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Unmanned aerial vehicles (UAVs) have been increasingly used in fire monitoring and rescue operations, offer-
ing flexibility and efficiency. However, determining the shortest path for all UAVs to visit all regions is a cru-
cial issue, known as the Multiple Traveling Salesman Problem (MTSP), which aims to save time and energy. 
This paper proposes a novel hybrid heuristic algorithm, MCPWOA, to solve MTSP with a focus on UAV path 
planning applications. The algorithm integrates the Whale Optimization Algorithm (WOA), Crested Porcupine 
Optimizer (CPO), Chaotic Mapping Strategy (CMS), Arcsine Control Strategy (ACS) and Reverse Learning 
Strategy (RLS) to diversify the initial population and achieve rapid exploration. The algorithm's performance 
is evaluated using the CEC2022 benchmark function set and TSPLIB dataset for function minimization and 
UAV-MTSP experimental solution finding. Results indicate that MCPWOA outperforms existing WOA, CPO, 
and other advanced algorithms on most tests, showing higher convergence accuracy. Moreover, MCPWOA's 
effectiveness is demonstrated in actual UAV fire monitoring and rescue path planning, enhancing fire response 
efficiency through optimized UAV configuration and task allocation.
KEYWORDS: UAV, Path planning, Whale Optimization Algorithm, Crested Porcupine Optimizer, Multiple 
Traveling Salesman Problem, Fire monitoring and rescue.
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1.Introduction
1.1 Background
The advancements in drone technology have ren-
dered them critical for fire monitoring and rescue 
operations, due to their flexibility and efficiency. Ef-
ficiently planning drone flight paths to cover critical 
fire points is challenging, due to complex terrains and 
variable fire dynamics. Heuristic algorithms provide 
a powerful solution to tackle the Multiple Traveling 
Salesman Problem (MTSP), especially for large-scale 
problems. These algorithms are well-suited to handle 
the complexity and scale of MTSP, optimizing routes 
for multiple drones to minimize total path length 
and enhance monitoring efficiency. Their ability to 
provide near-optimal solutions quickly makes them 
ideal for real-time applications in dynamic environ-
ments. As a result, research on applying heuristic al-
gorithms to drone path planning for fire monitoring 
is an active and significant field.

1.2 Motivation and Related Works
The Traveling Salesman Problem (TSP) is a classic 
problem in the field of combinatorial optimization. 
Since the 20th century, its solutions have evolved 
from exact algorithms to heuristic approaches. In the 
20th century, solving the TSP primarily relied on ex-
act algorithms such as the branch and bound method 
[15], dynamic programming [12], and branch and cut 
method [10]. However, as the problem scale expanded, 
the computational complexity and time costs of these 
methods increased significantly, making them imprac-
tical for real-world applications. Consequently, heuris-
tic algorithms have gradually become the mainstream 
approach to solving the TSP in the 21st century.
In 2019, Liu and Wang [28] proposed a TSP solution 
based on genetic algorithms, which enhanced global 
search capabilities and convergence speed through 
optimized selection and mutation operations. In the 
same year, Chen et al. [14] developed a time-approx-
imation scheme capable of providing approximate 
solutions within exponential time. In 2020, Manna et 
al. [30] employed a clustering method to address the 
TSP, dividing vertices into multiple clusters and us-
ing genetic algorithms to find Hamiltonian paths. Si-
multaneously, Guo et al. [18] introduced the MEATSP 
membrane evolutionary algorithm, which mimics 
biological cell behavior to solve large-scale TSP prob-

lems. Additionally, in 2020, Chen et al. [14] devised a 
sublinear algorithm to estimate the cost of graphical 
TSP, thereby enhancing computational efficiency.
Entering 2021, Zhong [43] proposed an improved 
3-Opt algorithm for solving the TSP, which improved 
the approximation ratio. In 2023, Akhmetov and Pak 
[6] conducted a comparative study evaluating various 
TSP algorithms on standard datasets, suggesting hy-
brid techniques that combine existing algorithms. Fur-
thermore, Alkafaween et al. [8] introduced an iterative 
approximation method, optimizing paths through local 
constant permutation. Behnezhad et al. [13] proposed 
a path-covering-based sublinear algorithm, enhancing 
the estimation accuracy for graphical TSP.
Due to the more complex and diverse scenarios in real 
applications, the Multiple Traveling Salesman Prob-
lem (MTSP) was introduced to solve the real-world 
problems. The Multiple Traveling Salesman Prob-
lem (MTSP) is an extended version of the traveling 
salesman problem (TSP) involving multiple traveling 
salesmen whose routes need to be optimized to reach 
a specific goal. In recent years, researchers have pro-
posed a variety of algorithms to solve MTSP. In 2019, 
Gulcu and Ornek [17] proposed an algorithm based 
on Particle Swarm Optimization (PSO) for solving 
MTSP. The performance of the algorithm is improved 
by introducing the 2-opt algorithm and the path 
relinking operation. In 2020, Lu et al. [29] assigned 
ants to task-oriented teams, so that each ant used 
Max-Min strategy to jointly optimize the solution to 
enhance the performance of the ant colony optimiza-
tion algorithm. Wang et al.  [39] proposed an improved 
ant colony optimization algorithm with a pheromone 
model to solve the MTSP problem with capacity 
and time window constraints. In 2021, Karabulut et 
al. [23] proposed an Evolutionary strategy (ES) ap-
proach for solving MTSP problems with minimiza-
tion and maximization objectives. The quality of the 
solution is optimized by adaptive destruction and re-
construction heuristics and a 3-opt local search. Ren 
et al. [34] optimized the path of the multi-agent MTSP 
by improving the penalty function of the simulated 
annealing algorithm. In 2023, Hu and Yang [21] pro-
posed a local optimization algorithm based on elimi-
nating inclusion and crossing relationships between 
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subpaths for balanced workloads in MTSP problems. 
Nayak and Rathinam [32] explored the application 
of learning models in Dubins MTSP and proposed a 
learning-based heuristic search method.
Although accurate algorithms have advantages in solv-
ing small-scale problems, in the face of large-scale and 
complex problems in reality, heuristic algorithms are 
gradually being widely used because of their efficien-
cy and flexibility. In recent years, UAV technology has 
developed rapidly in recent years, becoming an indis-
pensable tool in emergency rescue. Therefore, many 
scholars have tried to apply the heuristic algorithm to 
solve the MTSP problem to the actual scene of UAV 
emergency rescue, and have made many achieve-
ments. Sanchz-garcia et al. [35] proposed a distributed 
exploration algorithm based on Particle Swarm Opti-
mization (PSO), which was applied to UAV networks 
in disaster scenarios to autonomously deploy and 
provide communication services. The algorithm sig-
nificantly improved the efficiency of victim discovery 
and connecting events. Tang [36] solved the problem 
of random interference and low efficiency in UAV path 
planning through improved Genetic Algorithm (IGA), 
and achieved high coverage and high solution accura-
cy. Huang et al. [22] proposed a new UAV path planning 
framework that combines path and motion planning 
to effectively improve the reliability of data transmis-
sion and flight time. Arafat and Moh [11] proposed a 
swarm intelligence-based localization and clustering 
algorithm for UAV networks in emergency communi-
cations to improve localization accuracy and energy 
efficiency. Wang et al. [40] optimized the multi-UAV 
task area allocation problem by combining genetic 
algorithm and simulated annealing algorithm, which 
effectively improved the balance of task allocation and 
the global search ability of the algorithm. Gan and Liu 
[16] proposed a rapid forest fire response method based 
on K-means and MTSP algorithm, which improved the 
fire response efficiency by optimizing the UAV con-
figuration and task allocation. Li et al. [26] proposed a 
multi-UAV patrol path planning method based on evo-
lutionary multi-objective optimization, which signifi-
cantly reduces the time and energy costs. Almasoud [9] 
studied a UAV-based intelligent transportation system 
for emergency reporting in coverage of wireless net-
work void areas, which greatly reduces the emergency 
information delivery time. Wang et al. [38] proposed 
a UAV-assisted dynamic hypergraph coloring method 
for emergency communication, which reduces inter-

ference and improves information diffusion speed by 
optimizing spectrum sharing. Lin et al. [27] proposed 
an extended model of the Multi-Armed Slot Machine 
(MAB) problem to optimize the path planning of UAVs 
in post-disaster emergency communication, which 
significantly increased the number of served users. 
Kyrkou and Theocharides [24] proposed a deep learn-
ing-based emergency surveillance system, Emergen-
cyNet, which improves the efficiency of emergency 
response by optimizing the UAV image classification 
algorithm. Hong et al. [20] proposed an adaptive hy-
brid algorithm for optimizing UAV search and rescue 
missions, which significantly improves the target dis-
covery probability and search efficiency. Qu et al. [33] 
studied the rapid deployment method of UAVs based 
on bandwidth resources, which effectively reduced the 
deployment delay and the number of UAVs. Akter et al. 
[7] proposed a task offloading and resource allocation 
strategy for UAV emergency response operation in a 
multi-access Edge Computing (MEC) environment, 
which improved the task execution efficiency. Wan et 
al. [37] proposed an improved multi-objective swarm 
intelligence algorithm for 3D path planning of UAV di-
saster emergency response, which optimized the flight 
path and obstacle avoidance performance. These algo-
rithms not only improve the application effect of UAVs 
in emergency rescue, but also provide a solid founda-
tion for future emergency response technology, show-
ing the great potential of heuristic algorithms in prac-
tical applications.

1.3 Our Contributions
As mentioned above, multi-strategy augmented hybrid 
heuristics have shown great potential in various opti-
mization domains; However, few studies adopt hybrid 
optimization strategies for the WOA algorithm and 
CPO algorithm to optimize the path problem of UAV 
traversing the fire point. In this paper, the algorithm 
is studied in depth and its improved methods are re-
viewed in detail, and the potential application of the 
algorithm in fire monitoring and rescue is discussed. 
The main contributions can be summarized as follows:
 _ Initially, an overview of the multi-strategy 

hybrid algorithm was provided, covering both 
the mathematical model and the optimization 
approach. The original WOA is primarily effective 
for continuous, unconstrained optimization 
tasks. To broaden its scope and enhance its 
performance, various strategies including chaotic 
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mapping strategy (CMS), arcsine control strategy 
(ACS) and Reverse learning strategy (RLS) have 
been integrated. By combining WOA with the 
Crested Porcupine Optimizer (CPO) and these 
additional strategies, the algorithm is equipped to 
tackle a diverse array of optimization challenges, 
delivering high-quality solutions.

 _ To demonstrate the hybrid algorithm's 
applicability, its performance was studied on the 
Multiple Traveling Salesman Problem (MTSP) 
of UAV path optimization in a fire monitoring 
scenario. Simulation results show that the 
hybrid algorithm can achieve better performance 
compared to other metaheuristic algorithms.

 _ Several potential applications of hybrid 
algorithms for complex optimization problems are 
outlined, particularly for path planning of UAVs in 
forest fire rescue operations. The effectiveness of 
the proposed algorithm in addressing large-scale 
dynamic optimization challenges is demonstrated 
through the use of cluster transformation and 
asynchronous composition methods.

2. MCPWOA: Foundation and 
Framework
In this section, we introduce the UAV-MTSP and 
basic framework of MCPWOA, which integrate the 
Crested Porcupine Optimizer (CPO), Whale Opti-
mization Algorithm (WOA) and other enhancement 
strategies. 

2.1 Introduction to the Multiple traveling 
Salesman Problem (MTSP)
The Multiple Traveling Salesman Problem (MTSP) 
is an extension of the Traveling Salesman Problem 
(TSP), where multiple salesmen are required to visit 
a set of cities, with each city visited at least once by 
any one of them and no more than once by the same 
salesman, as shown in Figure 1. The objective is to 
determine the most efficient route for each salesman 
that minimizes the total travel distance. This problem 
has various real-world applications, including logis-
tics, UAV routing, and traffic management, and often 
requires the use of integer programming and different 
optimization techniques to solve effectively.

Figure 1 
Example of UAV-MTSP.
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1 2 '
iX L r U L | i , ...,N , (1) 

where 'N denotes the number of 
individuals (i.e., the population size), iX  
is the i th candidate solution within the 
search space, L  and U  represent the lower 
and upper bounds of the search range, 
respectively, and r  is a vector initialized 
within the range [0, 1]. 
The following equation explains the encircling 
prey phase in WOA from a mathematical point 
of view: 

1t t
i *x x A D   (2) 

t t
* iD C x x   (3) 

2A a r a   (4) 

2C r ,  (5) 

where t
*x  is the current optimal solution, t 

is the current iteration, t
ix  is the position of 

the i th individual among population at 
iteration t, a is a vector which gradually 
decreases from 2 to 0. 
Humpback whales follow a spiral trajectory to 
approach their prey using the formula: 

' t t
* iD x x   (6) 

1 2t ' bl t
i *x D e cos l x , (7) 

where b is a constant that determines the spiral 
shape and l is a random value within the 
interval [-1, 1]. 

The algorithm adopts random search strategy. 
When A 1 , the formula is: 

1t t
i rx x A D ,  (8) 
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Algorithm (WOA) 

The Whale Optimization Algorithm (WOA), 
introduced by Mirjalili and Lewis in 2016 [31], 
is an optimization method based on 
biomimicry. It draws inspiration from the 
hunting techniques of humpback whales, 
using "bubble nets" to capture prey. WOA is a 
global optimization tool, it randomly 
initializes the dimensions with the following 
formula: 

1 2 '
iX L r U L | i , ...,N , (1) 

where 'N denotes the number of 
individuals (i.e., the population size), iX  
is the i th candidate solution within the 
search space, L  and U  represent the lower 
and upper bounds of the search range, 
respectively, and r  is a vector initialized 
within the range [0, 1]. 
The following equation explains the encircling 
prey phase in WOA from a mathematical point 
of view: 

1t t
i *x x A D   (2) 

t t
* iD C x x   (3) 

2A a r a   (4) 

2C r ,  (5) 

where t
*x  is the current optimal solution, t 

is the current iteration, t
ix  is the position of 

the i th individual among population at 
iteration t, a is a vector which gradually 
decreases from 2 to 0. 
Humpback whales follow a spiral trajectory to 
approach their prey using the formula: 
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where b is a constant that determines the spiral 
shape and l is a random value within the 
interval [-1, 1]. 

The algorithm adopts random search strategy. 
When A 1 , the formula is: 
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planning of UAVs in forest fire rescue operations. 
The effectiveness of the proposed algorithm in 
addressing large-scale dynamic optimization 
challenges is demonstrated through the use of 
cluster transformation and asynchronous 
composition methods. 

2.MCPWOA: Foundation and Frame
work 

In this section, we introduce the UAV-MTSP and 
basic framework of MCPWOA, which integrate the 
Crested Porcupine Optimizer (CPO), Whale 
Optimization Algorithm (WOA) and other 
enhancement strategies.  

2.1 Introduction to the Multiple traveling 
Salesman Problem (MTSP) 

The Multiple Traveling Salesman Problem (MTSP) 
is an extension of the Traveling Salesman Problem 
(TSP), where multiple salesmen are required to visit 
a set of cities, with each city visited at least once by 
any one of them and no more than once by the same 
salesman, as shown in Figure 1. The objective is to 
determine the most efficient route for each salesman 
that minimizes the total travel distance. This 
problem has various real-world applications, 
including logistics, UAV routing, and traffic 
management, and often requires the use of integer 
programming and different optimization 
techniques to solve effectively. 

Figure 1  

Example of UAV-MTSP. 
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where t
rx is a randomly chosen whale location. 

2.3 Introduction to Crested Porcupine Optimizer 
(CPO) 

The Crested Porcupine Optimizer (CPO) is a 
metaheuristic algorithm inspired by the crowned 
porcupine's defense behaviors [2]. It uses four 
strategies - visual signals, auditory warnings, odor 
emissions, and physical attacks - to emulate the 
animal's defense mechanisms. CPO combines 
exploration and exploitation to tackle large-scale, 
complex optimization challenges. CPO and WOA 
use the same population initialization strategy, it 
introduces the cyclic population reduction 
technique to preserve the population diversity in 
addition to accelerating the convergence speed. The 
equation governing the cyclic reduction of 
population size is given by: 
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where T represents the variable that dictates the 
number of cycles, maxT is the maximum number of 
iterations, % denotes the modulo operator, and 

minN  is the minimum population size in the newly 
generated group. 

The defense strategy in the first stage is expressed 
as follows: 

1
1 22t t t t

i i * ix x x y   (10) 

2

t t
t i r
i

x x
y ,   (11) 

where 1 is a random number following a normal 
distribution, and 2  is a randomly generated value 
within the range [0, 1] 

The defense strategy in the second stage is 
expressed as follows  
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where 1r and 2r  are two randomly selected integers 
within the range [1, N] and 3  consists of random 
values generated between 0 and 1. 1U is a binary 
vector including 0 and 1 generated randomly 
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as follows: 
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where 3r  is a random number within the 
range [1, N], is a parameter controlling the 
search direction, represents the position of the 
i th individual at iteration t, and t  is the 
defined defense factor. 3 is a random value 
within the interval [0, 1] and t

iS  is the defined 

odor diffusion factor. t
if x denote the 

objective function value of the i th individual 
at iteration t,  is a small constant to prevent 
division by zero, rand is a vector of randomly 
generated values within the range [0, 1], N 
represents the population size, t is the current 
iteration number, maxT is the maximum 
number of iterations, and another rand 
consists of values randomly generated 
between 1 and 0. The 1U  is used to simulate 
three different scenarios that may occur within 
this strategy. 

The defense strategy of the fourth stage is 
expressed as follows: 
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where 4 , 5 are both random values within the 
interval [0, 1], t is the current number of 
iterations, represented by a vector that 
includes randomly generated values between 
0 and 1. 6 is a vector including random values 
generated between 0 and 1. 

2.4 Enhanced WOA Using Factors and 
Strategy in CPO (CPWOA) 

Whale optimization algorithm has a simple 
structure and fast computation speed, but it 
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preserve the population diversity in addition to accel-
erating the convergence speed. The equation governing 
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where τ4, τ5 are both random values within the interval 
[0, 1], Δt is the current number of iterations, repre-
sented by a vector that includes randomly generated 
values between 0 and 1. τ6 is a vector including ran-
dom values generated between 0 and 1.

2.4 Enhanced WOA Using Factors and 
Strategy in CPO (CPWOA)
Whale optimization algorithm has a simple struc-
ture and fast computation speed, but it may meet 
problems like falling into local minima and imbal-
ance between exploration and exploitation when 
solving continuous and discrete optimization prob-
lems [4]. To enhance the performance of the whale 
optimization algorithm, researchers use many strat-
egies: Wu et al. [42] used the arcsine control strategy 
to find a balance between exploration and exploita-
tion. Abdel-Basset et al. [1] used a local search strat-
egy and the Lévy flight walks to give a better tradeoff 
between the diversification and the intensification. 

Furthermore, as a new and powerful optimizer, the 
Crested Porcupine Optimizer has many useful fac-
tors to enhance its exploration and exploitation 
capabilities. In consideration of the fact that WOA 
simulates the process by which whales hunt their 
prey and CPO simulates the process by which crest-
ed porcupine defense hunters, it is natural to blend 
WOA and CPO by giving the unique defense methods 
owned by crested porcupines to the prey hunted by 
whales. This fusion strategy can increase the game 
between whales and prey, so that whales will explore 
more regions instead of staying beside the prey. 
The third defense strategy and the fourth defense 
strategy in CPO simulate the violent reaction when 
the hunter is too close to the crested population. The 
existence of the odor diffusion factor Si

t in the third 
strategy and the average force Fi

t in the fourth strategy 
make sure that the optimizer can concentrate exploita-
tion in not only the neighborhood of the global optimal 
solution but also other solutions in the population, and 
provide a more comprehensive examination around 
the global optimal solution so far, which all mean a 
great capacity to avoid falling into local minima. 
As mentioned above, in order to improve the whale 
optimization algorithm with the help of CPO, firstly 
the odor diffusion factor Si

t is added into the encircling 
prey phase in order to encourage exploitation to cover 
a larger range rather than focus on the region around 
the global optimal solution so far, secondly, average 
force Fi

t is added into bubble-net attacking phase. The 
fusion strategy can provide WOA a powerful potential 
to jump out of the local minima, new update equations 
in whale population after fusion are as follows:
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In this paper, the enhanced WOA using factors 
in CPO is called CPWOA. 

2.5 Chaotic Mapping Strategy (CMS) 

The quality of the original population 
significantly influences the algorithm's global 
searching capacity and convergence speed in 
metaheuristic algorithms. A good original 
population and rational distribution can help 
the algorithm find a better solution at the 
beginning of iteration and accelerate 
convergence. In traditional WOA and CPO, 
they use pseudo-random numbers to initialize 
the population, which cannot guarantee 
uniform population distribution and may 
degrade algorithm performance. 

Chaotic mapping theory exhibits good 
randomness and ergodicity. Numerous 
chaotic mappings exist, including tent 
mapping, logistic mapping, Chebyshev 
mapping, circle mapping, and others. This 
paper considers six types of mappings and 
selects the most appropriate one through 
comparison. Their original distributions in 
1000 dimensions are depicted in Figure 2. 

Figure 2  

Original distribution of each mapping. 
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In this paper, the enhanced WOA using factors in 
CPO is called CPWOA.
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2.5 Chaotic Mapping Strategy (CMS)
The quality of the original population significantly 
influences the algorithm's global searching capacity 
and convergence speed in metaheuristic algorithms. 
A good original population and rational distribution 
can help the algorithm find a better solution at the 
beginning of iteration and accelerate convergence. In 
traditional WOA and CPO, they use pseudo-random 
numbers to initialize the population, which cannot 
guarantee uniform population distribution and may 
degrade algorithm performance.
Chaotic mapping theory exhibits good randomness and 
ergodicity. Numerous chaotic mappings exist, includ-
ing tent mapping, logistic mapping, Chebyshev map-
ping, circle mapping, and others. This paper considers 
six types of mappings and selects the most appropriate 
one through comparison. Their original distributions 
in 1000 dimensions are depicted in Figure 2.
By contrast, tent mapping can generate more uni-
form chaotic sequences and better distribution, 
which will be helpful to improve population diver-
sity. Tent mapping is a piecewise linear mapping 
which is widely used in chaotic encryption systems, 
its definition is as follows,

Figure 2  
Original distribution of each mapping.
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Based on the adequate examination, a chaotic 
sequence could get a good original distribution 
when is close to 0.5. Significantly, a chaotic 
system will be in a short-period state when is 
equal to 0.5, so it is usually set to 0.499. 

Initializing the population using tent mapping has 
two steps. The first step is using Equations (22)-(23) 
to generate a chaotic sequence which has the same 
dimension as the optimization problem. The second 
step is replacing the pseudo-random number with 
the chaotic sequence. The new initialization is as 
follows: 

iX L chaos U L ,  (24) 

where 1 2[ , ,..., ]nchaos x x x , n refers to the dimension 
of optimization problem. 

2.6 Arcsine Control Strategy (ACS) 

Besides enhancing exploration and exploitation 
capacities, the other key to solving a given 
optimization problem using a metaheuristic 
method is a good balance between them [41].  

Because of that, Wu et al. [42] attempted many 
nonlinear control strategies to replace traditional 
constant control strategy or linear control strategy, 
and found that arcsine function can lead to better 
performance. 

Under this strategy, parameter a in CPWOA and 
parameter fT  in CPO will decrease along the 
arcsine function in iterative process. Optimizer will 
focus more on exploration during early iterations 
and concentrate on exploiting in the end. The new 
equation of parameter a is as follows: 
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2.7 Reverse Learning Strategy (RLS) 

Population evolution is a slow process that takes 
time. Reverse learning is proposed to boost the 
learning rate in evolutionary algorithms, simulating 

a revolution taking place in the population. 
During the revolution, a reverse population of 
the same size as the original population is 
generated under a mapping and interacts with 
it. Assuming there are N individuals in the 
original population, N best individuals will 
survive after interaction. The revolution is a 
fast process, so reverse learning can not only 
explore unknown areas in the search space but 
also accelerate the convergence process. 

Both fixed boundary reverse learning and 
dynamic boundary reverse learning can 
achieve the mapping from the original 
population to the reverse population. The 
former can explore more unknown areas, but 
may slow down convergence. The latter 
overcomes the disadvantage that the former 
has difficulty saving search experience, but 
will confine the reverse solution to a narrow 
space. This paper chooses the former to 
generate a reverse population, which is 
calculated as follows: 

t
i iop r U L x   (27) 

Figure 3  

Schematic diagram of reserve learning. 
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achieve the mapping from the original 
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former can explore more unknown areas, but 
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has difficulty saving search experience, but 
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space. This paper chooses the former to 
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where 1 2[ , ,..., ]nchaos x x x , n refers to the dimension 
of optimization problem. 

2.6 Arcsine Control Strategy (ACS) 

Besides enhancing exploration and exploitation 
capacities, the other key to solving a given 
optimization problem using a metaheuristic 
method is a good balance between them [41].  

Because of that, Wu et al. [42] attempted many 
nonlinear control strategies to replace traditional 
constant control strategy or linear control strategy, 
and found that arcsine function can lead to better 
performance. 

Under this strategy, parameter a in CPWOA and 
parameter fT  in CPO will decrease along the 
arcsine function in iterative process. Optimizer will 
focus more on exploration during early iterations 
and concentrate on exploiting in the end. The new 
equation of parameter a is as follows: 
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2.5 Chaotic Mapping Strategy (CMS)
The quality of the original population signifi cantly 
infl uences the algorithm's global searching capacity 
and convergence speed in metaheuristic algorithms. 
A good original population and rational distribution 
can help the algorithm fi nd a better solution at the 
beginning of iteration and accelerate convergence. In 
traditional WOA and CPO, they use pseudo-random 
numbers to initialize the population, which cannot 
guarantee uniform population distribution and may 
degrade algorithm performance.
Chaotic mapping theory exhibits good randomness and 
ergodicity. Numerous chaotic mappings exist, includ-
ing tent mapping, logistic mapping, Chebyshev map-
ping, circle mapping, and others. This paper considers 
six types of mappings and selects the most appropriate 
one through comparison. Their original distributions 
in 1000 dimensions are depicted in Figure 2.
By contrast, tent mapping can generate more uni-
form chaotic sequences and better distribution, 
which will be helpful to improve population diver-
sity. Tent mapping is a piecewise linear mapping 
which is widely used in chaotic encryption systems, 
its defi nition is as follows,

Figure 2  
Original distribution of each mapping.
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2.5 Chaotic Mapping Strategy (CMS)
The quality of the original population signifi cantly 
infl uences the algorithm's global searching capacity 
and convergence speed in metaheuristic algorithms. 
A good original population and rational distribution 
can help the algorithm fi nd a better solution at the 
beginning of iteration and accelerate convergence. In 
traditional WOA and CPO, they use pseudo-random 
numbers to initialize the population, which cannot 
guarantee uniform population distribution and may 
degrade algorithm performance.
Chaotic mapping theory exhibits good randomness and 
ergodicity. Numerous chaotic mappings exist, includ-
ing tent mapping, logistic mapping, Chebyshev map-
ping, circle mapping, and others. This paper considers 
six types of mappings and selects the most appropriate 
one through comparison. Their original distributions 
in 1000 dimensions are depicted in Figure 2.
By contrast, tent mapping can generate more uni-
form chaotic sequences and better distribution, 
which will be helpful to improve population diver-
sity. Tent mapping is a piecewise linear mapping 
which is widely used in chaotic encryption systems, 
its defi nition is as follows,

Figure 2  
Original distribution of each mapping.
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Because of that, Wu et al. [42] attempted many 
nonlinear control strategies to replace traditional 
constant control strategy or linear control strategy, 
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Population evolution is a slow process that takes 
time. Reverse learning is proposed to boost the 
learning rate in evolutionary algorithms, simulating 
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During the revolution, a reverse population of 
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fast process, so reverse learning can not only 
explore unknown areas in the search space but 
also accelerate the convergence process. 

Both fixed boundary reverse learning and 
dynamic boundary reverse learning can 
achieve the mapping from the original 
population to the reverse population. The 
former can explore more unknown areas, but 
may slow down convergence. The latter 
overcomes the disadvantage that the former 
has difficulty saving search experience, but 
will confine the reverse solution to a narrow 
space. This paper chooses the former to 
generate a reverse population, which is 
calculated as follows: 
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2.6 Arcsine Control Strategy (ACS)
Besides enhancing exploration and exploitation ca-
pacities, the other key to solving a given optimization 
problem using a metaheuristic mwethod is a good bal-
ance between them [41]. 
Because of that, Wu et al. [42] attempted many nonlin-
ear control strategies to replace traditional constant 
control strategy or linear control strategy, and found 
that arcsine function can lead to better performance.
Under this strategy, parameter a in CPWOA and pa-
rameter Tf in CPO will decrease along the arcsine 
function in iterative process. Optimizer will focus 
more on exploration during early iterations and con-
centrate on exploiting in the end. The new equation of 
parameter a is as follows:
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2.7 Reverse Learning Strategy (RLS) 

Population evolution is a slow process that takes 
time. Reverse learning is proposed to boost the 
learning rate in evolutionary algorithms, simulating 

a revolution taking place in the population. 
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it. Assuming there are N individuals in the 
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fast process, so reverse learning can not only 
explore unknown areas in the search space but 
also accelerate the convergence process. 

Both fixed boundary reverse learning and 
dynamic boundary reverse learning can 
achieve the mapping from the original 
population to the reverse population. The 
former can explore more unknown areas, but 
may slow down convergence. The latter 
overcomes the disadvantage that the former 
has difficulty saving search experience, but 
will confine the reverse solution to a narrow 
space. This paper chooses the former to 
generate a reverse population, which is 
calculated as follows: 
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constant control strategy or linear control strategy, 
and found that arcsine function can lead to better 
performance. 

Under this strategy, parameter a in CPWOA and 
parameter fT  in CPO will decrease along the 
arcsine function in iterative process. Optimizer will 
focus more on exploration during early iterations 
and concentrate on exploiting in the end. The new 
equation of parameter a is as follows: 
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2.7 Reverse Learning Strategy (RLS) 

Population evolution is a slow process that takes 
time. Reverse learning is proposed to boost the 
learning rate in evolutionary algorithms, simulating 

a revolution taking place in the population. 
During the revolution, a reverse population of 
the same size as the original population is 
generated under a mapping and interacts with 
it. Assuming there are N individuals in the 
original population, N best individuals will 
survive after interaction. The revolution is a 
fast process, so reverse learning can not only 
explore unknown areas in the search space but 
also accelerate the convergence process. 

Both fixed boundary reverse learning and 
dynamic boundary reverse learning can 
achieve the mapping from the original 
population to the reverse population. The 
former can explore more unknown areas, but 
may slow down convergence. The latter 
overcomes the disadvantage that the former 
has difficulty saving search experience, but 
will confine the reverse solution to a narrow 
space. This paper chooses the former to 
generate a reverse population, which is 
calculated as follows: 

t
i iop r U L x   (27) 
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Schematic diagram of reserve learning. 
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Reverse learning will consume a lot of computing re-
sources when the population has a large size. Given 
this, jump rate (Jr) is proposed. In the iteration pro-
cess, execute reverse learning every k iterations, as 
shown in Figure 3. What is better is that the cyclic 
population reduction technique can also reduce cal-
culating pressure. Chaotic mapping strategy and re-
serve learning strategy are usually treated as a joint 
strategy called chaotic reverse learning because they 
are based on mappings and helpful in reducing con-
vergence time.

2.8 Introduction to Symbiotic Organisms 
Search (SOS)
The Symbiotic Organisms Search (SOS) algorithm, 
based on biological symbiosis theory, uses swarm in-
telligence to simulate cooperative and competitive 
behaviors in biological systems to find optimal solu-
tions. It has strong exploitation ability in the mutual-
ism phase, with formulas including:
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with formulas including: 
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where denotes the reciprocal intermediate of the i 
and  individuals in the set of generations, 1 and 

2 are randomly generated interest factors, whose 
values are 1 or 2, indicating the beneficial degree of 
the reciprocal relationship between two individuals. 

2.9 Multi-strategy Hybrid Algorithm Base on 
Predation Mechanism (MCPWOA) 

In this section, we introduce the three above 
strategies to improve the convergence precision of 
CPWOA and original CPO, and the two improved 
algorithm are integrated into a hybrid search 
algorithm 

Symbiotic Organisms Search (SOS) is renowned for 
its efficient exploitation capacity during mutualism 
and commensalism. It utilizes the global optimal 
solution as a standard, providing a wider search 
range. Wang et al. [41] introduced the mutualism 
phase in SOS, combining butterfly optimization 
algorithm and flower pollination algorithm to 
achieve strong exploitation capability and fast 
convergence speed. The symbiotic mechanism 
aligns with the relationship between butterflies and 
flowers, rather than whales and their prey. Given 
this, the Predatory Organisms Search (POS) is 
proposed by adjusting parameters in SOS to fit the 
whale-prey relationship.  

The predation relationship is characterized by a 
direct benefit to the predator, who gains energy, 
nutrients, and other resources from consuming the 
prey, while the prey suffers harm or death. 
Enhanced Whale Optimization Algorithm (WOA) 
and Cuckoo Population Optimization (CPO) are  

both excellent algorithms for solving 
optimization problems. To release the full 
potential of each algorithm and retain their 
respective advantages, POS is utilized to 
hybridize the two. 

To simulate the predation between whales and 
prey, the parameter BF1 in SOS is randomly 
set to -1 or -2, which refers to the benefit factor 
of the first member in the ecosystem. A 
negative value represents that it suffers from 
harm during the interaction with the second 
member. Then The parameter BF2 of the 
second member is randomly set to 1 or 2 to 
show it gains benefit, so the first member plays 
the part of prey when the second playing the 
part of whales. What is better is that POS could 
exploit a bigger neighborhood of the global 
optimal solution than SOS because BF1 and 
BF2 have opposite symbol. 

This paper takes four steps to mix WOA and 
CPO. The first step is to generate two 
populations 1P  and 2P to constitute a 
community. The second step is to update two 
populations independently, which refers to 
update 1P using equations in CPO and update 

2P  using equations in enhanced WOA. The 
third step is to lead interactions between two 
populations using POS. In this step, every 
whale selects a prey to hunt randomly and 
generates mutualism vector _Mutual agent . 
The fourth step is to use _Mutual agent  to 
generate new individuals in each population, 
so as to increase the exploitation ability of the 
fusion algorithm and give play to the 
advantages of each. If the new individuals are 
better than the old ones, they need to be 
replaced. Formulas to calculate new 
individuals are as follows: 

new t t
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new t t
j *y y r y Mutual _ agent  (32) 

Figure 4   

The flow chart of MCPWOA. 
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where denotes the reciprocal intermediate of the i 
and j individuals in the set of generations, BF1 and 
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BF2 are randomly generated interest factors, whose 
values are 1 or 2, indicating the beneficial degree of 
the reciprocal relationship between two individuals.

2.9 Multi-strategy Hybrid Algorithm Base on 
Predation Mechanism (MCPWOA)
In this section, we introduce the three above strate-
gies to improve the convergence precision of CPWOA 
and original CPO, and the two improved algorithm are 
integrated into a hybrid search algorithm
Symbiotic Organisms Search (SOS) is renowned for 
its efficient exploitation capacity during mutualism 
and commensalism. It utilizes the global optimal 
solution as a standard, providing a wider search range. 
Wang et al. [41] introduced the mutualism phase in 
SOS, combining butterfly optimization algorithm 
and flower pollination algorithm to achieve strong ex-
ploitation capability and fast convergence speed. The 
symbiotic mechanism aligns with the relationship 
between butterflies and flowers, rather than whales 
and their prey. Given this, the Predatory Organisms 
Search (POS) is proposed by adjusting parameters in 
SOS to fit the whale-prey relationship. 
The predation relationship is characterized by a direct 
benefit to the predator, who gains energy, nutrients, 
and other resources from consuming the prey, while 
the prey suffers harm or death. Enhanced Whale Op-
timization Algorithm (WOA) and Cuckoo Population 
Optimization (CPO) are both excellent algorithms for 
solving optimization problems. To release the full po-
tential of each algorithm and retain their respective 
advantages, POS is utilized to hybridize the two.
To simulate the predation between whales and prey, 
the parameter BF1 in SOS is randomly set to -1 or -2, 
which refers to the benefit factor of the first member 

in the ecosystem. A negative value represents that it 
suffers from harm during the interaction with the sec-
ond member. Then The parameter BF2 of the second 
member is randomly set to 1 or 2 to show it gains ben-
efit, so the first member plays the part of prey when 
the second playing the part of whales. What is better 
is that POS could exploit a bigger neighbourhood of 
the global optimal solution than SOS because BF1 and 
BF2 have opposite symbol.
This paper takes four steps to mix WOA and CPO. 
The first step is to generate two populations P1 and 
P2 to constitute a community. The second step is to 
update two populations independently, which refers 
to update P1 using equations in CPO and update P2 
using equations in enhanced WOA. The third step 
is to lead interactions between two populations us-
ing POS. In this step, every whale selects a prey to 
hunt randomly and generates mutualism vector Mu-
tual_agent. The fourth step is to use Mutual_agent. 
to generate new individuals in each population, so 
as to increase the exploitation ability of the fusion 
algorithm and give play to the advantages of each. If 
the new individuals are better than the old ones, they 
need to be replaced. Formulas to calculate new indi-
viduals are as follows:
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Above all, the hybrid algorithm using two algorithms 
and multiple strategies is called MCPWOA. The flow 
chart of MCPWOA is shown in Figure 4, and the pseu-
do-code is shown in APPENDIX A.

  

biological systems to find optimal solutions. It has 
strong exploitation ability in the mutualism phase, 
with formulas including: 

1 1t t t
i i *x x r x Mutual _ agent BF   (28) 

1 2t t t
j j *x x r x Mutual _ agent BF   (29) 

2

t t
i jx x

Mutual _ agent ,  (30) 

where denotes the reciprocal intermediate of the i 
and  individuals in the set of generations, 1 and 

2 are randomly generated interest factors, whose 
values are 1 or 2, indicating the beneficial degree of 
the reciprocal relationship between two individuals. 

2.9 Multi-strategy Hybrid Algorithm Base on 
Predation Mechanism (MCPWOA) 

In this section, we introduce the three above 
strategies to improve the convergence precision of 
CPWOA and original CPO, and the two improved 
algorithm are integrated into a hybrid search 
algorithm 

Symbiotic Organisms Search (SOS) is renowned for 
its efficient exploitation capacity during mutualism 
and commensalism. It utilizes the global optimal 
solution as a standard, providing a wider search 
range. Wang et al. [41] introduced the mutualism 
phase in SOS, combining butterfly optimization 
algorithm and flower pollination algorithm to 
achieve strong exploitation capability and fast 
convergence speed. The symbiotic mechanism 
aligns with the relationship between butterflies and 
flowers, rather than whales and their prey. Given 
this, the Predatory Organisms Search (POS) is 
proposed by adjusting parameters in SOS to fit the 
whale-prey relationship.  

The predation relationship is characterized by a 
direct benefit to the predator, who gains energy, 
nutrients, and other resources from consuming the 
prey, while the prey suffers harm or death. 
Enhanced Whale Optimization Algorithm (WOA) 
and Cuckoo Population Optimization (CPO) are  

both excellent algorithms for solving 
optimization problems. To release the full 
potential of each algorithm and retain their 
respective advantages, POS is utilized to 
hybridize the two. 

To simulate the predation between whales and 
prey, the parameter BF1 in SOS is randomly 
set to -1 or -2, which refers to the benefit factor 
of the first member in the ecosystem. A 
negative value represents that it suffers from 
harm during the interaction with the second 
member. Then The parameter BF2 of the 
second member is randomly set to 1 or 2 to 
show it gains benefit, so the first member plays 
the part of prey when the second playing the 
part of whales. What is better is that POS could 
exploit a bigger neighborhood of the global 
optimal solution than SOS because BF1 and 
BF2 have opposite symbol. 

This paper takes four steps to mix WOA and 
CPO. The first step is to generate two 
populations 1P  and 2P to constitute a 
community. The second step is to update two 
populations independently, which refers to 
update 1P using equations in CPO and update 

2P  using equations in enhanced WOA. The 
third step is to lead interactions between two 
populations using POS. In this step, every 
whale selects a prey to hunt randomly and 
generates mutualism vector _Mutual agent . 
The fourth step is to use _Mutual agent  to 
generate new individuals in each population, 
so as to increase the exploitation ability of the 
fusion algorithm and give play to the 
advantages of each. If the new individuals are 
better than the old ones, they need to be 
replaced. Formulas to calculate new 
individuals are as follows: 

new t t
i *x x r x mutual _ agent  (31) 

new t t
j *y y r y Mutual _ agent  (32) 

Figure 4   

The flow chart of MCPWOA. 
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3. Experimental Results on  
CEC2022 and Discussion
In this section, we conduct test experiments us-
ing twelve benchmark functions from CEC2022 
to showcase the performance of MCPWOA and 
demonstrate its superiority. The descriptions and 
formulations of these functions can be found in the 
APPENDIX C. All experiments run on Windows 11, 
with an AMD R7 5800H 16GB processor. Algorithms 
are programmed using MATLAB R2023a. This sec-
tion compares the performance of each algorithm 
across every test function.
The CEC2022 benchmark functions set consists of 
basic functions F1-F5, hybrid functions F6-F8, and 
composition functions F9-F12 (Dimensions = 10 and 
20). CEC2022 enables evaluation from multiple per-
spectives using multiple test functions. To eliminate 
randomness in metaheuristic algorithms, this paper 
conducted 20 independent experiments on each test 
function using each algorithm, ensuring fairness by 
equal conditions. The experiment ran for a maximum 
of 1000 iterations. The results recorded the average 
(Avg) of each algorithm across 20 experiments. In opti-
mization, a smaller average indicates higher precision.
This section evaluates the performance of each algo-

rithm by comparing the average value with the the-
oretical optimal value. MCPWOA is compared with 
enhanced CPWOA, original WOA, original CPO, and 
other cutting-edge metaheuristic algorithms includ-
ing Fungal growth optimizer (FGO), Dream Opti-
mization Algorithm (DOA), Snow Geese Algorithm 
(SGA) [40-42]. APPENDIX D shows the parameters 
in WOA, CPO, CPWOA, MCPWOA, other algorithms 
use the default parameters in original papers. Table 
1 shows the results of each algorithm on every test 
function in 10 dimensions.
Initial comparative analysis between CPWOA and 
WOA, as evidenced in Table 2, demonstrates CP-
WOA's superior performance across all benchmark 
functions except F4 and F10. Notably, it exhib-
its enhanced exploitation capabilities relative to 
WOA, particularly evident in F6 results. The two 
algorithms demonstrate equivalent performance 
on F10. This superiority originates from CPWOA's 
integration of two strategic components: 1) CPO-de-
rived defense mechanisms embedded in WOA's core 
phases (encircling prey and bubble-net attacking), 
and 2) a cyclic population reduction protocol that 

DOA SGA FGO WOA CPO CPWOA MCPWOA

F1 3.0000E +02 3.0130E +02 1.7855E +04 3.7500E +02 3.0000E +02 3.0021E +02 3.0002E +02

F2 4.0165E +02 4.1985E +02 7.3175E +02 4.0248E +02 4.0087E +02 4.0125E +02 4.0000E +02

F3 6.0000E +02 6.1266E +02 6.4787E +02 6.0112E +02 6.0000E +02 6.0022E +02 6.0000E +02

F4 8.1811E +02 8.2561E +02 8.7039E +02 8.0910E +02 8.1796E +02 8.1174E +02 8.1061E +02

F5 9.0195E +02 1.0193E +03 1.8927E +03 9.0244E +02 9.0000E +02 9.0211E +02 9.0000E +02

F6 2.0830E +03 4.2985E +03 5.8439E +07 2.1344E +03 1.8071E +03 1.9279E +03 1.8050E +03

F7 2.0034E +03 2.0401E +03 2.1195E +03 2.0213E +03 2.0032E +03 2.0107E +03 2.0024E +03

F8 2.2141E +03 2.2281E +03 2.2572E +03 2.2192E +03 2.2123E +03 2.2077E +03 2.2070E +03

F9 2.5293E +03 2.5315E +03 2.7141E +03 2.5404E +03 2.5293E +03 2.5293E +03 2.5293E +03

F10 2.4328E +03 2.5260E +03 2.5632E +03 2.5004E +03 2.5113E +03 2.5004E +03 2.5003E +03

F11 2.8257E +03 2.8303E +03 1.9056E +04 2.9152E +03 2.6900E +03 2.8481E +03 2.6000E +03

F12 2.8643E +03 2.8643E +03 2.9819E +03 2.8690E +03 2.8652E +03 2.8687E +03 2.8643E +03

Table 1
The results of each algorithm on every test function in 10 dimensions.
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Convergence curve of all algorithms on chosen functions in CEC2022. 
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(d) F7 (e) F8 (f ) F11

enhances swarm diversity. Furthermore, the arcsine 
control strategy (ACS) maintains e�ective explora-
tion-exploitation equilibrium.
Table 2 further reveals MCPWOA's exceptional 
competitiveness across 10-dimensional CEC2022 
test functions. The algorithm achieves first-rank 
performance in all categories except F1, F4 and F10, 
consistently outperforming counterparts in ba-
sic, hybrid, and composition function benchmarks. 
While demonstrating superiority over WOA, CPO 
and CPWOA on F10, it trails the well-established 
DOA algorithm, which is also a normal and power-
ful optimization algorithm. To visualize the process 
of searching for the optimal value and solution and 
showcase MCPWOA's convergence capacity, 20 ad-
ditional independent experiments are conducted on 
each test function. The convergence curves of all 
algorithms regarding average fitness are present-

Figure 5  
Convergence curve of all algorithms on chosen functions in CEC2022.

ed in Figure 5. From these curves, it is evident that 
MCPWOA's convergence capacity is better than 
other metaheuristic algorithms. MCPWOA's supe-
rior convergence precision on CEC2022 indicates 
its potential to solve the MTSP problem. The supe-
riority of MCPWOA is attributed to POS combining 
two algorithms with powerful exploitation capacity 
and undergoing a secondary exploitation. The effect 
of POS is obvious on F6, F7, F8 and F10, F11, F12, in-
cluding three hybrid functions and three composi-
tion functions. When the performance of WOA and 
CPWOA differs significantly, MCPWOA can always 
adopt the better-performing algorithm because 
it integrates the two populations from both WOA 
and CPWOA. In addition, secondary exploitation 
can unlock capabilities that are not inherently pos-
sessed by WOA and CPWOA themselves. Moreover, 
CMS creates a more diverse original population, 
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control strategy (ACS) maintains e�ective explora-
tion-exploitation equilibrium.
Table 2 further reveals MCPWOA's exceptional 
competitiveness across 10-dimensional CEC2022 
test functions. The algorithm achieves first-rank 
performance in all categories except F1, F4 and F10, 
consistently outperforming counterparts in ba-
sic, hybrid, and composition function benchmarks. 
While demonstrating superiority over WOA, CPO 
and CPWOA on F10, it trails the well-established 
DOA algorithm, which is also a normal and power-
ful optimization algorithm. To visualize the process 
of searching for the optimal value and solution and 
showcase MCPWOA's convergence capacity, 20 ad-
ditional independent experiments are conducted on 
each test function. The convergence curves of all 
algorithms regarding average fitness are present-
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riority of MCPWOA is attributed to POS combining 
two algorithms with powerful exploitation capacity 
and undergoing a secondary exploitation. The effect 
of POS is obvious on F6, F7, F8 and F10, F11, F12, in-
cluding three hybrid functions and three composi-
tion functions. When the performance of WOA and 
CPWOA differs significantly, MCPWOA can always 
adopt the better-performing algorithm because 
it integrates the two populations from both WOA 
and CPWOA. In addition, secondary exploitation 
can unlock capabilities that are not inherently pos-
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enhances swarm diversity. Furthermore, the arcsine 
control strategy (ACS) maintains effective explora-
tion-exploitation equilibrium.
Table 2 further reveals MCPWOA's exceptional 
competitiveness across 10-dimensional CEC2022 
test functions. The algorithm achieves first-rank 
performance in all categories except F1, F4 and F10, 
consistently outperforming counterparts in ba-
sic, hybrid, and composition function benchmarks. 
While demonstrating superiority over WOA, CPO 
and CPWOA on F10, it trails the well-established 
DOA algorithm, which is also a normal and power-
ful optimization algorithm. To visualize the process 
of searching for the optimal value and solution and 
showcase MCPWOA's convergence capacity, 20 ad-
ditional independent experiments are conducted on 
each test function. The convergence curves of all 
algorithms regarding average fitness are present-
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MCPWOA's convergence capacity is better than 
other metaheuristic algorithms. MCPWOA's supe-
rior convergence precision on CEC2022 indicates 
its potential to solve the MTSP problem. The supe-
riority of MCPWOA is attributed to POS combining 
two algorithms with powerful exploitation capacity 
and undergoing a secondary exploitation. The effect 
of POS is obvious on F6, F7, F8 and F10, F11, F12, in-
cluding three hybrid functions and three composi-
tion functions. When the performance of WOA and 
CPWOA differs significantly, MCPWOA can always 
adopt the better-performing algorithm because 
it integrates the two populations from both WOA 
and CPWOA. In addition, secondary exploitation 
can unlock capabilities that are not inherently pos-
sessed by WOA and CPWOA themselves. Moreover, 
CMS creates a more diverse original population, 
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(a) F3 (b) F5

(c) F10 (d) F12

Figure 7
Visualization of solutions on every function.

and RLS generates revolutions to open up unknown 
areas, leading to more opportunities to obtain better 
solutions.
In order to quantify the computational time costs 
across algorithms, the average time consumption 
per test function was recorded over 20 independent 
experimental trials. The boxplot in Figure 6 pro-
vides detailed visualization of experimental results, 
revealing that MCPWOA incurs higher computa-
tional costs. This phenomenon is attributable to its 
hybrid architecture: as an integration of two distinct 
algorithms, MCPWOA's update process simultane-

ously maintains dual populations (prey and whale 
populations), resulting in approximately double the 
iteration time compared to standalone CPWOA or 
CPO implementations. Furthermore, the reverse 
population generation and subsequent population 
re-update mechanisms in RLS introduce additional 
computational overhead, as evidenced by time com-
plexity analysis.
Further experiments provide a more detailed 
demonstration of the CEC2022 function set land-
scapes while visualizing the search process of MCP-
WOA in two-dimensional space. The experimental 
results are presented in Figures 7-10. Red dots in 
Figure 7 denote the solutions generated during each 
iteration. In Figure 8, a progressive color gradient 
denotes the search process, where darker shades 
indicate proximity to the end of the iteration. The 
abrupt color transition observed suggests MCP-
WOA's remarkable convergence capability in the 
two-dimensional objective function. Figures 9 and 
10 respectively demonstrate the average population 
positions along the x1 and x2 dimensions. In Figure 
9, the region delineated by an orange outline sub-
stantiates MCPWOA's superior capabilities. Sub-
plot (b) illustrates how the ACS ensures exploratory 
capacity in the algorithm's early-stage, facilitating 
comprehensive region search. Subplot (c) visually 
confirms the RLS strategy's efficacy in circumvent-
ing local optima traps. 

Figure 8  
Search history on every function.
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Time cost of four algorithms.
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Table 2 further reveals MCPWOA's exceptional 
competitiveness across 10-dimensional CEC2022 
test functions. The algorithm achieves first-rank 
performance in all categories except F1, F4 and 
F10, consistently outperforming counterparts in 
basic, hybrid, and composition function 
benchmarks. While demonstrating superiority 
over WOA, CPO and CPWOA on F10, it trails the 
well-established DOA algorithm, which is also a 
normal and powerful optimization algorithm. To 
visualize the process of searching for the optimal 
value and solution and showcase MCPWOA's 
convergence capacity, 20 additional independent 
experiments are conducted on each test function. 
The convergence curves of all algorithms 
regarding average fitness are presented in Figure 
5. From these curves, it is evident that 
MCPWOA's convergence capacity is better than 
other metaheuristic algorithms. MCPWOA's 
superior convergence precision on CEC2022 
indicates its potential to solve the MTSP problem. 
The superiority of MCPWOA is attributed to POS 
combining two algorithms with powerful 
exploitation capacity and undergoing a 
secondary exploitation. The effect of POS is 
obvious on F6, F7, F8 and F10, F11, F12, including 
three hybrid functions and three composition 
functions. When the performance of WOA and 
CPWOA differs significantly, MCPWOA can 
always adopt the better-performing algorithm 
because it integrates the two populations from 

both WOA and CPWOA. In addition, secondary 
exploitation can unlock capabilities that are not 
inherently possessed by WOA and CPWOA 
themselves. Moreover, CMS creates a more 
diverse original population, and RLS generates 
revolutions to open up unknown areas, leading 
to more opportunities to obtain better solutions. 
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Figure 9 
Average population positions along x1.

Figure 10 
Average population positions along x2.
Average population positions along x2. 
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4. Experimental Results on  
CEC2022 and Discussion
In this section, we evaluate the capability of MCP-
WOA in solving the Multiple Traveling Salesman 
Problem (MTSP) using a clustering-based approach 
on TSPLIB dataset, and design an Asynchronous 
Combinatorial Method (ACM) to mitigate the sensi-
tivity of k-means clustering to the selection of initial 
cluster centers, then apply it to real bushfires in Aus-
tralia, a country with frequent bushfires. Case stud-
ies are conducted.

4.1 K-means Clustering Algorithm
Clustering transformation is a usual method to solve 
MTSP problems, which refers to dividing all cities 
on the map into several groups using a clustering al-
gorithm and assigning to every traveling salesman 
to cover. Then the traversal problem of multiple fire 
nodes problem in this research is transferred to MD-
MTSP problems. Clustering algorithms are primarily 
used to divide objects in a dataset into several clusters 
based on criteria such as similarity or distance.
K-means is a classic partitioning clustering algo-
rithm that iteratively optimizes cluster centroids 
to minimize within-cluster sum of squared errors. 

K-means belongs to unsupervised learning. Initial-
ly, K-means selects K original centers of clustering 
and iterates. In each iteration, every data point is 
assigned to the nearest center, and then centers are 
updated using the mean of each cluster. The itera-
tion stops when it reaches a limit or when changes in 
centers fall below a given precision.

4.2 City block Encoding and Block Decoding

Solving TSP problems after clustering requires the 
use of city encoding, a general method that maps 
solutions to TSP problems and positions of individ-
uals in metaheuristic algorithms. After encoding, 
cities can be treated as individuals and updated us-
ing MCPWOA. Decoding involves determining the 
order of city visits for the traveling salesman and 
calculating the total distance as fitness. Based on 
this distance, MCPWOA updates the codes. The en-
coding-decoding cycle is the core process.
K-means partitions all cities into M groups, enabling 
block encoding and decoding. For instance, consider 
three traveling salesmen visiting fifteen cities. After 
K-means, the first salesman visits cities 1, 4, 7, 10, and 
13, the second visits 2, 5, 8, 11, and 14, and the third 
visits 3, 6, 9, 12, and 15. Distribute a random num-
ber from 0 to 1 to every city as its code, constituting 
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the encoding process. In the decoding process, each 
salesman visits cities in order of smallest to largest 
code, returning to the first city after visiting the last. 
Thus, order updates due to code updates, allowing 
MCPWOA to search for the shortest path via the en-
coding-decoding cycle. Figure 11 illustrates encod-
ing and decoding process.

What is better is that the encoding and decoding pro-
cess above can perfectly satisfy constraints in MTSP 
problems. In this process, each node can only be vis-
ited once by one UAV and every UAV will return to 
the starting node finally. In addition, if a UAV visits a 
certain node, it will leave that node.

4.3 Evaluation Using MCPWOA on TSPLIB 
The TSPLIB (Traveling Salesman Problem Library) 
is a dedicated repository for storing and sharing 
instance data of the Traveling Salesman Problem 
(TSP) and related problems. In this study, we select 
eil51, eil76, eil101 and a280 as instances and conduct 
experiments in two aspects.
First, the four algorithms above (WOA, CPO, CP-
WOA, MCPWOA) are used to solve MTSP based on 
K-means clustering in the four instances to prove 
that MCPWOA is still powerful through compari-
son. During this process, the parameters in all al-
gorithms are the same as those in APPENDIX C. 
For fairness, all experiments are based on the same 
original centers and clustering results using specific 
random number seeds. At the same time, to reduce 
randomness, this paper takes 10 independent exper-
iments on each instance.
The evaluation results are presented in Table 2. The 
initial clustering results and the final optimized 

paths planned by MCPWOA are presented in Figures 
12-13, respectively. Meanwhile, the average con-
vergence curves, which show the total cost during 
iteration, and box plots of all algorithms across 10 
independent experimental trials are illustrated in 
Figures 14-15. The results indicate that CPWOA re-
mains more competitive than WOA, and MCPWOA 

Figure 11
Process of city block encoding and block decoding.
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First, the four algorithms above (WOA, CPO, CP-
WOA, MCPWOA) are used to solve MTSP based on 
K-means clustering in the four instances to prove 
that MCPWOA is still powerful through compari-
son. During this process, the parameters in all al-
gorithms are the same as those in APPENDIX C. 
For fairness, all experiments are based on the same 
original centers and clustering results using specific 
random number seeds. At the same time, to reduce 
randomness, this paper takes 10 independent exper-
iments on each instance.
The evaluation results are presented in Table 2. The 
initial clustering results and the final optimized 

paths planned by MCPWOA are presented in Figures 
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vergence curves, which show the total cost during 
iteration, and box plots of all algorithms across 10 
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the encoding process. In the decoding process, each 
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MCPWOA to search for the shortest path via the en-
coding-decoding cycle. Figure 11 illustrates encod-
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random number seeds. At the same time, to reduce 
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Figure 15
Box plots across 10 independent experimental trials.
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Figure 14
Final optimized paths planned by MCPWOA.

is the most competitive among all algorithms for 
MTSP problems, achieving the minimum average 
cost across all algorithms. It is crucial to emphasize 
that MCPWOA exhibits exceptional performance on 
the a280 dataset — a structured map containing nu-
merous nodes with regular spatial distribution. 
As visualized in Figure 16, the final paths generated 
by CPWOA and MCPWOA reveal striking contrasts: 
MCPWOA successfully constructs an orderly travers-
al route through this regularized environment, where-
as CPWOA produces chaotic path configurations. This 
compelling evidence highlights MCPWOA's enhanced 
exploration capacity during early optimization stages 
and its superior ability to escape local optima.

(a) Planning of a280 
using CPWOA

(b) Planning of a280 
using MCPWOA
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Figure 16
Highlight on a280.

4.4 Traditional and Clustering-Driven MTSP 
Solutions
A classic method for solving the MTSP is to encode 
all cities using a Genetic Algorithm (GA) without 
clustering them. The chromosome encoding still 
adopts a decimal encoding scheme. Each position in 
the encoding directly represents the sequence num-
ber of the city to be visited, thus eliminating the need 
for a decoding process. Unlike the TSP problem, each 
individual (solution) has a corresponding set of chro-
mosome separation points. The purpose of dividing 
the chromosome separation points. The purpose of 
dividing the chromosome is to distinguish the path of 
each traveler. This method is illustrated in Figure 17. 
A comparison of GA method and Clustering-Driven 
method on eil101 is presented in Figures 18-19.
We compare the two methods based on the inter-
section characteristics of planned paths and the 
equilibrium of total path lengths per traveler. Figure 
18 demonstrates the final paths generated by both 
methods on the eil101 map, where the cluster-based 
approach evidently avoids intersections between 
different travelers' routes. In practical UAV path 
planning scenarios, non-intersecting paths mitigate 
collision risks between drones. Figure 19 illustrates 
the convergence accuracy of both methods and the 
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WOA CPO CPWOA MCPWOA

eil51
(M=3)

Best 4.5481E +02 4.5481E +02 4.5253E +02 4.5253E +02

Worst 4.7918E +02 4.7265E +02 4.6388E +02 4.5505E +02

Average 4.6328E +02 4.6119E +02 4.5775E +02 4.5327E +02

eil76
(M=3)

Best 6.4702E +02 6.3438E +02 5.9916E +02 5.9180E +02

Worst 7.2371E +02 7.7000E +02 6.5798E +02 6.3511E +02

Average 6.8071E +02 7.2032E +02 6.2035E +02 6.1820E +02

eil101
(M=3)

Best 8.5195E +02 9.3915E +02 7.8065E +02 7.9006E +02

Worst 9.5580E +02 1.1391E +03 9.4050E +02 8.4486E +02

Average 9.0167E +02 1.0181E +03 8.3635E +02 8.1482E +02

a280
(M=3)

Best 9.1371E +03 1.1148E +04 9.1856E +03 2.8285E +03

Worst 1.0544E +04 1.2036E +04 1.0527E +04 2.8875E +03

Average 9.9124E +03 1.1621E +04 9.9287E +03 2.8518E +03

Table 2
The evaluation results on TSPLIB.

Figure 17
An illustration of the classical GA method.
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Final paths generated by both methods on the eil101 map.
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Standard deviation and convergence comparison.

standard deviation of all travelers' path lengths, with 
the latter metric reflecting planning equilibrium. Due 
to the bucket effect (where system performance is 
constrained by the weakest component), more bal-

anced path distributions may lead to shorter overall 
traversal times — under the assumption of identical 
individual speeds, the total duration is determined by 
the longest path.
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Experimental results demonstrate that the clus-
ter-based MTSP approach exhibits comprehensive 
superiority over the traditional GA method, achiev-
ing both higher convergence accuracy and improved 
equilibrium in path length distribution. However, giv-
en the inherent sensitivity of clustering methods to 
initial conditions, we propose an asynchronous com-
binatorial approach to effectively search for favorable 
initial cluster centers.

4.5 Asynchronous Combinatorial Method 
(ACM) Base on MCPWOA
K-means is highly sensitive to initial center selection, 
with different initializations potentially leading to 
vastly different results. Thus, a single run of K-means 
cannot guarantee optimal clustering performance. 
A common approach to addressing this limitation is 
to run K-means multiple times and select the best 
result. This paper presents an asynchronous combi-
natorial method that iteratively updates both the ini-
tial centers and the order of the Traveling Salesman 
Problem (TSP). The method's framework consists of 
a main loop and a sub-loop, with the former updating 
initial centers and the latter modifying the TSP order. 
This technique is called "combinatorial" because it 
iterates over both aspects simultaneously and "asyn-
chronous" because the main loop and sub-loop do not 
iterate at the same time. In each main loop iteration, 
a complete sub-loop process is required. The asyn-
chronous combinatorial method's process is depicted 
in Figure 20, and its pseudocode is shown in APPEN-
DIX B. It is clear that this method requires significant 

Figure 20
An illustration of ACM

computational resources. Considering that both pop-
ulation interaction and reverse leaning processes sig-
nificantly increase computation, the main loop only 
uses traditional CPO to update initial centers, while 
the sub-loop still employs hybrid MCPWOA to update 
the order, thereby reducing computation.

5. Simulation Application on Real 
Bushfire Scenes in the Australia
In Australia, bushfires have emerged as a significant 
natural calamity, with the haunting aftermath of the 
2019-20 Black Summer deeply etched in the nation's 
collective memory. The current method of bushfire 
detection in Australia heavily relies on public reports 
to emergency services. And the unchecked minor fire 
incidents have the potential to escalate into massive 
forest infernos.
To verify our above algorithm's ability to solve MTSP 
and its practical applications, we utilized information 
from hotspots in Australia. Data from thermal infra-
red sensors on Earth-orbiting satellites aid in detect-
ing fire 'hotspots,' which are areas of the land surface 
that are significantly warmer than their surroundings. 
While hotspots do not always indicate an active fire, 
they provide valuable information about the locations 
and directions of potential fires and fire risks. During 
bushfire outbreaks, numerous fire points emerge 
within regions influenced by airflow, facilitating the 
rapid spread of bushfires. Each fire point represents 
an early stage of a bushfire, emphasizing the critical 
need to identify the shortest path to efficiently cover 
and extinguish these fires promptly.

5.1 Case 1: Northern Australia
To verify the algorithm's ability to solve MTSP and 
its practical applications, information from Senti-
nel hotspots in the Northern Territory of Australia 
was utilized [12]. Data from thermal infrared sensors 
on Earth-orbiting satellites assist in detecting fire 
'hotspots,' which are areas of the land surface that are 
significantly warmer than their surroundings. While 
hotspots do not always indicate a fire, they provide ac-
curate information about the locations and directions 
of possible fires and fire risks. Figure 21(a) shows how 
many dense hotspots there are in the Northern Terri-
tory and northern Queensland of Australia. During a 
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and its practical applications, information from 
Sentinel hotspots in the Northern Territory of 
Australia was utilized [12]. Data from thermal 
infrared sensors on Earth-orbiting satellites assist 
in detecting fire 'hotspots,' which are areas of the 
land surface that are significantly warmer than 
their surroundings. While hotspots do not always 
indicate a fire, they provide accurate information 
about the locations and directions of possible fires 
and fire risks. Figure 21(a) shows how many dense 
hotspots there are in the Northern Territory and 
northern Queensland of Australia. During a 
bushfire outbreak, numerous fire points emerge 
within areas influenced by airflow. The chosen 
region can facilitate the rapid spread of bushfires. 
All fire points represent early stages of the 
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bushfire outbreak, numerous fire points emerge with-
in areas influenced by airflow. The chosen region can 
facilitate the rapid spread of bushfires. All fire points 
represent early stages of the bushfires, emphasizing 
the critical need to identify the shortest path to ef-
ficiently cover and extinguish these fires promptly. 
In Australia, bushfires have emerged as a significant 

natural calamity, with the haunting aftermath of the 
2019-20 Black Summer deeply etched in the nation's 
collective memory. The current method of bushfire 
detection in Australia heavily relies on public reports 
to emergency services. And the unchecked minor fire 
incidents have the potential to escalate into massive 
forest infernos.

Figure 21
Case of northern Australia: hotspots distribution in Australia and the region chosen.
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Planned paths when M=2 and M=3.
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Figure 23
Convergence curve for both main loop and sub-loop 
in asynchronous combinatorial method.

Figure 25
Positional evolution in both x- and y-coordinates.

Figure 24
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and two -dimensional space.
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Figure 21(a) depicts the number of dense hotspots in 
the Northern Territory and northern Queensland of 
Australia. In contrast to other administrative divi-
sions within Australia, the Northern Territory falls 
short of the prerequisites for statehood, remaining 
classified as a "territory" due to its sparse population. 
The region faces constant threat of minor fires esca-
lating into catastrophes. In recent years, the Northern 
Territory has endured severe bushfire damage, notably 
the Barkly region inferno in September 2023, which 
ravaged 9,300 square kilometres of land. For research 
purposes, we selected a 330 square kilometre area sit-
uated on the north side of the South Alligator River, 
190 kilometres from Darwin, the Northern Territory's 
capital. This locale is proximate to Kakadu Nation-
al Park, a designated World Heritage Site renowned 
for its rich ecological diversity, housing a plethora of 
habitats, flora, fauna, and significant human historical 
remnants. Moreover, the region harbours substantial 
mineral resources, with the Ranger Uranium Mine 
within its vicinity ranking among the world's most 
prolific uranium extraction sites. Despite its ecological 
and historical significance, the area is characterized 
by abundant dry grass fuels and understorey vegeta-
tion, necessitating early detection and suppression of 
fires to mitigate the risk of large-scale conflagrations. 
The distribution of hotspots in this region at 13:00 on 
July 21st, 2014, is depicted in Figure 21(b), with the 
processed coordinates illustrated in Figure 21(c), with 
measurements in kilometres. Distance matrix of the 
map is shown in Figure 21(d).
The path planning results for the case of northern 
Australia using the asynchronous combinatorial 
method proposed are shown in Figure 22. This pa-
per takes different scenes with different numbers of 
UAVs. When there are two UAVs, the optimal total 
cost searched is 101.391 km and its value is 97.082 
km when there are three UAVs. Main loop process 
and sub-loop process in the asynchronous combina-
torial method are both shown in Figure 23. It is ob-
vious that the main loop could indeed search for op-
timal original clustering centres, which proves that 
the method proposed is more competitive than the 
traditional method consisting of K-means and meta-
heuristic algorithms.
This paper investigates a UAV-enabled Multiple 
Traveling Salesman Problem (UAV-MTSP) in the 
context of forest fire rescue operations. Unlike con-

ventional MTSP, the proposed formulation explicitly 
incorporates UAV endurance constraints and dwell 
time requirements at each target location. During 
these dwell periods, UAVs must complete critical fire 
assessment and rescue procedures, such as delivering 
emergency supplies. To realistically simulate UAV 
behavior in our UAV-MTSP framework, we adopt a 
standard quadrotor UAV model with comprehensive 
flight dynamics and implement a nonlinear model 
predictive controller (NMPC) for trajectory tracking. 

Figure 26
Model of quadrotor UAV.
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Model of quadrotor UAV. 

 
Set the UAV dwell time to 1000 seconds (1000s) at 
each target location. Assuming a UAV flight speed 
of 15 m/s and an altitude of 100 m, we analyze the 
trajectory tracking performance under mission 
configuration M=3. As shown in Figure 24, the 
planned trajectory of UAV 1 exhibits precise 
tracking behavior. Its positional evolution in both 
x- and y-coordinates is detailed in Figure 25, where 
the horizontal plateaus in the trajectory 
correspond to dwell phases at target locations for 
fire assessment and payload delivery. The 
standardized quadrotor UAV platform used in 
this study is illustrated in Figure 26. 

Several UAVs can cover and monitor all high-risk 
fire hotspots along the planned path with optimal 
distance cost, significantly aiding fire prevention. 
5.2 Case 1: Southern Australia 

To assess the algorithm's capacity to handle a 
greater number of coordinate points, a map 

featuring 476 fire points is introduced. This study 
examines bushfire incidence in southern Australia 
between October 1st, 2019, and November 1st, 
2019, with a focus on major fires that occurred 
during this period around the Gearys Flat region, 
resulting in the identification of 476 fire points. The 
search region is located approximately at latitude 
31.15 and longitude 152.51. The fire archive and 
the original fire count map are depicted in Figure 
27, with measurements in miles. 

Figure 27 

Case of southern Australia: fire points distribution 
in chosen region and fire points map. 
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Set the UAV dwell time to 1000 seconds (1000s) at 
each target location. Assuming a UAV flight speed of 
15 m/s and an altitude of 100 m, we analyze the tra-
jectory tracking performance under mission config-
uration M=3. As shown in Figure 24, the planned tra-
jectory of UAV 1 exhibits precise tracking behavior. 
Its positional evolution in both x- and y-coordinates 
is detailed in Figure 25, where the horizontal pla-
teaus in the trajectory correspond to dwell phases 
at target locations for fire assessment and payload 
delivery. The standardized quadrotor UAV platform 
used in this study is illustrated in Figure 26.
Several UAVs can cover and monitor all high-risk fire 
hotspots along the planned path with optimal dis-
tance cost, significantly aiding fire prevention.

5.2 Case 2: Southern Australia
To assess the algorithm's capacity to handle a great-
er number of coordinate points, a map featuring 476 
fire points is introduced. This study examines bush-
fire incidence in southern Australia between October 
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1st, 2019, and November 1st, 2019, with a focus on ma-
jor fires that occurred during this period around the 
Gearys Flat region, resulting in the identification of 
476 fire points. The search region is located approxi-
mately at latitude 31.15 and longitude 152.51. The fire 
archive and the original fire count map are depicted in 
Figure 27, with measurements in miles.
The path planning outcomes for the southern Aus-
tralia scenario are illustrated in Figure 28, show-
casing diverse scenarios with varying numbers of 
Unmanned Aerial Vehicles (UAVs). In this context, 
a higher number of UAVs is utilized to navigate this 
expansive map. With seven and ten UAVs, the opti-
mal total search distances are calculated.
Main loop process and sub-loop process are both 
shown in Figure 29. Based on the primary loop con-
vergence curve, it is evident that the proposed method 

Figure 27
Case of southern Australia: fire points distribution in chosen region and fire points map.

(a) Planned paths  
when M=7

(b) Planned paths  
when M=10

Planned paths when M=7 and M=10. 
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Figure 28
Planned paths when M=7 and M=10.
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Figure 29
Convergence curve for two loops.

 

 

retains robust efficacy when handling extensive coor-
dinate points. Along the planned path, multiple UAVs 
can effectively cover and monitor all fire points to 
prevent them from further developing into bushfires. 
Main loop process and sub-loop process are both 
shown in Figure 29.
Further experiments quantified the time cost of the 
proposed method, which are shown in Figure 30. It can 
be clearly observed that as the number of UAVs and 
map scale increase, the algorithm's runtime shows sig-
nificant growth. This stems from the dual-loop struc-
ture of the asynchronous combinatorial method and 
the dual-population architecture of MCPWOA. Com-
pared with traditional algorithms, the advantages of 
our proposed method lie in convergence accuracy and 
path planning consistency, while effectively avoiding 
potential collision risks between UAVs.
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6. Conclusion
This paper proposes MCPWOA, a multi-strategy im-
proved metaheuristic algorithm base on both whale 
optimization algorithm and crested porcupine opti-
mizer, to solve the path planning problem of UAV in 
bushfire prevention and rescue process.
In response to existing problems in the original 
whale optimization algorithm, such as a tenden-
cy to fall into local minima, an improved algorithm 
called CPWOA is proposed. CPWOA introduces 
unique defence methods from an advanced crested 
porcupine optimizer and a cyclic population reduc-
tion technique to increase population diversity and 
enhance exploration and exploitation capabilities of 
the whale optimization algorithm. To further obtain 
an algorithm with better performance, MCPWOA 
is proposed. Firstly, predatory organisms search is 
used to integrate CPWOA and CPO to simulate the 
predation relationship between the whale popula-
tion and the prey population. Predatory organisms 
search can perform second-order exploitation on 
the community consisting of the two populations. 
Secondly, tent chaotic mapping enhances the quali-
ty of the original population, offering more possibil-
ities for the algorithm to find the optimal solution. 
Thirdly, the arcsine control strategy is used to make 

  

 
Figure 30 

Time cost for two cases. 

 
The path planning outcomes for the southern 
Australia scenario are illustrated in Figure 28, 
showcasing diverse scenarios with varying 
numbers of Unmanned Aerial Vehicles (UAVs). In 
this context, a higher number of UAVs is utilized 
to navigate this expansive map. With seven and 
ten UAVs, the optimal total search distances are 
calculated. 

Main loop process and sub-loop process are both 
shown in Figure 29. Based on the primary loop 
convergence curve, it is evident that the proposed 
method retains robust efficacy when handling 
extensive coordinate points. Along the planned 
path, multiple UAVs can effectively cover and 
monitor all fire points to prevent them from 
further developing into bushfires. Main loop 
process and sub-loop process are both shown in 
Figure 29. 

Further experiments quantified the time cost of the 
proposed method, which are shown in Figure 30. 
It can be clearly observed that as the number of 
UAVs and map scale increase, the algorithm's 
runtime shows significant growth. This stems 
from the dual-loop structure of the asynchronous 
combinatorial method and the dual-population 
architecture of MCPWOA. Compared with 
traditional algorithms, the advantages of our 
proposed method lie in convergence accuracy and 
path planning consistency, while effectively 
avoiding potential collision risks between UAVs. 

6. Conclusion 

This paper proposes MCPWOA, a multi-strategy 
improved metaheuristic algorithm base on both 
whale optimization algorithm and crested 
porcupine optimizer, to solve the path planning 
problem of UAV in bushfire prevention and rescue 
process. 

In response to existing problems in the original 
whale optimization algorithm, such as a tendency 
to fall into local minima, an improved algorithm 
called CPWOA is proposed. CPWOA introduces 
unique defence methods from an advanced 
crested porcupine optimizer and a cyclic 
population reduction technique to increase 
population diversity and enhance exploration and 
exploitation capabilities of the whale optimization 
algorithm. To further obtain an algorithm with 
better performance, MCPWOA is proposed. 
Firstly, predatory organisms search is used to 
integrate CPWOA and CPO to simulate the 
predation relationship between the whale 
population and the prey population. Predatory 
organisms search can perform second-order 
exploitation on the community consisting of the 
two populations. Secondly, tent chaotic mapping 
enhances the quality of the original population, 
offering more possibilities for the algorithm to find 
the optimal solution. Thirdly, the arcsine control 
strategy is used to make parameters controlling 
the exploration and exploitation process decrease 
through the iteration process, balancing those two 
processes. Finally, the reverse learning strategy 
generates revolution during convergence, 
providing a chance to learn again for individuals 
performing worse and accelerating convergence. 
Benchmark tests using advanced CEC2022 
indicate that CPWOA performs better than the 
original WOA on most functions, and MCPWOA 
owns better convergence speed and precision than 
other algorithms, proving MCPWOA is 
competitive when dealing with optimization 
problems. 

To solve MTSP problems, the K-means clustering 
algorithm and city encoding-decoding method are 
proposed to split an MTSP problem into M TSP 
problems, which can then be solved by a 
metaheuristic algorithm. To prove that MCPWOA 
is still competitive on MTSP problems, four 
TSPLIB instances are introduced. Experimental 
results show that it still performs at the top level in 
terms of average total cost. Given that the original 
clustering centres have a strong impact on 
clustering results, an asynchronous combinatorial 
method is proposed to search for the optimal 
distribution of original centres using two coupled 
cycles. Experiments on the same instances 
demonstrate that the asynchronous combinatorial 
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parameters controlling the exploration and exploita-
tion process decrease through the iteration process, 
balancing those two processes. Finally, the reverse 
learning strategy generates revolution during con-
vergence, providing a chance to learn again for indi-
viduals performing worse and accelerating conver-
gence. Benchmark tests using advanced CEC2022 
indicate that CPWOA performs better than the orig-
inal WOA on most functions, and MCPWOA owns 
better convergence speed and precision than other 
algorithms, proving MCPWOA is competitive when 
dealing with optimization problems.
To solve MTSP problems, the K-means clustering 
algorithm and city encoding-decoding method are 
proposed to split an MTSP problem into M TSP 
problems, which can then be solved by a metaheuris-
tic algorithm. To prove that MCPWOA is still com-
petitive on MTSP problems, four TSPLIB instanc-
es are introduced. Experimental results show that 
it still performs at the top level in terms of average 
total cost. Given that the original clustering cen-
tres have a strong impact on clustering results, an 
asynchronous combinatorial method is proposed 
to search for the optimal distribution of original 
centres using two coupled cycles. Experiments on 
the same instances demonstrate that the asynchro-
nous combinatorial method can find better original 
centres. Regarding simulation application to real 
bushfire scenes, this paper introduces two typical 
bushfire scenes that occurred in Australia. The sim-
ulation experiment shows that the proposed method 
is useful during the path planning process for UAVs 
to monitor hotspots or rescue fire points.
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Appendix A:  
Pseudocode of the MCPWOA

Algorithm 1: MCPWOA

1:// Set parameters in CPO and CPWOA:

Set parameters α,  Tf in CPO;
Set parameters a, b in CPWOA;

2:// Set control parameters:

Set control parameters N, Nmin, T, Tmax, k, Jr;

3:// Generate chaotic sequence:

Using Eq (22) and Eq (23)

4:// Initialize two populations:

Initialize whale population P1 using Eq (24)
Initialize prey population P1 using Eq (24)

5:// Update and integrate two populations:

while(t<=Tmax):

  

Appendix A: Pseudocode of the 
MCPWOA 

 

 
Algorithm 1: MCPWOA 
1:// Set parameters in CPO and CPWOA: 
Set parameters ,  in CPO; 
Set parameters a, b in CPWOA; 
2:// Set control parameters: 
Set control parameters , , , , , ; 
3:// Generate chaotic sequence: 
Using Eq (22) and Eq (23) 
4:// Initialize two populations: 
Initialize whale population  using Eq (24) 
Initialize prey population  using Eq (24) 
5:// Update and integrate two populations: 
while(t<= ): 

 = { , , … , },  = { , , … , }; 
Evaluate fitness values for each individual 
Determine the best  and  so far; 
Update model parameters using Eq (9), Eq 
(25) and Eq (26); 
Update  using Eq (2) or Eq (20) or Eq (21); 
Reverse learning process: generate reverse 
population  using Eq (27) and select the 

best  individuals to constitute ; 
=  

Update  using Eq (10) or Eq (12) or Eq (13) 
or Eq (17); 
Reverse learning process: generate reverse 
population  using Eq (27) and select the 
best  individuals to constitute ; 

=  
Randomly select an individual  and an 
individual ; 
Calculate mutual vector using Eq (30); 
Calculate  and  using Eq (31) and 
Eq (32); 
if    or  is better: 

Update the two populations; 
Update the best  and  so far; 

end if 
t=t+1; 

end while 
6:// Return the solutions: 
Return the better one between  and ; 
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ACM 

 

 
Algorithm 2: ACM 
1:// Set parameters in CPO and MCPWOA: 
2:// Set control parameters: 
Set control parameters , = 5, = 1000; 
3:// Initialize the population of centres. 
(Size=5) 
4:// Main loop: 
while(i<= ): 

for every original centres’ distribution: 
Use K-means to divide cities into M 
clusters; 
for every cluster: 

Initialize the population of the cluster 
in the form of block encoding; 
5:// Sub-loop: 
while(j<= ): 

Decode and get visit order, then 
calculate cost; 

Update city code using MCPWOA; 
j=j+1; 

end while 
Determine the optimal cost and solution 
of this cluster; 

end for 
Calculate the optimal total cost and 
determine the optimal global solution 
according to this centres’ distribution; 
Update original centers using CPO; 

end for 
Determine the optimal total cost, the optimal 
global solution and the optimal distribution 
among all original centres’ distribution; 
i=i+1; 

end while 
6:// Return: 
Return the optimal total cost, the optimal 
global solution and the optimal original 

Evaluate fitness values for each individual Determine 
the best x*

t and y*
t so far;

Update model parameters using Eq (9), Eq (25) and 
Eq (26);
Update P1 using Eq (2) or Eq (20) or Eq (21);
Reverse learning process: generate reverse population  
OP1 using Eq (27) and select the best N individuals to 
constitute P*;
P1 = P*

Update P2 using Eq (10) or Eq (12) or Eq (13) or Eq 
(17);
Reverse learning process: generate reverse population 
OP2 using Eq (27) and select the best N individuals to 
constitute P*;
P2 = P*

Randomly select an individual 
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Algorithm 1: MCPWOA 
1:// Set parameters in CPO and CPWOA: 
Set parameters ,  in CPO; 
Set parameters a, b in CPWOA; 
2:// Set control parameters: 
Set control parameters , , , , , ; 
3:// Generate chaotic sequence: 
Using Eq (22) and Eq (23) 
4:// Initialize two populations: 
Initialize whale population  using Eq (24) 
Initialize prey population  using Eq (24) 
5:// Update and integrate two populations: 
while(t<= ): 

 = { , , … , },  = { , , … , }; 
Evaluate fitness values for each individual 
Determine the best  and  so far; 
Update model parameters using Eq (9), Eq 
(25) and Eq (26); 
Update  using Eq (2) or Eq (20) or Eq (21); 
Reverse learning process: generate reverse 
population  using Eq (27) and select the 

best  individuals to constitute ; 
=  

Update  using Eq (10) or Eq (12) or Eq (13) 
or Eq (17); 
Reverse learning process: generate reverse 
population  using Eq (27) and select the 
best  individuals to constitute ; 

=  
Randomly select an individual  and an 
individual ; 
Calculate mutual vector using Eq (30); 
Calculate  and  using Eq (31) and 
Eq (32); 
if    or  is better: 

Update the two populations; 
Update the best  and  so far; 

end if 
t=t+1; 

end while 
6:// Return the solutions: 
Return the better one between  and ; 
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Algorithm 2: ACM 
1:// Set parameters in CPO and MCPWOA: 
2:// Set control parameters: 
Set control parameters , = 5, = 1000; 
3:// Initialize the population of centres. 
(Size=5) 
4:// Main loop: 
while(i<= ): 

for every original centres’ distribution: 
Use K-means to divide cities into M 
clusters; 
for every cluster: 

Initialize the population of the cluster 
in the form of block encoding; 
5:// Sub-loop: 
while(j<= ): 

Decode and get visit order, then 
calculate cost; 

Update city code using MCPWOA; 
j=j+1; 

end while 
Determine the optimal cost and solution 
of this cluster; 

end for 
Calculate the optimal total cost and 
determine the optimal global solution 
according to this centres’ distribution; 
Update original centers using CPO; 

end for 
Determine the optimal total cost, the optimal 
global solution and the optimal distribution 
among all original centres’ distribution; 
i=i+1; 

end while 
6:// Return: 
Return the optimal total cost, the optimal 
global solution and the optimal original 

and an individual 
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Algorithm 1: MCPWOA 
1:// Set parameters in CPO and CPWOA: 
Set parameters ,  in CPO; 
Set parameters a, b in CPWOA; 
2:// Set control parameters: 
Set control parameters , , , , , ; 
3:// Generate chaotic sequence: 
Using Eq (22) and Eq (23) 
4:// Initialize two populations: 
Initialize whale population  using Eq (24) 
Initialize prey population  using Eq (24) 
5:// Update and integrate two populations: 
while(t<= ): 

 = { , , … , },  = { , , … , }; 
Evaluate fitness values for each individual 
Determine the best  and  so far; 
Update model parameters using Eq (9), Eq 
(25) and Eq (26); 
Update  using Eq (2) or Eq (20) or Eq (21); 
Reverse learning process: generate reverse 
population  using Eq (27) and select the 

best  individuals to constitute ; 
=  

Update  using Eq (10) or Eq (12) or Eq (13) 
or Eq (17); 
Reverse learning process: generate reverse 
population  using Eq (27) and select the 
best  individuals to constitute ; 

=  
Randomly select an individual  and an 
individual ; 
Calculate mutual vector using Eq (30); 
Calculate  and  using Eq (31) and 
Eq (32); 
if    or  is better: 

Update the two populations; 
Update the best  and  so far; 

end if 
t=t+1; 

end while 
6:// Return the solutions: 
Return the better one between  and ; 
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Algorithm 2: ACM 
1:// Set parameters in CPO and MCPWOA: 
2:// Set control parameters: 
Set control parameters , = 5, = 1000; 
3:// Initialize the population of centres. 
(Size=5) 
4:// Main loop: 
while(i<= ): 

for every original centres’ distribution: 
Use K-means to divide cities into M 
clusters; 
for every cluster: 

Initialize the population of the cluster 
in the form of block encoding; 
5:// Sub-loop: 
while(j<= ): 

Decode and get visit order, then 
calculate cost; 

Update city code using MCPWOA; 
j=j+1; 

end while 
Determine the optimal cost and solution 
of this cluster; 

end for 
Calculate the optimal total cost and 
determine the optimal global solution 
according to this centres’ distribution; 
Update original centers using CPO; 

end for 
Determine the optimal total cost, the optimal 
global solution and the optimal distribution 
among all original centres’ distribution; 
i=i+1; 

end while 
6:// Return: 
Return the optimal total cost, the optimal 
global solution and the optimal original 

;
Calculate mutual vector using Eq (30);
Calculate 
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1:// Set parameters in CPO and CPWOA: 
Set parameters ,  in CPO; 
Set parameters a, b in CPWOA; 
2:// Set control parameters: 
Set control parameters , , , , , ; 
3:// Generate chaotic sequence: 
Using Eq (22) and Eq (23) 
4:// Initialize two populations: 
Initialize whale population  using Eq (24) 
Initialize prey population  using Eq (24) 
5:// Update and integrate two populations: 
while(t<= ): 

 = { , , … , },  = { , , … , }; 
Evaluate fitness values for each individual 
Determine the best  and  so far; 
Update model parameters using Eq (9), Eq 
(25) and Eq (26); 
Update  using Eq (2) or Eq (20) or Eq (21); 
Reverse learning process: generate reverse 
population  using Eq (27) and select the 

best  individuals to constitute ; 
=  

Update  using Eq (10) or Eq (12) or Eq (13) 
or Eq (17); 
Reverse learning process: generate reverse 
population  using Eq (27) and select the 
best  individuals to constitute ; 

=  
Randomly select an individual  and an 
individual ; 
Calculate mutual vector using Eq (30); 
Calculate  and  using Eq (31) and 
Eq (32); 
if    or  is better: 

Update the two populations; 
Update the best  and  so far; 

end if 
t=t+1; 

end while 
6:// Return the solutions: 
Return the better one between  and ; 
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Algorithm 2: ACM 
1:// Set parameters in CPO and MCPWOA: 
2:// Set control parameters: 
Set control parameters , = 5, = 1000; 
3:// Initialize the population of centres. 
(Size=5) 
4:// Main loop: 
while(i<= ): 

for every original centres’ distribution: 
Use K-means to divide cities into M 
clusters; 
for every cluster: 

Initialize the population of the cluster 
in the form of block encoding; 
5:// Sub-loop: 
while(j<= ): 

Decode and get visit order, then 
calculate cost; 

Update city code using MCPWOA; 
j=j+1; 

end while 
Determine the optimal cost and solution 
of this cluster; 

end for 
Calculate the optimal total cost and 
determine the optimal global solution 
according to this centres’ distribution; 
Update original centers using CPO; 

end for 
Determine the optimal total cost, the optimal 
global solution and the optimal distribution 
among all original centres’ distribution; 
i=i+1; 

end while 
6:// Return: 
Return the optimal total cost, the optimal 
global solution and the optimal original 

 and 
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Algorithm 1: MCPWOA 
1:// Set parameters in CPO and CPWOA: 
Set parameters ,  in CPO; 
Set parameters a, b in CPWOA; 
2:// Set control parameters: 
Set control parameters , , , , , ; 
3:// Generate chaotic sequence: 
Using Eq (22) and Eq (23) 
4:// Initialize two populations: 
Initialize whale population  using Eq (24) 
Initialize prey population  using Eq (24) 
5:// Update and integrate two populations: 
while(t<= ): 

 = { , , … , },  = { , , … , }; 
Evaluate fitness values for each individual 
Determine the best  and  so far; 
Update model parameters using Eq (9), Eq 
(25) and Eq (26); 
Update  using Eq (2) or Eq (20) or Eq (21); 
Reverse learning process: generate reverse 
population  using Eq (27) and select the 

best  individuals to constitute ; 
=  

Update  using Eq (10) or Eq (12) or Eq (13) 
or Eq (17); 
Reverse learning process: generate reverse 
population  using Eq (27) and select the 
best  individuals to constitute ; 

=  
Randomly select an individual  and an 
individual ; 
Calculate mutual vector using Eq (30); 
Calculate  and  using Eq (31) and 
Eq (32); 
if    or  is better: 

Update the two populations; 
Update the best  and  so far; 

end if 
t=t+1; 

end while 
6:// Return the solutions: 
Return the better one between  and ; 
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Algorithm 2: ACM 
1:// Set parameters in CPO and MCPWOA: 
2:// Set control parameters: 
Set control parameters , = 5, = 1000; 
3:// Initialize the population of centres. 
(Size=5) 
4:// Main loop: 
while(i<= ): 

for every original centres’ distribution: 
Use K-means to divide cities into M 
clusters; 
for every cluster: 

Initialize the population of the cluster 
in the form of block encoding; 
5:// Sub-loop: 
while(j<= ): 

Decode and get visit order, then 
calculate cost; 

Update city code using MCPWOA; 
j=j+1; 

end while 
Determine the optimal cost and solution 
of this cluster; 

end for 
Calculate the optimal total cost and 
determine the optimal global solution 
according to this centres’ distribution; 
Update original centers using CPO; 

end for 
Determine the optimal total cost, the optimal 
global solution and the optimal distribution 
among all original centres’ distribution; 
i=i+1; 

end while 
6:// Return: 
Return the optimal total cost, the optimal 
global solution and the optimal original 

 using Eq (31) and Eq (32);
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Algorithm 1: MCPWOA 
1:// Set parameters in CPO and CPWOA: 
Set parameters ,  in CPO; 
Set parameters a, b in CPWOA; 
2:// Set control parameters: 
Set control parameters , , , , , ; 
3:// Generate chaotic sequence: 
Using Eq (22) and Eq (23) 
4:// Initialize two populations: 
Initialize whale population  using Eq (24) 
Initialize prey population  using Eq (24) 
5:// Update and integrate two populations: 
while(t<= ): 

 = { , , … , },  = { , , … , }; 
Evaluate fitness values for each individual 
Determine the best  and  so far; 
Update model parameters using Eq (9), Eq 
(25) and Eq (26); 
Update  using Eq (2) or Eq (20) or Eq (21); 
Reverse learning process: generate reverse 
population  using Eq (27) and select the 

best  individuals to constitute ; 
=  

Update  using Eq (10) or Eq (12) or Eq (13) 
or Eq (17); 
Reverse learning process: generate reverse 
population  using Eq (27) and select the 
best  individuals to constitute ; 

=  
Randomly select an individual  and an 
individual ; 
Calculate mutual vector using Eq (30); 
Calculate  and  using Eq (31) and 
Eq (32); 
if    or  is better: 

Update the two populations; 
Update the best  and  so far; 

end if 
t=t+1; 

end while 
6:// Return the solutions: 
Return the better one between  and ; 
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Algorithm 2: ACM 
1:// Set parameters in CPO and MCPWOA: 
2:// Set control parameters: 
Set control parameters , = 5, = 1000; 
3:// Initialize the population of centres. 
(Size=5) 
4:// Main loop: 
while(i<= ): 

for every original centres’ distribution: 
Use K-means to divide cities into M 
clusters; 
for every cluster: 

Initialize the population of the cluster 
in the form of block encoding; 
5:// Sub-loop: 
while(j<= ): 

Decode and get visit order, then 
calculate cost; 

Update city code using MCPWOA; 
j=j+1; 

end while 
Determine the optimal cost and solution 
of this cluster; 

end for 
Calculate the optimal total cost and 
determine the optimal global solution 
according to this centres’ distribution; 
Update original centers using CPO; 

end for 
Determine the optimal total cost, the optimal 
global solution and the optimal distribution 
among all original centres’ distribution; 
i=i+1; 

end while 
6:// Return: 
Return the optimal total cost, the optimal 
global solution and the optimal original 

Update the two populations;
Update the best x*

t and y*
t so far;

end if
t=t+1;

end while

6:// Return the solutions:

Return the better one between x*
t and y*

t;

Appendix B:  
Pseudocode of the ACM

Algorithm 2: ACM

1:// Set parameters in CPO and MCPWOA:

2:// Set control parameters:

Set control parameters M, T1
 = 5, T2

 = 1000;

3:// Initialize the population of centres. (Size=5)

4:// Main loop:

while(i<=T1):
for every original centres’ distribution:

Use K-means to divide cities into M clusters;
for every cluster:

Initialize the population of the cluster in the form 
of block encoding;

5:// Sub-loop:

while(j<=T2):
Decode and get visit order, then calculate cost;
Update city code using MCPWOA;
j=j+1;

end while

Determine the optimal cost and solution of this 
cluster;

end for
Calculate the optimal total cost and determine the 
optimal global solution according to this centres’  
distribution;
Update original centers using CPO;

end for
Determine the optimal total cost, the optimal global solu-
tion and the optimal distribution among all original cen-
tres’ distribution;
i=i+1;
end while

6:// Return:

Return the optimal total cost, the optimal global solution 
and the optimal original centres’ distribution;
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Appendix C:  
CEC 2022 Benchmark Test Functions

WOA
Parameter a Decrease linearly 

from 2 to 0

Parameter b 1

CPO

Parameter Nmin 80

Parameter T 2

Parameter α 0.1

Parameter Tf 0.3

CPWOA

Parameter b Same to WOA

Parameter Nmin, T, α Same to CPO

Parameter a
Decrease from 2 
to 0 along arcsine 
curve

Original Population size 
in all algorithms above 130

MCPWOA

Parameter b, Nmin, T, α Same to WOA 
and CPO

Parameter a
Decreas from 2 
to 0 along arcsine 
curve

Parameter Tf

Decreas from 1 to 
0 along arcsine 
curve

Parameter β in CMS 0.499

Parameter k, Jr in RLS 10

Parameter Jr in RLS 0.8

Original Population size 130

 
 

 

centres’ distribution;  
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WOA Parameter a Decrease linearly 
from 2 to 0 

Parameter b 1 

CPO 

Parameter N  80 
Parameter T 2 
Parameter  0.1 
Parameter T  0.3 

CPWOA 

Parameter b Same to WOA 
Parameter N , T,  Same to CPO 
Parameter a Decrease from 2 to 

0 along arcsine 
curve 

 
Original Population 
size in all algorithms 
above 

130 

MCPWOA Parameter b, N , T, 
 

Same to WOA and 
CPO 

Parameter a Decreas from 2 to 
0 along arcsine 
curve 

Parameter T  Decreas from 1 to 
0 along arcsine 
curve 

Parameter  in CMS 0.499 
Parameter k, J  in 
RLS 

10 

Parameter J  in RLS 0.8 
Original Population 
size 

130 
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