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As intermittent kilns, shuttle kilns are often used in the production of daily-use ceramics. The tempera-
ture has a significant impact on the products inside the kiln, and currently, most shuttle kilns still rely on 
human observation of the flame to adjust the temperature, which has uncertainties and limitations. This 
paper proposes a real-time prediction method for kiln flame temperature based on 5G communication 
and CA-ResNet50 fusion network, which utilizes the low latency and high bandwidth characteristics of 
5G networks to collect real-time data and ensure the correspondence between flame images and tempera-
ture. And combine the CA (Coordinate attention) mechanism with the ResNet50 network to improve the 
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network's attention to flame image features, thereby enhancing prediction accuracy. The experimental re-
sults show that the proposed method can improve the accuracy of temperature prediction based on flame 
images, providing new ideas for temperature control in shuttle kilns.
KEYWORDS: Shuttle kiln, Attention mechanism, ResNet50, Deep learning

1. Introduction
Shuttle kilns are intermittent firing kilns that can 
meet the requirements of continuous large-scale 
production and small-scale intermittent production 
[24, 22]. They are commonly used thermal equip-
ment in the ceramic production process. The quality 
of ceramic products ultimately fired is closely related 
to the kiln firing process, and the firing atmosphere 
determines the final state of the product. Tempera-
ture is the first element in kiln firing, and the firing 
temperature for different products varies. The firing 
temperature for blue and white porcelain is general-
ly between 1250 and 1300 °C, while underglaze red 
needs to be completed at 1200-1270 °C. Therefore, 
precise control of the temperature inside the kiln is 
crucial for the quality of the products. At present, the 
method of determining temperature in shuttle kilns 
is to insert thermocouples into a certain part of the 
kiln to reflect the local temperature. In addition, kiln 
workers often observe flames through their own ex-
perience and use temperature measuring cones to 
determine the temperature inside the furnace. How-
ever, the above methods have significant deviations 
and low efficiency in determining the temperature in 
the kiln. Subsequently, researchers proposed using 
PID technology to achieve kiln control for tempera-
ture intelligent detection [7, 23], but this method has 
low accuracy and complex parameter adjustment in 
the case of constantly changing temperatures.
With the development of deep learning networks, 
using neural networks to adjust the parameters in 
the network and learn the relationship between 
image features and data has become a widely used 
method, such as [20, 3]. These methods use collect-
ed datasets and labels to train neural networks and 
fit the relationships between data. However, due to 
the low clarity of the collected images and the delay 
between data, the trained models have poor perfor-
mance. Transmission rate and data quality are im-
portant indicators in real-time image acquisition. 
With the development of 5G network technology, 

transmission rate has far exceeded that of 3G and 4G 
networks, and the network delay is shortened from 
50 ms of 4G to less than 1 ms now, this enables the 
application of 5G technology in some image acqui-
sition and processing tasks, thereby achieving an 
improvement in safety and low-latency. For kiln fir-
ing, 5G technology can not only obtain high-quality 
flame images, but also ensure real-time acquisition 
of flame images and corresponding temperatures. In 
terms of flame feature learning, ResNet50 network 
is widely used in tasks such as image classification 
and recognition.   The residual block introduced in 
this structure can effectively solve the problem of 
gradient vanishing, thereby enabling the network to 
learn more complex features. Attention mechanism 
can allocate more weights to important features, im-
prove the network model's ability to capture key in-
formation, and thus enhance the detection and pre-
diction accuracy of the model. 
This paper proposes researching flame image tem-
perature prediction based on combining the CA-Res-
net50 network and 5G technology. By utilizing the 
low latency and high bandwidth characteristics 
of 5G network technology, accurate acquisition of 
flame images in kilns is carried out, and a high-defi-
nition and reliable dataset is established. Secondly, 
using neural network models and attention mecha-
nisms to assist in training, the corresponding rela-
tionship between images and temperature is fitted, 
fully reflecting the temperature of flame images in 
different states during firing, accurately grasping 
the temperature situation inside the furnace, and 
improving the production quality of products.

2. Related Work
There are many traditional flame image tempera-
ture detection methods, such as flame temperature 
detection based on spectral technique [17], quanti-
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tative schlieren technique [14], the light field cam-
era method [12], etc. These methods predict images 
by manually extracting features, which is complex 
and has significant errors. The current prediction of 
flame image temperature generally adopts a neural 
network-based prediction scheme, which to some 
extent compensates for the shortcomings of tradi-
tional methods and improves prediction accuracy. 
It learns the features of flame images, corresponds 
to temperature values in real data, forms a mapping 
relationship, and uses the powerful fitting ability of 
neural networks to fit the functional relationship be-
tween image features and temperature data, achiev-
ing more accurate prediction, such as CNN [11], 
GAN [1], VGG [15], transformer [19], etc. 
CNN networks are commonly used for image clas-
sification and prediction. Convolutional layers are 
used to automatically extract image features, and 
pooling layers are used to reduce the spatial dimen-
sion of features. Finally, fully connected layers are 
used for classification or regression, solving the 
problem of insufficient accuracy in traditional im-
age classification methods. ResNet50 is a variant 
of CNN, which solves the problem of degradation 
in deep neural network training [4]. As the depth of 
the network increases, traditional neural networks 
will encounter the problem of performance degra-
dation. This is because as the number of network 
layers increases, the gradient gradually disappears 
during back-propagation, resulting in ineffective 
training of the weights of shallow networks. Res-
Net50 solves this problem by introducing residual 
blocks, each of which contains a "skip connection" 
that allows information to be directly passed from 
early layers to later layers, thereby alleviating the 
problem of gradient vanishing. This structure al-
lows the network to be trained deeper while main-
taining performance without degradation. It has 
been widely used in computer vision tasks such as 
image classification, object detection, and image 
segmentation [13, 8, 2]. Attention mechanism is a 
method that allows neural networks to focus on im-
portant parts when processing data. It allows mod-
els to selectively allocate attention resources in 
input information, thereby improving performance 
for specific tasks. This mechanism mimics the way 
attention works in the human visual system, where 
humans selectively focus on a portion of all infor-

mation. For image tasks, it is a mechanism that 
focuses on local information of the image, such 
as a certain texture area in the image. As the task 
changes, the attention area often changes, and cur-
rently widely used attention mechanisms such as 
SENet [6], CBAM [21], CA [5], etc.
We adopt the CA attention mechanism and the Res-
Net50 network fusion algorithm. CA attention can 
be inserted into the network to improve the perfor-
mance of the network model, which can also better 
help the ResNet50 network model to more accu-
rately locate and recognize the target of interest in 
the image. In addition, to ensure low latency and 
data reliability during data collection, 5G network 
technology is used as the data collection method 
to record image status and corresponding tem-
perature values in real time. The collected data is 
preprocessed and divided into training and testing 
sets, which are provided to the neural network for 
training. Based on this, this article proposes a flame 
image temperature prediction method combining 
the CA-ResNet50 network and 5G technology. The 
CA attention mechanism is inserted into the de-
signed ResNet50 network to enhance the network's 
learning of image feature regions, which can better 
extract the position and spatial information of fea-
tures. Combined with the high-speed and low laten-
cy characteristics of 5G technology, it can achieve 
the collection and transmission of high-definition 
and real-time videos, thereby improving the accu-
racy of flame image temperature prediction.

3. Proposed Method
The algorithm framework proposed in this paper is 
shown in Figure 1. A 5G acquisition system is used 
to collect data from the shuttle kiln firing environ-
ment, obtaining high-definition flame images and 
corresponding temperature values. These data are 
fed into the CA-ResNet50 network model for train-
ing, learning the mapping relationship between the 
fitted data, and accurately predicting the tempera-
ture values of the flame images. Additionally, the 
loss function is used to adjust the parameters of the 
model to better approximate the true results. The 
following text will provide a specific introduction to 
the 5G acquisition system and CA-ResNet50 model.
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3.1. 5G Acquisition System
5G technology has faster data transmission speeds, 
enabling faster information collection, uploading, 
and sharing, better meeting the network speed re-
quirements of various scenarios in mobile oper-
ations. At the same time, the transmission of 5G 
networks can achieve a delay of less than a few mil-
liseconds, which allows for more real-time acqui-
sition of flame images, synchronized collection of 
temperature values, and reduction of training set 
errors in such network environments.
This project adopts 5G IoT Gateway technology as 
the data terminal device to achieve the collection 
and wireless transmission of kiln temperature data 
[18]. We use the Quectel RM500U module for data 
transmission, with a maximum upstream speed of 
900Mbps, the acquisition layer uses Modbus RTU/
TCP protocol. At the same time, we choose an indus-
trial camera with a resolution of 2448x2048 (5 mil-
lion pixels) to capture high-quality flame image.
In terms of data transmission, PTP (Precision Time 
Protocol) is used to achieve time synchronization be-
tween the camera and 5G DTU (Data Transfer Unit), 
and 5G URLLC (Ultra-reliable and Low Latency 
Communications) slicing technology is utilized to en-

Figure 1 
Overall network framework.
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5G networks can achieve a delay of less than a few 
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[18]. We use the Quectel RM500U module for data 
transmission, with a maximum upstream speed of 
900Mbps, the acquisition layer uses Modbus 
RTU/TCP protocol. At the same time, we choose 
an industrial camera with a resolution of 
2448x2048 (5 million pixels) to capture high-
quality flame image. 

In terms of data transmission, PTP (Precision Time 
Protocol) is used to achieve time synchronization 
between the camera and 5G DTU (Data Transfer 
Unit), and 5G URLLC (Ultra-reliable and Low 
Latency Communications) slicing technology is 
utilized to ensure priority transmission of key data. 
And then, 5G DTU will transmit the data from the 
kiln temperature controller to the cloud through a 
5G network and obtain temperature data samples. 
As shown in Figure 2, this project will connect the 
5G DTU to the furnace temperature controller and 
obtain real-time data. 
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5G data communication. 
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To optimize the ceramic firing process and 
improve the quality of ceramic products, industrial 
camera is used to capture the flame image of the 
firing atmosphere at the observation hole of the 
ceramic kiln during the entire firing process. Based 
on the uRLLC characteristics of the 5G network, 
real-time remote monitoring of the firing situation 
inside the kiln can be achieved, and relevant data 
can be extracted. The flame images and 
temperature information at each moment 
correspond one-to-one, establishing a sample of 
flame images and corresponding temperature data.

Figure 3 
Proposed CA-ResNet50 model framework. 
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3.2 CA-ResNet50 Prediction Network 
Model 
3.2.1 CA-ResNet50 Model Framework 
In order to improve the performance of the model, this 
paper combines the ResNet50 network with the CA 
attention mechanism. The CA attention mechanism is 
added before the convolution block in the ResNet50 
network, which automatically learns important 
information such as flame image color status. After the 
ID block, the attention module is also used to further 
process and emphasize key features. The CA-ResNet50 
network framework is shown in Figure 3, and the 
network adopts the ResNet50 structure as the main 
framework, which includes multiple processing stages. 
Firstly, the input flame image is preliminarily 
preprocessed by performing convolution, regularization, 
activation function, and max pooling calculations to 
extract low-level flame image features. Secondly, the 
extracted image features are input into the CA attention 
mechanism, where the network focuses on key image 
features. The CA module enhances the representation 
ability of features by using attention weights in both 
horizontal and vertical directions, guiding the network to 
focus on key areas. Specifically, the red channel (high 
temperature) may be strongly correlated with specific 
spatial locations (flame core), and CA can adaptively 
enhance the channel characteristics of these areas and 
transmit them to subsequent structures to strengthen 
attention to these features. The output results are 
transmitted to the conv block and ID block, allowing the 
network to change its dimensions. Their core function is 
to solve the gradient vanishing problem in deep networks 
through residual learning, while efficiently extracting 
multi-scale features, thereby improving the complexity 
and predictive ability of the model.  

After the continuous combination of attention and basic 
blocks, the feature maps extracted are transformed into 
prediction probabilities through average pooling and 
fully connected layers. Specifically, the feature maps are 

flattened into one-dimensional vector maps. Then 
map it to the probability space through a series of 
fully connected operations, and finally output the 
prediction result. 

3.2.2 Conv Block and ID Block  
The design of the Convolutional Block and the 
Identity Block enable ResNet50 to be deeper and 
easier to train, resulting in good performance in 
tasks such as image prediction. Their structures are 
shown in the following Figure 4. 

The main purpose of Identity Block is to deepen 
the depth of the network, which consists of three 
convolutional layers. The first and third 
convolutional layers are 1x1 convolutional layers, 
and the middle convolutional layer is 3x3 
convolutional layer. They are used to reduce the 
number of channels, restore the number of 
channels, and learn features, respectively. The 
input and output of this structure have the same 
dimension, and the input is directly added to the 
output through skip connections, retaining the 
information of the original input.  

Figure 4 
The network structure Identity Block and Conv 
Block.  
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Figure 5 
The network structure of the adopted CA attention. 

To optimize the ceramic firing process and im-
prove the quality of ceramic products, industrial 
camera is used to capture the flame image of the 
firing atmosphere at the observation hole of the ce-
ramic kiln during the entire firing process. Based 
on the uRLLC characteristics of the 5G network, 
real-time remote monitoring of the firing situation 
inside the kiln can be achieved, and relevant data 
can be extracted. The flame images and tempera-
ture information at each moment correspond one-
to-one, establishing a sample of flame images and 
corresponding temperature data. 

3.2. CA-ResNet50 Prediction Network Model
3.2.1. CA-ResNet50 Model Framework
In order to improve the performance of the model, 
this paper combines the ResNet50 network with the 
CA attention mechanism. The CA attention mech-
anism is added before the convolution block in the 
ResNet50 network, which automatically learns im-
portant information such as flame image color sta-
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tus. After the ID block, the attention module is also 
used to further process and emphasize key features. 
The CA-ResNet50 network framework is shown 
in Figure 3, and the network adopts the ResNet50 
structure as the main framework, which includes 
multiple processing stages. Firstly, the input flame 
image is preliminarily preprocessed by performing 
convolution, regularization, activation function, and 
max pooling calculations to extract low-level flame 
image features. Secondly, the extracted image fea-
tures are input into the CA attention mechanism, 
where the network focuses on key image features. 
The CA module enhances the representation ability 
of features by using attention weights in both hori-
zontal and vertical directions, guiding the network 
to focus on key areas. Specifically, the red channel 
(high temperature) may be strongly correlated with 
specific spatial locations (flame core), and CA can 
adaptively enhance the channel characteristics of 
these areas and transmit them to subsequent struc-
tures to strengthen attention to these features. The 
output results are transmitted to the conv block and 
ID block, allowing the network to change its dimen-
sions. Their core function is to solve the gradient 
vanishing problem in deep networks through resid-
ual learning, while efficiently extracting multi-scale 
features, thereby improving the complexity and pre-
dictive ability of the model. 
After the continuous combination of attention and 
basic blocks, the feature maps extracted are trans-
formed into prediction probabilities through aver-
age pooling and fully connected layers. Specifically, 
the feature maps are flattened into one-dimensional 
vector maps. Then map it to the probability space 
through a series of fully connected operations, and 
finally output the prediction result.

3.2.2. Conv Block and ID Block 
The design of the Convolutional Block and the Iden-
tity Block enable ResNet50 to be deeper and easier 
to train, resulting in good performance in tasks such 
as image prediction. Their structures are shown in 
the following Figure 4.
The main purpose of Identity Block is to deepen the 
depth of the network, which consists of three con-
volutional layers. The first and third convolutional 
layers are 1x1 convolutional layers, and the middle 
convolutional layer is 3x3 convolutional layer. They 

are used to reduce the number of channels, restore 
the number of channels, and learn features, respec-
tively. The input and output of this structure have 
the same dimension, and the input is directly added 
to the output through skip connections, retaining 
the information of the original input. 

Figure 4 
The network structure Identity Block and Conv Block. 
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ability of features by using attention weights in both 
horizontal and vertical directions, guiding the network to 
focus on key areas. Specifically, the red channel (high 
temperature) may be strongly correlated with specific 
spatial locations (flame core), and CA can adaptively 
enhance the channel characteristics of these areas and 
transmit them to subsequent structures to strengthen 
attention to these features. The output results are 
transmitted to the conv block and ID block, allowing the 
network to change its dimensions. Their core function is 
to solve the gradient vanishing problem in deep networks 
through residual learning, while efficiently extracting 
multi-scale features, thereby improving the complexity 
and predictive ability of the model.  

After the continuous combination of attention and basic 
blocks, the feature maps extracted are transformed into 
prediction probabilities through average pooling and 
fully connected layers. Specifically, the feature maps are 

flattened into one-dimensional vector maps. Then 
map it to the probability space through a series of 
fully connected operations, and finally output the 
prediction result. 

3.2.2 Conv Block and ID Block  
The design of the Convolutional Block and the 
Identity Block enable ResNet50 to be deeper and 
easier to train, resulting in good performance in 
tasks such as image prediction. Their structures are 
shown in the following Figure 4. 

The main purpose of Identity Block is to deepen 
the depth of the network, which consists of three 
convolutional layers. The first and third 
convolutional layers are 1x1 convolutional layers, 
and the middle convolutional layer is 3x3 
convolutional layer. They are used to reduce the 
number of channels, restore the number of 
channels, and learn features, respectively. The 
input and output of this structure have the same 
dimension, and the input is directly added to the 
output through skip connections, retaining the 
information of the original input.  

Figure 4 
The network structure Identity Block and Conv 
Block.  
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Figure 5 
The network structure of the adopted CA attention. 

The main function of the Convolutional Block 
structure is to adjust dimensions and achieve 
downsampling. Similar to the Identity Block struc-
ture, it uses two 1x1 convolutional layers and a 3x3 
convolutional layer in the middle. The difference is 
that it adds 1x1 convolution and regularization pro-
cessing during skip connections, thereby changing 
the dimensionality of the network. Through the 
deep network structure and residual learning of 
the ResNet50 network, complex features in flame 
images can be effectively captured. Flame images 
have higher resolution when passing through shal-
low networks, and can utilize more fine-grained 
feature information such as edges, textures, etc. 
Moreover, the receptive field overlap area corre-
sponding to each pixel in the feature map is also 
very small, which ensures that the network can 
capture more details in flame images. When per-
forming deep network feature extraction, as the 
number of downsamplings or convolution increas-
es, the receptive field gradually increases, and the 
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overlapping area between receptive fields also in-
creases. At this time, the information represented 
by the pixel points is the information of a region, 
and the obtained feature information is the fea-
ture information of this region or adjacent regions, 
which is relatively fine-grained and has low reso-
lution, but rich in semantic information. The net-
work improves the performance of the model in 
image recognition through a layer-by-layer feature 
extraction process.

3.2.3. CA Module
In addition, to enhance the learning ability of the 
model, the network can focus on the key areas of the 
flame image and introduce CA attention. The CA 
attention mechanism embeds position information 
into channel attention and calculates attention in 
two spatial dimensions (height and width), which 
can more accurately capture the spatial distribution 
features in the image and comprehensively capture 
the dependency relationships between features. It 
not only considers channel information but also 
direction-related position information, making up 
for the shortcomings of SE attention and CBAM 
methods. The network structure of the CA attention 
mechanism is shown in Figure 5.
In order to alleviate the loss of positional informa-
tion caused by global pooling in the network, chan-
nel attention is decomposed into two parallel feature 
encoding processes to effectively integrate spatial 
coordinate information into the generated attention 
map. Specifically, two global pooling operations were 
utilized to aggregate input features along both verti-
cal and horizontal directions, generating two feature 
maps containing direction-specific information. 

Figure 5 
The network structure of the adopted CA attention.
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The main function of the Convolutional Block structure 
is to adjust dimensions and achieve downsampling. 
Similar to the Identity Block structure, it uses two 1x1 
convolutional layers and a 3x3 convolutional layer in the 
middle. The difference is that it adds 1x1 convolution 
and regularization processing during skip connections, 
thereby changing the dimensionality of the network. 
Through the deep network structure and residual 
learning of the ResNet50 network, complex features in 
flame images can be effectively captured. Flame images 
have higher resolution when passing through shallow 
networks, and can utilize more fine-grained feature 
information such as edges, textures, etc. Moreover, the 
receptive field overlap area corresponding to each pixel 
in the feature map is also very small, which ensures that 
the network can capture more details in flame images. 
When performing deep network feature extraction, as the 
number of downsamplings or convolution increases, the 
receptive field gradually increases, and the overlapping 
area between receptive fields also increases. At this time, 
the information represented by the pixel points is the 
information of a region, and the obtained feature 
information is the feature information of this region or 
adjacent regions, which is relatively fine-grained and has 
low resolution, but rich in semantic information. The 
network improves the performance of the model in 
image recognition through a layer-by-layer feature 
extraction process. 

3.2.3 CA Module 
In addition, to enhance the learning ability of the model, 
the network can focus on the key areas of the flame 
image and introduce CA attention. The CA attention 
mechanism embeds position information into channel 
attention and calculates attention in two spatial 
dimensions (height and width), which can more 
accurately capture the spatial distribution features in the 
image and comprehensively capture the dependency 
relationships between features. It not only considers 
channel information but also direction-related position 
information, making up for the shortcomings of SE 
attention and CBAM methods. The network structure of 
the CA attention mechanism is shown in Figure 5. 

In order to alleviate the loss of positional information 
caused by global pooling in the network, channel 

attention is decomposed into two parallel feature 
encoding processes to effectively integrate spatial 
coordinate information into the generated attention 
map. Specifically, two global pooling operations 
were utilized to aggregate input features along both 
vertical and horizontal directions, generating two 
feature maps containing direction-specific 
information. These two feature maps are then 
encoded into two attention maps, each capable of 
capturing the long-range dependencies of the input 
feature map along a spatial direction, enhancing 
feature representation, and improving network 
learning of flame image features. This enables 
more accurate segmentation of flame images and 
focuses on the color states of the flame parts. The 
coordinate feature encoding can be represented by 
Equations (1)-(2), which perform average pooling 
along the height (H) and width (W) directions, 
respectively, to obtain horizontal and vertical 
features, x is the input feature map. 
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weights hg and wg are generated through 
convolution and activation function. The final 
output can be represented as 
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3.2.4 Loss Function 
After obtaining the prediction results, the loss 
function is optimized by comparing them with the 
true temperature corresponding to the flame image. 
In this paper, the mean square error loss function is 
used to optimize the network. The mean square 
error calculates the average square of the 
difference between the predicted temperature value 
and the actual temperature value, which is used to 
measure the accuracy of the model prediction. The 
calculation Equation (4) is as follows: 

Figure 6 
Flame images at different stages. 
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The main function of the Convolutional Block structure 
is to adjust dimensions and achieve downsampling. 
Similar to the Identity Block structure, it uses two 1x1 
convolutional layers and a 3x3 convolutional layer in the 
middle. The difference is that it adds 1x1 convolution 
and regularization processing during skip connections, 
thereby changing the dimensionality of the network. 
Through the deep network structure and residual 
learning of the ResNet50 network, complex features in 
flame images can be effectively captured. Flame images 
have higher resolution when passing through shallow 
networks, and can utilize more fine-grained feature 
information such as edges, textures, etc. Moreover, the 
receptive field overlap area corresponding to each pixel 
in the feature map is also very small, which ensures that 
the network can capture more details in flame images. 
When performing deep network feature extraction, as the 
number of downsamplings or convolution increases, the 
receptive field gradually increases, and the overlapping 
area between receptive fields also increases. At this time, 
the information represented by the pixel points is the 
information of a region, and the obtained feature 
information is the feature information of this region or 
adjacent regions, which is relatively fine-grained and has 
low resolution, but rich in semantic information. The 
network improves the performance of the model in 
image recognition through a layer-by-layer feature 
extraction process. 

3.2.3 CA Module 
In addition, to enhance the learning ability of the model, 
the network can focus on the key areas of the flame 
image and introduce CA attention. The CA attention 
mechanism embeds position information into channel 
attention and calculates attention in two spatial 
dimensions (height and width), which can more 
accurately capture the spatial distribution features in the 
image and comprehensively capture the dependency 
relationships between features. It not only considers 
channel information but also direction-related position 
information, making up for the shortcomings of SE 
attention and CBAM methods. The network structure of 
the CA attention mechanism is shown in Figure 5. 
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feature representation, and improving network 
learning of flame image features. This enables 
more accurate segmentation of flame images and 
focuses on the color states of the flame parts. The 
coordinate feature encoding can be represented by 
Equations (1)-(2), which perform average pooling 
along the height (H) and width (W) directions, 
respectively, to obtain horizontal and vertical 
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measure the accuracy of the model prediction. The 
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The main function of the Convolutional Block structure 
is to adjust dimensions and achieve downsampling. 
Similar to the Identity Block structure, it uses two 1x1 
convolutional layers and a 3x3 convolutional layer in the 
middle. The difference is that it adds 1x1 convolution 
and regularization processing during skip connections, 
thereby changing the dimensionality of the network. 
Through the deep network structure and residual 
learning of the ResNet50 network, complex features in 
flame images can be effectively captured. Flame images 
have higher resolution when passing through shallow 
networks, and can utilize more fine-grained feature 
information such as edges, textures, etc. Moreover, the 
receptive field overlap area corresponding to each pixel 
in the feature map is also very small, which ensures that 
the network can capture more details in flame images. 
When performing deep network feature extraction, as the 
number of downsamplings or convolution increases, the 
receptive field gradually increases, and the overlapping 
area between receptive fields also increases. At this time, 
the information represented by the pixel points is the 
information of a region, and the obtained feature 
information is the feature information of this region or 
adjacent regions, which is relatively fine-grained and has 
low resolution, but rich in semantic information. The 
network improves the performance of the model in 
image recognition through a layer-by-layer feature 
extraction process. 

3.2.3 CA Module 
In addition, to enhance the learning ability of the model, 
the network can focus on the key areas of the flame 
image and introduce CA attention. The CA attention 
mechanism embeds position information into channel 
attention and calculates attention in two spatial 
dimensions (height and width), which can more 
accurately capture the spatial distribution features in the 
image and comprehensively capture the dependency 
relationships between features. It not only considers 
channel information but also direction-related position 
information, making up for the shortcomings of SE 
attention and CBAM methods. The network structure of 
the CA attention mechanism is shown in Figure 5. 

In order to alleviate the loss of positional information 
caused by global pooling in the network, channel 
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feature representation, and improving network 
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focuses on the color states of the flame parts. The 
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along the height (H) and width (W) directions, 
respectively, to obtain horizontal and vertical 
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The main function of the Convolutional Block structure 
is to adjust dimensions and achieve downsampling. 
Similar to the Identity Block structure, it uses two 1x1 
convolutional layers and a 3x3 convolutional layer in the 
middle. The difference is that it adds 1x1 convolution 
and regularization processing during skip connections, 
thereby changing the dimensionality of the network. 
Through the deep network structure and residual 
learning of the ResNet50 network, complex features in 
flame images can be effectively captured. Flame images 
have higher resolution when passing through shallow 
networks, and can utilize more fine-grained feature 
information such as edges, textures, etc. Moreover, the 
receptive field overlap area corresponding to each pixel 
in the feature map is also very small, which ensures that 
the network can capture more details in flame images. 
When performing deep network feature extraction, as the 
number of downsamplings or convolution increases, the 
receptive field gradually increases, and the overlapping 
area between receptive fields also increases. At this time, 
the information represented by the pixel points is the 
information of a region, and the obtained feature 
information is the feature information of this region or 
adjacent regions, which is relatively fine-grained and has 
low resolution, but rich in semantic information. The 
network improves the performance of the model in 
image recognition through a layer-by-layer feature 
extraction process. 

3.2.3 CA Module 
In addition, to enhance the learning ability of the model, 
the network can focus on the key areas of the flame 
image and introduce CA attention. The CA attention 
mechanism embeds position information into channel 
attention and calculates attention in two spatial 
dimensions (height and width), which can more 
accurately capture the spatial distribution features in the 
image and comprehensively capture the dependency 
relationships between features. It not only considers 
channel information but also direction-related position 
information, making up for the shortcomings of SE 
attention and CBAM methods. The network structure of 
the CA attention mechanism is shown in Figure 5. 
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caused by global pooling in the network, channel 
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3.2.4 Loss Function 
After obtaining the prediction results, the loss 
function is optimized by comparing them with the 
true temperature corresponding to the flame image. 
In this paper, the mean square error loss function is 
used to optimize the network. The mean square 
error calculates the average square of the 
difference between the predicted temperature value 
and the actual temperature value, which is used to 
measure the accuracy of the model prediction. The 
calculation Equation (4) is as follows: 
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ror calculates the average square of the difference 
between the predicted temperature value and the 
actual temperature value, which is used to measure 
the accuracy of the model prediction. The calcula-
tion Equation (4) is as follows:
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Among them, t  is the real temperature value, t is the 
temperature value predicted by the model, and n is the 
number of samples. The network continuously updates 
training parameters to minimize mean square error and 
obtain better prediction results. 

In the proposed network architecture, incorporating the 
CA mechanism into the ResNet50 network can enable 
the model to better capture the interrelationships 
between different features, improve its performance, and 
truly extract positive and effective features from flame 
images. 

4 Experiment and Analysis 
4.1 Experimental Environment 
This network framework is implemented by Pytorch and 
executed on NVIDIA RTX 2080ti. The heating process 
of ceramic firing in a shuttle kiln can be divided into 
several stages: generally before 400 °C, it belongs to the 
low-temperature stage, and the heating rate in this needs 
to be appropriately controlled to ensure that the billet 
will not crack due to rapid heating; the oxidation 
decomposition stag

-temperature firing stage, and when 

is the insulation stage. The dataset is captured through an 
observation hole using electronic devices. The dataset 
consists of flame images and corresponding temperature 
values recorded during the firing process of a shuttle kiln 
in Jingdezhen. The flame dataset is collected starting 

 
We preprocessed the dataset and obtained 5000 flame 
images containing corresponding temperatures. The 
training set and the testing set are divided, with 500 
images used as the testing set. Figure 6 shows partial 
flame image samples at different stages during the 
heating process of the shuttle kiln. The size of the 
collected flame images is set to 512x512. The Adam 
optimizer adaptively adjusts the learning rate of each 
parameter to improve the convergence speed and 
generalization ability of the model [9], the number of 
iterations on the entire training dataset is set to 200 

epochs. The learning rate is set to 0.0001 to 
effectively suppress overfitting and accelerate 
network convergence, which could control the step 
size of model network parameter updates. 

Figure 7 
Prediction accuracy with and without CA. 

4.2 Evaluation and Comparative 
Experiment 
Send the collected high-definition kiln flame 
images along with corresponding temperature 
values to the CA-resNet50 network for training, 
and obtain a better prediction model after setting 
the total step size. In the firing process of shuttle 
kilns, a temperature error of 40°C is usually 
acceptable, so we predict the test set, with a 
prediction error range of ± 40 °C being correct. The 
formula for predicting accuracy is as follows, an  
represents the number of predictions that meet the 
criteria, and sn  represents the total number of 
predictions. 
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In order to verify that the added attention 
mechanism can improve the prediction accuracy of 
the model, this paper conducted comparative 
experiments to maintain the same experimental 
environment and variables under the same dataset 
conditions, with only the difference between 
adding the CA attention mechanism and not, we 
test 100 images from the test set respectively, the 
average prediction accuracy of the test flame image 
is calculated, and the test results are shown in 
Figure 7 to demonstrate the role of CA in the 
network. 
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Among them, t is the real temperature value, t' is the 
temperature value predicted by the model, and n is 
the number of samples. The network continuous-
ly updates training parameters to minimize mean 
square error and obtain better prediction results.
In the proposed network architecture, incorporat-
ing the CA mechanism into the ResNet50 network 
can enable the model to better capture the interre-
lationships between different features, improve its 
performance, and truly extract positive and effective 
features from flame images.

4. Experiment and Analysis
4.1. Experimental Environment
This network framework is implemented by Pytorch 
and executed on NVIDIA RTX 2080ti. The heating 
process of ceramic firing in a shuttle kiln can be di-
vided into several stages: generally before 400 °C, it 
belongs to the low-temperature stage, and the heat-
ing rate in this needs to be appropriately controlled 
to ensure that the billet will not crack due to rapid 
heating; the oxidation decomposition stage is from 
400 °C to 900 °C, mainly to ensure the oxidation at-
mosphere inside the kiln; 900 °C to 1300 °C is the 

high-temperature firing stage, and when the tem-
perature rises to around 1050 °C, reduction begins, 
creating a reducing atmosphere; Around 1300 °C is 
the insulation stage. The dataset is captured through 
an observation hole using electronic devices. The 
dataset consists of flame images and corresponding 
temperature values recorded during the firing pro-
cess of a shuttle kiln in Jingdezhen. The flame data-
set is collected starting from 50 °C, and a set of flame 
images is captured for every approximately 10 °C  
increase in temperature, and saved in JPG format 
until the shooting ends at 1300 °C. We preprocessed 
the dataset and obtained 5000 flame images con-
taining corresponding temperatures. The training 
set and the testing set are divided, with 500 images 
used as the testing set. Figure 6 shows partial flame 
image samples at different stages during the heating 
process of the shuttle kiln. The size of the collected 
flame images is set to 512x512. The Adam optimizer 
adaptively adjusts the learning rate of each param-

Figure 6 
Flame images at different stages.
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images containing corresponding temperatures. The 
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eter to improve the convergence speed and gener-
alization ability of the model [9], the number of it-
erations on the entire training dataset is set to 200 
epochs. The learning rate is set to 0.0001 to effec-
tively suppress overfitting and accelerate network 
convergence, which could control the step size of 
model network parameter updates.
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Send the collected high-definition kiln flame images 
along with corresponding temperature values to the 
CA-resNet50 network for training, and obtain a bet-
ter prediction model after setting the total step size. 
In the firing process of shuttle kilns, a temperature 
error of 40°C is usually acceptable, so we predict the 
test set, with a prediction error range of ± 40 °C be-
ing correct. The formula for predicting accuracy is 
as follows, na represents the number of predictions 
that meet the criteria, and ns represents the total 
number of predictions.
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ments to maintain the same experimental environ-
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CA attention mechanism and not, we test 100 images 
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Model Accuracy rate

Alexnet 91.%

GoogleNet 90.5%

VGG16 93.8%

CA-ResNet50 95.2%

Table 1
Comparison of accuracy between different models.

The results from the figure show that after a certain 
period of training and reaching stability, the predic-

tion accuracy of the network model with added CA is 
higher than that without added CA. In the early stage 
of training, due to the higher complexity of the net-
work with added CA, the convergence speed is slow-
er, and the prediction accuracy in the early stage is 
lower than that of the model without CA. However, 
as the training gradually increases, the network con-
verges stably. CA can better help the model focus on 
the input data information to image features, further 
improving the prediction accuracy.
To further validate the effectiveness of our method, 
we compared it with several other prediction network 
models through experiments, including Alexnet [10], 
VGG16 [15], and GoogleNet [16]. These prediction 
networks were trained and tested on the same data-
set and hyperparameters. The experimental results 
calculated by Formula (5) are shown in Table 1. The 
algorithm proposed in this paper has a better predic-
tion rate than other network models, reaching 95%. 
In addition, we presented the training performance 
of these models, as shown in Figure 8, which displays 
the corresponding prediction accuracy of each mod-
el at different training periods. In the first 20 epochs, 
due to the high complexity and unstable convergence 
stage of the models, the prediction accuracy was low. 
The proposed model, like other models, showed con-
tinuous improvement in prediction accuracy with 
the iteration of training, and our model has better 
performance. The above experiments also demon-
strate that our algorithm has a stronger network 
learning ability, can learn flame image features more 
fully, and is more effective in fitting the relationship 
between images and data.

Figure 8 
Accuracy of different models at the training epoch time.  
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We test the MAE values of 50 flame images for 
each model and calculate the average. The 
experimental results are shown in Table 2, the 
proposed model has a lower MAE value, which 
indicates that the predicted values are closer to the 
true values, resulting in better model performance. 
This further demonstrates that our improved 
network architecture can enhance model 
performance. 

Table 2  
Comparison of the MAE. 

Model MAE 
Alexnet 13.7°C 

GoogleNet 15.3°C 
VGG16 10.6°C 

CA-ResNet50 8.5°C 

5. Discussion 

This paper proposes a method based on CA- 
ResNet50 network and 5G technology for 
temperature measurement and control of shuttle 
kilns, The low latency and high bandwidth 
performance of the 5G network are used to collect 
flame images and corresponding temperature data, 
and the deep residual network ResNet50 is used as 
the back-bone network, combined with the CA 
attention mechanism, focusing on the features of 
flame images, increasing the learning of effective 
features, reducing the interference of unimportant 
features, and improving the prediction 
performance of the network. The method can 
achieve more efficient intelligent detection in the 
application of flame temperature in shuttle kilns. 

As can be seen from the experimental results, our 
model significantly outperforms traditional 
methods and existing deep learning models. 
Firstly, the accuracy of the prediction reached 
95%, indicating a significant improvement in 
prediction accuracy. This result indicates that the 
improved model is more effective in predicting 
flame temperature, resulting in more accurate 
detection results. Secondly, we conducted 
comparative experiments on the extracted models, 
comparing the differences between using attention 
mechanism and not using it. The experiments 
showed that the model with added attention could 
more accurately predict flame temperature. In 
addition, we compared the changes in prediction 
accuracy during the training process. In the first 20 
epochs, due to the high complexity and unstable 
convergence stage of the models, the prediction 
accuracy was low. The proposed model, like other 
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In order to conduct a more detailed comparative anal-
ysis with other models, we chose the Mean Absolute 
Error (MAE) as the indicator to measure the effec-
tiveness of the model. The calculation formula is as 
follows, where ti represents the predicted tempera-
ture value and t represents the real temperature value.
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We test the MAE values of 50 flame images for each 
model and calculate the average. The experimental 
results are shown in Table 2, the proposed model has 
a lower MAE value, which indicates that the pre-
dicted values are closer to the true values, resulting 
in better model performance. This further demon-
strates that our improved network architecture can 
enhance model performance.

Model MAE

Alexnet 13.7°C

GoogleNet 15.3°C

VGG16 10.6°C

CA-ResNet50 8.5°C

Table 2
Comparison of the MAE.

5. Discussion
This paper proposes a method based on CA- Res-
Net50 network and 5G technology for temperature 
measurement and control of shuttle kilns, The low 
latency and high bandwidth performance of the 5G 
network are used to collect flame images and cor-
responding temperature data, and the deep residu-
al network ResNet50 is used as the back-bone net-
work, combined with the CA attention mechanism, 
focusing on the features of flame images, increasing 
the learning of effective features, reducing the inter-
ference of unimportant features, and improving the 
prediction performance of the network. The method 
can achieve more efficient intelligent detection in 
the application of flame temperature in shuttle kilns.
As can be seen from the experimental results, our 
model significantly outperforms traditional meth-

ods and existing deep learning models. Firstly, the 
accuracy of the prediction reached 95%, indicating 
a significant improvement in prediction accura-
cy. This result indicates that the improved model 
is more effective in predicting flame temperature, 
resulting in more accurate detection results. Sec-
ondly, we conducted comparative experiments on 
the extracted models, comparing the differences be-
tween using attention mechanism and not using it. 
The experiments showed that the model with added 
attention could more accurately predict flame tem-
perature. In addition, we compared the changes in 
prediction accuracy during the training process. In 
the first 20 epochs, due to the high complexity and 
unstable convergence stage of the models, the pre-
diction accuracy was low. The proposed model, like 
other models, showed continuous improvement in 
prediction accuracy with the iteration of training, 
and our model has better performance.
In summary, our model has improved the accuracy of 
flame prediction in shuttle kilns to some extent, but 
there are also certain limitations, such as requiring 
different training for different products and weak 
generalization ability. We hope to further improve 
the generalization of the model and expand its appli-
cation in different kilns and products.

6. Conclusions
In order to further improve the temperature judg-
ment and regulation during the firing of ceramics in 
shuttle kilns, and thus enhance the quality of prod-
ucts, this paper proposes a flame image temperature 
prediction research technology based on CA-Res-
Net50 network and 5G technology. The low latency 
and high bandwidth performance of the 5G network 
are used to collect flame images and corresponding 
temperature data, and the deep residual network 
ResNet50 is used as the backbone network, com-
bined with the CA attention mechanism, focusing on 
the features of flame images, increasing the learning 
of effective features, reducing the interference of 
unimportant features, and improving the prediction 
performance of the network. 
The experimental comparison shows that the meth-
od proposed has higher prediction accuracy in this 
paper, which can achieve more stable flame recog-
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nition and more efficient intelligent detection in the 
application of flame temperature in shuttle kilns. In 
future research, we will focus on multimodal data 
collaborative learning and prediction model optimi-
zation, which utilize multiple different data modali-
ties for training. We could use flame image data, gas 
pressure, flow rate, and other data to collaboratively 
predict flame firing status, further improving the in-
telligent monitoring and safety production efficien-
cy of kilns.
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author on reasonable request.
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