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On rainy days, the uncertainty of the shape and distribution of rain streaks can cause the images captured by 
RGB image-based measurement equipment to be blurred and distorted. The wavelet transform is extensively 
utilized in conventional image-enhancing techniques because of its capacity to deliver spatial and frequency 
domain information and its multidirectional and multiscale characteristics. In image de-raining, the distri-
bution of rain streaks is intricately linked to both spatial domain characteristics and frequency domain spa-
tial attributes. Nonetheless, deep learning-based rain removal models predominantly depend on the spatial 
characteristics of the image, and RGB data is sometimes insufficient to differentiate rain marks from image 
details, resulting in the loss of essential image information during the rain removal process. To overcome 
this limitation, we have created a lightweight single-image rain removal model named the wavelet-enhanced 
neural architecture search network (WNASNet). This technique isolates image features from rain-affect-
ed images and can more efficiently eliminate rain artifacts. The proposed WNASNet presents three notable 
contributions. Initially, it utilizes wavelet transform to extract multi-frequency feature components. It al-
locates a distinct feature search block (FSB) to each component, facilitating the identification of task-spe-
cific feature extraction networks to enhance deraining efficacy. Secondly, we present a straightforward yet 
efficient wavelet feature fusion technique (SFF) that selectively employs high- and low-frequency features 
during the inverse wavelet transformation. This method maintains deraining efficacy while substantially de-
creasing computational complexity relative to conventional frequency blending techniques. Comprehensive 
studies on four synthetic and two real-world datasets illustrate the better performance of WNASNet across 
many evaluation measures, including PSNR, SSIM, LPIPS, NIQE, and BRISQUE, thereby verifying its effica-
cy and robustness for single-image deraining tasks.
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1. Introduction
Single-image deraining is a challenging task in com-
puter vision that aims to eliminate rain streaks from 
images. It has practical applications in domains such 
as autonomous driving [4], [18] on rainy days and 
enhancing object detection algorithms [36]. How-
ever, the problem of restoring a degraded image [42] 
containing rain streaks to a clear image is complex 
due to the unpredictable and dynamic nature of rain 
streak distribution and orientation within an image.
Conventional image de-raining methods [38], [39] 
typically rely on hand-crafted features or filters to re-
move rain streaks. Nonetheless, these methods often 
need help to handle complex rain streak patterns, re-
sulting in artifacts or loss of image details. With the 
advancements in deep learning techniques, research-
ers have started exploring the application of neural 
networks [17], [41] for image rain streak removal.
In addition to image de-raining algorithms based on 
spatial characteristics, wavelet transforms based on 
the frequency domain are widely used mathematical 
tools in image restoration tasks [12]. Unlike CNN 
and Transformer-based image restoration networks, 
wavelet transforms are inherently multi-scale, 
which allows them to capture coarse-to-fine struc-
tures in images, such as edges and textures. In addi-
tion, the wavelet transform has good sensitivity to 
edges, making it possible to preserve edge informa-
tion during image restoration and reduce blurring 
and distortion around the edges. These features are 
particularly important for image restoration tasks. 
Discrete wavelet transform (DWT) is a wavelet 
transform used for image processing that decompos-
es an image into four different sub-images: low-low 
(LL), low-high (LH), high-low (HL), and high-high 
(HH). Liu et al. [23] proposed a multi-scale wavelet 
CNN (MWCNN) model, which constructs a U-Net 
network structure through DWT and multi-scale 
image features to improve the performance of the 
image restoration model. Hsu et al. [10] proposed 
an image super-resolution enhancement technique 
that uses the high-frequency sub-images of the sta-
ble wavelet transform (SWT) and interpolates the 
input image to enhance the image boundaries.
Neural architecture search (NAS) has gained signif-
icant attention from researchers [3], [22] as a means 
to automatically discover optimal architectures [2]. 

These approaches aim to reduce the trial-and-error 
process and improve upon hand-designed architec-
tures. As a result, NAS has become a crucial area of 
study in deep learning. Building upon NAS, several 
methods have been proposed to automate the design 
of deraining networks [1], [6] using NAS. However, 
these methods have limitations. Firstly, efficient 
NAS approaches primarily focus on overall network 
architectures rather than component cell structures, 
such as DARTS [22] and β-DARTS [43]. Hence, the 
optimization is directed towards network architec-
tures instead of component structures. Secondly, 
searching for the best model architecture is compu-
tationally expensive. While various NAS approaches 
reduce the search space while maintaining perfor-
mance, the objective remains to identify the best 
network architecture. This requires significant com-
putational resources to train and validate numerous 
network architectures, as demonstrated in Liu et al. 
[20], which took over 100 GPU days to complete.
This paper presents a novel Wavelet Enhanced 
Neural Architecture Search (WNASNet) method, 
which conducts neural architecture search on wave-
let-transformed image features to obtain a light-
weight single-image de-raining model. Our approach 
explores different combinations of nodes within the 
search space to identify the optimal network archi-
tecture and parameters. We convert input features 
into high-frequency and low-frequency components 
by utilizing wavelet transform. We search for a suit-
able feature extraction network for each feature 
component that effectively addresses single-image 
rain removal. The low-frequency feature extraction 
network restores structural and textural informa-
tion, while the high-frequency feature extraction 
network enhances edge details.
Unlike previous NAS-based single image de-raining 
networks, our proposed WNASNet employs wavelet 
transform to convert image features into the frequen-
cy domain, resulting in four frequency components. 
De-raining is achieved through feature extraction and 
restoration of these components. We introduce sepa-
rate feature search blocks (FSBs) for each frequency 
component to enhance the network's rain removal ca-
pabilities. This allows us to obtain feature extraction 
networks tailored to the characteristics of different 
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frequency components. In addition, we experimen-
tally observed that similar recovery effects, resulting 
in a lighter network, are obtained by using only the 
high and low-frequency features from the four com-
ponents. Experimental results show that our method 
outperforms existing NAS-based single-image rain 
streak-removing methods on standard benchmarks. 
In Rain200L, Rain200H, Rain800, and Rain1200 
benchmarks, our approach achieves significantly 
higher PSNR and SSIM values, validating WNASNet' 
effectiveness, as shown in Figure 1.
The contributions of this study are summarized as 
follows:
1  Our proposal presents an innovative method called 

Wavelet Enhanced Neural Architecture Search 
(WNASNet). This method employs NAS attributes 
in the frequency domain to investigate the feature 
extraction network, yielding enhanced picture res-
toration and a more efficient network architecture.

2  We utilize multiple autonomous Frequency Search 
Blocks (FSBs) to improve image de-raining and to 
identify networks suitable for diverse frequency 
component attributes. Additionally, we have de-
vised a simple feature fusion technique (SFF) that 
enables the transformation of frequency-domain 
data into RGB-domain features. This approach 
reduces the parameter count in the model and im-
proves its inference speed.

3  Experimental results on synthetic and real data-
sets demonstrate that the proposed WNASNet al-

gorithm offers substantial performance enhance-
ments compared to existing leading approaches.

The remaining part of the paper is structured in the 
following manner. Section 2 provides an overview of 
relevant research, encompassing conventional tech-
niques for removing rain from images, deep learn-
ing approaches for rain removal, and methods that 
employ neural architecture search for rain removal. 
Section 3 outlines the proposed WNASNet network, 
designed to remove rain from single images. Section 
4 compares the most advanced techniques, a discus-
sion, and experiments that test the effectiveness of 
eliminating specific components. Section 5 summa-
rizes the paper's main findings, presents the conclu-
sion, and outlines potential areas for future research.

2. Related Works
2.1. Traditional Image De-raining Methods

Traditional image processing methods for de-rain-
ing typically rely on handcrafted features and math-
ematical models. These methods often assume 
specific degradation models, such as rain streaks 
being modelled as a combination of low-rank [5] and 
sparse matrices [25]. Based on these assumptions, 
various algorithms [5] have been developed to sepa-
rate rain streaks from the clean background.
One popular approach is based on the non-local means 
(NLM) filter [14], which exploits the redundancy in 
rain streaks to remove them. The NLM filter esti-
mates the similarity between image patches and uses 
this information to perform denoising and de-raining. 
Another commonly used method is the guided filter 
[28], which uses information from a guidance image 
to guide the de-raining process. These methods have 
achieved promising results in de-raining tasks by ef-
fectively exploiting the relationships between rain 
streaks and clean backgrounds. 
Traditional de-raining methods often rely on hand-
crafted features and heuristics, which cannot capture 
the diverse rain patterns adaptively. These methods 
also need more generalization capability, as they are 
designed based on specific assumptions about rain 
characteristics. As a result, they may not perform well 
when the rain patterns deviate from the assumptions, 
leading to unsatisfactory de-raining results.

Figure 1
Single image de-raining on the Rain200L dataset. Our method 
performs much better than other state-of-the-art algorithms.
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validating WNASNet' effectiveness, as shown in 
Figure 1. 
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algorithms. 

 
The contributions of this study are summarized as 
follows: 

1. Our proposal presents an innovative method 
called Wavelet Enhanced Neural Architecture 
Search (WNASNet). This method employs 
NAS attributes in the frequency domain to 
investigate the feature extraction network, 
yielding enhanced picture restoration and a 
more efficient network architecture. 

2. We utilize multiple autonomous Frequency 
Search Blocks (FSBs) to improve image de-

raining and to identify networks suitable 
for diverse frequency component 
attributes. Additionally, we have devised 
a simple feature fusion technique (SFF) 
that enables the transformation of 
frequency-domain data into RGB-domain 
features. This approach reduces the 
parameter count in the model and 
improves its inference speed. 

3. Experimental results on synthetic and real 
datasets demonstrate that the proposed 
WNASNet algorithm offers substantial 
performance enhancements compared to 
existing leading approaches. 

The remaining part of the paper is structured 
in the following manner. Section 2 provides an 
overview of relevant research, encompassing 
conventional techniques for removing rain 
from images, deep learning approaches for 
rain removal, and methods that employ 
neural architecture search for rain removal. 
Section 3 outlines the proposed WNASNet 
network, designed to remove rain from single 
images. Section 4 compares the most 
advanced techniques, a discussion, and 
experiments that test the effectiveness of 
eliminating specific components. Section 5 
summarizes the paper's main findings, 
presents the conclusion, and outlines potential 
areas for future research. 

2. Related Works 
2.1. Traditional Image De-raining Methods 

Traditional image processing methods for de-
raining typically rely on handcrafted features 
and mathematical models. These methods 
often assume specific degradation models, 
such as rain streaks being modelled as a 
combination of low-rank [5] and sparse 
matrices [25]. Based on these assumptions, 
various algorithms [5] have been developed to 
separate rain streaks from the clean 
background. 

One popular approach is based on the non-
local means (NLM) filter [14], which exploits 
the redundancy in rain streaks to remove 
them. The NLM filter estimates the similarity 
between image patches and uses this 
information to perform denoising and de-
raining. Another commonly used method is 
the guided filter [28], which uses information 
from a guidance image to guide the de-raining 
process. These methods have achieved 
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2.2. Deep Learning-based De-raining 
Networks
Recent advancements in deep learning method-
ologies have yielded substantial successes in var-
ious computer vision applications [45], including 
de-raining. These methods leverage the formidable 
capacity of deep neural networks to comprehend 
the correlation between rainy photographs and their 
corresponding clear counterparts. Convolutional 
Neural Networks (CNNs) [32] have been extensive-
ly utilized for de-raining tasks. The networks are 
trained with pairs of rainy and clear photos to reduce 
the difference between the network's output and the 
actual clear image. CNN-based de-raining methods 
have achieved superior visual quality and quantita-
tive metrics performance through huge datasets and 
sophisticated network architectures.
Deep residual networks [9] are especially appropri-
ate for sophisticated visual applications. In their 
research, Fu et al. [7] introduced a novel deep detail 
network (DDN) employing a sequential network [51] 
design to enhance the efficacy of rain removal inside 
the model. Unlike the study conducted by Fu et al., 
Ren et al. [31] introduced a straightforward and ef-
ficient asymptotic rain removal network. Parameter 
sharing is implemented at various phases to execute 
image deterioration and reduce the number of model 
parameters. The fundamental objective of low-level 
visual tasks is to enhance the quality of input images 
for advanced visual tasks. The velocity of executing 
fundamental visual activities influences the effica-
cy of intricate visual tasks. Consequently, Fu et al. 
[8] introduced the lightweight de-raining network 
(LPNet). The image restoration technique entails 
extracting several levels of detail from the image 
through the feature pyramid structure and the resid-
ual structure. The RESCAN methodology proposed 
by Xia et al. [17] seeks to enhance the efficacy of the 
progressive de-raining network by discerning cor-
relations among multi-scale image elements.
While CNN networks can autonomously acquire 
knowledge about rain streaks, creating a network 
architecture that is both effective and efficient re-
mains difficult. The network's performance is pri-
marily determined by the architecture's capacity to 
accurately capture low-frequency rain patterns and 
scene details without succumbing to overfitting or 
excessive model complexity.

2.3. Neural Architecture Search
The goal of NAS is to autonomously discover neural 
network architectures using advanced search tech-
niques such as Evolutionary techniques (EA), Re-
inforcement Learning (RL), Gradient-Based Algo-
rithms, etc., instead of manually building them. The 
objective is to explore a range of potential networks 
by employing an optimization method. The space 
of possible networks can be generated by reparam-
eterization or by utilizing a pre-established collec-
tion of network architectures. The optimization ap-
proach usually entails assessing the performance of 
potential networks on a validation set and adjusting 
the network parameters based on gradients calcu-
lated for the validation loss. Liu et al. [21] employed 
evolutionary algorithms to iteratively and muta-
tively tune neural network designs and parameters 
within a pool of candidate architectures. Zoph et al. 
[52] employed reinforcement learning to explore 
neural network structures within a predetermined 
search domain. Nevertheless, neural architecture 
searches that rely on reinforcement learning and 
evolutionary algorithms necessitate revision to 
mitigate issues such as prolonged search durations. 
Liu et al. [22] developed a differentiable neural ar-
chitecture search (DARTS) that relies on gradients. 
The method enhances the efficiency of the search 
process by including differentiability and subse-
quently employing shared parameters to decrease 
the search space and expedite the search process. 
Neural architecture search methods have facilitat-
ed the conduction of multiple investigations on pic-
ture reconstruction. Suganuma et al. [33] developed 
the E-CAE technique for image restoration. This 
approach is the pioneering network that employs 
NAS for image restoration. The network uses evo-
lutionary algorithms to discover a network design 
based on self-encoding. Zhang et al. [46] introduced 
Hierarchical NAS (HiNAS) as a method for picture 
denoising. The approach utilizes a network search 
algorithm that relies on gradients and constructs a 
hierarchical search space featuring adaptive senso-
ry fields. Lee et al. [15] introduced Denoising Prior 
Neural Architecture Search (DPNAS) as a meth-
od specifically designed for image denoising. The 
approach prioritizes the exploration of superior 
components rather than the exploration of the en-
tire network architecture. Consequently, the search 
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space size is diminished, leading to an enhance-
ment in search efficiency. In contrast to the meth-
ods above, we convert the input image from the RGB 
color space to the frequency domain space. Subse-
quently, NAS is employed to explore the network 
architecture within the frequency domain space to 
identify a neural network that exhibits exceptional 
performance in the task of picture de-raining. 

3. Method
The aim of this study is to separate the features of 
the input image into high-frequency features and 
low-frequency features using a wavelet transform. 
Each feature component is assigned to a separate 
Neural Architecture Search (NAS) to find a feature 
extraction network that matches the component. 
Finally, a clean image is recovered from a wet image 
using feature fusion and an image reconstruction 
network. In Section 3.1, we present the structure of 
the WNASNet approach, used for de-raining single 
images. Next, the Feature Search Block (FSB) im-
plementation is presented in Section 3.2. Section 3.3 
presents a detailed analysis of the design concepts 
and features of the Frequency Feature Fusion Block. 
Section 3.4 introduces the approach and the loss 
function used for image reconstruction.

3.1. Network Architecture
Rain streaks in rain images exhibit a variety of 
shapes, sizes, and orientations, rendering them in-
describable using a singular pattern. Furthermore, 
rain streaks have the potential to partially obstruct 
structural and detailed information in the back-
ground of the image, resulting in the loss of crucial 
data. In order to tackle these difficulties, this work 
proposes an approach that integrates wavelet theory 
with neural architecture search. The objective is to 
surmount these problems and enhance the effective-
ness of rain removal in single images. The input im-
age data in this study are initially transformed from 
the RGB domain to frequency domain information 
using Discrete Wavelet Transform (DWT). Next, 
the feature extraction network is queried for vari-
ous feature components using a feature search block 
(FSB). Subsequently, the feature extraction network 
applies inverse wavelet transform (IWT) to the vari-
ous extracted features, employing a straightforward 
feature fusion approach (SFF) to obtain the picture 
features in the RGB domain. Ultimately, a network 
for picture restoration produces a clear image de-
void of rain streaks, as illustrated in Figure 2.
More precisely, when provided with a deteriorated 
image Ir ϵ R3×H×W, WNASNet first utilizes two con-
volution layers to produce a shallow feature map  

Figure 2 
The WNASNet design comprises five components: a shallow feature extraction network, a wavelet transform block, a feature 
search network, a wavelet feature fusion block, and an image recovery network.

 
 

 

gradients and constructs a hierarchical search space 
featuring adaptive sensory fields. Lee et al. [15] 
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the WNASNet approach, used for de-raining single 
images. Next, the Feature Search Block (FSB) 
implementation is presented in Section 3.2. Section 
3.3 presents a detailed analysis of the design 

concepts and features of the Frequency 
Feature Fusion Block. Section 3.4 introduces 
the approach and the loss function used for 
image reconstruction. 

3.1. Network Architecture 

Rain streaks in rain images exhibit a variety of 
shapes, sizes, and orientations, rendering 
them indescribable using a singular pattern. 
Furthermore, rain streaks have the potential to 
partially obstruct structural and detailed 
information in the background of the image, 
resulting in the loss of crucial data. In order to 
tackle these difficulties, this work proposes an 
approach that integrates wavelet theory with 
neural architecture search. The objective is to 
surmount these problems and enhance the 
effectiveness of rain removal in single images. 
The input image data in this study are initially 
transformed from the RGB domain to 
frequency domain information using Discrete 
Wavelet Transform (DWT). Next, the feature 
extraction network is queried for various 
feature components using a feature search 
block (FSB). Subsequently, the feature 
extraction network applies inverse wavelet 
transform (IWT) to the various extracted 
features, employing a straightforward feature 
fusion approach (SFF) to obtain the picture 
features in the RGB domain. Ultimately, a 
network for picture restoration produces a 
clear image devoid of rain streaks, as 
illustrated in Figure 2. 

Figure 2  

The WNASNet design comprises five components: a shallow feature extraction network, a wavelet transform block, a 
feature search network, a wavelet feature fusion block, and an image recovery network. 

 
More precisely, when provided with a 
deteriorated image × × , WNASNet 
first utilizes two convolution layers to produce 
a shallow feature map × × . Here,  

indicates the number of channels and ×  
represents spatial locations. The shallow 
features are transformed into four components 
using 2D-DWT. These components are 



Information Technology and Control 2025/2/54700

X0 ϵ RC×H×W. Here, C indicates the number of channels 
and H×W represents spatial locations. The shallow 
features are transformed into four components us-
ing 2D-DWT. These components are denoted as 
low-low component (XLL), low-high component (XLH), 
high-low component (XHL), and high-high compo-
nent (XHH). It is worth noting that XLL represents the 
structural information of the image. The details and 
edges of the image are denoted as XLH, XHL and XHH. 
The initial step involves horizontally decomposing 
the input feature map X0 using high-pass and low-
pass filters. This decomposition yields the low-fre-
quency component XL ϵ RC×H×  and the high-frequen-
cy component XH ϵ RC×H× . Subsequently, the features 
[XL, XH ] acquired in the preceding stage are vertical-
ly decomposed by employing a high-pass filter and a 
low-pass filter. This decomposition process yields 
the complete components XDWT = [XLL, XLH, XHL, XHH ] 

ϵ RC× ×  of the input feature map X0. Due to the uti-
lization of interval sampling in the decomposition 
process, the width and height of the output features 
are reduced to half of the dimensions of the input 
features, as depicted in Figure 3.
After the wavelet transform is completed, the FSB 
module searches for a suitable feature extraction 
network using NAS for the feature components, e.g., 
XNLL = fNAS (XLL ). The shape of the output features of 
each FSB module is the same as the shape of the in-
put features.
It is proved that the feature components obtained 
after using wavelet transform are not independent 
but potentially correlated. Therefore, we use a sim-

ple feature fusion (SFF) method to fuse the different 
feature components according to a rule to obtain 
new feature components. In this process, we first 
create two feature maps (XNHL and XNLH 

) with both fea-
ture values of zero, which have the same shape as the 
shape of the output feature map of the FSB block. Fi-
nally, 2D-IWT is used to recover XNLL

, XNHH
, XNHL

 and 
XNLH

 as image features XF ϵ RC×H×W in RGB domain.

Figure 3 
The procedure of 1-level 2D-DWT decomposition.
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After the wavelet transform is completed, the 
FSB module searches for a suitable feature 
extraction network using NAS for the feature 
components, e.g., = ( ). The shape 
of the output features of each FSB module is 
the same as the shape of the input features. 

It is proved that the feature components 
obtained after using wavelet transform are not 
independent but potentially correlated. 
Therefore, we use a simple feature fusion (SFF) 
method to fuse the different feature 
components according to a rule to obtain new 
feature components. In this process, we first 
create two feature maps (  and ) with 
both feature values of zero, which have the 
same shape as the shape of the output feature 
map of the FSB block. Finally, 2D-IWT is used 
to recover , ,  and  as image 

features × ×  in RGB domain. 

Table 1 

The Rain200L dataset evaluated the time 
complexity with the same hardware settings as 
the six comparison models. The higher the FPS, 
the less GPU time the model uses and the more 
efficient it is. The color red signifies the highest 
level of performance. 

Methods Publication FPS 
Params 

(MB) 

HiNAS [47] CVPR' 2020 26.60 0.63 

RCDNet [36] TNNLS' 2023 1.40 2.25 

CCN [29] CVPR' 2021 0.53 7.14 

DRT [19] CVPRW' 2022 0.60 4.50 

MWDCNN [35] PR' 2023 4.26 5.25 

MANAS [1] TCSVT' 2023 2.31 9.35 

Ours  96.47 4.76 

After the inverse wavelet transforms, the 
image feature  passes through two RDB 
modules to obtain × × . The RDB 
[34] modules achieve more detailed feature 
enhancement. Finally, the rain streak =

( ) × ×  is obtained by a 5 × 5 
convolution layer in the image reconstruction 
network, and the reconstructed image  is 
obtained using the image degradation model 

= . 

The computational complexity of WENAS was 
evaluated on NVIDIA GeForce RTX 3090, 
showing a significant reduction in GPU time 
compared to six comparative models, which 
underscores its efficiency, with the results 
shown in Table 1. 

3.2. NAS-based Feature Search Block 

In order to improve the efficiency of NAS 
search, the topology and node search of NAS 
cells is performed using the gradient-based 
search using differentiable architecture 
sampler (GDAS) method [3]. Each cell is 
regarded as a directed acyclic graph (DAG) 
with N nodes. Each cell has two inputs,  and 

, where  is the output of the ( 1)-th cell 
and  is the output of the ( 2)-th cell. In the 

-th cell, two operations,  and , are 
applied to the input feature maps  and , 
respectively, and then the output after , , 
is concatenated, and a 1 × 1  convolution 
operation is performed to produce the output 
feature map , as depicted in Figure 4. The 
mathematical expression is as follows: 

Methods Publication FPS Params (MB)

HiNAS [47] CVPR' 2020 26.60 0.63

RCDNet [36] TNNLS' 2023 1.40 2.25

CCN [29] CVPR' 2021 0.53 7.14

DRT [19] CVPRW' 2022 0.60 4.50

MWDCNN [35] PR' 2023 4.26 5.25

MANAS [1] TCSVT' 2023 2.31 9.35

Ours 96.47 4.76

Table 1
The Rain200L dataset evaluated the time complexity with 
the same hardware settings as the six comparison models. 
The higher the FPS, the less GPU time the model uses and 
the more efficient it is. The color red signifies the highest 
level of performance.

After the inverse wavelet transforms, the image fea-
ture XF passes through two RDB modules to obtain 
XRDB ϵ RC×H×W. The RDB [34] modules achieve more 
detailed feature enhancement. Finally, the rain 
streak R = Conv(XSE) ϵ R3×H×W is obtained by a 5×5 con-
volution layer in the image reconstruction network, 
and the reconstructed image Iclr is obtained using the 
image degradation model Iclr= Ir – R.
The computational complexity of WENAS was eval-
uated on NVIDIA GeForce RTX 3090, showing a 
significant reduction in GPU time compared to six 
comparative models, which underscores its efficien-
cy, with the results shown in Table 1.

3.2. NAS-based Feature Search Block
In order to improve the efficiency of NAS search, the 
topology and node search of NAS cells is performed 
using the gradient-based search using differentiable 
architecture sampler (GDAS) method [3]. Each cell 
is regarded as a directed acyclic graph (DAG) with N 
nodes. Each cell has two inputs, Jn

1 and Jn
2, where  Jn

1 
is the output of the (n–1)-th cell and Jn

2 is the output 
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of the (n–2)-th cell. In the n-th cell, two operations, 
On

1 and On
2, are applied to the input feature maps Jn

1 
and Jn

2, respectively, and then the output after On
1, On

2, 
is concatenated, and a 1×1 convolution operation is 
performed to produce the output feature map Jn, as 
depicted in Figure 4. The mathematical expression 
is as follows:

(1)

The Node in Figure 4 represents the operation in the 
cell. By learning, the NAS will select a suitable oper-
ation for the de-raining task from the search space S. 
The mathematical expression is as follows:

(2)

where αo
m denotes the structural weight of the topol-

ogy of the cell, and the weight of each operation in 
the search space S is denoted using ω.
While searching the network, the training dataset 
is split into two parts. One part is utilized to search 
for the cell's topological weights, denoted as α. The 
other portion is employed to obtain the weights ω 
of all the operations within the search space S. The 
cell undergoes a topological search, followed by a 
weighted search of the search space.

Figure 4 
The internal structure of the cell. In

1 and In
2 denote the inputs 

of the cell, Node denotes the operation inside the cell, and In 
denotes the output of the cell.
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a variety of convolution operations with 
different kernel sizes (e.g., 5 × 5 , 7 × 7 , and 
11 × 11 ) to enhance the model's ability to 
capture multi-scale rain streaks. Rain streaks 
appear in images in different shapes, 
directions, and scales. Therefore, larger 
convolutional kernels (7 × 7 and 11 × 11) can 
capture rain streaks and low-frequency 
information at larger scales, thereby 
processing more giant raindrops or rain 
streaks. Smaller convolutional kernels (such as 
5 × 5 can extract local fine features and denoise 
fine rain streaks and high-frequency textures. 
This design ensures the network can process 
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The search space encompasses all potential net-
work structures that can be considered candidates. 
The GDAS search space is comprised of many con-
volutional and pooling layers. Nevertheless, con-
ventional methods need to be improved for rain 
removal assignments due to their crucial role in 
restoring image details. Applying cascading con-
volutional kernels proves to be more efficient in 
removing rain [24]. Consequently, we modified the 
search space S for the rain removal task, as shown 
in Figure 5.
In our modified search space, we incorporated a va-
riety of convolution operations with different ker-
nel sizes (e.g., 5×5, 7×7, and 11×11) to enhance the 
model's ability to capture multi-scale rain streaks. 
Rain streaks appear in images in different shapes, 
directions, and scales. Therefore, larger convo-
lutional kernels (7×7 and 11×11) can capture rain 
streaks and low-frequency information at larger 
scales, thereby processing more giant raindrops or 
rain streaks. Smaller convolutional kernels (such as 
5×5 can extract local fine features and denoise fine 
rain streaks and high-frequency textures. This de-
sign ensures the network can process local details 
and broader contextual information, crucial for 
effectively removing rain from images. Additional-
ly, we introduced dilated convolutions (DConv) in 
several layers to expand the receptive field without 
losing spatial resolution. This helps the network 
capture long-range dependencies, enabling it to 
process more complex rain patterns across varying 
image regions.
Moreover, we integrated residual connections in 
each operation block to improve gradient flow and 
maintain stable training, particularly in deeper ar-
chitectures. The residual connections also help pre-
serve image details during rain removal, essential 
for high-quality image restoration.
To further enhance the network's ability to focus 
on relevant features, we included the CBAM. This 
attention mechanism combines Channel Attention 
(CAM) and Spatial Attention (SAM), enabling the 
network to dynamically allocate more resources to 
significant regions, such as rain streaks while ig-
noring less important areas. This targeted attention 
further improves the rain removal performance by 
ensuring that the network prioritizes important vi-
sual features.
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Overall, by enriching the search space with multi-
scale convolutions, dilated convolutions, residual 
connections, and attention mechanisms, we have 
significantly improved the capacity of the NAS 
framework to generate architectures that excel in 
rain removal tasks. These modifications allow the 
search process to explore a broader, more effective 
range of network designs tailored to the unique chal-
lenges of image de-raining.

3.3. Simple Feature Fusion Method
The image features are divided into four components 
by the 2D DWT algorithm: XLL, XLH, XHL and XHH. XLL con-
tains all the structural information of the image, while 
XHH preserves the detailed information of the image. 
XLH and XHL contain structure and detail information. 
The 2D-DWT is a simple feature fusion technique 
called Simple Feature Fusion (SFF). In this approach, 
only the XLL and XHH components are used for feature 
fusion. In contrast, the XLH and XHL components are 
replaced by zero feature components with the same 
dimensions as the original ones. The Residual Dense 
Block (RDB) technique is used to optimize the learn-
ing of complex features and the backpropagation of 
gradients to improve the quality of the image features. 
The RDB is an amalgamation of the Residual Net-
work (ResNet) [9] and the Dense Connected Network 

Figure 5 
Our search space consists of seven operations: C53, C75, C117, DC53, DC75, DC117, and CBAM, where the prefix D denotes the 
dilated convolution, and CBAM is the attentional module with channel attention and spatial attention.
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(DenseNet) [11], integrating the benefits of both ar-
chitectures.  Residual connection mitigates the issue 
of gradient vanishing and enhances information flow, 
capturing greater image details.  Conversely, dense 
connections enable the immediate transmission of 
feature maps from each layer to all subsequent layers 
within the network.  This facilitates the network's in-
tegration of features across several levels, generating 
more potent features.  RDB is frequently utilized for 
image restoration and single-image super-resolution 
(SISR) [50] activities. Mathematical expression is

(3)

where LL and HH denote the feature components 
obtained by applying FSB, HLzero and LHzero are zero 
feature components, and XSFF represents the shallow 
features in the RGB domain.

3.4. Image Reconstruction Network and Loss 
Function
A simple convolution operation is used to facilitate 
the remapping of image features and image resto-
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ration within the image reconstruction network. 
Here is the mathematical expression:
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In the context of single-image de-raining tasks, em-
ploying L1 and L2 losses for network optimization is 
common practice. However, it is important to note 
that these loss functions operate at the pixel level. In 
this study, we aim to ensure that the restored image 
aligns with human judgment. To do this, we integrate 
the PSNR loss with the SSIM loss and incorporate the 
edge loss [44]. Here is the mathematical expression:
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where I represents the derained image, G represents 
the ground truth (GT ) image, MSE(I,G) denotes the 
mean square error between the derained image and 
the GT image and MAXI denotes the maximum pixel 
value of the image.
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where I represents the image after rain removal, G rep-
resents the GT image, and μI, μG, σI, and σG denote the 
mean and standard deviation of the input image. C1 and 
C2 are constants used to prevent division by zero.
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where LSSIM (·) ϵ [0,1] denotes the SSIM loss. LPSNR (·) 

ϵ [0,∞) denotes the PSNR loss. Δ(·) denotes the La-
place operation, and ϵ is a constant that ensures that 
the denominator of LPS (·) does not have a zero, and ω 
is also a constant.
In image restoration, a method that combines PSNR 
loss, SSIM loss, and edge loss significantly improves 
the quality of t he restored image, making up for the 
shortcomings of traditional L1 and L2 loss in terms of 

structure and detail preservation. PSNR focuses on 
global pixel errors to ensure overall fidelity; SSIM op-
timizes brightness, contrast, and structural similari-
ty by simulating the human visual system to improve 
subjective quality; edge loss enhances high-frequen-
cy details, preserving sharp contours and textures 
to enhance visual appeal. This multi-objective opti-
mization strategy balances the needs of pixel-level, 
structural-level, and high-frequency information 
to generate images that perform well in objective 
metrics (such as PSNR) and subjective evaluations 
(such as human perception). In addition, the method 
is simple to implement, the weights are adjustable, 
it adapts to multiple tasks (such as denoising and 
super-resolution), and it can be combined with ad-
vanced methods such as perceptual loss, making it 
highly flexible and extensible. 

4. Experiments
In this section, we present a thorough assessment 
of WNASNet's efficacy. In this section, we describe 
the dataset and the assessment criteria employed 
in the comparative experiment. Next, we provide a 
detailed account of the experimental environment. 
Subsequently, we showcase the efficacy of WNAS-
Net by using a blend of quantitative and qualitative 
methodologies. Following this, we proceed to verify 
the efficacy of each module within the WNASNet by 
the implementation of ablation experiments. Ulti-
mately, the WNASNet is employed as a preliminary 
task for the target detection task, illustrating the 
WNASNet's efficacy in enhancing the subsequent 
performance.

4.1. Dataset and Evaluation Metrics
Synthetic datasets: We first introduce the synthet-
ic datasets created specifically for training and test-
ing de-raining algorithms. Synthetic datasets have 
become widely used in de-raining due to their ability 
to provide ground truth rain-free images for evalua-
tion purposes. These datasets are generated by add-
ing rain effects to clean, high-quality images.
One of the synthetic datasets used in our experi-
ments is the Rain200L dataset [41]. It consists of 
200 high-resolution images with different types and 
intensities of rain. This dataset is commonly used as 
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a benchmark for evaluating de-raining algorithms. 
The ground truth rain-free images are available for 
comparison during evaluation.
Another synthetic dataset used in our experiments 
is the Rain200H dataset [41]. It is an extension of 
the Rain200L dataset, containing 200 additional 
high-resolution images with more challenging rain 
patterns and intensities. Similarly, ground truth 
rain-free images are provided for evaluation.
Furthermore, we include the Rain800 [48] and 
Rain1400 [7] dataset, which contain 800 and 1400 
rain images with diverse rain patterns and intensi-
ties, respectively. This dataset offers a more exten-
sive evaluation framework to test de-raining algo-
rithms' robustness and generalization capabilities.
Real-world datasets: In addition to synthetic data-
sets, we also include real-world datasets in our eval-
uation to assess the performance of our de-raining 
framework on more challenging and diverse rain 
images. Real-world datasets offer a realistic repre-
sentation of rain in different scenes and capture the 
complexity and variability in natural rainy images.
One of the real-world datasets employed in our ex-
periments is the MPID dataset [16], which consists 
of 185 high-resolution images obtained from vari-
ous sources. These images depict different outdoor 
scenes with rain, including urban environments, 
countryside landscapes, and natural settings. The 
MPID dataset is widely used in the de-raining com-
munity to evaluate the performance of de-raining 
algorithms in real-world scenarios.
Furthermore, we incorporate the SPA dataset [37], 
which contains 146 real-world rain images captured 
from various viewpoints and angles. These images 
exhibit a wide range of rain intensities and patterns, 
making them suitable for testing the effectiveness of 
de-raining algorithms in diverse weather conditions.
To summarize, the real-world datasets utilized in 
our experiments include the MPID and SPA data-
sets. These datasets encompass a diverse collection 
of rain images captured in different environments 
and can provide insights into the real-world perfor-
mance of our WNASNet.
Evaluation metrics: Evaluation metrics are crucial 
for assessing the effectiveness of de-raining mod-
els. Therefore, for synthetic datasets with paired 
images, we use PSNR [13] (the more significant the 

value, the better the image quality), SSIM [40] (the 
closer the value is to 1, the more similar the image 
structure), and LPIPS [49] (the closer the value is to 
0, the closer the recovered image is to the reference 
image). We use NIQE [27] and BRISQUE [26] for 
real-world datasets, which indicate that the smaller 
the value, the better the image quality.

4.2. Implementation and Training Details
Search Configuration: We partitioned the train-
ing set D into two subsets: Dtrain, which comprises 
70% of the data, and Dval, which includes the re-
maining 30%. The architectural parameters α, are 
optimized using the validation dataset, Dval, while 
the network parameters ω, are optimized using the 
training dataset Dtrain. Figure 2 displays the config-
uration of each FSB. Each block consists of a stack 
of  N brain cells, and for our tests, we chose N=4 to 
accommodate the restrictions of GPU memory. The 
channel is configured to a value of 128. During the 
search process, we employ the Adam optimization 
algorithm to fine-tune the architecture parame-
ters (α) and network parameters (ω). The starting 
learning rates for alpha and omega are set to 0.002 
and 0.001, respectively. The batch size is 16, and the 
weight decay is 0.0005.
Train Configuration: Following an extensive search 
for robust architectures, we proceeded to train 
WNASNet for 200 epochs. We employed Adam as 
the optimizer, with a momentum value of 0.9 and a 
weight decay of 0.0005. The initial learning rate is 
configured at 0.001, and the training process incor-
porates the cosine annealing procedure. For both 
searching and training, we utilize a patch-based 
training technique [31] where we extract random-
ly cropped patches measuring 128×128 pixels from 
each image. Horizontal image flipping is a technique 
employed for data augmentation [30].
To verify the robustness of the proposed model, we 
used the same experimental settings and performed 
five model searches and training on the Rain200L 
dataset, with the results shown in Table 2. In these 
independent experiments, we found that the perfor-
mance metrics searched for were consistent, with a 
standard deviation of 0.03 for PSNR and 0.002 for 
SSIM. The experiments show that our NAS method 
has good robustness and stability between different 
runs, as shown in Figure 6.
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4.3. Comparison with the State-of-the-Arts
We compared WNASNet with advanced approaches 
such as RCDNet, CCN, DRT, MWDCNN and MANAS. 
The open source code provided in the respective re-
search papers was used to obtain the source code for 

Figure 6  
The difference in model performance after multiple searches 
and training.
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randomly cropped patches measuring 128 ×
128 pixels from each image. Horizontal image 
flipping is a technique employed for data 
augmentation [30]. 
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Table 2 

Results after five independent model searches 
and training with the same experimental 
settings on the Rain200L dataset. The color red 
signifies the highest level of performance. 

No. PSNR SSIM 
1 34.65 0.958 
2 34.63 0.957 
3 34.59 0.953 
4 34.67 0.960 
5 34.64 0.959 

Std Dev 0.03 0.002 

4.3. Comparison with the State-of-the-Arts 

We compared WNASNet with advanced 
approaches such as RCDNet, CCN, DRT, 
MWDCNN and MANAS. The open source 
code provided in the respective research 
papers was used to obtain the source code for 
all these methods. The benchmark dataset was 

all these methods. The benchmark dataset was used 
to re-execute all the source code. Table 3 presents the 
qualitative assessment of several techniques based 
on PSNR, SSIM and LPIPS metrics. The results show 
that our designed WNASNet network has significant 
PSNR, SSIM and LPIPS metrics advantages. It exhib-
its the highest performance on all datasets except the 
Rain800 dataset, where WNASNet also ranks first in 
PSNR metrics and second in SSIM metrics. The quan-
titative analysis results confirm the effectiveness of 
the WNASNet network in removing rain streaks from 
a single image.
Results on synthetic datasets. Figure 7 illustrates 
the qualitative assessment of seven rain remov-
al techniques on four samples derived from the 
Rain200L dataset. The figure demonstrates that the 
utilization of HiNAS for rain streak removal results 
in a general alteration of the image colours. Addi-
tionally, the model exhibits limited proficiency in 
restoring image details, impacting the efficacy of rain 
removal from the image. CCN effectively eliminates 
the majority of the streaks. However, it fails to cap-
ture the picture edge information, resulting in an in-
complete recovered image. While RCDNet can mit-
igate certain rain streaks, it exhibits artefacts when 
confronted with intense rain streaks, limiting the 
model's ability to remove rain effectively. MANAS is 
a de-raining model that is derived from NAS. It effec-
tively eliminates the majority of rain streaks but can-
not eliminate the thicker or thinner rain streaks. As a 
result, numerous rain streaks persist after the image 
has been de-rained. MWDCNN exhibits robust resil-
ience against rain but at the expense of certain image  

No. PSNR SSIM

1 34.65 0.958

2 34.63 0.957

3 34.59 0.953

4 34.67 0.960

5 34.64 0.959

Std Dev 0.03 0.002

Table 2
Results after five independent model searches and training 
with the same experimental settings on the Rain200L dataset. 
The color red signifies the highest level of performance.

Methods
Rain200L Rain200H Rain800 Rain1400

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

HiNAS 30.88 0.935 0.082 26.31 0.869 0.082 23.04 0.781 0.172 27.07 0.857 0.126

RCDNet 29.91 0.917 0.130 24.64 0.829 0.129 22.36 0.743 0.180 20.07 0.774 0.210

CCN 32.94 0.950 0.049 26.12 0.860 0.098 24.71 0.842 0.159 28.51 0.900 0.120

DRT 30.26 0.879 0.096 24.54 0.740 0.132 21.66 0.658 0.189 26.44 0.778 0.204

MWDCNN 34.27 0.900 0.021 28.86 0.837 0.068 25.73 0.812 0.066 29.28 0.816 0.101

MANAS 32.57 0.957 0.056 26.24 0.866 0.094 24.38 0.845 0.167 28.52 0.901 0.114

Ours 34.67 0.960 0.012 29.25 0.871 0.055 25.82 0.823 0.057 29.37 0.906 0.026

Table 3
The PSNR and SSIM results of several rain removal techniques are evaluated on four synthetic datasets. The color red signifies 
the highest level of performance, while the color blue signifies the second highest level.
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intricacies. Multi-tasking image restoration models, 
known as DRT, exhibit variations in their single-task 
performance compared to state-of-the-art models. 
In contrast to the existing state-of-the-art (SOTA) 
approaches, our proposed WNASNet can effectively 
eliminate rain streaks of varying densities.
Furthermore, the rain removal outcomes of WNAS-

Net exhibit enhanced colour vibrancy and more 
intricate structural data, rendering them more ad-
vantageous compared to alternative rain removal 
techniques. Higher PSNR and lower LPIPS scores in-
dicate a superior ability to reconstruct rain-free im-
ages with finer detail preservation and overall image 
quality would help clarify the metrics’ importance.

Figure 7  
From (a) to (g), the qualitative comparisons of different rain removal models on the Rain200L dataset are shown. The color red 
indicates the best performance, while the color blue indicates the second best performance.
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Figure 8   
Real images taken in rainy conditions are compared qualitatively. The color red represents the highest level of performance, and 
the color blue symbolizes the second position.

  

Figure 8  

Real images taken in rainy conditions are compared qualitatively. The color red represents the highest level of 
performance, and the color blue symbolizes the second position. 

 
intricacies. Multi-tasking image restoration 
models, known as DRT, exhibit variations in 
their single-task performance compared to 
state-of-the-art models. In contrast to the 
existing state-of-the-art (SOTA) approaches, 
our proposed WNASNet can effectively 
eliminate rain streaks of varying densities. 

Furthermore, the rain removal outcomes of 
WNASNet exhibit enhanced colour vibrancy 
and more intricate structural data, rendering 
them more advantageous compared to 
alternative rain removal techniques. Higher 
PSNR and lower LPIPS scores indicate a 
superior ability to reconstruct rain-free images 
with finer detail preservation and overall 
image quality would help clarify the metrics’ 
importance. 

Results on a real-world dataset. Table 4 shows 
the results of evaluating multiple models using 
the NIQE and BRISQUE metrics on the MPID 
and SPA datasets. Figure 8 shows the results of 
various de-raining techniques applied to three 
actual rainy day samples. The findings in 
Figure 7 show that the images continue to 
exhibit rain streaks even after undergoing the 
de-raining process using MWDCNN. The rain 
streaks could not be eliminated by DRT, CCN, 
and HiNAS, leading to reconstructed images 
needing improvement in essential details. 
MANAS cannot remove rain streaks and 
accurately preserve the structural elements of 
an image in real-world de-raining situations. 
An error occurred during the processing of the 
image texture by RCDNet. WNASNet 
demonstrates exceptional de-raining abilities, 
effectively removing rain streaks and 
preserving detailed details in image 

reconstruction. 

4.4. Ablation Study 

We performed experiments in Table 5 and 
Figure 9, where we methodically eliminated 
particular components from our framework. 
This allowed us to observe each component's 
effect on the de-raining algorithm's overall 
performance. We evaluated the rain removal 
results of different WNASNet based on PSNR 
and SSIM metrics. 

Table 4 

The NIQE and BRISQUE scores of various rain 
removal techniques on the two real-world 
datasets. The color red signifies the highest 
level of performance, while the color blue 
symbolizes the second position. 

Methods 
MPID SPA 

NIQE BRISQUE NIQE BRISQUE 
HiNAS 3.381 27.572 4.647 26.620 

RCDNet 3.300 25.379 4.693 24.753 
CCN 3.074 24.913 4.568 26.998 
DRT 3.285 24.654 4.385 24.768 

MWDCNN 3.057 24.688 4.410 26.174 
MANAS 3.111 24.803 4.394 26.128 

Ours 3.016 24.437 4.221 24.653 

Table 5 

Ablation experiments with local search 
networks on the Rain200L dataset. 

Variants WT NAS   PSNR SSIM 
V  w/o w/o  w/o 34.17 0.951 

  w/o  w/o 34.38 0.955 
    w/o 34.58 0.958 
   w/o  34.67 0.960 

We first constructed a basic model V  without 
NAS or wavelet transform and used  loss. 
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Results on a real-world dataset. Table 4 shows the 
results of evaluating multiple models using the NIQE 
and BRISQUE metrics on the MPID and SPA datasets. 
Figure 8 shows the results of various de-raining tech-
niques applied to three actual rainy day samples. The 
findings in Figure 7 show that the images continue to 
exhibit rain streaks even after undergoing the de-rain-
ing process using MWDCNN. The rain streaks could 
not be eliminated by DRT, CCN, and HiNAS, leading to 
reconstructed images needing improvement in essen-
tial details. MANAS cannot remove rain streaks and ac-
curately preserve the structural elements of an image 
in real-world de-raining situations. An error occurred 
during the processing of the image texture by RCDNet. 
WNASNet demonstrates exceptional de-raining abil-
ities, effectively removing rain streaks and preserving 
detailed details in image reconstruction.

4.4. Ablation Study
We performed experiments in Table 5 and Figure 9, 
where we methodically eliminated particular com-
ponents from our framework. This allowed us to 
observe each component's effect on the de-raining 
algorithm's overall performance. We evaluated the 
rain removal results of different WNASNet based on 
PSNR and SSIM metrics.
We first constructed a basic model V0 without NAS 
or wavelet transform and used L1 loss. Then, we an-
alyzed the effect of incorporating wavelet transform 
into the model on the rain removal effect. By adding a 
wavelet transform to the V0 model while keeping the 

other variables of the basic model unchanged, we in-
creased the utilization of multi-scale information in 
the wavelet transform. The results of the study show 
that the addition of the wavelet transform signifi-
cantly improves the performance of the model. Spe-
cifically, the PSNR value of the model using wavelet 
transform is enhanced by about 0.2 compared with 
the V0 model. This shows that wavelet transform is 
crucial in improving the rain removal process, en-
abling the model to capture and process multi-scale 
features, which is essential for accurately detecting 
and removing rain marks of various sizes.
Next, we also evaluated the model's performance after 
adding the NAS and wavelet transform components. 
Compared with the V1 model, the PSNR improved by 
about 0.2. This confirms that NAS significantly contrib-
utes to the effectiveness of the rain removal algorithm.
In addition to the architectural components, we inves-
tigated the influence of the loss function on the de-rain-
ing results. We compared two different loss functions:
L1 Loss Function: We trained the model using the 
traditional L1 loss function, focusing on minimizing 
the pixel-wise differences between the de-rained 
image and the ground truth. This is a commonly used 
loss function in image restoration tasks.
Composite Loss Function (PSNR, SSIM, and Edge 
Loss): We employed a composite loss function that 
combines PSNR, SSIM, and edge loss. This loss 
function is designed to enhance the perceptual qual-
ity of the de-rained images by not only considering 
pixel-wise accuracy but also structural similarity 
and edge preservation.
The experimental results demonstrated that using 
the composite loss function significantly improved 
de-raining performance compared to using the L1 loss 
alone. Models trained with the composite loss func-

Vari-
ants WT NAS L1 Lour PSNR SSIM

V0 w/o w/o √ w/o 34.17 0.951

V1 √ w/o √ w/o 34.38 0.955

V2 √ √ √ w/o 34.58 0.958

V3 √ √ w/o √ 34.67 0.960

Table 4
The NIQE and BRISQUE scores of various rain removal 
techniques on the two real-world datasets. The color red 
signifies the highest level of performance, while the color 
blue symbolizes the second position.

Methods
MPID SPA

NIQE BRISQUE NIQE BRISQUE

HiNAS 3.381 27.572 4.647 26.620

RCDNet 3.300 25.379 4.693 24.753

CCN 3.074 24.913 4.568 26.998

DRT 3.285 24.654 4.385 24.768

MWDCNN 3.057 24.688 4.410 26.174

MANAS 3.111 24.803 4.394 26.128

Ours 3.016 24.437 4.221 24.653

Table 5
Ablation experiments with local search networks on the 
Rain200L dataset.
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tion achieved higher PSNR and SSIM scores and pro-
duced images with better visual quality and more pre-
served details. Specifically, there was an improvement 
of about 0.09 in PSNR when using the composite loss 
function over the L1 loss. This indicates that optimiz-
ing the model with respect to multiple criteria related 
to image quality leads to superior de-raining results.

4.4. Application
To illustrate the efficacy of our WNASNet in enhanc-
ing the performance of high-level vision applications, 
we initially conducted a de-raining operation on the 
rain images inside the RID dataset, employing the 
de-raining model. Subsequently, the YOLOv5 model 
was used to detect objects on 100 image sets inside 
the RID dataset. The results of the detection process 
are visually presented in Figure 10. The figure demon-
strates a substantial enhancement in the confidence 
and accuracy of item detection following the de-rain-
ing process compared to the pre-de-raining procedure.

5. Conclusion
This research presents insights from experimen-
tal findings using our proposed Wavelet-Enhanced 
NAS architecture for single-image de-raining. The 
performance comparison unequivocally illustrates 
the superiority of our process in contrast to exist-
ing de-raining techniques. In addition, the ablation 
study offers a comprehensive investigation of the 
individual contributions made by various com-
ponents within our system. The visualization of 
the de-raining findings clearly demonstrates our 
method's efficacy in eliminating rain streaks while 
retaining crucial image features. In summary, the 
experimental results significantly confirm the ef-
ficiency of our suggested approach and emphasize 
its potential for practical use in removing rain from 
single images.
Based on this research, the model's performance can 
be further improved in the future by exploring differ-
ent types of search space. At the same time, knowl-
edge distillation is also a very good research direc-
tion. Knowledge distillation on large vision-based 
models can remove rain streaks of different types.
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Figure 9  
Results of the visual ablation experiments. (a) Rainy image, 
(b) result of the V0 network, (c) result of the V1 network, (d) 
result of the V2 network, (e) result of the V3 network.

 
 

 

Then, we analyzed the effect of incorporating 
wavelet transform into the model on the rain 
removal effect. By adding a wavelet transform 
to the  model while keeping the other 
variables of the basic model unchanged, we 
increased the utilization of multi-scale 
information in the wavelet transform. The 
results of the study show that the addition of 
the wavelet transform significantly improves 
the performance of the model. Specifically, the 
PSNR value of the model using wavelet 
transform is enhanced by about 0.2 compared 
with the  model. This shows that wavelet 
transform is crucial in improving the rain 
removal process, enabling the model to 
capture and process multi-scale features, 
which is essential for accurately detecting and 
removing rain marks of various sizes. 

Next, we also evaluated the model's 
performance after adding the NAS and 
wavelet transform components. Compared 
with the  model, the PSNR improved by 
about 0.2. This confirms that NAS significantly 
contributes to the effectiveness of the rain 
removal algorithm. 

In addition to the architectural components, 
we investigated the influence of the loss 
function on the de-raining results. We 
compared two different loss functions: 

 Loss Function: We trained the model using 
the traditional  loss function, focusing on 
minimizing the pixel-wise differences between 
the de-rained image and the ground truth. This 
is a commonly used loss function in image 
restoration tasks. 

Composite Loss Function (PSNR, SSIM, and 
Edge Loss): We employed a composite loss 
function that combines PSNR, SSIM, and edge 

loss. This loss function is designed to enhance 
the perceptual quality of the de-rained images 
by not only considering pixel-wise accuracy 
but also structural similarity and edge 
preservation. 

The experimental results demonstrated that 
using the composite loss function significantly 
improved de-raining performance compared 
to using the  loss alone. Models trained with 
the composite loss function achieved higher 
PSNR and SSIM scores and produced images 
with better visual quality and more preserved 
details. Specifically, there was an improvement 
of about 0.09 in PSNR when using the 
composite loss function over the  loss. This 
indicates that optimizing the model with 
respect to multiple criteria related to image 
quality leads to superior de-raining results. 

Figure 9  

Results of the visual ablation experiments. (a) Rainy 
image, (b) result of the  network, (c) result of the 

 network, (d) result of the  network, (e) result of 
the  network. 

 
4.4. Application 

To illustrate the efficacy of our WNASNet in 
enhancing the performance of high-level 
vision applications, we initially conducted a 
de-raining operation on the rain images inside 
the RID dataset, employing the de-raining 
model. Subsequently, the YOLOv5 model was  

Figure 10  

Experimental results of the image rain removal model in downstream object detection tasks. The results show that the 
WNASNet proposed in this study can significantly improve the performance of downstream tasks and provide higher-
quality image inputs for downstream tasks. 

 Figure 10 
Experimental results of the image rain removal model in downstream object detection tasks. The results show that the 
WNASNet proposed in this study can significantly improve the performance of downstream tasks and provide higher-quality 
image inputs for downstream tasks.

 
 

 

Then, we analyzed the effect of incorporating 
wavelet transform into the model on the rain 
removal effect. By adding a wavelet transform 
to the  model while keeping the other 
variables of the basic model unchanged, we 
increased the utilization of multi-scale 
information in the wavelet transform. The 
results of the study show that the addition of 
the wavelet transform significantly improves 
the performance of the model. Specifically, the 
PSNR value of the model using wavelet 
transform is enhanced by about 0.2 compared 
with the  model. This shows that wavelet 
transform is crucial in improving the rain 
removal process, enabling the model to 
capture and process multi-scale features, 
which is essential for accurately detecting and 
removing rain marks of various sizes. 

Next, we also evaluated the model's 
performance after adding the NAS and 
wavelet transform components. Compared 
with the  model, the PSNR improved by 
about 0.2. This confirms that NAS significantly 
contributes to the effectiveness of the rain 
removal algorithm. 

In addition to the architectural components, 
we investigated the influence of the loss 
function on the de-raining results. We 
compared two different loss functions: 

 Loss Function: We trained the model using 
the traditional  loss function, focusing on 
minimizing the pixel-wise differences between 
the de-rained image and the ground truth. This 
is a commonly used loss function in image 
restoration tasks. 

Composite Loss Function (PSNR, SSIM, and 
Edge Loss): We employed a composite loss 
function that combines PSNR, SSIM, and edge 

loss. This loss function is designed to enhance 
the perceptual quality of the de-rained images 
by not only considering pixel-wise accuracy 
but also structural similarity and edge 
preservation. 

The experimental results demonstrated that 
using the composite loss function significantly 
improved de-raining performance compared 
to using the  loss alone. Models trained with 
the composite loss function achieved higher 
PSNR and SSIM scores and produced images 
with better visual quality and more preserved 
details. Specifically, there was an improvement 
of about 0.09 in PSNR when using the 
composite loss function over the  loss. This 
indicates that optimizing the model with 
respect to multiple criteria related to image 
quality leads to superior de-raining results. 

Figure 9  

Results of the visual ablation experiments. (a) Rainy 
image, (b) result of the  network, (c) result of the 

 network, (d) result of the  network, (e) result of 
the  network. 

 
4.4. Application 

To illustrate the efficacy of our WNASNet in 
enhancing the performance of high-level 
vision applications, we initially conducted a 
de-raining operation on the rain images inside 
the RID dataset, employing the de-raining 
model. Subsequently, the YOLOv5 model was  

Figure 10  

Experimental results of the image rain removal model in downstream object detection tasks. The results show that the 
WNASNet proposed in this study can significantly improve the performance of downstream tasks and provide higher-
quality image inputs for downstream tasks. 

 



709Information Technology and Control 2025/2/54

References 
1. Cai, L., Fu, Y., Huo, W., Xiang, Y., Zhu, T., Zeng, H., Zeng. 

D. Multiscale Attentive Image De Raining Networks via 
Neural Architecture Search. IEEE Transactions on Cir-
cuits and Systems for Video Technology, 2022, 33(2), 
618-633. https://doi.org/10.1109/TCSVT.2022.3207516

2. Cheng, G., Matsune, A., Du, H., Liu, X., Zhan, S. Ex-
ploring More Diverse Network Architectures for Sin-
gle Image Super Resolution. Knowledge Based Sys-
tems, 2022, 235, 107648. https://doi.org/10.1016/j.
knosys.2021.107648

3. Dong, X., Yang, Y. Searching for a Robust Neural Archi-
tecture in Four GPU Hours. IEEE Conference on Com-
puter Vision and Pattern Recognition, 2019, 1761-1770. 
https://doi.org/10.1109/CVPR.2019.00186

4. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, 
D., Zai, X., Unterthiner, T., Dehghami, M., Minderer, M., 
Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N. An Image 
Is Worth 16x16 Words: Transformers for Image Recog-
nition at Scale. 9th International Conference on Learn-
ing Representations, 2021. 

5. Du, S., Liu, Y., Ye, M., Xu, Z., Li, J., Liu, J. Single Image 
Deraining via Decorrelating the Rain Streaks and Back-
ground Scene in Gradient Domain. Pattern Recogni-
tion, 2018, 79, 303-317. https://doi.org/10.1016/j.pat-
cog.2018.02.016

6. Fu, J., Hou, C., Chen, Z. AutoDerain: Memory Efficient 
Neural Architecture Search for Image Deraining. 2021 
International Conference on Visual Communications 
and Image Processing (VCIP), 2021, 1-5. https://doi.
org/10.1109/VCIP53242.2021.9675339

7. Fu, X., Huang, J., Zeng, D., Huang, Y., Ding, X., Paisley, J. 
W. Removing Rain from Single Images via a Deep Detail 
Network. 2017 IEEE Conference on Computer Vision 
and Pattern Recognition, 2017, 1715-1723. https://doi.
org/10.1109/CVPR.2017.186

8. Fu, X., Liang, B., Huang, Y., Ding, X., Paisley, J. W. Light-
weight Pyramid Networks for Image Deraining. IEEE 
Transactions on Neural Networks and Learning Sys-
tems, 2020, 31(6), 1794-1807. https://doi.org/10.1109/
TNNLS.2019.2926481

9. He, K., Zhang, X., Ren, S., Sun, J. Deep Residual Learn-
ing for Image Recognition. 2016 IEEE Conference on 
Computer Vision and Pattern Recognition, 2016, 770-
778. https://doi.org/10.1109/CVPR.2016.90

10. Hsu, W.-Y., Jian, P.-W. Detail Enhanced Wavelet Re-
sidual Network for Single Image Super Resolution. 

IEEE Transactions on Instrumentation and Measure-
ment, 2022, 71, 1-13. DOI: 10.1109/TIM.2022.3192280. 
https://doi.org/10.1109/TIM.2022.3192280

11. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K. 
Q. Densely Connected Convolutional Networks. 2017 
IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), 2017, 2261-2269. https://doi.
org/10.1109/CVPR.2017.243

12. Huang, Y., Huang, J., Liu, J., Yan, M., Dong, Y., Lv, J., Chen, 
C., Chen, S. WaveDM: Wavelet Based Diffusion Models for 
Image Restoration. IEEE Transactions on Multimedia, 
2024, 26, 7058-7073. DOI: 10.1109/TMM.2024.3359769. 
https://doi.org/10.1109/TMM.2024.3359769

13. Huynh Thu, Q., Ghanbari, M. Scope of Validity of PSNR 
in Image/Video Quality Assessment. Electronics Let-
ters, 2008, 44(13), 800-801. https://doi.org/10.1049/
el:20080522

14. Kim, J.-H., Lee, C., Sim, J.-Y., Kim, C.-S. Single Image 
Deraining Using an Adaptive Nonlocal Means Filter. 
IEEE International Conference on Image Process-
ing (ICIP), 2013, 914-917. https://doi.org/10.1109/
ICIP.2013.6738189

15. Lee, B., Ko, K., Hong, J., Ko, H. Single Cell Training on 
Architecture Search for Image Denoising. arXiv Pre-
print, 2022, arXiv:2212.06368. 

16. Li, S., Araujo, I. B., Ren, W., Wang, Z., Tokuda, E. K., Hi-
rata Junior, R., Cesar-Junior, R., Zhang, J., Guo, X., Cao, 
X. Single Image Deraining: A Comprehensive Bench-
mark Analysis. IEEE Conference on Computer Vision 
and Pattern Recognition, 2019, 3838-3847. https://doi.
org/10.1109/CVPR.2019.00396

17. Li, X., Wu, J., Lin, Z., Liu, H., Zha, H. Recurrent Squeeze 
And Excitation Context Aggregation Net for Single Image 
Deraining. In: Ferrari, V., Hebert, M., Sminchisescu, C., 
Weiss, Y. (Eds.) Computer Vision - ECCV 2018. Lecture 
Notes in Computer Science, vol. 11211. Springer, 2018, 
262-277. https://doi.org/10.1007/978-3-030-01234-2_16

18. Li, Z., Chen, X., Guo, S.-N., Wang, S., Pun, C.-M. WavEn-
hancer: Unifying Wavelet and Transformer for Image 
Enhancement. Journal of Computer Science and Tech-
nology, 2024, 39(2), 336-345. DOI: 10.1007/S11390 024 
3414 Z. https://doi.org/10.1007/s11390-024-3414-z

19. Liang, Y., Anwar, S., Liu, Y. DRT: A Lightweight Sin-
gle Image Deraining Recursive Transformer. IEEE/
CVF Conference on Computer Vision and Pattern 
Recognition Workshops, 2022, 588-597. DOI: 10.1109/



Information Technology and Control 2025/2/54710

CVPRW56347.2022.00074. https://doi.org/10.1109/
CVPRW56347.2022.00074

20. Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, 
L.-J., Fei-Fei, L., Yuille, A., Huang, J., Murphy, K. Pro-
gressive Neural Architecture Search. In: Ferrari, V., 
Hebert, M., Sminchisescu, C., Weiss, Y. (Eds.) Com-
puter Vision - ECCV 2018. Lecture Notes in Computer 
Science, vol. 11205. Springer, 2018, 19-35. https://doi.
org/10.1007/978-3-030-01246-5_2

21. Liu, H., Simonyan, K., Vinyals, O., Fernando, C., Kavuk-
cuoglu, K. Hierarchical Representations for Efficient 
Architecture Search. 6th International Conference on 
Learning Representations, 2018. 

22. Liu, H., Simonyan, K., Yang, Y. DARTS: Differentiable 
Architecture Search. 7th International Conference on 
Learning Representations, 2019. 

23. Liu, P., Zhang, H., Zhang, K., Lin, L., Zuo, W. Multi Lev-
el Wavelet CNN for Image Restoration. IEEE Con-
ference on Computer Vision and Pattern Recognition 
Workshops, 2018, 773-782. https://doi.org/10.1109/
CVPRW.2018.00121

24. Liu, X., Suganuma, M., Sun, Z., Okatani, T. Dual Residu-
al Networks Leveraging the Potential of Paired Opera-
tions for Image Restoration. IEEE Conference on Com-
puter Vision and Pattern Recognition, 2019, 7007-7016. 
https://doi.org/10.1109/CVPR.2019.00717

25. Luo, Y., Xu, Y., Ji, H. Removing Rain from a Single Image 
via Discriminative Sparse Coding. IEEE Internation-
al Conference on Computer Vision, 2015, 3397-3405. 
https://doi.org/10.1109/ICCV.2015.388

26. Mittal, A., Moorthy, A. K., Bovik, A. C. No Reference Im-
age Quality Assessment in the Spatial Domain. IEEE 
Transactions on Image Processing, 2012, 21(12), 4695-
4708. https://doi.org/10.1109/TIP.2012.2214050

27. Mittal, A., Soundararajan, R., Bovik, A. C. Making a 
'Completely Blind' Image Quality Analyzer. IEEE Sig-
nal Processing Letters, 2013, 20(3), 209-212. https://
doi.org/10.1109/LSP.2012.2227726

28. Monika, R., Rao, Y. R. Rainy Image Enhancement Us-
ing Modified Multistage Gaussian Filter and Weighted 
Median Guided Filter. 2020 4th International Confer-
ence on Computer, Communication and Signal Pro-
cessing (ICCCSP), 2020, 1-7. https://doi.org/10.1109/
ICCCSP49186.2020.9315225

29. Quan, R., Yu, X., Liang, Y., Yang, Y. Removing Raindrops 
and Rain Streaks in One Go. IEEE Conference on Com-
puter Vision and Pattern Recognition, 2021, 9147-9156. 
https://doi.org/10.1109/CVPR46437.2021.00903

30. Quan, Y., Deng, S., Chen, Y., Ji, H. Deep Learning for 
Seeing Through Window with Raindrops. IEEE/
CVF International Conference on Computer Vision 
(ICCV), 2019, 2463-2471. https://doi.org/10.1109/
ICCV.2019.00255

31. Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D. Progressive 
Image Deraining Networks: A Better and Simpler Base-
line. IEEE Conference on Computer Vision and Pattern 
Recognition, 2019, 3937-3946. https://doi.org/10.1109/
CVPR.2019.00406

32. Shen, Y., Wei, M., Wang, Y., Fu, X., Qin, J. Rethinking 
Real World Image Deraining via an Unpaired Degra-
dation Conditioned Diffusion Model. arXiv Preprint, 
2023, arXiv:2301.09430. 

33. Suganuma, M., Ozay, M., Okatani, T. Exploiting the 
Potential of Standard Convolutional Autoencoders for 
Image Restoration by Evolutionary Search. In: Dy, J. 
G., Krause, A. (Eds.), Proceedings of the 35th Interna-
tional Conference on Machine Learning. Proceedings 
of Machine Learning Research, vol. 80. PMLR, 2018, 
4778-4787. 

34. Tao, W., Yan, X., Wang, Y., Wei, M. MFFDNet: Sin-
gle Image Deraining via Dual Channel Mixed Feature 
Fusion. IEEE Transactions on Instrumentation and 
Measurement, 2024, 73, 1-13. https://doi.org/10.1109/
TIM.2023.3346498

35. Tian, C., Zheng, M., Zuo, W., Zhang, B., Zhang, Y., Zhang, 
D. Multi Stage Image Denoising with the Wavelet 
Transform. Pattern Recognition, 2023, 134, 109050. 
https://doi.org/10.1016/j.patcog.2022.109050

36. Wang, H., Xie, Q., Zhao, Q., Li, Y., Liang, Y., Zheng, Y., 
Meng, D. RCDNet: An Interpretable Rain Convolu-
tional Dictionary Network for Single Image Derain-
ing. IEEE Transactions on Neural Networks and 
Learning Systems, 2023. https://doi.org/10.1109/TN-
NLS.2022.3231453

37. Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R. W. 
H. Spatial Attentive Single Image Deraining with a High 
Quality Real Rain Dataset. IEEE Conference on Com-
puter Vision and Pattern Recognition, 2019, 12270-
12279. https://doi.org/10.1109/CVPR.2019.01255

38. Wang, Y., Yan, X., Wang, F. L., Xie, H., Yang, W., Zhang, 
X. P., Qin, J., Wei, M. UCL Dehaze: Toward Real World 
Image Dehazing via Unsupervised Contrastive Learn-
ing. IEEE Transactions on Image Processing, 2024, 33, 
1361-1374. https://doi.org/10.1109/TIP.2024.3362153

39. Wang, Y., Liu, S., Chen, C., Zeng, B. A Hierarchical 
Approach for Rain or Snow Removing in a Single 



711Information Technology and Control 2025/2/54

Color Image. IEEE Transactions on Image Process-
ing, 2017, 26(8), 3936-3950. https://doi.org/10.1109/
TIP.2017.2708502

40. Wang, Z., Bovik, A. C., Sheikh, H. R., Simoncelli, E. P. Im-
age Quality Assessment: From Error Visibility to Struc-
tural Similarity. IEEE Transactions on Image Pro-
cessing, 2004, 13(4), 600-612. https://doi.org/10.1109/
TIP.2003.819861

41. Yang, W., Tan, R. T., Feng, J., Liu, J., Guo, Z., Yan, S. Deep 
Joint Rain Detection and Removal from a Single Im-
age. IEEE Conference on Computer Vision and Pattern 
Recognition, 2017, 1685-1694. https://doi.org/10.1109/
CVPR.2017.183

42. Yang, W., Tan, R. T., Wang, S., Fang, Y., Liu, J. Single Im-
age Deraining: From Model Based to Data Driven and 
Beyond. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 2021, 43(11), 4059-4077. https://
doi.org/10.1109/TPAMI.2020.2995190

43. Ye, P., Li, B., Li, Y., Chen, T., Fan, J., Ouyang, W. Beta 
DARTS: Beta Decay Regularization for Differentiable 
Architecture Search. IEEE Conference on Computer 
Vision and Pattern Recognition, 2022, 10864-10873. 
https://doi.org/10.1109/CVPR52688.2022.01060

44. Yin, X., Tu, G., Chen, Q. Multiscale Depth Fusion with 
Contextual Hybrid Enhancement Network for Im-
age Dehazing. IEEE Transactions on Instrumenta-
tion and Measurement, 2023. https://doi.org/10.1109/
TIM.2023.3318748

45. You, S., et al. Fine Perceptive GANs for Brain MR 
Image Super Resolution in Wavelet Domain. IEEE 
Transactions on Neural Networks and Learning 
Systems, 2023, 34(11), 8802-8814. DOI: 10.1109/
TNNLS.2022.3153088. https://doi.org/10.1109/TN-
NLS.2022.3153088

46. Zhang, H., Li, Y., Chen, H., Gong, C., Bai, Z., Shen, C. 
Memory Efficient Hierarchical Neural Architecture 
Search for Image Restoration. International Journal of 
Computer Vision, 2022, 1-22. https://doi.org/10.1007/
s11263-021-01537-w

47. Zhang, H., Li, Y., Chen, H., Shen, C. Memory Efficient 
Hierarchical Neural Architecture Search for Image 
Denoising. IEEE Conference on Computer Vision and 
Pattern Recognition, 2020, 3654-3663. https://doi.
org/10.1109/CVPR42600.2020.00371

48. Zhang, H., Sindagi, V., Patel, V. M. Image De Raining 
Using a Conditional Generative Adversarial Network. 
IEEE Transactions on Circuits and Systems for Vid-
eo Technology, 2020, 30(11), 3943-3956. https://doi.
org/10.1109/TCSVT.2019.2920407

49. Zhang, R., Isola, P., Efros, A. A., Shechtman, E., Wang, 
O. The Unreasonable Effectiveness of Deep Features 
as a Perceptual Metric. IEEE Conference on Comput-
er Vision and Pattern Recognition, 2018, 586-595. DOI: 
10.1109/CVPR.2018.00068. https://doi.org/10.1109/
CVPR.2018.00068

50. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y. Residu-
al Dense Network for Image Super Resolution. IEEE 
Conference on Computer Vision and Pattern Rec-
ognition, 2018, 2472-2481. https://doi.org/10.1109/
CVPR.2018.00262

51. Zhang, Z., Wei, Y., Zhang, H., Yang, Y., Yan, S., Wang, 
M. Data Driven Single Image Deraining: A Compre-
hensive Review and New Perspectives. Pattern Rec-
ognition, 2023, 109740. https://doi.org/10.1016/j.pat-
cog.2023.109740

52. Zoph, B., Le, Q. V. Neural Architecture Search with Re-
inforcement Learning. 5th International Conference on 
Learning Representations, 2017. 

This article is an Open Access article distributed under the terms and conditions of the Creative 
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).


