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Quantization reduces model storage by representing model in low bits. It can help to improve the applica-
tion capability of transformer-based large models and make them possible to be deployed on resource-lim-
ited systems such as PCs and mobile devices. The best weight-only quantization method currently is to use 
second-order information to fine-tune the weight step by step during the quantization process, compensat-
ing for the quantization errors that have occurred. The method can minimize the functional loss of weight 
due to quantization by adjusting the remaining elements through algebraic transformations in each step. 
However, the performance of this quantization method will deteriorate rapidly when the adjustment for 
weight deviates too far from the starting point, especially in low-bit quantization (e.g. 4 bits or fewer). To 
meet the mathematical prerequisite of this method in the quantization, this paper introduces two parame-
ters α, β to adjust the quantization range based on the second-order method, and presents three approaches 
to seek their optimal values. The experimental results show that the performance of the proposed method 
significantly outperforms the original second-order method in low-bit quantization. The code of this paper 
is available on github.com/t-scen/ORPTQ. 
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1. Introduction
In recent years, transformer-based large models 
have shown outstanding performance in fields such 
as natural language processing and image processing 
[1, 3, 20]. With increasing model parameters, these 
large models can handle some highly complex tasks 

[5, 26]. Although the pre-training model technolo-
gy can alleviate the requirements of model training 
resources, large models still face problems in heavy 
reasoning and storage requirements, which limit 
their practical applications.
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Model compression, aimed at reducing model de-
ployment and application resource requirements, 
mainly includes model quantization, model pruning, 
and knowledge distillation.
Model quantization is a low-bit precision technol-
ogy that stores floating-point model parameters in 
integer or smaller byte data types. It can significant-
ly reduce storage requirements and speed up model 
reasoning when combined with specific hardware. 
The main focus of model quantization research is to 
minimize quantization loss while reducing storage 
size, which can be divided into quantization-aware 
training (QAT) technology and post-training quanti-
zation (PTQ) technology.
QAT quantizes the model during training with com-
plete training data, where all weights and quanti-
zation parameters are optimized together. In this 
way, the model parameters can better adapt to the 
information loss caused by quantization. The per-
formance of this technology is generally higher than 
that of PTQ [17, 25]. However, QAT needs to insert 
quantization nodes into the original model and re-
train the model. Except for the QAT technology ap-
plied to BERT currently, there is little research on 
conducting QAT on large language models due to the 
huge training overhead [2, 7, 31].
PTQ is a quantization technology applied to 
pre-training models. It can avoid the high cost of the 
model training process and is easy to implement, 
making it more popular at present. PTQ can be fur-
ther divided into weight quantization and activation 
quantization.
For transformer-based pre-trained models, the 
weight layers are fixed, while the activation layers 
are computed during inference and depend on the 
model inputs and weight layers. Activation quanti-
zation aims to reduce the memory overhead required 
for storing activation values and improve inference 
efficiency. To achieve this, it is essential to under-
stand the distribution of activation values. Dynamic 
quantization collects activation values from hidden 
layers during the model inference process and com-
putes their distribution in real time. In contrast, 
static quantization uses a calibration dataset to in-
fer activation value distributions prior to inference, 
which are then used to quantize activation layers 
during actual inference. Handling outliers is a key 
technique for reducing activation quantization er-

rors. Typical approaches include per-channel scal-
ing transformations (e.g. SmoothQuant [29]), chan-
nel clustering rearrangement (e.g. RPTQ [30]), and 
adaptive channel reorganization (e.g. QLLM [15]).
Weight quantization is the primary task of model 
quantization and forms the foundation for activa-
tion quantization. Early weight quantization meth-
ods mainly focused on handling of outliers.
GPT.int8() found that a small number of very im-
portant outliers will appear when the model scale 
becomes larger. By detecting these outliers and han-
dling them separately, quantization performance 
can be improved [6].
For handling outliers, Outlier Suppression [28] 
found that the gamma values of LayerNorm amplify 
outliers in the output and cause significant quanti-
zation errors and shifted them to the next module. 
Outlier Suppression+ [27] explored a more accu-
rate outlier suppression solution with channel-level 
shifting and scaling functions, which helps to adjust 
the range of different activation channels and re-
duce outliers. However, while handling outliers can 
improve quantization performance, it also leads to 
additional storage overhead and increases computa-
tional complexity. Moreover, it is difficult to deter-
mine when this technique has reached its limit.
Optimization-based quantization can avoid the 
above problems. The optimal quantization can be 
achieved by minimizing the evaluation function. 
There are two types of evaluation function: one 
based on similarity and the other on functionality.
The similarity-based evaluation function calculates 
the similarity between the original weights and the 
quantized weights, whereas cosine similarity is used 
in most cases. The higher the similarity, the better 
the quantization. The functional evaluation func-
tion, which evaluates quantization based on its in-
ference performance, is more direct and effective, 
making it the main evaluation function in optimiza-
tion-based weight quantization.
The best weight-only quantization method current-
ly is an optimization-based algorithm with func-
tional evaluation on second-order information [9]. 
It quantizes the vector values per element and min-
imizes the functional loss of the vector due to quan-
tization by adjusting the remaining elements. The 
underlying mathematical framework of this method 
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is based on a second-order Taylor expansion and an 
approximation using the Hessian matrix, which as-
sumes that the adjustment range must be confined 
to a small neighborhood around the starting point. 
However, the optimization conditions upon which 
this method is based are sensitive to the starting 
point, particularly in low-bit quantization. When 
the starting point deviates, the quantization perfor-
mance will deteriorate rapidly.
In this paper, we introduce a set of parameters to 
adjust the quantization range based on the sec-
ond-order method, ensuring a better starting point. 
We propose three approaches to obtain the optimal 
values for these parameters. Experimental results 
show that the quantization performance in low-bit 
quantization such as 4 bits or less can be notably im-
proved by adjusting the quantization range in com-
parison with the baseline. The main contributions of 
the paper are:
1 Analyzing the reason for the performance degra-

dation of the current second-order quantization 
method in low-bit quantization.

2 Proposing an optimization-based solution to the 
performance degradation and attempting three 
different optimization algorithms to solve the 
problem.

The rest of the paper is organized as follows. Sec-
tion 2 reviews the related work on the second-or-
der quantization algorithm. Section 3 describes the 
proposed method in detail. Section 4 presents the 
experimental design and results. Finally, Section 5 
concludes the paper.

2. Related Work
Treating model quantization as an optimization 
problem is essential to study quantization systemat-
ically. In quantization of NN networks such as Res-
Net and Inception, Yoni et al. took the mean square 
deviation of the quantized weight multiplied by a 
scaling factor and the original weight as a loss func-
tion and obtained the optimal scaling factor through 
a one-dimensional accurate search [4]. Adaround 
[19] added a parameterized rounding function in 
quantization, taking the L2 norm of the quantized 
weight layer output and the original weight layer 
output as the loss function, and using the gradient 

descent method to minimize the loss function to ob-
tain the rounding parameter.
GPTQ is one of the first methods that successfully 
used optimization technology to quantize the trans-
former-based large models. The core of GPTQ is to 
utilize second-order information. The basis of GPTQ 
is OBS [12], which is a model compression frame-
work proposed in 1993. The basic principle of OBS 
is to greedily modify the weight vector per element 
and use second-order information to adjust the un-
modified elements to compensate for the task loss of 
the modified elements. Compared with OBS, GPTQ 
first gives up the greedy strategy and thus avoids the 
sorting operation. Secondly, the per-element modifi-
cation is improved to a per-batch modification, and 
the matrix operation is introduced to improve the 
efficiency of the algorithm. Furthermore, it also im-
proves the inversion of the Hessian matrix. Current-
ly, GPTQ has become one of the best weight quanti-
zation methods for large model optimization.
On the basis of GPTQ, SpQR [8] finds some char-
acteristics of the location distribution of sensitive 
weight values through statistics and carries out 
special processing for sensitive value groups and 
individual outliers, and uses different precision to 
quantize the weight separately. OWQ [13] uses the 
product of the root mean square error of the weight 
vector and the diagonal elements of the correspond-
ing Hessian matrix to filter the sensitive columns 
in the weight matrix, and quantizes and stores the 
sensitive columns separately. APTQ [11] takes a fur-
ther step on GPTQ using the output of each atten-
tion layer instead of the output of the linear layer 
to adjust the weight. VPTQ [16] is oriented towards 
very low-bit quantization scenarios. The per-col-
umn scale matrix operation of GPTQ is changed to 
a vector operation, and the quantization results are 
clustered and saved in a codebook. On the basis of 
VPTQ, CLAQ [24] uses three different column-level 
strategies to improve the quantization performance 
of low bits. In addition, AWQ [14] uses the activation 
value to find the important weight and multiply it by 
the parameter scale, and uses the search method to 
determine the best scale.
These works have extended the original GPTQ  from 
different parts. However, they also suffer some inher-
ent disadvantages of second-order methods, where 
performance deteriorates when the adjustment ex-
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ceeds the range. The paper analyzes the reasons for 
the performance degradation of the second-order 
methods and proposes solution based on regulating 
parameters to address it.  OmnitQuant [22] similarly 
used the regulating parameters, but those parame-
ters were used for different purposes.

3. Methods
3.1 Background
Transformer-based models are usually stacked by 
multiple encoder and decoder layers. For every en-
coder or decoder layers, they are mainly composed 
of multi-head attention blocks, feedforward blocks, 
normalized blocks, and activation blocks, etc. The 
linear components in these blocks, which contain 
trainable parameters, are of great importance. Let us 
take a look into a typical encoder layer with matrix 
input  and output .
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, (1)

where
out1=activation(layer_norm(in+multi_head(in))).
The multi-head attention blocks and feedforward 
blocks contain principal linear components of a 
transformer-based model. The multi-head atten-
tion blocks are concatenated up with multiply at-
tention heads and each attention head is a function 
of linear components such as Query, Key and Value 
layer. The feedforward blocks themselves are basic 
linear components. The values of the learnable pa-
rameters W of the linear component should be the 
best for a pre-trained transformer-based model to 
infer on target tasks and be stored fixedly. When a W 
is replaced with a quantization value Wq, the quan-
tization error occurs and spreads forward, leading 
to a loss in model precision. Our goal is to minimize 
the loss to achieve good quantization performance. 
Cosine similarity was early used to measure the dif-
ference between W and Wq. However, a higher cosine 
similarity does not guarantee less model precision 
loss. In contrast, measuring the difference between 
the outputs of the linear components corresponding 
to W and Wq is more reasonable. This is because the 
output of a layer is the only data passed to the next 

layer, and the parameter W of a linear layer only af-
fects the output of that layer.
By minimizing the difference between the outputs 
of the linear components with respect to W and Wq, 
the model precision loss can be reduced. For each 
layer, an optimization problem can be formulated 
as follows.
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where
in denotes the input of the linear component;
W denotes the weight of the linear component, 
which has been trained; 
Wq denotes the quantization value of W, which is the 
optimizable parameter in the problem.
One of the best approaches to this problem is the 
step-by-step optimization approach based on sec-
ond-order information adopted by GPTQ. Let W0 
denote the weight value of a given linear component 
of a pre-trained model, which is the initial value of 
the parameter W. Let L(W0) denote the precision 
loss of the linear component with respect to W0, and 
L(W) denote the precision loss of the linear compo-
nent with respect to the parameter W, According to 
the functional Taylor series formula, the following 
Equation (3) is true when the value of W is close to W0.
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where
δW = W – W0, and H is the Hessian matrix respect to δW.
Solving Equation (2) is equivalent to minimizing 
the Loss in Equation (3), which is a convex opti-
mization problem with a closed-form solution. To 
satisfy the prerequisites that the value of W must 
be close to W0, the OBS algorithm sets the initial 
value of W to W0 and modifies it gradually, making 
only minor changes each step. The GPTQ enhances 
the algorithm by replacing greedy-order quantiza-
tion with an arbitrary order, introducing lazy batch 
updates, and employing a Cholesky reformulation, 
thus promoting the efficiency of the method to 
adapt for the transformer-based models. In theory, 
this method can achieve the ultimate performance 
of quantification.
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However, it is essential to ensure that the prerequi-
sites of Equation (3) are met in the quantization pro-
cess. If the modified W in any step deviates too much 
from W0, the GPTQ algorithm will not achieve the 
best quantization. Instead, it may get an even worse 
quantization than that of the standard quantization 
algorithm. When in low-bit quantization, such as 4 
bits or below, the quantization errors become larger, 
and those deviations may occur commonly.
Based on the observation above, we introduce a pa-
rameterized quantization formula for W0, By using 
optimization approaches, we make the quantized W 
as close as possible to W0 to ensure quantization per-
formance.

3.2 Method
The overview of our proposed approach is shown 
in Figure 1. For each linear layer of a transform-
er-based large model, we quantize the weight using 
a parameterized formula and obtain the output of 
that layer with quantization weight. By minimizing 
the loss of this output relative to the output of the 
same layer without quantization, we can obtain the 
optimal quantization parameters. Those optimal 
quantization parameters were used to quantize the 
weight of that linear layer in a stepwise way based 
on second-order information. The impact of param-
eters α and β on quantization performance is shown 

in the upper right corner of Figure 1. The param-
eters α and β are real values between [0, 1]. When 
multiplying them onto the min and max values of 
the weight respectively, the quantization range is re-
duced, resulting in higher quantization accuracy for 
each element in the new range. However, elements 
outside the new quantization range will be treated 
as outliers, resulting in lower quantization accuracy. 
This is a contradiction. We aim to achieve the best 
overall quantization performance by adjusting the 
parameters α and β. By introducing parameters α, β, 
we actually adjust the quantification range and sup-
press outliers in a weight.
The quantization formula of W0 is defined in Equa-
tion (4) below.
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As mentioned above, the best values of α, β are the 
values that minimize the deviation between W and 
W0. To determine α, β, we define an optimization 
problem in the following.

Figure 1
The overview of the proposed approach.

 
 

 

quantization performance. 

3.2 Method 

The overview of our proposed approach is 
shown in Figure 1. For each linear layer of a 
transformer-based large model, we quantize the 
weight using a parameterized formula and 
obtain the output of that layer with quantization 
weight. By minimizing the loss of this output 
relative to the output of the same layer without 
quantization, we can obtain the optimal 
quantization parameters. Those optimal 
quantization parameters were used to quantize 
the weight of that linear layer in a stepwise way 
based on second-order information. The impact 

antization 
performance is shown in the upper right corner 

of Figure 
values between [0, 1]. When multiplying them 
onto the min and max values of the weight 
respectively, the quantization range is reduced, 
resulting in higher quantization accuracy for 
each element in the new range. However, 
elements outside the new quantization range will 
be treated as outliers, resulting in lower 
quantization accuracy. This is a contradiction. 
We aim to achieve the best overall quantization 

 
adjust the quantification range and suppress 
outliers in a weight. 

The quantization formula of W  is defined in 
Equation (4) below. 

 

 
Figure 1 The overview of the proposed approach. 

 

W = + zero                     (4) 

with 

Scale =
Max(W) Min(W)

2 1
,     zero

=
Min(W)

Scale
,      , (0,1) 

As mentioned above, the best values of ,  are 
the values that minimize the deviation between 
W  and W . To determine , , we define an 
optimization problem in the following. 

,  =  arg min
,  

in W in W             (5) 

We present three approaches to solve the 
problem in Equation (5) and then obtain the best 
values of the parameters , : gradient-based 
optimization approach, PSO-based optimization 

approach, and Golden section linear search 
approach. 

3.2.1 Gradient-based Optimization Approach 

An optimization problem is defined for each 
linear layer of the model as in Equation (5), 
where W  is calculated using the formula in 
Equation (4). To make  ,  within the bound 
of (0,1) and simplify the calculations, ,  are set 
to the value of a sigmoid function, respectively. 

A small calibration dataset containing 128 
samples is used to generate input for each linear 
layer. For a pre-trained model, the calibration 
samples are fed into the first layer and the input 
of each linear layer is obtained using a hook 
technique. The input of each layer is then used to 
calculate two outputs: one corresponding to the 
original W, and the other corresponding to W . 
The model is temporarily set to full precision and 
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(5)

We present three approaches to solve the problem 
in Equation (5) and then obtain the best values of 
the parameters α and β: gradient-based optimization 
approach, PSO-based optimization approach, and 
Golden section linear search approach.

3.2.1 Gradient-based Optimization Approach
An optimization problem is defined for each lin-
ear layer of the model as in Equation (5), where W0 
is calculated using the formula in Equation (4). To 
make α and β within the bound of (0,1) and simplify 
the calculations, α and β are set to the value of a sig-
moid function, respectively.
A small calibration dataset containing 128 samples is 
used to generate input for each linear layer. For a pre-
trained model, the calibration samples are fed into 
the first layer and the input of each linear layer is ob-
tained using a hook technique. The input of each layer 
is then used to calculate two outputs: one correspond-
ing to the original W, and the other corresponding to 
W0. The model is temporarily set to full precision and 
an AdamW optimizer is employed to minimize MSE-
Loss between the two outputs by the gradient. To 
make the gradient of the function round(x) calculable, 
a straight-through estimator is used.

3.2.2 PSO-based Optimization Approach
Particle swarm optimization (PSO) is a stochastic 
optimization algorithm that belongs to the class of 
evolutionary algorithms. It seeks for the global op-
timal solution by population cooperation without 
much requirements for functional form, which can 
be applied to a wide range of optimization problems.
We used the PSO approach to find the optimal values 
of  α and β within the bounds of (0,1) by two steps. In 
the first step, we seek the optimal value of α by fix-
ing the value of β to 1. In the second step, we seek the 
optimal value of β by fixing the value of α to the op-
timal value obtained in the first step. In each step, a 
population of particles is randomly generated with-
in the interval (0,1) uniformly. Then each particle 
is evaluated and updated according to the PSO for-
mula iteratively. The evaluation function is defined 
as MSELoss between the two outputs similarly. We 
seek optimal values over the inputs provided by the 

calibration samples and use the averages as the final 
optimal values.

3.2.3 Golden-Section Linear Search Approach
The Golden-Section linear search algorithm is a 
one-dimensional search algorithm designed for un-
constrained optimization problems. As mentioned 
above, one-dimensional search algorithm was used 
in NN quantization [17]. The core of the Golden-Sec-
tion linear search algorithm is to reduce the search 
interval according to the Golden-Section ratio. The 
new search interval is then determined on the basis 
of a comparison of function values, and the search 
range is progressively narrowed until the termina-
tion conditions are met. This algorithm is applicable 
to any unimodal function, whether continuous or 
differentiable. If the objective function in this work 
is a unimodal function, this approach will theoreti-
cally be the most efficient.

4. Experiments
We conducted several experiments to verify the ef-
fectiveness of the α and β parameters and the opti-
mization approaches. Since techniques on high-bit 
quantization such as 8 bits and higher are already 
very good, the experiments in this work mainly fo-
cus on low-bit quantization such as 4 bits, 3 bits and 
2 bits.

4.1 Experimental Setup
Models.
We choose opt [32] and Llama-2 [23] models to car-
ry out the experiment. Those two models are typical 
transformer-based large language models that are 
used extensively to evaluate quantization techniques.
Both OPT and Llama have multiple versions, vary-
ing in the number of parameters, but all versions 
consist of the same basic modules. For conve-
nience, we used the OPT-6.7B and Llama2-7B ver-
sions in the experiments.
Evaluation.
We evaluate the quantization techniques on the two 
models by reporting the perplexity of the language 
generation experiments, as done in previous works 
[8, 9]. The perplexity scores are tested on Wiki-
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Text2[18] and C4 [21]. 128 samples from C4 are also 
chosen as calibration data for the GPTQ method, as 
the original GPTQ does. In this paper, we also used 
those 128 samples as input data to obtain the optimal 
values of the parameters α and β. We use the lm-eval-
uation-harness [10] to evaluate the accuracy of the 
model, and four tasks such as ARC-Easy, ARC-Chal-
lenge, PIQA, WINOGRANDE are selected.
Baselines.
The original GPTQ method is chosen as the baseline to 
compare with the proposed technique. And the plain 
vector-wise quantization method is used as another 
baseline, which quantizes the weight asymmetrically.
Implementation details.
In the gradient-based optimization approach 
(AdamW-GPTQ), the learning rate of the AdamW 
optimizer is set to 0.01, and the training epoch is set 
to 3. The initial values of the parameters α and  β are 
set to sigmoid(4).
In the PSO-based optimization approach (PSO-
GPTQ), the velocity of a particle is determined by 
three parts: the original velocity of the particle, the 
distance between the current position of the particle 
and the best position of all particles. The factor of the 
first part is ω, which varies by iterations from an ini-
tial value to an end value. The initial value is set to 0.9 
and the end value is set to 0.4 to let the importance of 
the original velocity of the particle decrease gradual-

ly. The factors of the second part and the third part are 
set to a random decimal in [0,1], divided by 5.0 to make 
them balanced. The iteration loops are set to 8.
In the Golden-Section linear search approach (GS-
GPTQ), the interval gradually decreases from the 
initial interval by the golden ratio until the interval 
is less than the threshold or the maximum iteration 
times is reached. The threshold is set to 0.05 and the 
maximum iteration loops is set to 20.

4.2 Experimental Results

We first test the perplexity performance of the three 
approaches in low-bit quantization of 4 bits, 3 bits, 
and 2 bits, respectively, and compare them with the 
original GPTQ algorithm. This experiment is done 
to verify the improvement of the generation perfor-
mance of proposed approaches in low-bit quanti-
zation. The above three approaches combined with 
the primary quantization algorithm, are denoted as 
“AdamW-GPTQ”, “PSO-GPTQ”, and “GS-GPTQ”, 
respectively. The results are shown in Table 1 below.
We test accuracy performance of the three approach-
es in low-bit quantization of 4 bits, 3 bits, and 2 bits, 
respectively, and compare them with the original 
GPTQ algorithm. This experiment is done to verify 
the improvement of the prediction performance of 
proposed approaches in low-bit quantization. The 
results are shown in Table 2 below.

Bits Method OPT-Wiki OPT-C4 Llama-Wiki Llama-C4

4

GPTQ 11.40 12.52 6.09 7.24

AdamW-GPTQ 11.18 12.42 6.06 7.18

PSO-GPTQ 11.38 12.50 6.12 7.14

GS-GPTQ 11.55 12.60 9.04 15.62

3

GPTQ 15.05 16.21 10.17 10.59

AdamW-GPTQ 14.84 15.46 8.08 9.95

PSO-GPTQ 13.51 14.61 8.05 8.90

GS-GPTQ 14.76 15.87 9.35 13.88

2

GPTQ 2867.96 204.46 3923.19 916.15

AdamW-GPTQ 105.88 85.26 1586.72 295.98

PSO-GPTQ 180.58 60.46 4178.87 251.48

GS-GPTQ 163.06 69.67 194.12 20.83

Table 1 
Perplexity scores of proposed approaches compared with original GTPQ.
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From Table 1 and Table 2, we can see that the pro-
posed approaches almost exceed the baseline in all 
three types of quantization in both perplexity and 
accuracy. The best score outperforms the baseline 
in all three types of quantization. The perplexity of 
4 bits, 3 bits and 2 bits gains average decreases with 
1.21%, 13.36% and 95.18%, respectively, and the ac-
curacy gains average increases with 1.82%, 4.20% 
and 18.25%, respectively.
We also test the performances of the three ap-
proaches without GPTQ in low-bit quantization and 
compare them with the primary quantization algo-
rithm. The purpose of the experiment is to conduct 
ablation experiment. By comparing with the previ-
ous experiments, it can be seen the effectiveness of 
the GPTQ and the proposed method in this paper.
The formula of the primary quantization algorithm, 
which is denoted as “Plain”, is shown below.
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Table 2 
Accuracy scores of proposed approaches compared with original GTPQ.

Bits Method
ARC-Easy ARC-Challenge PIQA WINORANDE

Average
Opt Llama Opt Llama Opt Llama Opt Llama

4

GPTQ 0.641 0.7471 0.2995 0.4113 0.7552 0.7617 0.6298 0.6827 0.616

AdamW-GPTQ 0.6549 0.7172 0.2986 0.384 0.7601 0.7699 0.6551 0.778 0.6272

PSO-GPTQ 0.6423 0.7437 0.3029 0.4104 0.7552 0.7758 0.6448 0.6914 0.6208

GS-GPTQ 0.6406 0.6178 0.2944 0.3225 0.753 0.6779 0.6527 0.6806 0.5799

3

GPTQ 0.6098 0.6599 0.2782 0.343 0.7334 0.7231 0.6022 0.6219 0.5714

AdamW-GPTQ 0.6233 0.6822 0.2892 0.3464 0.747 0.7427 0.6267 0.6504 0.5884

PSO-GPTQ 0.6174 0.7155 0.2799 0.3797 0.7476 0.753 0.6227 0.6472 0.5954

GS-GPTQ 0.6115 0.5774 0.2841 0.2875 0.7481 0.6703 0.6219 0.618 0.5524

2

GPTQ 0.303 0.2652 0.186 0.215 0.5582 0.5098 0.5012 0.4902 0.3786

AdamW-GPTQ 0.3965 0.2559 0.1928 0.2201 0.611 0.5185 0.6083 0.4728 0.4095

PSO-GPTQ 0.3775 0.2559 0.1928 0.2201 0.611 0.5185 0.6083 0.4728 0.4095

GS-GPTQ 0.4205 0.4373 0.209 0.2159 0.6219 0.6284 0.5138 0.5351 0.4477

The values of α and β are both set to 1 for the primary 
quantization algorithm. The three approaches com-
bined with the primary quantization algorithm are 
denoted as “AdamW-Plain”, “PSO-Plain” and “GS-
Plain” respectively. The values of α and β for those 
approaches are determined by the optimization algo-
rithm of their own. 
We test the perplexity performance of the three ap-
proaches in low-bit quantization of 4 bits, 3 bits, and 
2 bits, respectively in this setting to verify the gen-
eration performance of those approaches in low-bit 
quantization. The results are shown in Table 3 below.
We test accuracy performance of those approaches in 
low-bit quantization of 4 bits, 3 bits, and 2 bits, respec-
tively to verify the of the prediction performance of those 
approaches. The results are shown in Table 4 below.
From Tables 3-4 we can see that the overall perfor-
mances of the methods combined with the “Plain” 
quantization algorithm are lower than those com-
bined with the “GPTQ” quantization algorithm. 
Meanwhile, in the “Plain” quantization settings, the 
proposed method also outperforms the base-line in 
all three types of quantization. The perplexity of 4 
bits, 3 bits and 2 bits gains average decreases with 
4.18%, 98.03% and 46.37%, respectively, and the ac-
curacy gains average increases with 1.13%, 25.49% 
and 0.11%, respectively.
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Bits Method OPT-Wiki OPT-C4 Llama-Wiki Llama-C4

4

Plain 12.10 13.84 6.12 7.61

AdamW-Plain 11.57 13.10 5.97 7.37

PSO-Plain 11.62 13.23 5.99 7.41

GS-Plain 11.91 13.37 10.66 16.71

3

Plain 5796.67 4669.35 524.91 413.01

AdamW-Plain 74.63 109.47 17.80 23.73

PSO-Plain 1918.43 1690.30 22.04 29.84

GS-Plain 154.17 226.63 39.37 64.75

2

Plain 28366.31 13320.24 17792.30 29628.09

AdamW-Plain 7095.70 4668.29 116479.00 131214.78

PSO-Plain 18262.62 10168.82 32986.38 37461.42

GS-Plain 9233.38 5330.62 18573.03 17452.04

Bits Method
ARC-Easy ARC-Challenge PIQA WINORANDE

Average
Opt Llama Opt Llama Opt Llama Opt Llama

4

Plain 0.6553 0.7403 0.291 0.413 0.759 0.7671 0.6417 0.6827 0.6188

AdamW-Plain 0.6515 0.7521 0.3097 0.4258 0.7557 0.7753 0.6472 0.689 0.6258

PSO-Plain 0.6406 0.75 0.3003 0.4232 0.7541 0.7758 0.6433 0.6764 0.6205

GS-Plain 0.6431 0.7096 0.3063 0.3712 0.7557 0.7476 0.6361 0.6361 0.6007

3

Plain 0.2567 0.3476 0.2116 0.2031 0.5277 0.58 0.5099 0.5201 0.3946

AdamW-Plain 0.487 0.5661 0.2005 0.2611 0.6415 0.6703 0.5209 0.5675 0.4894

PSO-Plain 0.3022 0.5118 0.1954 0.2628 0.549 0.6714 0.4783 0.562 0.4416

GS-Plain 0.4188 0.6242 0.1962 0.302 0.6115 0.7138 0.513 0.5817 0.4952

2

Plain 0.2639 0.2601 0.2167 0.2227 0.512 0.5223 0.4933 0.5154 0.3758

AdamW-Plain 0.2576 0.2521 0.2142 0.2201 0.5196 0.5272 0.4996 0.498 0.3736

PSO-Plain 0.2622 0.2639 0.2065 0.2184 0.5131 0.5174 0.4886 0.4783 0.3686

GS-Plain 0.2618 0.2555 0.2065 0.2227 0.5223 0.5316 0.4941 0.5162 0.3763

Table 3
Perplexity scores of approaches with the primary quantization algorithm.

Table 4 
Accuracy scores of approaches with the primary quantization algorithm.

By comparing with Tables 1-2, it can be seen that the 
GPTQ-based quantization methods generally perform 
much better than the primary quantization methods, 
which indicates that GPTQ has significant advantages 
over primary quantization algorithms. By introducing 
the adjustment parameters α and β, the performance 
of GPTQ is further improved. Figure 2 shows the per-

formance scores of Plain, GPTQ, AdamW-GPTQ and 
the best score of the three optimization approaches 
such as AdamW-GPTQ, PSO-GPTQ and RS-GPTQ. It 
can be seen that the performance improvements from 
primary quantization approach to GPTQ, and from 
GPTQ to AdamW-GPTQ. And the fewer quantization 
bits, the more significant the improvement.
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*(b) and (c) use a logarithmic scale on the y-axis (ln scale). The perplexity scores for ”Best” in the figures are 
derived from the best results of the three solution methods described above. 

Figure 2 Comparison of the performance of Plain, GPTQ, AdamW-GPTQ, and the Best. 

 

From the perspective of the optimization 
approaches, as in the “GPTQ” settings, we can 
see that the performance of the AdamW-GPTQ 
approach exceeds the baseline in all three types 
of quantization. The PSO-GPTQ approach   
performs well in most cases, especially in 3-bit 
quantization, where it gets the best score. 
However, in some cases, its performance is 
worse than the baseline. GS-GPTQ approach also 
exceeds the baseline in some cases, while its 
performance is more unstable. In the “Plain” 
settings, AdamW-Plain gets the best score in 
most cases of the three types of quantization. 
AdamW-Plain and PSO-Plain perform better 
than baseline in all cases. GS-Plain performs 
better than baseline in most cases. However, in 
some cases, it performs worse than the baseline. 
These results show that the objective function in 
Equation (5) is not a unimodal one but a much 
more complicated one. The gradient-based 
optimization approach and the PSO-based 
optimization approach are more suitable for that 
problem.  

From the quantization performance of the three 
optimization approaches, it can be seen that 
some good perplexity scores are obtained by GS-
GPTQ. It is not clear why other approaches are   
not able to obtain those good scores. But the most 
likely scenario is that all three approaches only 
obtain relative optimal values, not global optimal 
values. Although the proposed approaches 
achieve better performance than the baseline, 
there is still a requirement to find better 
optimization methods in the future. The 
experimental results also reflect some overfitting 
about the optimized value that is not positively 
correlated with the quantization performance, 
which needs further study. 

As a weight-only quantization approach, the 

proposed method can be easily integrated into 
other quantization technologies without 
negative impacts. 

 

5. Conclusion 
Second-order information-based quantization 
algorithm is one of the best weight-only 
quantization algorithms, which has been widely 
concerned and many algorithms have been 
developed on it. In response to the problem that 
the algorithm may experience a decrease in 
quantization performance due to not meeting 
optimization conditions, this paper introduces a 
set of parameters ,  to adjust the quantization 
range in the GPTQ algorithm and proposes three 
approaches to obtain the optimal values of , . 
The experimental results show that the optimal 
quantization range can further improve the 
quantization performance on the basis of the 
original GPTQ algorithm. 

There are still some issues need to be further 
addressed related to the paper. Specifically, how 
to check whether the quantized value is within 
the neighborhood during the step-by-step 
quantization process; Is there a method to best 
handle those quantized values that deviate from 
the neighborhood to maintain the second-order 
optimization condition. In addition, there is still 
much room for improvement in optimization 
algorithms. Optimization-based quantitative 
approaches are indisputable to have excellent 
development prospects, and these problems are 
expected to be addressed in forthcoming 
research. 
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clear why other approaches are   not able to obtain 
those good scores. But the most likely scenario is that 
all three approaches only obtain relative optimal val-
ues, not global optimal values. Although the proposed 
approaches achieve better performance than the base-
line, there is still a requirement to find better optimi-
zation methods in the future. The experimental results 
also reflect some overfitting about the optimized value 
that is not positively correlated with the quantization 
performance, which needs further study.
As a weight-only quantization approach, the pro-
posed method can be easily integrated into other 
quantization technologies without negative impacts.

5. Conclusion
Second-order information-based quantization al-
gorithm is one of the best weight-only quantization 
algorithms, which has been widely concerned and 
many algorithms have been developed on it. In re-
sponse to the problem that the algorithm may expe-
rience a decrease in quantization performance due 
to not meeting optimization conditions, this paper 
introduces a set of parameters α and β to adjust the 
quantization range in the GPTQ algorithm and pro-
poses three approaches to obtain the optimal values 
of α and β. The experimental results show that the 
optimal quantization range can further improve the 
quantization performance on the basis of the origi-
nal GPTQ algorithm.
There are still some issues need to be further ad-
dressed related to the paper. Specifically, how to check 
whether the quantized value is within the neighbor-
hood during the step-by-step quantization process; Is 
there a method to best handle those quantized values 
that deviate from the neighborhood to maintain the 
second-order optimization condition. In addition, 
there is still much room for improvement in optimi-

zation algorithms. Optimization-based quantitative 
approaches are indisputable to have excellent devel-
opment prospects, and these problems are expected 
to be addressed in forthcoming research.
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