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Stroke rehabilitation is essential for motor function recovery, yet traditional methods require therapist su-
pervision, which can be costly and inaccessible. Home-based rehabilitation offers an alternative, but without 
real-time guidance, patients may develop compensatory movements, hindering progress. Existing approach-
es provide feedback only after exercises are completed, limiting their effectiveness. To address this, we pro-
pose a Temporal Conditional Generative Adversarial Network (TCGAN)-based motion generation system 
that provides real-time skeletal guidance tailored to each patient’s body structure and positioning. By detect-
ing key anatomical landmarks and generating adaptive motion sequences, the system ensures precise move-
ment execution, reducing errors and improving rehabilitation outcomes. Both qualitative and quantitative 
evaluations confirm the effectiveness of the generated exercises, benefiting from the proposed architecture, 
improved loss function, optimized training process, and TCGAN hyperparameter tuning. Experimental re-
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1. Introduction
Stroke has become the second leading cause of death 
and a major cause of acquired disability. Up to 80% of 
stroke survivors develop limb impairments that sig-
nificantly reduce their ability to perform daily activ-
ities [8] and diminish their overall quality of life [2]. 
Many survivors rely on compensatory movements, 
such as excessive thoracic rotation/scapular rotation 
or hip hiking during the swing phase of walking. Since 
these adaptations may be beneficial initially, they can 
increase the risk of poor recovery in the long term [7]. 
Studies show that post-stroke physical problems can 
be successfully addressed in the majority of patients 
by reducing these compensations through the prop-
er use of the dysfunctional limb [10]. In high-impact 
activities, the affected side should be directed toward 
the right target to enhance performance and improve 
accuracy [31]. Repetitive practice of a large number of 
correct movements has been shown to be effective for 
home rehabilitation, as prescribed by therapists [24, 
19]. However, maintaining motivation and correct 
form without professional guidance remains a chal-
lenge, as low adherence and poor technique can nega-
tively impact recovery [27]. Nowadays, sensor-based 
[11], camera-based [26] and virtual reality-based [18] 
systems used to detect compensatory movements 
primarily rely on classification algorithms and anal-
yse movement patterns after exercises have been 
completed. These methods such as [9] cause patients 
to perform more incorrect repetitions before achiev-
ing the correct injury. Patients often lack immediate 
real-time feedback, highlighting the urgent need for 
mechanisms that dynamically monitor and correct 
movements during exercise to ensure a safe and ef-
fective rehabilitation process. To overcome these 
drawbacks, we have developed a deep learning archi-
tecture based on Temporal Conditional Generative 
Adversarial Networks (TCGAN) that generates skel-
eton-based rehabilitation data to help patients per-
form exercises correctly. The proposed approach dif-

sults show a high degree of similarity between generated and real movements, with a Fréchet Inception Dis-
tance (FID) score of 0.87, demonstrating the system’s realism and reliability. This approach enhances patient 
autonomy and recovery efficiency, offering a more interactive and adaptive rehabilitation experience.
KEYWORDS: Home-based rehabilitation, Compensation assessment, Real-time exercise guidance, TC-
GAN, Post-stroke recovery.

fers from current methodologies such as [4, 1], which 
use classification techniques to indicate whether the 
executed movement is correct or incorrect. Our sys-
tem, however, achieves superior performance by dy-
namically superimposing the generated skeleton onto 
the patient’s video, acting as a visual reference for the 
movements they should follow. By allowing patients 
to visually observe and replicate proper rehabilita-
tion exercises, they can better understand the correct 
technique without form of the exercise, which can 
delay recovery and even aggravate their relying exclu-
sively on verbal or binary feedback. Continuous visu-
al guidance minimizes errors in movement execution, 
thereby reducing the probability of practicing faulty 
techniques, such as compensatory movements. This 
system will therefore not only enhance the rehabilita-
tion process by making it more interactive and engag-
ing but also promote safer, more functional, and effi-
cient recovery, as patients will benefit from real-time 
visual guidance. Additionally, the TCGAN-based 
model can be deployed without cumbersome sensors 
or specialized equipment, making it more suitable for 
home use. In this work, we aim to develop an econom-
ical and practical solution that empowers recovering 
patients by enabling them to perform safe and effec-
tive exercises independently at home.
The rest of this paper is structured as follows. Sec-
tion 2 discusses related work in the field, providing 
an overview of existing rehabilitation approaches and 
highlighting their limitations. Section 3 presents our 
proposed approach, detailing the dataset preparation, 
model architecture, and training process. Section 4 
presents the experimental results, providing both 
qualitative and quantitative evaluations of the gener-
ated skeletal sequences. Sections 5 and 6 provide re-
spectively an ablation study and a comparative study, 
comparing our method with existing solutions in the 
literature. Finally, Section 7 concludes the paper and 
discusses potential future research directions.
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2. Related Work
Automated exercise assessment using Artificial In-
telligence (AI) can be regarded essentially in the 
literature as a classification task, categorizing a 
movement into correct or incorrect. Rehabilitation 
exercises can be classified based on the degree of pre-
cision with which they are executed. As reported in 
the literature, the most frequently used methodolo-
gies rely on feature engineering. For instance, in [5] 
authors proposed a Graph Convolutional Network 
(GCN) for assessing physical rehabilitation exer-
cises. This model represented the skeleton data of a 
human as a graph, and took its movement as input to 
predict the quality of the performed exercise com-
pared to the prescribed version. In their work, Lee et 
al. [15] tested several hybrid models, including Neu-
ral Networks (NNs) and Support Vector Machines 
(SVM), and determined that NNs achieved the high-
est effectiveness. Study in [21] aimed to investigate 
the potential of predicting a treatment's outcome 
using a deep learning prognosis model developed 
for another treatment. The data used were gathered 
from different sources: clinical measurement, biome-
chanical measurement, and electroencephalography 
(EEG) measurement. In another study [14], authors 
discuss the challenge of developing self-rehabili-
tation systems while formulating an accurate vid-
eo-based assessment of motor skills. They present a 
deep learning model for automating motion analysis 
and create a mobile application based on this model. 
The proposed method can estimate the upper limb 
function of stroke survivors using only video data 
without any other sensors.
Another sub-area of research focuses on applying 
deep learning to recognize compensatory movements 
during rehabilitation. Authors in [30] analysed how 
technology-based methods have been applied to as-
sess and detect compensation during stroke upper 
extremity rehabilitation. Various Machine Learning 
(ML) algorithms were applied to train the classifi-
cation model for compensation recognition. In [22], 
authors presented a virtual rehabilitation system 
(VRS) that can detect compensatory movements and 
improve the outcome of upper extremity rehabilita-
tion in community‑dwelling older adults with stroke. 
Kaku et al. [12] also faced difficulties with their Fully 
Connected Neuronal Network models and obtained 

an accuracy rate of only 70%. On the contrary, [23] 
has shown excellent outcomes in the actual settings. 
On the other hand, [3] used SVM classifier to enable 
real-time monitoring of compensatory movements 
during activities. The system proved helpful in cor-
recting movements by delivering the required force 
during the stroke exercise. Kashi et al. [13] built a 
machine-learning-based automated model that gives 
patients accurate information on the compensatory 
movements that they perform. They used the ran-
dom-forest (RF) algorithm for training this classifi-
cation model on a local dataset.
What we have noticed is that all existing methods 
rely on post-exercise feedback mechanisms, meaning 
errors are detected only after movement execution. 
This limitation can delay the correction process and 
reinforce incorrect motor patterns, ultimately affect-
ing rehabilitation outcomes. Our proposed approach 
addresses this limitation by providing real-time 
guidance, allowing immediate corrections during ex-
ercise execution. A more detailed comparative study 
with the relevant related work is provided in Section 
6, highlighting the key distinctions and advantages of 
our method.

3. Proposed Solution
Our approach (Figure 1) represents rehabilitation 
exercises as dynamic scenes using a skeletal model 
and employs a TCGAN to generate them. A camera 
positioned in front of the patient captures keypoints 
(landmarks) from the body, which are then extract-
ed. The TCGAN generates real-time exercise move-
ments tailored to the patient’s size and position. This 
skeletal model is overlaid onto the live video feed of 
the patient, allowing him to mimic the movements 
accurately without compensations or errors. This 
interactive method supports the patient throughout 
his recovery process. The system operates as follows:
1	 Keypoints extraction (Using MoveNet: https://

www.tensorflow.org/hub/tutorials/m ovenet),
2	 Generation of synthetic movements using TCGAN,
3	 Overlay of the skeletal model onto the real-time pa-

tient video, displayed on a monitor.
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3.1. Dataset and Preprocessing
To test our method, we created a dataset with the as-
sistance of a physiotherapist. The dataset comprises 
skeletal data from six healthy individuals of varying 
heights and ages, ensuring diversity in the profiles 
performing different rehabilitation movements. An 
RGB camera was used to capture the data, and key-
points were extracted using MoveNet (Figure 2(a)). 
All participants performed multiple repetitions of 

(NNs) and Support Vector Machines (SVM), and 
determined that NNs achieved the highest 
effectiveness. Study in [21] aimed to investigate the 
potential of predicting a treatment's outcome using 
a deep learning prognosis model developed for 
another treatment. The data used were gathered 
from different sources: clinical measurement, 
biomechanical measurement, and 
electroencephalography (EEG) measurement. In 
another study [14], authors discuss the challenge of 
developing self-rehabilitation systems while 
formulating an accurate video-based assessment of 
motor skills. They present a deep learning model 
for automating motion analysis and create a mobile 
application based on this model. The proposed 
method can estimate the upper limb function of 
stroke survivors using only video data without any 
other sensors. 

Another sub-area of research focuses on applying 
deep learning to recognize compensatory 
movements during rehabilitation. Authors in [30] 
analysed how technology-based methods have 
been applied to assess and detect compensation 
during stroke upper extremity rehabilitation. 
Various Machine Learning (ML) algorithms were 
applied to train the classification model for 
compensation recognition. In [22], authors 
presented a virtual rehabilitation system (VRS) that 
can detect compensatory movements and improve 
the outcome of upper extremity rehabilitation in 
community-dwelling older adults with stroke. 
Kaku et al. [12] also faced difficulties with their 
Fully Connected Neuronal Network models and 
obtained an accuracy rate of only 70%. On the 
contrary, [23] has shown excellent outcomes in the 
actual settings. On the other hand, 
[3] used SVM classifier to enable real-time 
monitoring of compensatory movements during 
activities. The system proved helpful in correcting 
movements by delivering the required force during 
the stroke exercise. Kashi et al. [13] built a machine-
learning-based automated model that gives 
patients accurate information on the compensatory 
movements that they perform. They used the 
random-forest (RF) algorithm for training this 
classification model on a local dataset. 

What we have noticed is that all existing methods 
rely on post-exercise feedback mechanisms, 
meaning errors are detected only after movement 
execution. This limitation can delay the correction 
process and reinforce incorrect motor patterns, 
ultimately affecting rehabilitation outcomes. Our 
proposed approach addresses this limitation by 
providing real-time guidance, allowing immediate 
corrections during exercise execution. A more 
detailed comparative study with the relevant 

related work is provided in Section 6, 
highlighting the key distinctions and 
advantages of our method. 

 
3. Proposed Solution 
Our approach (Figure 1) represents 
rehabilitation exercises as dynamic scenes 
using a skeletal model and employs a TCGAN 
to generate them. A camera positioned in 
front of the patient captures keypoints 
(landmarks) from the body, which are then 
extracted. The TCGAN generates real-time 
exercise movements tailored to the patient’s 
size and position. This skeletal model is 
overlaid onto the live video feed of the patient, 
allowing him to mimic the movements
 accurately without 
compensations or errors. This interactive 
method supports the patient throughout his 
recovery process. The system operates as 
follows: 
(1) Keypoints extraction (Using MoveNet: 
https://www.tensorflow.org/hub/tutorials/m 
ovenet), 
(2) Generation of synthetic movements 
using TCGAN, 
(3) Overlay of the skeletal model onto the 
real-time patient video, displayed on a 
monitor. 

 
Figure 1 
The proposed approach. 

 

 
3.1. Dataset and Preprocessing 
To test our method, we created a dataset with 
the assistance of a physiotherapist. The dataset 
comprises skeletal data from six healthy 
individuals of varying heights and ages, 
ensuring diversity in the profiles performing
 different rehabilitation 
movements. An RGB camera was used to 
capture the data, and keypoints were extracted 
using MoveNet (Figure 2(a)). All participants 
performed multiple repetitions of exercises, 
including standing and balance, assisted 
lateral leg swings, and assisted knee raises, as 
illustrated in Figure 2(b). None of 
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exercises, including standing and balance, assisted 
lateral leg swings, and assisted knee raises, as illus-
trated in Figure 2(b). None of the participants had ex-
perienced a stroke, as the goal of this project is not to 
classify movements based on stroke-related impair-
ments. Instead, the objective is to generate accurately 
executed rehabilitation movements to prevent com-
pensations and errors during exercise performance.
After cleaning and removing unusable data, the final 
dataset consists of 417 gesture sequence samples, 
each containing 50 frames. In our rehabilitation 
study, we chose not to include keypoints for the eyes 
and ears. This decision was made based on the fact 
that eye and ear movements are not highly relevant to 
the rehabilitation process. By focusing on other joints 
and body parts, we can accurately assess the move-
ments and postures essential for the physical resto-
ration of patients. Consequently, for each sample, we 
utilized 13 of the 17 keypoints proposed by MoveNet 
(Figure 2(a)). Each keypoint is represented by two 
coordinates, x and y. To enhance the robustness and 
stability of the TCGAN, we applied a normalization 
process to the data. The keypoint coordinates were 
divided by the image dimensions to obtain normal-
ized values within the range [0, 1].

3.2. Keypoint Extraction
After employing the MoveNet model for dataset 
preparation, we use it in the first step of our process to 
generate personalized rehabilitation exercises. Mo-
veNet, an advanced pose detection model, accurately 
identifies keypoints from a person’s image, such as 
the shoulders, elbows, hips, and knees, even under 
challenging conditions. We utilize 13 keypoints to 
represent the body, which then serve as inputs for our 
TCGAN. This generates new keypoints that depict 
movements tailored to the rehabilitation exercises.

3.3. TCGAN Architecture
Our TCGAN (Figure 3) leverages two neural net-
works and an adversarial training process. In a 
typical Conditional GAN [25], a generator G and a 
discriminator D are trained simultaneously in a min-
max game defined as follows:

(1)

(a)

(b)

the participants had experienced a stroke, as the 
goal of this project is not to classify movements 
based on stroke-related impairments. Instead, the 
objective is to generate accurately executed 
rehabilitation movements to prevent 
compensations and errors during exercise 
performance. 
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[log(1 - D(G(z|y)|y))]. (1) 

The generator G (composed of G0+G1) 
produces synthetic data from a latent vector z0 
and a conditional label y, generating exercise 
scenes customized to the patient’s position 
and size. The discriminator D assesses the 
likelihood that the generated data x is real 
given the condition y. The first term, 
Ex pdata[logD(x y)], maximizes the probability 
that D correctly identifies real data. The 
second term, Ez pz [log  (G(z|y)|y)], 
minimizes probability that D mistakes 
generated data for real. G and D’s minimax 
game aims to generate realistic data. 
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crucial role in generating bodily keypoints 
that represent sequences  
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 three 
components: 
 Latent vector  shape 100, 
 Sequence of frames shaped (T, 13 × 2), 

where each frame consists of 13 
keypoints with (x, y) coordinates, 
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coordinates of head and feet to determine 
the size and position of the patient on the 
video). 
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The generator G (composed of G0+G1) produces syn-
thetic data from a latent vector z0 and a condition-
al label y, generating exercise scenes customized to 
the patient’s position and size. The discriminator D 
assesses the likelihood that the generated data x is 
real given the condition y. The first term, Ex~pdata[log-
D(x|y)], maximizes the probability that D correctly 
identifies real data. The second term, Ez~pz [log (1−D 
(G(z|y)|y)], minimizes probability that D mistakes 
generated data for real. G and D’s minimax game 
aims to generate realistic data.

3.3.1. Temporal Generator
The temporal generator G0 in this study has a crucial 
role in generating bodily keypoints that represent se-
quences of movements. G0 produces a set of   latent   
variables zt

1 (for t=1,…, T) from an input latent vector 
z0 where T is the number of frames of the exercise 
sequence. The inputs to G0 consist of three compo-
nents:
	_ Latent vector z0 with shape 100,
	_ Sequence of frames shaped (T, 13 × 2), where 

each	 frame consists of 13 keypoints with (x, y) 
coordinates,

	_ Condition vector with a shape of seven (condition_
dim = 7, exercise number, coordinates of head 
and feet to determine the size and position of the 
patient on the video).

LSTM (Long Short Term Memory) layers are used to 
store temporal dependencies in skeletal data and are 
one of the most effective tools because they learn long-
range dependencies in sequential data. This can serve 
as a basis for accurate modelling of human movements 
over time. Given a skeletal keypoints sequence X = (x1, 
x2,…, xt), where xt ϵ ℝ¹³ implies 13 keypoints at time step 
t, this means the input sequence extends over T frames, 
each consisting of 13 skeletal keypoints for the human 
body joints at every specific time step. The temporal 
generator processes these inputs through three LSTM 
layers with 512, 256, and 128 units, respectively, fol-
lowed by batch normalization and dropout layers (rate 
0.3) to ensure regularization and training stability. The 
output of the LSTM layers is a 2D array with a shape 
of (T, 128), representing hidden states for each time 
step. These latent variables are further fed into the im-
age generator G1. This yields a complete sequence of 
generated skeletal keypoints over the T frames. This is 
important because it ensures the temporal coherency 
of the generated keypoints for an accurate representa-
tion of the movements of interest in the given rehabil-
itation exercise. The final result of G is a smooth key-
point-based frame sequence of shape (T, 13 × 2) to help 
patients perform correct rehabilitation movements.

3.3.2. Generator
The generator G1 is responsible for generating real-
istic sequences of motions represented by skeletal 

Figure 3 

Illustration of the proposed TCGAN. 
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The generator G1 is responsible for generating 
realistic sequences of motions represented by 
skeletal keypoints for use in physical rehabilitation 
tasks. This generator’s architecture is designed to 
produce context-specific and coherently changing 
sequences of motion that resemble to realistic 
human movements. The 

generator creates tailored rehabilitation 
exercises through mapping hidden variables 
to structured layers. It receives inputs from 
the temporal generator G0, in the form of a 
series   of   latent   variables   (    (t=1,..., T)). 
Furthermore, these variables have the shape 
of (T, 128). The generator consists of a series of 
fully connected layers. Dense layers learn 
complex representations of the input data 
through weighted linear combinations, 
followed by a non-linear activation function 
(Rectified Linear Unit (ReLU)). We used 
ReLU because of its simplicity, its ability to 
minimize the vanishing gradient effect, and its 
efficiency in deep networks. The G1 
architecture contains several dense layers 
with sizes of 128, 256, 512, 1024 and 2048 units. 
Each layer contributes to the numerous 
transformations of features from previous 
layers to produce the required output 
representation of skeletal keypoints. The 
generator uses these dense layers to capture 
the relationships between patterns, ensuring 
that the final output corresponds to the 
pattern that moves in a realistic manner. To 
optimize G1’s performance, we added batch 
normalisation and dropout (rate 0.3) between 
dense layers to improve training stability and 
enhance robustness, ensuring realistic and 
coherent motion sequences for rehabilitation. 

The generator also includes Kernel Initializers 
to predefine the weight initialization in the 
dense layers. We used the "he" initializer, 
which is particularly suited for layers that use 
ReLU activations. The output from the last 
dense layer is reshaped into a series of 
coordinates representing the skeletal 
keypoints. 

Figure 3  
Illustration of the proposed TCGAN.
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keypoints for use in physical rehabilitation tasks. 
This generator’s architecture is designed to pro-
duce context-specific and coherently changing se-
quences of motion that resemble to realistic human 
movements. The generator creates tailored reha-
bilitation exercises through mapping hidden vari-
ables to structured layers. It receives inputs from 
the temporal generator G0, in the form of a series   of   
latent   variables (zt

1(t=1,..., T)). Furthermore, these 
variables have the shape of (T, 128). The generator 
consists of a series of fully connected layers. Dense 
layers learn complex representations of the input 
data through weighted linear combinations, fol-
lowed by a non-linear activation function (Rectified 
Linear Unit (ReLU)). We used ReLU because of its 
simplicity, its ability to minimize the vanishing gra-
dient effect, and its efficiency in deep networks. The 
G1 architecture contains several dense layers with 
sizes of 128, 256, 512, 1024 and 2048 units. Each 
layer contributes to the numerous transformations 
of features from previous layers to produce the re-
quired output representation of skeletal keypoints. 
The generator uses these dense layers to capture the 
relationships between patterns, ensuring that the 
final output corresponds to the pattern that moves 
in a realistic manner. To optimize G1’s performance, 
we added batch normalisation and dropout (rate 0.3) 
between dense layers to improve training stability 
and enhance robustness, ensuring realistic and co-
herent motion sequences for rehabilitation.
The generator also includes Kernel Initializers to 
predefine the weight initialization in the dense lay-
ers. We used the "he" initializer, which is particularly 
suited for layers that use ReLU activations. The out-
put from the last dense layer is reshaped into a series 
of coordinates representing the skeletal keypoints.
In summary, the TCGAN has been designed to gen-
erate realistic sequences of skeletal movements. An 
LSTM architecture ensures a temporal connection 
between frames, while dense layers capture relation-
ships within the conditioned data. We also utilize 
other techniques, such as Batch Normalization and 
Kernel Initialization, to enhance training stability 
and efficiency.

3.3.3. Discriminator
The discriminator of the TCGAN incorporates both 
spatial and temporal pathways to assess the authen-

ticity of generated skeletal sequences conditioned on 
specific movement attributes. Both fake and real data 
are combined with the condition vector and fed into 
the discriminator. The spatial discriminator consists 
of dense layers. The first layer has 256 neurons, fol-
lowed by 128, 64, and finally 32 neurons. Every dense 
layer is equipped with the ReLU activation function 
which introduces non-linearity. Thus, the model 
can learn complex relationships between keypoints 
in each frame. To improve the training efficiency of 
these layers, we apply a kernel initializer to optimize 
the initial weight distribution. Additionally, dropout 
(rate 0.3) and batch normalisation layers are includ-
ed to enhance robustness.
The temporal discriminator includes two LSTM 
layers. The first layer has 128 units and the second 
has 64 units. These process the temporal aspects of 
the skeletal sequences. To stabilize the training by 
normalizing of the layer outputs, every LSTM lay-
er is followed by batch normalization. Additionally, 
a dropout and batch normalization techniques are 
added, which helps prevent overfitting by random-
ly desactivating some neurons during training. The 
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pathways is passed through fully connected layer (96 
neurons = 64 + 32) with a sigmoid activation function 
to provide a probability score indicating whether the 
sequence is real or generated. Thanks to this com-
bined architecture, the TCGAN can simultaneously 
evaluate the spatial accuracy and temporal consis-
tency of the movements.

3.3.4. Improved Loss Function
We enhance our TCGAN by introducing a new loss 
function with several terms to ensure realistic and 
temporally consistent skeletal sequences. To en-
hance the discrimination between real and fake sam-
ples, we first add a Kullback-Leibler (KL) divergence 
term to the loss function of the discriminator. This 
brings the real and the generated data distributions 
closer together while enhancing separability be-
tween them.In summary, the TCGAN has been designed to 
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In Equation (2)  
responsible for controlling the strength of the 
KL divergence. The symbols pdata and pfake in 
the formula refer to the real data distribution 
(train dataset) and generated data 
distribution (GAN output) respectively. This 
term enables it easier for the discriminator to 
distinguish between true and false data, 
thereby accelerating the learning process. 

We propose that the generator incorporates a 
penalty term inspired by the Wasserstein 
distance with gradient penalty. The 
generator aims to create a sequence that tricks 
the discriminator while simultaneously 
minimizing the style difference between these 
sequences and real ones. The L2 difference is 
calculated between the generator’s output and 
the style target. 
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provide a probability score indicating whether the 
sequence is real or generated. Thanks to this 
combined architecture, the TCGAN can 
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and penalty terms. Equation (6) represents the 
Gradient Penalty used in Wasserstein GANs 
with regularization. It enforces a Lipschitz 
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In Equation (2), β is a weighting factor that is respon-
sible for controlling the strength of the KL diver-
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gence. The symbols pdata and pfake in the formula refer 
to the real data distribution (train dataset) and gen-
erated data distribution (GAN output) respectively. 
This term enables it easier for the discriminator to 
distinguish between true and false data, thereby ac-
celerating the learning process.
We propose that the generator incorporates a pen-
alty term inspired by the Wasserstein distance with 
gradient penalty. The generator aims to create a se-
quence that tricks the discriminator while simul-
taneously minimizing the style difference between 
these sequences and real ones. The L2 difference is 
calculated between the generator’s output and the 
style target.

In summary, the TCGAN has been designed to 
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connection between frames, while dense layers 
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We also utilize other techniques, such as Batch 
Normalization and Kernel Initialization, to enhance 
training stability and efficiency. 
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with the ReLU activation function which introduces 
non-linearity. Thus, the model can learn complex 
relationships between keypoints in each frame. To 
improve the training efficiency of these layers, we 
apply a kernel initializer to optimize the initial 
weight distribution. Additionally, dropout (rate 0.3) 
and batch normalisation layers are included to 
enhance robustness. 

The temporal discriminator includes two LSTM 
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has 64 units. These process the temporal aspects of 
the skeletal sequences. To stabilize the training by 
normalizing of the layer outputs, every LSTM layer 
is followed by batch normalization. Additionally, a 
dropout and batch normalization techniques are 
added, which helps prevent overfitting by 
randomly desactivating some neurons during 
training. The output that gets 
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LG in Equation 3 represents the Generator Loss. 
The constant γ controls the influence of the style 
difference term. By incorporating this term, the 
sampling process generates samples that appear 
more realistic while preserving the stylistic prop-
erties of the real data.
The TCGAN’s overall loss function includes terms 
corresponding to smoothness regularization and a 
gradient penalty, which together define the global 
loss function.

In summary, the TCGAN has been designed to 
generate realistic sequences of skeletal movements. 
An LSTM architecture ensures a temporal 
connection between frames, while dense layers 
capture relationships within the conditioned data. 
We also utilize other techniques, such as Batch 
Normalization and Kernel Initialization, to enhance 
training stability and efficiency. 

3.3.3. Discriminator 
The discriminator of the TCGAN incorporates both 
spatial and temporal pathways to assess the 
authenticity of generated skeletal sequences 
conditioned on specific movement attributes. Both 
fake and real data are combined with the condition 
vector and fed into the discriminator. The spatial 
discriminator consists of dense layers. The first 
layer has 256 neurons, followed by 128, 64, and 
finally 32 neurons. Every dense layer is equipped 
with the ReLU activation function which introduces 
non-linearity. Thus, the model can learn complex 
relationships between keypoints in each frame. To 
improve the training efficiency of these layers, we 
apply a kernel initializer to optimize the initial 
weight distribution. Additionally, dropout (rate 0.3) 
and batch normalisation layers are included to 
enhance robustness. 

The temporal discriminator includes two LSTM 
layers. The first layer has 128 units and the second 
has 64 units. These process the temporal aspects of 
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normalizing of the layer outputs, every LSTM layer 
is followed by batch normalization. Additionally, a 
dropout and batch normalization techniques are 
added, which helps prevent overfitting by 
randomly desactivating some neurons during 
training. The output that gets 
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In summary, the TCGAN has been designed to 
generate realistic sequences of skeletal movements. 
An LSTM architecture ensures a temporal 
connection between frames, while dense layers 
capture relationships within the conditioned data. 
We also utilize other techniques, such as Batch 
Normalization and Kernel Initialization, to enhance 
training stability and efficiency. 

3.3.3. Discriminator 
The discriminator of the TCGAN incorporates both 
spatial and temporal pathways to assess the 
authenticity of generated skeletal sequences 
conditioned on specific movement attributes. Both 
fake and real data are combined with the condition 
vector and fed into the discriminator. The spatial 
discriminator consists of dense layers. The first 
layer has 256 neurons, followed by 128, 64, and 
finally 32 neurons. Every dense layer is equipped 
with the ReLU activation function which introduces 
non-linearity. Thus, the model can learn complex 
relationships between keypoints in each frame. To 
improve the training efficiency of these layers, we 
apply a kernel initializer to optimize the initial 
weight distribution. Additionally, dropout (rate 0.3) 
and batch normalisation layers are included to 
enhance robustness. 

The temporal discriminator includes two LSTM 
layers. The first layer has 128 units and the second 
has 64 units. These process the temporal aspects of 
the skeletal sequences. To stabilize the training by 
normalizing of the layer outputs, every LSTM layer 
is followed by batch normalization. Additionally, a 
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added, which helps prevent overfitting by 
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In summary, the TCGAN has been designed to 
generate realistic sequences of skeletal movements. 
An LSTM architecture ensures a temporal 
connection between frames, while dense layers 
capture relationships within the conditioned data. 
We also utilize other techniques, such as Batch 
Normalization and Kernel Initialization, to enhance 
training stability and efficiency. 

3.3.3. Discriminator 
The discriminator of the TCGAN incorporates both 
spatial and temporal pathways to assess the 
authenticity of generated skeletal sequences 
conditioned on specific movement attributes. Both 
fake and real data are combined with the condition 
vector and fed into the discriminator. The spatial 
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layer has 256 neurons, followed by 128, 64, and 
finally 32 neurons. Every dense layer is equipped 
with the ReLU activation function which introduces 
non-linearity. Thus, the model can learn complex 
relationships between keypoints in each frame. To 
improve the training efficiency of these layers, we 
apply a kernel initializer to optimize the initial 
weight distribution. Additionally, dropout (rate 0.3) 
and batch normalisation layers are included to 
enhance robustness. 
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has 64 units. These process the temporal aspects of 
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normalizing of the layer outputs, every LSTM layer 
is followed by batch normalization. Additionally, a 
dropout and batch normalization techniques are 
added, which helps prevent overfitting by 
randomly desactivating some neurons during 
training. The output that gets 
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= 64 + 32) with a sigmoid activation function to 
provide a probability score indicating whether the 
sequence is real or generated. Thanks to this 
combined architecture, the TCGAN can 
simultaneously evaluate the spatial accuracy and 
temporal consistency of the movements. 

3.3.4. Improved Loss Function 

We enhance our TCGAN by introducing a new loss 
function with several terms to ensure realistic and 
temporally consistent skeletal sequences. To 
enhance the discrimination between real and fake 
samples, we first add a Kullback-Leibler (KL) 
divergence term to the loss function of the 
discriminator. This brings the real and the 
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function enables the training of a generator 
that produces coherent skeletal sequence 
aligned with the real data distribution while 
stabilizing training through regularization 
and penalty terms. Equation (6) represents the 
Gradient Penalty used in Wasserstein GANs 
with regularization. It enforces a Lipschitz 
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The hyperparameters that control the smoothness 
and the gradient penalties are λsmooth and λGP, respec-
tively, while α is the weighting factor for K.L. diver-
gence. This loss function enables the training of a 
generator that produces coherent skeletal sequence 
aligned with the real data distribution while stabi-
lizing training through regularization and penalty 
terms. Equation (6) represents the Gradient Penal-
ty used in Wasserstein GANs with regularization. It 
enforces a Lipschitz constraint on the discriminator    
D by ensuring that the norm of its gradient remains 
close to 1 for interpolated samples between real and 

generated data. This helps stabilize training and ad-
dresses the weight clipping issue found in standard 
WGANs. The term λ controls the strength of the pen-
alty, and the expectation is taken over these interpo-
lated samples.

3.4. Model Training	

TCGAN Training Algorithm
1 1. Initialize models and hyperparameters:
2 -Load the real data.
3 -Initialize the generator (G) and discriminator (D) 
4 models.
5 -Define hyperparameters: learning rate, batch size,
6 λsmooth, λGP, epochs, etc.
7 2. Training Loop:
8 For each epoch:
9 Step 1: Train the Discriminator
10 -Sample a batch of real skeletal sequences from the
11 real data.
12 -Generate a batch of fake sequences using the
13  generator.
14 -Calculate loss function LD

15  if (LD < thresholdD) then
16 Train Discriminator
17  Singular Value Clipping:
18     for each weight matrix W in D do
19 Perform SVD: W=UΣVT

20 Clip singular values: Σ′=clip(Σ,0,τ)
21 Reconstruct weights: W′=UΣ′VT

22 Update discriminator weights:
23 W←W−η∇LD

24    End if
25 Step 2: Train the Generator
26 -Sample random noise z and action label y.
27 -Generate fake skeletal sequences using the
28 generator.
29 -Train the generator, minimizing the generator loss
30  LG.
31 Step 3: Compute Total Loss LTotal

32 Step 4: Update Models
33    Update the weights of the D and G based on
34    their respective losses.
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The training of our TCGAN (as described in the al-
gorithm above) begins by setting key hyperparame-
ters such as the learning rate, batch size, and others. 
After each training epoch, the dataset is shuffled, 
and batches of real skeletal sequences along with 
their corresponding labels are sampled. During this 
phase, the generator creates fake skeletal sequences 
using a latent vector (sampled from a Gaussian dis-
tribution) concatenated with conditional labels. The 
discriminator is trained on real data to learn how to 
distinguish between fake and real samples. To pre-
vent overfitting, the discriminator training process 
is disabled if its loss function falls below a threshold 
value. We apply singular value clipping for stability 
and perform weight updates based on the computed 
gradients. We employed curriculum learning during 
training by starting with simpler rehabilitation ex-
ercises (standing and balance), then progressively 
introducing more complex movements (assisted 
knee raises and assisted lateral leg swings) to im-
prove model stability and performance. We also used 
stratified sampling to ensure each batch contains a 
balanced representation of each exercise, which pre-
vents model bias toward more frequent or simpler 
movements and improves generalization across all 
exercise types.
Table 1 presents the hyperparameter settings of the 
TCGAN. These values were selected based on several 
parameters as discussed in the next sections.

training (Figure 4(b)). Initially, the accuracy, preci-
sion, recall, and F1 score metrics increase steadily at 
a good rate. For example, accuracy rises from 25% at 
the 1st epoch to 99% at the 3150th epoch. After the 
3150th epoch, the model’s accuracy remains stable 
(>99%). Moreover, the other metrics demonstrate 
similar stability. This indicates the model’s strong 
learning capacity and its ability to generate realistic 
data. The TCGAN has been successfully trained, as 
evidenced by the loss curves, which show that both 
the discriminator loss (LD) and generator loss (LG) 
stabilize. The gradual decrease in Ltotal reflects ef-
fective optimization and regularization. The gener-
ator progressively improves at creating realistic se-
quences over time, as demonstrated by the declining 
of LG value, while the discriminator remains suffi-
ciently challenged. This balance highlights the sta-
bility of the system.

Hyperparameter Setup value

Dropout Rate (for G and D) 0.3

Learning rate η (for G and D) 0.0001

Batch size 64

Epochs 3150

Threshold 0.2

Maximum singular value threshold τ 0.1

λ smooth 0.1

Table 1
Hyperparameters for the TCGAN Model.

The graph in Figure 4(a) displays curves of the gen-
erator, discriminator, and total loss functions ob-
tained from training the TCGAN algorithm using the 
best hyperparameter values shown in Table 1. The 
generator exhibits excellent performance during 

(a)

(b)

reflects effective optimization and regularization. 
The generator progressively improves at creating 
realistic sequences over time, as demonstrated by 
the declining of LG value, while the discriminator 
remains sufficiently challenged. This balance 
highlights the stability of the system. 

 

Figure 4 

Generator/Discriminator loss functions (a) and evolution 
of metrics (b) during training. 
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4.2.1. The Fréchet Inception Distance (FID) 
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4. Results
This section provides an analysis of the data ob-
tained from the experimental procedures, examining 
the numerical results, measurements, and statistical 
findings derived from our study. In our TCGAN, mode 
collapse is avoided thanks to its conditional nature. 
Data generation is controlled by specific conditions, 
primarily the exercise class, which prevents the 
model from producing repetitive or limited outputs. 
By leveraging these conditional inputs, the TCGAN 
ensures coherence and balance in the generated data.

4.2. Quantitative Model Evaluation
Quantitative GAN generator evaluation refers to the 
calculation of specific numerical scores used to sum-
marize the quality of generated sequences.

4.2.1. The Fréchet Inception Distance (FID)
The Fréchet Inception Distance (FID) [6] is a mea-
sure of similarity between two sets of images. It is 
used for assessing the quality of the data generated by 
the proposed TCGAN. FID measures the similarity 
between the feature distributions of real and gener-
ated data. It is given by the following equation, which 
has been adapted for numerical data (keypoints):
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data generated by models like the TCGAN. A FID 
score close to zero indicates that the generated data 
is nearly indistinguishable from the real data. Care-
ful selection and tuning of hyperparameters have sig-
nificantly enhanced the performance of our TCGAN. 
As shown in Table 2, FID scores exhibit a clear de-
cline across training epochs, indicating progressive 
improvement in the realism of the generated skeletal 
sequences. By epoch 3150, the total FID score reach-
es 0.87, demonstrating strong alignment between 
synthetic and real data distributions, which is a key 
indicator of high-quality motion synthesis. The most 
significant reduction in FID occurs between ep-
ochs 100 and 1000, highlighting the effectiveness of 
the curriculum learning strategy and improved loss 
function in accelerating model adaptation. The mini-
mal change observed after epoch 3000 indicates that 
the model has reached near-optimal performance. 
Among individual exercises, standing and balance 
achieves the lowest FID score (0.84), due to the fron-
tal camera view, which enables more accurate detec-
tion of keypoints compared to the side views used 
for the other two exercises. The small gap between 
individual exercise scores and the total dataset score 
confirms well-distributed learning, supported by 
stratified sampling and conditional inputs that pre-
vent bias toward any specific movement type.

4.2.2. Classification Performance
One of the most effective ways to validate the per-
formance of the TCGAN is by using the FID score 
to assess the quality of the generated data. However, 
this evaluation alone does not fully ensure the effi-
ciency of the TCGAN. To comprehensively validate 
our model's capabilities, we employed three ma-
chine learning classification algorithms: K-Nearest 
Neighbors (KNN), Support Vector Machine (SVM), 
and Random Forest (RF). These algorithms enabled 
us to evaluate the quality of the synthetic data gen-
erated by the TCGAN and its similarity to real data. 
For training these classifiers, we used the same real 
dataset that was utilized during the training of our 
TCGAN.
After training these algorithms, we conducted tests 
using various sizes of synthetic data generated by 
our TCGAN. These tests were evaluated using sever-
al standard machine learning metrics: accuracy, pre-
cision, recall, and F1 score. Testing across different 
data sizes ensures the reliability and robustness of 

Table 2
Obtained FID for each exercise across different epochs

Epoch 100 1000 2000 3000 3150

Standing and 
balance 4.78 2.07 1.65 0.85 0.84

Assisted lateral 
leg swings 5.01 2.21 1.69 0.91 0.90

Assisted knee 
raises 4.69 2.11 1.68 0.89 0.89

Total (entire 
dataset) 4.90 2.15 1.65 0.88 0.87

where μ1 and μ2 are the means of the features of real 
and generated data, respectively, and C1 and C2 de-
note the covariance matrices of the feature vectors of 
the real and generated data, respectively. The trace 
Tr is a function from linear algebra [28]. Interpret-
ing FID values is crucial for assessing the quality of 
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exhibit generalizable structure, rather than overfit-
ting to a specific model or dataset split. To ensure 
that these high scores reflect genuine generalization 
rather than memorization, we applied rigorous val-
idation techniques, including cross-validation and 
testing on independent sub-datasets. These mea-
sures help confirm that the observed performance 
results from the quality of the synthetic data rather 
than from overfitting or noise exploitation. In sum-
mary, the consistently high classification metrics 
across models and dataset sizes provide strong em-
pirical evidence that the TCGAN generates realistic, 
structurally sound motions.
Table 4 presents classification performance across 
four individuals performing three rehabilitation ex-
ercises: standing and balance, assisted lateral leg 
swings, and assisted knee raises. A time-based classi-
fier was implemented to evaluate entire exercise se-

our TCGAN, making it suitable for real-world appli-
cations where data size and variability are critical. 
The results of these tests are presented in Table 3. 
Across all configurations, the models achieve ex-
ceptionally high accuracy, precision, recall, and F1 
scores, often exceeding 99%. These findings strong-
ly indicate that the skeletal motion sequences gen-
erated by our TCGAN are statistically coherent, 
closely resembling real human movement patterns. 
This consistency across diverse classifiers is par-
ticularly significant. RF, SVM, and KNN differ fun-
damentally in how they model data, ranging from 
distance-based reasoning (KNN) to margin optimi-
zation (SVM) and ensemble decision-making (RF). 
The fact that all models perform equally well implies 
that the synthetic data lacks artifacts or biases that 
could mislead one type of classifier while favouring 
another. In other words, the generated movements 

Dataset size 1000 100000 1000000

Classifier RF SVM KNN RF SVM KNN RF SVM KNN

Accuracy 99.93% 99.69% 99.97% 99.84% 99.42% 99.22% 99.94% 99.64% 99.58%

Precision 99.37% 99.46% 100% 99.59% 99.84% 100% 99.29% 99.70% 99.66%

Recall 99.32% 99.12% 100% 99.99% 99.31% 100% 99.24% 99.94% 99.78%

F1-score 99.34% 99.29% 100% 99.79% 99.57% 100% 99.26% 99.82% 99.72%

Table 3
Test results on datasets with different sizes.

Exercise Person N° Repetitions Accuracy Precision Recall F1- score Mean Variance (px2)

Standing 
and balance

1 30 99.00% 98.98% 98.64% 98.81% 7.2 ± 1.1

2 30 98.56% 98.34% 98.67% 98.50% 8.4 ± 1.2

3 30 98.42% 99.01% 98.36% 98.68% 9.7 ± 1.8

4 30 98.88% 98.68% 99.00% 98.84% 6.8 ± 0.9

Assisted 
lateral leg 

swings

1 30 97.14% 96.69% 97.33% 97.01% 18.6 ± 2.9

2 30 98.45% 96.72% 98.33% 97.52% 15.8 ± 2.4

3 30 96.98% 96.68% 97.00% 96.84% 21.3 ± 3.5

4 30 98.35% 96.73% 98.34% 97.53% 14.2 ± 2.1

Assisted 
knee raises

1 30 98.06% 99.00% 95.51% 97.23% 16.5 ± 2.3

2 30 97.59% 97.66% 97.33% 97.50% 19.8 ± 3.1

3 30 96.94% 96.67% 96.99% 96.83% 24.7 ± 4.2

4 30 97.11% 96.33% 97.64% 96.98% 20.4 ± 3.4

Table 4
Performance metrics for each exercise and person.
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quences generated by our TCGAN. This assessment 
differs from the per-image evaluations reported in 
Table 3, where classification was performed on indi-
vidual frames. The time-based classifier was trained 
on real data using a neural network-based architec-
ture and is structurally similar to the discriminator, 
which also functions as a binary classifier. The last 
column of Table 4 reports the Mean Variance (in 
pixels squared), a metric that quantifies motion un-
certainty by measuring positional variability across 
multiple model outputs generated under identical 
input conditions. Specifically, we applied Monte Car-
lo Dropout during inference, keeping dropout active 
(rate = 0.3) and generating 50 synthetic movement 
sequences per input using the same latent vector z 
and condition y. The variance across these outputs 
provides an estimate of model confidence in keypoint 
placement. Each value in the final column thus re-
flects the average positional variance across all key-
points over the 50 samples, with standard deviation 
indicating local variability (e.g., 20.4 ± 3.4 px² means 
a mean variance of 20.4 px² with 3.4 px² fluctuation).
Despite all movements being executed at similar 
speeds, the best results are consistently observed 
during standing and balance tasks, where average 
accuracy reaches 98.72% and pixel variance remains 
low (an average of 8.0 ± 1.3 px²), indicating strong 
spatial stability and temporal coherence. This supe-
rior performance results not only from the temporal 
modelling capabilities of the LSTM-based generator 
(G0) but also from the improved visibility of keypoints 
when the person faces the camera directly. In this 
frontal view, MoveNet achieves more accurate and 
stable detection of skeletal keypoints, and it is easier 
for the patient to follow the movements since all the 
keypoints are clearly visible. In contrast, knee raises 
and leg swings exercises are performed from the side 
view, resulting in minor drops in recall and F1-score 
(e.g., Person 1 achieves 95.51% recall for knee rises). 
These decreases stem from challenges such as partial 
occlusion, limb overlap, or reduced visibility of cer-
tain joints. The increase in pixel variance observed 
in these side-view exercises (up to 24.7 ± 4.2 px²) 
correlates with these fluctuations in performance, 
indicating that reduced visibility introduces greater 
uncertainty into keypoint localization, even though 
movement speed remains constant. This method of 
uncertainty estimation reveals a strong correlation 

(R² = 0.89) between Mean Variance and F1 scores, 
confirming that higher variance corresponds to low-
er classification confidence, which making Mean 
Variance a reliable indicator of motion quality. 
However, the classifier still maintains high overall 
scores, demonstrating that the generated sequences 
preserve sufficient realism and structural integrity. 
This resilience directly reflects the impact of sever-
al model components. The KL divergence-enhanced 
loss improves separability between real and generat-
ed data distributions, as seen in the consistently high 
precision values (e.g., 99.00% for Person 1 during knee 
raises). The gradient penalty contributes to training 
stability, which reflected in robust performance even 
under reduced visibility conditions such as side- 
view exercises. The smoothness regularization term 
suppresses jitter and abrupt transitions, especially 
effective in frontal-view sequences like standing and 
balance, where pixel variance remains low (8.0 ± 1.3 
px²) and classification scores are highest. Further-
more, the system’s ability to maintain performance 
across unseen users supports the effectiveness of 
curriculum learning and stratified sampling, which 
ensure balanced exposure to exercise types and re-
duce overfitting. Importantly, the conditional input 
vector, including head and feet coordinates, enables 
motion adaptation to each patient’s biomechanics, 
which is a key factor in maintaining consistency de-
spite inter-individual variation.
Based on a psychotherapist’s remarks, 28 px² was set 
as the threshold for acceptable motion quality. We 
noticed that movements exceeding this threshold 
were considered unreliable.

Exercises Before using  
our approach

After using  
our approach

Standing and balance 21 13

Assisted lateral leg swings 19 13

Assisted knee raises 23 12

Total 63 38

Table 5
Average of compensatory movements observed in Pre‑ and 
Post‑ our approach intervention.

Table 5 presents a comparative evaluation of com-
pensatory movement frequency before and after 
integrating our TCGAN-based real-time visual 
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guidance system. Across 240 trials (120 pre- and 
120 post-intervention, with 40 trials per exercise), 
involving four participants performing three reha-
bilitation exercises, we observe a clear and clinically 
meaningful reduction in compensatory behaviours. 
The total number of compensatory movements de-
creased from 63 (pre- intervention) to 38 (post-inter-
vention), representing a reduction of approximately 
40%. This decline was consistent across all exercise 
types: standing and balance (−38%), assisted lateral 
leg swings (−32%), and assisted knee raises (−48%). 
These results strongly indicate that real- time visual 
guidance based on patient-specific skeletal referenc-
es significantly improves movement accuracy and re-
duces reliance on maladaptive strategies. Important-
ly, the residual compensatory movements observed 
post- intervention were attributed by the physiother-
apist primarily to inherent physical limitations, such 
as reduced range of motion or muscle weakness, rath-
er than errors in following the generated guidance. 
This distinction reinforces the clinical relevance of 
our findings: while our system cannot fully overcome 
physiological impairments, it effectively minimizes 
compensations that arise from poor form awareness 
or lack of immediate corrective feedback, which are 
modifiable factors in home- based rehabilitation. 
This outcome highlights the value of real-time visual 
scaffolding in promoting correct motor patterns ear-
ly in the rehabilitation process, potentially reducing 
the risk of long-term maladaptive plasticity and im-
proving functional recovery. The data thus support 
our system's role not only as a motion generation tool 
but also as a behavioural intervention that actively 
shapes movement quality through continuous visual 
reinforcement.

4.3. Qualitative Model Evaluation
To assess the quality of the sequences generated by 
our TCGAN, we used data from the experiment in-
volving the four individuals described in the previous 
section. As we mentioned it, tests were conducted in 
diverse environments with varying lighting condi-
tions to evaluate the model's robustness. The partic-
ipants, differing in size and body type, wore differ-
ent outfits for each session. The first observation is 
that, across all exercises, the participants' landmarks 
were successfully detected (Step 1 of the process), 
enabling an accurate generation of exercises (Step 2 
of the process).

A key outcome of this evaluation is presented in Ta-
ble 6, which quantifies both the efficiency and clinical 
acceptability of the generated exercises. The average 
time required to generate 120 exercise sequences was 
just 1.85 seconds, indicating strong computational 
efficiency and suitability for real-time deployment. 
More importantly, physiotherapist assessments 
revealed high satisfaction rates across all exercise 
types, with an average approval rate of 96.21%. Nota-
bly, standing and balance achieved the highest score 
at 96.69%, implying that the model performs partic-
ularly well in generating	 stable,	 posture-focused 
movements. These high approval rates indicate that 
the generated sequences are not only structurally 
coherent but also clinically meaningful, closely mir-
roring correct human movement patterns as demon-
strated by trained individuals. This aligns with visual 
comparisons shown in Figure 5.
Another qualitative evaluation based on visual com-
parison is illustrated in Figure 5, which includes two 
image sequences depicting a standing and balance 
exercise. The first sequence, generated by our TC-
GAN, visually demonstrates the model's ability to 

Exercise
Number 
of exer-

cises

Time to 
create 120 
exercises

Positive opinion 
of the  

physiotherapist

Standing and 
balance 120 1.82  

second
For 96.69% of 

exercises

Assisted lateral 
leg swings 120 1.75 

second
For 96.67% of 

exercises

Assisted knee 
raises 120 1.98

second
For 95.26% of 

exercises

Average 120 1.85
second

For 96.21% of 
exercises

Table 6
Evaluation of training exercises: speed of creation and 
physiotherapist satisfaction.

movement patterns as demonstrated by trained 
individuals. This aligns with visual comparisons 
shown in Figure 5. 

 
Figure 5 

Standing and balance exercise generated by TCGAN (first 
row) and from dataset (second row). 

 

 

 
Another qualitative evaluation based on visual 
comparison is illustrated in Figure 5, which 
includes two image sequences depicting a standing 
and balance exercise. The first sequence, generated 
by our TCGAN, visually demonstrates the model's 
ability to produce realistic movements that closely 
follow the intended trajectory and posture of the 
exercise. The second sequence, taken from a 
dataset of real humans performing the same 
motion, serves as a reference. A comparison of the 
two sequences shows that the TCGAN-generated 
sequence effectively captures the essence of the real 
movement, indicating that the model can generate 
coherent and anatomically accurate exercises. 
Taken together (Table 6 and Figure 5), these results 
confirm that our TCGAN effectively generates 
realistic, patient-adapted rehabilitation exercises 
that are both computationally efficient and visually 
accurate, making them suitable for real-time 
guidance in unsupervised home-based 
rehabilitation scenarios. 

 

5. Ablation Study 
In this section, we present a series of ablation 
experiments designed to evaluate the impact of key 
components and design choices in our model. 
Through systematic modifications, including 
changes to the sampling strategy, architectural 
components, and regularization techniques, we 

assess their contributions to performance, 
robustness, and generalization. The results 
from these experiments provide valuable 
insights into the relative importance of each 
factor and guide the refinement of our 
approach. Tests were conducted using input 
data collected from the study outlined in 
Table 4. 

Table 7 evaluates how variations in camera 
resolution and frame rate affect motion 
realism. At 480p, performance remains strong 
(FID: 0.88; Accuracy: 97.17%), indicating that 
MoveNet retains sufficient spatial sensitivity 
for rehabilitation tasks where gross limb 
positioning is critical. However, at 240p, 
accuracy drops by over 3%, and FID rises 
sharply to 1.15, revealing that insufficient pixel 
density impairs keypoints detection, 
introducing noisy skeletal input into the 
TCGAN. This likely disrupts temporal 
coherence in generated sequences, as 
evidenced by lower F1-scores, highlighting 
the system’s dependence on accurate initial 
pose estimation. Reducing the frame rate from 
30 FPS to 10 FPS has negligible impact across 
all metrics, confirming that the LSTM- based 
generator requires only one accurate skeletal 
snapshot per movement repetition. This aligns 
with our conditional architecture, which 
synthesizes full motion sequences based on 
positional cues such as head and foot 
coordinates. The stability under low frame 
rates also supports deployment on resource-
constrained devices. The interaction between 
low resolution and low frame rate (240p/10 
FPS) yields the worst results, underscoring 
that while temporal redundancy can be 
reduced, spatial fidelity cannot be fully 
compensated. Our normalization and KL-
divergence-enhanced loss help mitigate some 
noise, but they cannot fully recover lost 
structural information. 

 
Table 7 

Robustness evaluation of TCGAN across varying camera resolutions and frame rates. 
Metrics 1080p 30FPS (Current) 480p 30FPS 240p 30FPS 1080p 10FPS 480p 10FPS 240p 10FPS 

FID 0.87 0.88 1.15 0.88 0.90 1.15 
Accuracy 97.96% 97.17% 94.85% 97.68% 96.83% 94.50% 
Precision 97.62% 96.00% 91.96% 96.50% 95.50% 91.41% 
Recall 97.76% 95.52% 92.42% 96.50% 95.02% 91.88% 
F1-score 97.69% 95.76% 92.19% 96.50% 95.26% 91.65% 

Figure 5  
Standing and balance exercise generated by TCGAN (first 
row) and from dataset (second row).
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produce realistic movements that closely follow the 
intended trajectory and posture of the exercise. The 
second sequence, taken from a dataset of real hu-
mans performing the same motion, serves as a refer-
ence. A comparison of the two sequences shows that 
the TCGAN-generated sequence effectively captures 
the essence of the real movement, indicating that the 
model can generate coherent and anatomically accu-
rate exercises.
Taken together (Table 6 and Figure 5), these results 
confirm that our TCGAN effectively generates realis-
tic, patient-adapted rehabilitation exercises that are 
both computationally efficient and visually accurate, 
making them suitable for real-time guidance in unsu-
pervised home-based rehabilitation scenarios.

5. Ablation Study
In this section, we present a series of ablation exper-
iments designed to evaluate the impact of key com-
ponents and design choices in our model. Through 
systematic modifications, including changes to the 
sampling strategy, architectural components, and 
regularization techniques, we assess their contribu-
tions to performance, robustness, and generalization. 
The results from these experiments provide valuable 
insights into the relative importance of each factor 
and guide the refinement of our approach. Tests were 
conducted using input data collected from the study 
outlined in Table 4.
Table 7 evaluates how variations in camera resolu-
tion and frame rate affect motion realism. At 480p, 
performance remains strong (FID: 0.88; Accuracy: 
97.17%), indicating that MoveNet retains sufficient 
spatial sensitivity for rehabilitation tasks where 
gross limb positioning is critical. However, at 240p, 

accuracy drops by over 3%, and FID rises sharply to 
1.15, revealing that insufficient pixel density impairs 
keypoints detection, introducing noisy skeletal input 
into the TCGAN. This likely disrupts temporal coher-
ence in generated sequences, as evidenced by lower 
F1-scores, highlighting the system’s dependence on 
accurate initial pose estimation. Reducing the frame 
rate from 30 FPS to 10 FPS has negligible impact 
across all metrics, confirming that the LSTM- based 
generator requires only one accurate skeletal snap-
shot per movement repetition. This aligns with our 
conditional architecture, which synthesizes full mo-
tion sequences based on positional cues such as head 
and foot coordinates. The stability under low frame 
rates also supports deployment on resource-con-
strained devices. The interaction between low reso-
lution and low frame rate (240p/10 FPS) yields the 
worst results, underscoring that while temporal re-
dundancy can be reduced, spatial fidelity cannot be 
fully compensated. Our normalization and KL-diver-
gence-enhanced loss help mitigate some noise, but 
they cannot fully recover lost structural information.
Table 8 presents a comparative evaluation of the 
TCGAN (our current model) and Pose2PoseGAN in 
terms of generated movement quality. TCGAN out-
performs Pose2PoseGAN across all metrics, achiev-
ing superior FID (0.87 vs. 1.17) and higher classifi-
cation performance (Accuracy: 97.96%, F1- score: 
97.69%). This performance gain stems from TC-
GAN’s ability to model long-term temporal depen-
dencies, allowing it to generate accurate poses with 
smooth and continuous motion, which is crucial for 
rehabilitation applications. In contrast, Pose2Pose-
GAN is effective at generating transitions between 
individual poses but struggles to maintain motion 
continuity over extended sequences. This limitation 
results in slightly lower overall performance. None-

Metrics 1080p 30FPS 
(Current) 480p 30FPS 240p 30FPS 1080p 10FPS 480p 10FPS 240p 10FPS

FID 0.87 0.88 1.15 0.88 0.90 1.15

Accuracy 97.96% 97.17% 94.85% 97.68% 96.83% 94.50%

Precision 97.62% 96.00% 91.96% 96.50% 95.50% 91.41%

Recall 97.76% 95.52% 92.42% 96.50% 95.02% 91.88%

F1-score 97.69% 95.76% 92.19% 96.50% 95.26% 91.65%

Table 7
Robustness evaluation of TCGAN across varying camera resolutions and frame rates.
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theless, it remains suitable for tasks involving repet-
itive or short- range movements, where precise pose-
to-pose transitions are more important than global 
temporal coherence.

Metrics TCGAN  
(Current model) Pose to pose

Total FID 0.87 1.17

Accuracy 97.96% 94.17%

Precision 97.62% 91.37%

Recall 97.76% 90.91%

F1-score 97.69% 91.14%

Table 8
Comparative evaluation of GAN architectures for 
movement generation.

Metrics Stratified sampling 
(Current model)

Uniform 
sampling

Total FID 0.87 0.88

Accuracy 97.96% 97.67%

Precision 97.62% 96.98%

Recall 97.76% 96.02%

F1-score 97.69% 96.50%

Table 9
Impact of sampling strategies on TCGAN performance.

Table 9 compares the impact of stratified and uni-
form sampling strategies on TCGAN’s performance. 
While both approaches yield high- quality results, 
stratified sampling consistently leads to marginally 
better outcomes across all metrics. The total FID im-
proves slightly (0.87 vs.0.88), and classification per-
formance sees measurable gains in precision (97.62% 
vs. 96.98%), recall (97.76% vs. 96.02%), and F1-score 
(97.69% vs. 96.50%). These improvements are at-
tributed to stratified sampling’s ability to preserve 
class balance and representation of rare movement 
types during training. This ensures that the model 
is exposed to diverse yet proportionally distributed 
motion patterns, enhancing generalization and re-
ducing overfitting to dominant movement categories. 
In contrast, uniform sampling introduces slight class 
imbalance, which may cause underrepresentation of 
less frequent motions and result in reduced recall. 
Overall, these findings highlight the importance of 

data distribution strategies in generative motion 
models and validate our use of stratified sampling to 
support robust and consistent performance across 
varied rehabilitation movements.
Table 10 evaluates the impact of different loss func-
tion designs on TCGAN performance and training 
stability. Our composite loss, which integrates ad-
versarial loss, KL divergence, smoothness regular-
ization, and gradient penalty, achieves the best FID 
score (0.87) and highest classification metrics, indi-
cating superior realism and temporal coherence in 
generated motion sequences. In contrast, using only 
a biomechanical loss or Wasserstein-only objective 
leads to reduced accuracy (96.33% and 94.33%, re-
spectively) and increased FID (0.92 and 1.16), show-
ing that purely domain-based or distributional losses 
fail to capture both realism and dynamic movement 
patterns. The MSE-based loss performs worst (FID: 
1.30), producing rigid, unnatural sequences and suf-
fering from mode collapse, as reflected in low pre-
cision (88.83%) and high instability (σ/μ = 0.29). 
Training stability was assessed using the coefficient 
of variation (σ/μ) of the generator loss over the final 
10% of training epochs, where lower values indicate 
smoother and more consistent convergence. These 
results highlight the need for a hybrid loss that bal-
ances adversarial realism, biomechanical plausi-
bility, and temporal smoothness. Training stability 
also degrades significantly without our improved 
loss, with the gradient penalty and KL term playing 
key roles in aligning real and fake data distributions 
while enforcing Lipschitz continuity. Smoothness 
regularization further ensures natural transitions 
between frames, essential for generating rehabilita-
tion-appropriate guidance.
Table 11 compares TCGAN performance across 
different architectural designs for the generator 
and discriminator. Our current model, featuring an 
LSTM-based temporal generator and dual-path (spa-
tial-temporal) discriminator, achieves the lowest 
FID (0.87) and highest classification scores, demon-
strating superior realism and temporal coherence 
in generated motion sequences. Replacing the gen-
erator with a Transformer (Transformer-G) results 
in slightly higher FID (0.89) and reduced precision 
(95.96%), demonstrating that while Transformers 
capture long-range dependencies, they may intro-
duce instability in sequential skeletal generation 
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without careful positional encoding or masking. The 
Temporal-Only-D variant, which removes the spatial 
pathway from the discriminator, shows a significant 
FID increase (1.05), indicating that spatial accuracy 
is essential for realistic pose alignment. Using GRU-
based generation with CNN-based discrimination 
(GRU-G+CNN-D) further degrades all metrics (FID: 
1.18), highlighting limitations in capturing tempo-
ral dynamics with shallow recurrent units and local 
CNN features. In contrast, a Temporal Convolution-
al Network (TCN-G) maintains strong performance 
(FID: 0.89), showing that convolutional architec-
tures can also model temporal dependencies effec-
tively if properly designed. These results confirm the 
effectiveness of LSTM layers in capturing temporal 
dependencies within skeletal sequences, while the 
dual-path discriminator enhances both spatial ac-
curacy and temporal coherence. This architectural 
choice is critical for real-time rehabilitation applica-
tions, where realistic and anatomically plausible mo-
tion generation directly influences patient engage-
ment, movement learning, and execution precision.
Table 12 evaluates how reducing the number of key-
points affects both motion realism (measured by 
FID) and perceived clinical value. Interestingly, FID 

scores remain relatively stable across all configura-
tions (ranging from 0.87 to 0.89), indicating that even 
with fewer keypoints, the TCGAN maintains high 
fidelity in generating motion sequences. However, 
physiotherapist evaluations reveal a significant drop 
in perceived usefulness when using fewer than 9 key-
points. While models using 13 or 11 keypoints were 
rated as "Good", the 9- keypoint model was rated 
"Average", and the 7-keypoint variant was deemed 
"Bad". This shows that while motion realism may be 
preserved metrically, clinical relevance diminishes 
when too few keypoints are used, limiting the sys-
tem's ability to capture essential joint movements 
for rehabilitation guidance. This highlights a crit-
ical trade-off: although minimal skeletal data may 
suffice for basic motion generation, accurate repre-
sentation of major joints, especially in the limbs, is 
necessary for meaningful real- time guidance. These 
findings support our decision to use 13 keypoints, 
ensuring both technical performance and clinical 
applicability in guiding stroke patients through cor-
rective exercises.
Table 13 evaluates how dynamic dropout (DD) and 
adversarial pruning (AP) affect TCGAN perfor-

Metrics Current composite Biomechanical loss Wasserstein only MSE

Total FID 0.87 0.92 1.16 1.30

Accuracy 97.96% 96.33% 94.33% 92.17%

Precision 97.62% 95.43% 91.88% 88.83%

Recall 97.76% 93.53% 90.95% 87.50%

F1-score 97.69% 94.47% 91.41% 88.16%

Training stability (σ/μ) 0.02 0.09 0.19 0.29

Table 10
Effect of loss function variants on TCGAN performance and training stability.

Metrics Current model Transformer-G Temporal-Only-D GRU-G+CNN-D TCN-G

Total FID 0.87 0.89 1.05 1.18 0.89

Accuracy 97.96% 97.00% 95.17% 93.83% 97.50%

Precision 97.62% 95.96% 93.85% 92.23% 96.48%

Recall 97.76% 95.00% 91.50% 89.00% 96.00%

F1-score 97.69% 95.48% 92.66% 90.59% 96.24%

Table 11
Impact of generator and discriminator architecture variants on TCGAN performance.
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mance. Interestingly, applying DD to different com-
ponents yields mixed results. When applied to the 
spatial discriminator, DD improves all metrics (FID: 
0.83; Accuracy: 98.83%), confirming that controlled 
neuron suppression enhances generalization by re-
ducing overfitting to specific pose configurations. In 
contrast, DD applied to the temporal discriminator 
significantly degrades FID (1.14) and classification 
scores, indicating that suppressing temporal path-
ways disrupts motion coherence. Adversarial prun-
ing generally harms performance, especially when 
applied to the temporal discriminator (FID: 1.39; F1: 
83.79%) or G0 (FID: 1.32; F1: 87.28%), confirming that 
removing critical neurons impairs the model’s ability 
to generate smooth, realistic sequences. However, AP 
on the spatial discriminator causes only minor deg-
radation (FID: 0.88), demonstrating it retains enough 
spatial modelling capacity for rehabilitation-appro-
priate guidance.
Table 14 demonstrates the critical role of LSTM lay-
ers in generating temporally coherent skeletal se-
quences. Removing temporal modelling entirely (i.e., 
using dense layers only) leads to a sharp FID increase 
(1.33), significant drops in all classification metrics, 
and a low motion coherence score of 4.1, indicating 

clearly disjointed or unnatural movement sequences. 
Replacing the multi-layer LSTM with a single 512-
unit layer improves performance (FID: 0.95; motion 
coherence: 8.3), but still underperforms compared to 
our full model. Reducing the architecture to a 2-layer 
LSTM (256 and 128 units) yields results closer to the 
current model (FID: 0.90; F1: 95.92%; motion coher-
ence: 9.2), showing that depth and hidden state ca-
pacity are key to capturing long-term dependencies 
in motion data. The high physiotherapist-rated mo-
tion coherence (9.6) of our full model confirms that 
multi-layer LSTM enhances realism and smooth-
ness, essential for guiding patients through complex 
rehabilitation exercises. These findings validate our 
architectural choice, ensuring both quantitative per-
formance and clinically meaningful output.
Table 15 shows that both batch normalization (BN) 
and gradient penalty (GP) play critical roles in sta-
bilizing TCGAN training and improving motion 
generation quality. When both components are used 
together (current model), the system achieves the 
lowest FID (0.87), highest classification scores, and 
best training stability (σ/μ = 0.02), confirming their 
combined effectiveness. Training stability was eval-
uated using the coefficient of variation (σ/μ) of the 

Metrics 13 keypoints 11 keypoints 9 keypoints 7 keypoints

Total FID 0.87 0.88 0.87 0.89

Physiotherapist opinion on usefulness Good Good Average Bad

Table 12
Effect of keypoint number on clinical usefulness.

Metrics FID Accuracy Precision Recall F1-score

Current model 0.87 97.96% 97.62% 97.76% 97.69%

DD (G0) 0.91 96.50% 95.00% 94.53% 94.76%

DD (G1) 0.89 97.19% 95.57% 96.04% 95.80%

DD (temporal D) 1.14 94.83% 92.50% 92.04% 92.27%

DD (spatial D) 0.83 98.83% 98.50% 98.01% 98.25%

AP (G0, 40%) 1.32 91.50% 87.50% 87.06% 87.28%

AP (G1, 40%) 1.03 95.50% 93.50% 93.03% 93.27%

AP (spatial D, 40%) 0.88 97.46% 96.62% 96.98% 96.80%

AP (temporal D, 40%) 1.39 89.17% 84.00% 83.58% 83.79%

Table 13
Impact of dynamic dropout (DD) and adversarial pruning (AP) on TCGAN performance.
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generator loss during the last 10% of training epochs, 
with lower values indicating more stable and consis-
tent convergence. Removing both BN and GP leads to 
severe degradation: FID rises to 1.35, accuracy drops 
to 88.94%, and training instability soars (σ/μ = 0.35). 
This indicates that without these mechanisms, the 
model struggles to align real and generated data dis-
tributions, resulting in poor skeletal sequences and 
unstable learning dynamics.
Using GP alone improves stability over no BN + no 
GP (σ/μ = 0.20), but performance remains subopti-
mal (FID: 1.08; Accuracy: 94.64%), indicating that 
while GP helps enforce Lipschitz continuity, it can-
not fully compensate for the lack of BN in normaliz-
ing layer inputs. In contrast, BN alone significantly 
boosts performance (FID: 0.95; Accuracy: 96.49%) 
and moderately improves stability (σ/μ = 0.07), high-
lighting its importance in maintaining consistent 

Metrics Current model No temporal layers
(Dense only)

1-Layer LSTM (Single 
512-unit LSTM)

Reduced LSTM (2-layer 
LSTM 256 and128)

FID 0.87 1.33 0.95 0.90

Accuracy 97.96% 90.73% 95.99% 96.95%

Precision 97.62% 87.96% 95.41% 95.69%

Recall 97.76% 84.00% 92.57% 96.15%

F1-score 97.69% 85.93% 93.97% 95.92%

Motion coherence (1-10) * 9.6 4.1 8.3 9.2

*Motion coherence: physiotherapist opinion from 0 to 10

Metrics Current 
model GP only BN only No BN + 

No GP

FID 0.87 1.08 0.95 1.35

Accuracy 97.96% 94.64% 96.49% 88.94%

Precision 97.62% 92.89% 95.45% 85.71%

Recall 97.76% 91.04% 94.03% 80.60%

F1-score 97.69% 91.96% 94.74% 83.08%

Training 
stability 

(σ/μ)
0.02 0.20 0.07 0.35

feature distributions during training. These findings 
support our architectural choice to combine BN and 
GP, ensuring both stable training and high-quality, 
realistic motion generation essential for reliable re-
habilitation guidance.

Table 14
Contribution of LSTM layers to motion coherence in TCGAN.

Table 15
Impact of batch normalization (BN) and gradient penalty 
(GP) on training stability and performance.

Metrics
Current 

model (Full 
Loss)

Without KL 
divergence

Without 
Wasserstein 

distance

FID 0.87 0.90 0.91

Accuracy 97.96% 96.87% 97.30%

Precision 97.62% 95.19% 95.45%

Recall 97.76% 95.65% 97.67%

F1-score 97.69% 95.42% 96.55%

Table 16
Impact of loss function components on TCGAN 
performance.

Table 16 evaluates how individual components of 
the TCGAN loss function affect motion generation 
quality and realism. Our full loss, which combines 
adversarial loss, KL divergence, smoothness regu-
larization, and gradient penalty, achieves the best 
FID score (0.87) and highest classification metrics, 
confirming its effectiveness in generating realistic 
and temporally coherent skeletal sequences. Re-
moving the KL divergence term increases FID to 
0.90 and significantly reduces precision (95.19%) 
and F1-score (95.42%), indicating that this compo-
nent plays a key role in aligning real and generated 
data distributions. The drop in separability likely 
leads to less distinct or noisy motion patterns, af-
fecting both realism and consistency across frames. 
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Disabling the Wasserstein distance component also 
degrades performance (FID: 0.91), though recall re-
mains nearly unchanged (97.67%). This imply that 
while Wasserstein distance contributes to visual fi-
delity and sample diversity, the KL term is more crit-
ical for structural accuracy and sharpness in pose 
estimation. These findings validate our composite 
loss formulation, where each term addresses a spe-
cific challenge: KL divergence improves distribution 
alignment, Wasserstein distance enhances realism, 
and smoothness/gradient penalty ensure training 
stability and temporal coherence, which are essen-
tial properties for real-time rehabilitation guidance.

6. Comparative Study
The comparative analysis in Table 18 highlights the 
key differences between our proposed approach 
and existing solutions for rehabilitation exercises. 
As shown in the second column, prior methods fall 
into two main categories: vision-based and wear-
able- based. The majority of these approaches rely 
on classification techniques, providing feedback only 
after exercises are completed. While this method al-
lows for performance assessment, it fails to prevent 
patients from repeatedly executing incorrect move-
ments, which can slow down recovery or even cause 
further complications. Unlike these approaches, our 
proposed method offers real-time skeletal represen-
tation, providing patients with continuous guidance 
as they perform exercises. This feature ensures that 
incorrect postures and compensatory movements are 
immediately corrected, reducing the risk of long-term 
impairments. Rather than simply classifying move-
ments as correct or incorrect after execution, our 
system dynamically adjusts to the patient's real-time 
posture, ensuring that each movement aligns with 
the prescribed rehabilitation exercise. Furthermore, 
our method introduces a personalized and adaptive 
rehabilitation framework, in contrast to the static 
classification-based models used in prior works such 
as [5, 14, 17]. By integrating LSTM and ANN, our ap-
proach dynamically tailors exercises to each patient's 
unique characteristics enhancing rehabilitation effi-
ciency and effectiveness. Unlike conventional meth-
ods, which do not adapt to individual differences, our 
model evolves with the patient’s recovery trajectory, 
ensuring optimal exercise execution. Another key 
advantage of our approach is the precision of skeletal 
representation. While some vision-based models (e.g., 
[26] and [20]) employ CNNs and LSTMs for move-
ment classification, they lack interactive correction 
mechanisms. In contrast, our system actively guides 
the patient through the correct motion, minimizing 
the risk of compensatory movements. This level of 
precision, achieved through real-time motion track-
ing, significantly enhances rehabilitation outcomes. 
Additionally, our fully vision-based approach elimi-
nates the need for wearable sensors, addressing one 
of the major drawbacks of wearable-based methods. 
While wearables such as those in [21, 12, 3] provide 
precise motion tracking, they often introduce high 

Metrics With curriculum 
learning

Without curricu-
lum learning

FID 0.87 0.89

Accuracy 97.96% 97.32%

Precision 97.62% 96.41%

Recall 97.76% 96.85%

F1-score 97.69% 96.63%

Epochs 3150 3700

Table 17
Comparison of curriculum learning and standard learning 
techniques in TCGAN.

Table 17 compares the performance of TCGAN 
trained with and without curriculum learning. The 
model trained using curriculum learning achieves 
slightly better quantitative results across all met-
rics while requiring fewer training epochs (3150 vs. 
3700). This implies that curriculum learning en-
hances both convergence efficiency and the quality 
of motion generation. The observed improvement in 
classification metrics indicates that introducing ex-
ercises progressively, from simpler to more complex 
movements, enables the generator to learn smoother 
and more realistic skeletal transitions. This staged 
learning approach mitigates early overfitting to com-
plex motion patterns and contributes to more stable 
training dynamics. Additionally, curriculum learning 
improves generalization by ensuring balanced ex-
posure to various exercise types through stratified 
sampling, as detailed in Section 3.4. The reduction in 
required epochs further implies faster convergence 
without compromising realism or accuracy, thereby 
increasing computational efficiency during training.
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costs, discomfort, and usability challenges, making 
them less practical for long-term rehabilitation. Un-
like hybrid systems such as [14], which combine vi-
sion and wearable data but still rely on post-exercise 
classification, our approach ensures seamless, hard-
ware-free deployment, making it more scalable and 
accessible for home-based and tele- rehabilitation 
settings. By combining real-time correction, person-
alized adaptation, and a hardware-free setup, our ap-
proach significantly improves rehabilitation efficien-
cy. Patients receive instant feedback, allowing them 
to correct mistakes immediately rather than waiting 
for post-exercise evaluations. This not only enhanc-
es patient autonomy but also accelerates recovery by 
ensuring that each movement is performed correctly 
from the outset.

7. Conclusion
In this study, a TCGAN-based motion generation 
system for post-stroke physical rehabilitation exer-
cises has been proposed. Unlike conventional classi-
fication-based methods that provide only post-exer-
cise evaluations, our approach introduces real-time 
skeletal motion generation, ensuring continuous 
guidance and correction throughout the rehabili-

Reference Data acquisition Used technique Method

[26] Vision Classification Temporal Convolutional Network

[5] Vision Classification GCN

[21] Wearable Classification CNN

[14] Vision/Wearable Classification ResNet3D-50, MLPMixer, Transformer encoders

[12] Wearable Classification Fully Connected Neuronal Network, LSTM

[23] Wearable Classification CNN

[3] Wearable Classification SVM

[29] Wearable Classification 1D CNN

[16] Vision Classification DT, LR, SVM, LSTM, Artificial Neural Network

[17] Vision Classification DT, LR, SVM, LSTM, Feedforward Neural Network

[20] Vision Classification CNN, LSTM

Proposed 
approach Vision

Creation of tailored  
exercise to be mimicked 

by the patient
LSTM, Artificial Neural Network

Table 18
Comparison of the proposed approach with the state-of-the-art.

tation session. By dynamically generating motion 
sequences adapted to each patient’s characteristics 
(such as height, posture, and positioning) our system 
enables precise and effective rehabilitation, reducing 
the likelihood of incorrect or compensatory move-
ments that may hinder recovery.
The experimental results confirm the high accuracy 
and realism of the generated skeletal sequences, with 
a FID score of 0.87, demonstrating a strong similarity 
between synthetic and real motion data. Furthermore, 
our comparative analysis with state-of-the- art reha-
bilitation techniques highlights the superiority of our 
approach in terms of real- time correction and person-
alized movement adaptation, leading to more effective 
rehabilitation outcomes. Additionally, evaluations us-
ing machine learning classifiers further validate the 
quality of the generated exercises, showing that they 
closely resemble real human movements. The reduc-
tion of compensatory movements observed in patient 
trials underscores the practical benefits of our system 
in ensuring proper rehabilitation execution.
Future work will focus on expanding the system to 
support a broader range of rehabilitation	 exercises,	
enhancing adaptability to diverse patient profiles, 
and integrating additional patient data, such as EMG 
signals or biomechanical feedback, to improve mo-
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tion accuracy. Clinical validation through extensive 
trials with stroke patients will be crucial to assess 
long-term effectiveness, usability, and safety in real- 
world rehabilitation settings. Additionally, refining 
real-time feedback mechanisms and introducing 
adaptive difficulty levels will ensure that rehabili-

tation exercises evolve with the patient’s progress, 
making the system more responsive to individual 
needs. We will also focus on modelling patient- spe-
cific factors, such as fatigue and motor learning, with 
adaptive mechanisms to adjust guidance based on 
performance and progress.
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