars in their research.
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