
593Information Technology and Control 2025/2/54

SAEDF: A Synthetic
Anomaly-Enhanced
Detection Framework for
Detection of Unknown
Network Attacks

ITC 2/54
Information Technology
and Control
Vol. 54 / No. 2/ 2025
pp. 593-612
DOI 10.5755/j01.itc.54.2.40247

SAEDF: A Synthetic Anomaly-Enhanced Detection Framework
for Detection of Unknown Network Attacks

Received 2025/01/20 Accepted after revision 2025/04/07

HOW TO CITE: Liang, K., Li, C., Duan, Q. (2025). SAEDF: A Synthetic Anomaly-Enhanced
Detection Framework for Detection of Unknown Network Attacks. Information Technology and
Control, 54(2), 593-612. https://doi.org/10.5755/j01.itc.54.2.40247

Kai Liang, Chuanfeng Li, Qiong Duan
School of Computer and Information Engineering, Luoyang Institute of Science and Technology,
471023, Luoyang, China

Corresponding author: Chuanfeng Li, e-mail: lcf@lit.edu.cn

Detecting unknown cyber-attacks (i.e., zero-day) is difficult because network environments change fre-
quently and there are few labeled examples of anomalies. Traditional methods for detecting anomalies often
struggle to handle unknown attack types and work effectively with complex, high-dimensional data. To over-
come these problems, we propose a new approach called the synthetic attack-enhanced detection framework
(SAEDF). SAEDF combines synthetic anomaly generation, flexible feature extraction, and unsupervised
anomaly detection. The framework employs a model known as the adaptive and dynamic generative vari-
ational autoencoder (ADGVAE). This model generates realistic synthetic attacks and adapts its structure
to work effectively with datasets of varying complexity. This helps the model work well with a wide range of
attack patterns while still being efficient. Tests on benchmark datasets show that SAEDF performs better
than other methods. It achieves higher scores for F1, Recall, and has a much lower rate of false positives.
These results show that SAEDF is effective in finding unknown attacks, improving detection accuracy, and
handling complex and changing network traffic.
KEYWORDS: Unknown attack detection, synthetic attack anomalies, deep generative model, intrusion detec-
tion, network security

Information Technology and Control 2025/2/54594

1. Introduction
Network security is confronting an increasingly
complex challenge as cyberattacks become more so-
phisticated and develop in unpredictable ways. The
risk posed by previously unknown attacks, often re-
ferred to as zero-day attacks, continues to rise. Con-
ventional intrusion detection systems (IDS) that
are anchored in signature-based detection methods
are proving to be progressively ineffective at identi-
fying these emerging threats [13]. Such systems are
primarily limited to recognizing established attack
patterns and are unable to generalize to new, unrec-
ognized attack types. Consequently, there is a criti-
cal need for more adaptive and intelligent detection
mechanisms.
Anomaly detection is an important component of
network security to identify novel threats by ana-
lyzing patterns in network traffic data with the help
of machine learning (ML). As a result, ML based
anomaly detection systems are able to model nor-
mal behavior and raise an alarm at the onset of any
anomaly that may indicate an attack [21]. Among
these techniques, generative models such as Vari-
ational Autoencoders (VAEs) [20] and Generative
Adversarial Networks (GANs) [16] have been found
to be very useful. These models are particularly use-
ful in learning the probability distribution of high
dimensional data and therefore are able to capture
the characteristics of the normal behaviour and any
point that lies far from the learned distribution is an
anomaly [8,19,40,41]. GAN have been successfully
applied to unsupervised network anomaly detec-
tion and provided improved detection performance
since they are able to identify anomalous traffic
without needing any labelled data [35]. VAEs when
combined with a deep neural network model (DNN)
[39] outperformed traditional DNN in terms of ac-
curacy for detection on standard datasets like NSL-
KDD [34] and UNSW-NB15[25].
While machine learning techniques present signif-
icant potential for detecting network anomalies,
several substantial challenges continue to hinder
the development of effective systems. A critical
barrier is the scarcity of labeled data for unidenti-
fied attacks. In the absence of labeled datasets that
encompass examples of all possible attack types, it

is challenging for machine learning models to ac-
curately identify novel, previously unrecognized
threats [33]. The problem is further exacerbated
by the prevalence of imbalanced datasets. Typical-
ly, in network traffic, normal activity significantly
outnumbers attack traffic, creating difficulties for
training models to effectively differentiate between
standard behavior and infrequent, anomalous oc-
currences [3]. Additionally, adapting existing intru-
sion detection models to recognize unknown attack
types remains a complex issue [26]. A lot of studies
use experiments that are based on certain assump-
tions or artificial data, but this does not really cap-
ture the messy and unpredictable reality of actual
zero-day attacks. As a result, the true effectiveness
of these systems in identifying actual zero-day at-
tacks remains uncertain. To address these chal-
lenges, we employ adaptive and dynamic generative
variational autoencoder (ADGVAE). Unlike GAN or
conditional VAE, ADGVAE provides a dynamic and
adaptive architecture that aligns with the evolv-
ing nature of network traffic features, offering im-
proved generalization to unknown attack patterns.

1.1 Contribution of Paper
We propose a framework called synthetic anoma-
ly-enhanced detection framework (SAEDF). The
main idea behind SAEDF is to train a variational au-
toencoder (VAE) using a specialized data normaliza-
tion method and feature selection approach to learn
the latent representation of network attack traffic,
enabling it to reconstruct anomalous traffic with
high accuracy.
The contributions of this work are as follows:
Design and Development of the SAEDF: The SAEDF
represents an innovative detection framework that
integrates Variational Autoencoder (VAE)-based
modeling of attack traffic, the synthesis of anomalous
data, and unsupervised anomaly detection methodol-
ogies, in order to tackle the complexities associated
with the identification of previously unknown threats.
Proposal for an ADGVAE model: The ADGVAE
model features a projection layer along with a dy-
namic layer count mechanism (DLCM), which
empowers it to adapt to datasets characterized by

595Information Technology and Control 2025/2/54

diverse input dimensions and varying feature com-
plexities. These attributes facilitate the model’s ca-
pacity for dynamic structural adjustment, thereby
enhancing feature extraction, mitigating the risks
of overfitting and underfitting through adaptive
depth, and improving both scalability and the qual-
ity of synthetic anomaly generation in varied and
dynamic environments.
Cross-Dataset Generalization and Robustness of
SAEDF: Comprehensive empirical investigations
performed on established benchmark datasets, such
as NSL-KDD, UNSW-NB15, and CICIDS2017, sub-
stantiate the holistic efficacy of SAEDF in the iden-
tification of previously unrecognized categories of
attacks. The model demonstrates superior general-
ization capability, achieving consistently higher F1-
Scores, Recall, and lower False Positive Rates (FPR)
compared to baseline methods. Notably, cross-data-
set evaluations highlight SAEDF’s ability to adapt
to unseen attack patterns and maintain robustness
in minimizing false alarms, showcasing its practical
applicability in dynamic and diverse real-world net-
work environments.

1.2 Organization of Paper
This paper is organized as follows: Section 2 pro-
vides a review of pertinent literature on supervised
learning, unsupervised learning, and generative
methodologies pertinent to network attack detec-
tion. Section 3 details the proposed SAEDF frame-
work, encompassing its architecture and method-
ology. Section 4 delineates the experimental setup
and procedures utilized for the assessment of the
framework. Section 5 engages in a discussion of the
results, offering a comprehensive analysis of the
strengths, limitations, and practical implications in-
herent to the proposed approach. Finally, Section 6
concludes the paper and delineates prospective ave-
nues for future research.

2. Related Work
Machine learning-based intrusion detection (ID)
methods have become fundamental to contemporary
network security, providing automated and adaptive
solutions for identifying and addressing both known
and unknown cyber threats.

2.1. Supervised Learning-Based Methods
Supervised learning methodologies for network in-
trusion detection utilize labeled datasets to train
models capable of categorizing network activities
as either benign or malicious. Das et al. [6] proposed
an ensemble framework t that integrates both su-
pervised and unsupervised methodologies in order
to identify distributed denial-of-service (DDoS)
attacks, encompassing zero-day variants. Their
approach integrated supervised models for iden-
tifying known attacks with unsupervised novelty
detection models for zero-day threats, achieving
high accuracy across datasets such as NSL-KDD,
UNSW-NB15, and CICIDS2017. Ban et al. [4] in-
troduced an IoT intrusion detection model leverag-
ing convolutional neural networks with attention
mechanisms (CNN-SE) and particle swarm opti-
mization (APSO), which significantly improved
classification accuracy on benchmark datasets
such as UNSW-NB15 and NSL-KDD. Alashhab et
al. [1] presented an ensemble online machine learn-
ing approach for DDoS detection in software-de-
fined networks (SDN), demonstrating improved
detection rates on datasets like CIC-DDoS2019 and
custom SDN traffic data.
Despite their high detection accuracy, supervised
learning-based methods depend heavily on labeled
data, making them less effective in handling zero-day
attacks or adapting to rapidly evolving threats. The
labeling process is often time-consuming and la-
bor-intensive, limiting the scalability of these meth-
ods in dynamic environments.

2.2. Unsupervised and Semi-Supervised
Learning-Based Methods
Researchers have explored unsupervised and
semi-supervised methods, which focus on detect-
ing anomalies without requiring extensive labeled
datasets. Pinto et al. [29] presented a novel meth-
odology that integrates variational autoencoders
(VAE) with long short-term memory (LSTM) ar-
chitectures for the purpose of real-time anoma-
ly detection within industrial Internet of Things
(IIoT) systems, enhancing efficacy through the ap-
plication of KL-divergence regularization. Truong
and Le [36] introduced a privacy-preserving col-
laborative intrusion detection system (MetaCIDS)

Information Technology and Control 2025/2/54596

using federated learning and unsupervised auto-
encoders, achieving detection accuracies between
96% and 99% across multiple datasets. Zhang et
al. [42] introduced a two-stage intrusion detec-
tion system that uses light gradient boosting ma-
chine (LightGBM) and autoencoder technologies.
This system employs recursive feature elimination
(RFE) for feature selection and incorporates focal
loss within the LightGBM framework to improve
its learning efficiency. Falowo et al. [11] conduct-
ed a decadal longitudinal analysis of malware and
DDoS attack evolution using unsupervised autore-
gressive integrated moving average (ARIMA) mod-
els to predict future attack trends.
Unsupervised and semi-supervised approach-
es demonstrate strong capabilities in identifying
emerging threats and minimizing reliance on labeled
datasets. Nevertheless, they often encounter consid-
erable obstacles, such as overfitting, enhanced false
positive rates, and a limited availability of anoma-
lous traffic or unfamiliar attack data samples. These
issues finally restrict the model's generalization
ability, which may not sufficiently meet the demands
of real-world attack scenarios.

2.3. Generative-based Methods
Generative models became an important focus in
network intrusion detection because of their ca-
pability to produce synthetic data, improve model
training with uneven datasets, and identify detailed
attack patterns. These methods are especially useful
for addressing zero-day attacks and handling rare or
unseen threats in cybersecurity.
Dunmore et al. [9] conducted a comprehensive sur-
vey on the application of GANs in cybersecurity
intrusion detection. They emphasized that GANs
demonstrate exceptional capability in creating re-
alistic synthetic samples for imbalanced datasets,
thereby enhancing detection rates for infrequent
attack types. Aldhaheri and Alhuzali [2] presented
the SGAN-IDS framework, which uses GAN and
self-attention mechanisms to produce adversari-
al attack traffic for IDS. Their approach evaluated
various IDSs’ detection rates against these synthet-
ic attack flows, demonstrating an average reduction
of false alarm rates by 15.93%. Peppes et al. [28]
proposed the Zero-Day GAN (ZDGAN) to generate

near-realistic synthetic data for zero-day attacks.
By integrating this synthetic data with original
datasets, their method improved the accuracy and
robustness of deep learning classifiers while mini-
mizing validation loss.
VAE-based approaches that improve anomaly de-
tection through sophisticated feature extraction
and representation techniques have been proposed
[12, 22, 31, 37]. These studies employ VAE to tack-
le issues such as imbalanced datasets [12, 37], a
scarcity of anomalous traffic samples [22], and the
extraction of important latent features [31]. VAE-
based methods have shown considerable promise
in increasing detection accuracy and resilience
against zero-day threats by refining feature repre-
sentation and addressing data imbalance. Genera-
tive-based methods present substantial benefits;
however, they face challenges associated with high
computational complexity and restricted scal-
ability when implemented in practical settings.
The synthetic data generated by these models fre-
quently fails to short in accurately representing
the complexity and diversity of real-world attack
scenarios, limiting their effectiveness in practical
applications. Table 1 shows the summary of the re-
lated works discussed above.
Through the analysis of the aforementioned lit-
erature, it was found that while GANs are power-
ful for generating realistic data, they often suffer
from training instability and mode collapse, which
can pose significant challenges when dealing with
high-dimensional network traffic data characterized
by sparse anomalies. On the other hand, conditional
VAEs provide conditional control during the gener-
ation process but rely on a fixed architecture, which
limits their adaptability to datasets with varying fea-
ture complexities.
Therefore, the ADGVAE model proposed in this
study is designed to address the limitations of mod-
els like GAN and CVAE when generating samples. It
is particularly suitable for scenarios involving un-
known input data characteristics, ensuring scalabil-
ity across various network traffic scenarios. More-
over, it is well-suited for structured data scenarios,
such as network anomaly attack traffic. Its varia-
tional framework maintains stable training dynam-
ics and reduces training time.

597Information Technology and Control 2025/2/54

Reference Existing Technique Summary

Das et al., (2024) [6]
Ensemble Learning:

Supervised and Unsuper-
vised

Classifier: ensemble model (SVM, NN, DT, One-class SVM)
Dataset: NSL-KDD, UNSW-NB15, CICIDS2017

Measures: TN FN FP TP

Ban et al., (2024) [4] Adaptive CNN with APSO
Classifier: APSO, CNN, Channel Attention Mechanism

Dataset: UNSW-NB15, NSLKDD
Measures: TP FN FP TN

Alashhab et al., (2024) [1] Ensemble Online Machine
Learning

Classifier: Ensemble Online Machine Learning
Dataset: CICDDoS2019, InSDN, Slowread-DDoS, Custom

dataset
Measures: Accuracy Precision Recall F1score FAR

Pinto et al., (2024) [29] Unsupervised Learning:
VAE and LSTM

Classifier: VAE, LSTM mode
Dataset: SWAT

Measures: Precision Recall F1score AUC TP TN FP FN

Truong et al., (2023) [36] Federated Learning
and Blockchain

Classifier: Autoencoder, Attention Classifier and Federated
Learning (FL)

Dataset: 4 Network Intrusion Datasets
Measures: Accuracy Precision Recall

Zhang et al., (2023) [42]
Two-stage Intrusion

Detection: LightGBM
and Autoencoder

Classifier: LightGBM and Autoencoder
Dataset: NSL-KDD, UNSW-NB15

Measures: Accuracy Precision Recall F1

Falowo et al., (2024) [11] Time Series Analysis:
ARIMA

Classifier: ARIMA
Dataset: CSIS Database, DBIR

Dunmore et al., (2023) [9] Generative Adversarial
Networks (GANs)

Classifier: GANs
Dataset: Multiple Public Datasets

Aldhaheri et al., (2023) [2] Self-Attention GAN for IDS
Classifier: SGAN, Self-Attention Mechanism

Dataset: Not specified
Measures: Detection rate Precision Recall F1

Peppes et al., (2023) [28] GANs for Zero-Day Attack
Data Generation

Classifier: GAN, Neural Network
Dataset: SWAT

Measures: Precision Recall F1-score

Wang et al., (2024) [37] VAE-LSTM-DRN for
Encrypted Traffic

Classifier: VAE, LSTM, Deep Residual Network (DRN)
Dataset: Tor, VPN Datasets

Measures: Accuracy Recall Precision F1-score

Prabakaran et al., (2023) [31] Deep Learning for
Phishing Detection

Classifier: VAE
Dataset: ISCX-URL2016, Kaggle Datasets

Measures: Confusion matrix Precision Recall F1-score

Fathima et al., (2024) [12] Hybrid Framework:
GRU-VAE

Classifier: GRU-VAE
Dataset: CIC-IDS-2017, CIC-IDS2018

Measures: Accuracy Precision Recall F1-score Temporal
Correlation Index (TCI)

Liu, (2023) [22] AI-based DDoS Attack
Protection

Classifier: VAE
Dataset: Not specified

Measures: Accuracy Precision Recall F1-score

Table 1
Summary of the related work.

Information Technology and Control 2025/2/54598

3. Proposed Framework: SAEDF
Hence to accurately identify zero-day anomalies,
we combined synthetic anomaly generation with
VAE-based modeling and an anomaly-enhanced un-
supervised detection process. A novel zero-day at-
tack detection framework (SAEDF) was developed
by integrating data resampling, synthetic anomaly
generation, and anomaly-enhanced unsupervised
detection. To improve detection performance, we
applied advanced data preprocessing techniques, as
discussed in Section 3.2, to normalize and optimize
the feature space for model training.

3.1. Workflow
SAEDF enhances the detection of unknown attack
patterns through three stages: data resampling,
synthetic anomaly generation, and anomaly-en-
hanced detection, as shown in Figure 1. The pro-
cedure commences with data resampling, during
which a GMM-based approach is employed for the
normalization and quantification of selected attack
samples. This is followed by a four-step feature se-
lection process aimed at enhancing the dataset for
synthetic attack samples.

Synthetic anomaly generation is then performed,
with a VAE sampling regions beyond the normal
distribution to create realistic synthetic anomalies.
This step enriches the dataset and enhances the
model’s ability to detect unknown attack patterns.
Anomaly-enhanced detection integrates both syn-
thetic and real anomalies to train an unsupervised
detection model, improving its generalization to un-
known attacks. Detailed algorithms and settings for
each stage are provided in subsequent sections.

3.2. Data Preprocessing

The benchmark datasets (NSL-KDD, UNSW-NB15,
and CICIDS2017) contain diverse features rep-
resenting various network traffic characteristics.
These datasets encompass numerical and categori-
cal attributes, varying scales, and occasionally miss-
ing or inconsistent values, necessitating a systemat-
ic preprocessing approach.

3.2.1. Normalization
The benchmark datasets exhibit a mix of continuous
and discrete features, reflecting the diverse nature
of network traffic data. Continuous features, such as
packet size and flow duration, span wide numerical

the latent space.
Anomaly-Enhanced Detection: A binary classifier is trained on real and synthetic anomalies to detect
known and unknown attacks

3.2. Data Preprocessing

The benchmark datasets (NSL-KDD, UNSW-NB15,
and CICIDS2017) contain diverse features
representing various network traffic
characteristics. These datasets encompass
numerical and categorical attributes, varying
scales, and occasionally missing or inconsistent
values, necessitating a systematic preprocessing
approach.

3.2.1. Normalization

The benchmark datasets exhibit a mix of
continuous and discrete features, reflecting the
diverse nature of network traffic data. Continuous
features, such as packet size and flow duration,
span wide numerical ranges, while discrete
features, such as protocol type and connection
status, are represented by categorical values.
Handing these differences is critical for ensuring
uniformity in data representation and optimizing
model performance.

To address this variability, the specialized
normalization technique introduced in CTGAN
[38] was employed. This method demonstrated
considerable effectiveness in managing mixed-type
data by normalizing continuous variables and
encoding categorical variables while maintaining
their intrinsic distributions and relationships.
Further details regarding this approach are
outlined in Section 3.3.2.

3.2.2 Feature Selection

Feature selection is a fundamental process
that substantially improves the effectiveness
of predictive models by identifying the most
pertinent features, thereby reducing both
computational expenses and training time. In
this study, a systematic approach was
employed to refine features from the
benchmark datasets, ensuring adaptability
across their varying characteristics and
complexities. The main methods applied in
this study are outlined below.

Correlation Analysis: Statistical techniques
were used to compute the correlation
coefficients between independent features
and target labels [17]. Features with low
correlation were eliminated to reduce
redundancy and irrelevant information. A
heatmap was generated to visually represent
the relationships and assist in feature
interpretability.

Model-Based Importance Scoring: An extra
trees classifier [15] was employed to assess
feature importance scores. Features with
higher scores were considered essential due to
their strong contribution to the target variable.
This method provided a quantitative basis for
feature prioritization.

Feature Distribution Analysis Across
Datasets: A comparative analysis was
performed to evaluate the consistency of
feature significance across the benchmark

Figure 1
Workflow of SAEDF Data Resampling:
GMM-based normalization, quantification, and a four-step feature selection optimize.
Synthetic Anomaly Generation: The VAE generates synthetic anomalies by sampling abnormal regions in the latent space.
Anomaly-Enhanced Detection: A binary classifier is trained on real and synthetic anomalies to detect known and
unknown attacks

599Information Technology and Control 2025/2/54

ranges, while discrete features, such as protocol type
and connection status, are represented by categori-
cal values. Handing these differences is critical for
ensuring uniformity in data representation and op-
timizing model performance.
To address this variability, the specialized normal-
ization technique introduced in CTGAN [38] was
employed. This method demonstrated considerable
effectiveness in managing mixed-type data by nor-
malizing continuous variables and encoding cate-
gorical variables while maintaining their intrinsic
distributions and relationships. Further details re-
garding this approach are outlined in Section 3.3.2.

3.2.2 Feature Selection
Feature selection is a fundamental process that sub-
stantially improves the effectiveness of predictive
models by identifying the most pertinent features,
thereby reducing both computational expenses and
training time. In this study, a systematic approach
was employed to refine features from the benchmark
datasets, ensuring adaptability across their varying
characteristics and complexities. The main methods
applied in this study are outlined below.
Correlation Analysis: Statistical techniques were
used to compute the correlation coefficients be-
tween independent features and target labels [17].
Features with low correlation were eliminated to
reduce redundancy and irrelevant information. A
heatmap was generated to visually represent the re-
lationships and assist in feature interpretability.
Model-Based Importance Scoring: An extra trees
classifier [15] was employed to assess feature impor-
tance scores. Features with higher scores were con-
sidered essential due to their strong contribution to
the target variable. This method provided a quanti-
tative basis for feature prioritization.
Feature Distribution Analysis Across Datasets:
A comparative analysis was performed to evaluate
the consistency of feature significance across the
benchmark datasets [27]. This guaranteed that the
chosen features were resilient and preserved their
ability to differentiate.
Domain Knowledge Refinement: Domain-specific
expertise in network security was applied to manu-
ally refine the feature subset. This step incorporated
features such as packet entropy and flow duration
[32]. Through the systematic application of the afore-

mentioned methodologies, a refined feature subset
was derived, effectively capturing the key attributes
of network traffic within the benchmark datasets.
Detailed insights into the selected features and their
statistical significance are presented in Section 4.2.

3.3. Synthetic Anomaly Generation

The ADGVAE focused on generating synthetic anom-
alies specifically from attack categories in benchmark
datasets. To present the structure of ADGVAE con-
cisely and accurately, we defined the relevant notations
and used them to describe the model design in detail.

3.3.1. Notations
x1⊕ x2 ⊕… Concatenate vectors x1, x2 …
FCu→v(x): Perform a linear transformation on a u-di-
mensional input to produce a v-dimensional output.
BN: batch normalization [18].
r: A row of the dataset, including both continuous
and categorical features.
z: Latent variable representing the compressed
representation of r.
Nc: Number of continuous features in the dataset.
Nd: Number of categorical features in the dataset.
αi, βi, di: Representations of the i-th continuousfea-
ture (scalar and one-hot) and categorical feature
(one-hot), respectively.

3.3.2. Anomaly Sampling and Feature
Representation
The attack category data was first sampled from the
dataset, rather than using the full dataset. This en-
sured that the ADGVAE model focused on learning
the distribution of attack data, thereby improving its
ability to generate diverse and high-quality synthet-
ic anomalies. For continuous features, a variational
gaussian mixture model (VGM) [38] was used to esti-
mate modes, normalize values within selected modes,
and represent them as a combination of a scalar and
one-hot mode vector. For categorical features, one-
hot encoding was applied, and the final representa-
tion combined normalized continuous features and
one-hot encoded categorical features for each row.
In this study, the VGM was employed to capture the
multimodal nature of continuous features by modeling
their underlying distributions with a mixture of Gauss-
ian components. This approach ensured a precise rep-

Information Technology and Control 2025/2/54600

resentation of complex data patterns. For each value,
probability densities across modes were computed, a
mode was sampled, and the feature value was normal-
ized within the selected mode using the formula:

datasets [27]. This guaranteed that the chosen
features were resilient and preserved their ability to
differentiate.

Domain Knowledge Refinement: Domain-specific
expertise in network security was applied to
manually refine the feature subset. This step
incorporated features such as packet entropy and
flow duration [32]. Through the systematic
application of the aforementioned methodologies,
a refined feature subset was derived, effectively
capturing the key attributes of network traffic
within the benchmark datasets. Detailed insights
into the selected features and their statistical
significance are presented in Section 4.2.

3.3. Synthetic Anomaly Generation
The ADGVAE focused on generating synthetic
anomalies specifically from attack categories in
benchmark datasets. To present the structure of
ADGVAE concisely and accurately, we defined the
relevant notations and used them to describe the
model design in detail.

3.3.1. Notations

𝑥𝑥� ⊕ 𝑥𝑥� ⊕… Concatenate vectors 𝑥𝑥�, 𝑥𝑥�, …

𝐹𝐹𝐹𝐹�→�(𝑥𝑥): Perform a linear transformation on a u-
dimensional input to produce a v-dimensional
output. BN: batch normalization [18].

𝑟𝑟: A row of the dataset, including both continuous

and categorical features.

𝑧𝑧: Latent variable representing the compressed

representation of 𝑟𝑟.

𝑁𝑁�: Number of continuous features in the dataset.

𝑁𝑁�: Number of categorical features in the dataset.

𝛼𝛼�, 𝛽𝛽�, 𝑑𝑑�: Representations of the 𝑖𝑖-th continuous

feature (scalar and one-hot) and categorical feature
(one-hot), respectively.

3.3.2. Anomaly Sampling and Feature
Representation

The attack category data was first sampled from the
dataset, rather than using the full dataset. This
ensured that the ADGVAE model focused on
learning the distribution of attack data, thereby
improving its ability to generate diverse and high-
quality synthetic anomalies. For continuous
features, a variational gaussian mixture model
(VGM) [38] was used to estimate modes, normalize
values within selected modes, and represent them
as a combination of a scalar and one-hot mode
vector. For categorical features, one-hot encoding

was applied, and the final representation
combined normalized continuous features
and one-hot encoded categorical features for
each row.

In this study, the VGM was employed to
capture the multimodal nature of continuous
features by modeling their underlying
distributions with a mixture of Gaussian
components. This approach ensured a precise
representation of complex data patterns. For
each value, probability densities across modes
were computed, a mode was sampled, and the
feature value was normalized within the
selected mode using the formula:

𝛼𝛼 = (𝑐𝑐 − 𝜂𝜂)/(4𝜑𝜑) (1)

𝛽𝛽�
(�) = � 1 if k = selected mode index ,

 0 otherwise (2)

where c represents the feature value, η
denotes the mean of the selected mode
computed from the VGM, and φ indicates the
standard deviation of the selected mode
computed by the VGM. Represent the
continuous feature as a concatenation of α
(scalar) and a one-hot vector β indicating the
sampled mode.

For each row of data, the normalization is
expressed as:

 𝑟𝑟 = α� ⊕ β� ⊕ … ⊕ α�� ⊕ β�� ⊕ 𝑑𝑑� ⊕ … ⊕ 𝑑𝑑�� (3)

3.3.3. ADGVAE Model Structure

The ADGVAE model incorporated three key
components: a projection layer (𝑑𝑑����), a
dynamic hidden layer structure, and a
dynamic layer count mechanism, which
together enabled adaptability to diverse
datasets. The projection layer (𝑑𝑑����)
standardized input dimensions from different
datasets, ensuring consistent input
representation for the model.

Projection Layer (𝑑𝑑����): The projection layer was
introduced to standardize the input
dimensions of the datasets, mapping the raw
input features 𝑟𝑟 (with dataset-specific
dimensionality |𝑟𝑟|) to a fixed dimension 𝑑𝑑���� ,
which served as the starting point for the
encoder. This modification ensured that the
model could effectively process datasets with
variable input dimensions, thereby providing
a uniform input format for the subsequent
network.

As shown in Figure 2, the transformation is
defined as:

(1)

datasets [27]. This guaranteed that the chosen
features were resilient and preserved their ability to
differentiate.

Domain Knowledge Refinement: Domain-specific
expertise in network security was applied to
manually refine the feature subset. This step
incorporated features such as packet entropy and
flow duration [32]. Through the systematic
application of the aforementioned methodologies,
a refined feature subset was derived, effectively
capturing the key attributes of network traffic
within the benchmark datasets. Detailed insights
into the selected features and their statistical
significance are presented in Section 4.2.

3.3. Synthetic Anomaly Generation
The ADGVAE focused on generating synthetic
anomalies specifically from attack categories in
benchmark datasets. To present the structure of
ADGVAE concisely and accurately, we defined the
relevant notations and used them to describe the
model design in detail.

3.3.1. Notations

𝑥𝑥� ⊕ 𝑥𝑥� ⊕… Concatenate vectors 𝑥𝑥�, 𝑥𝑥�, …

𝐹𝐹𝐹𝐹�→�(𝑥𝑥): Perform a linear transformation on a u-
dimensional input to produce a v-dimensional
output. BN: batch normalization [18].

𝑟𝑟: A row of the dataset, including both continuous

and categorical features.

𝑧𝑧: Latent variable representing the compressed

representation of 𝑟𝑟.

𝑁𝑁�: Number of continuous features in the dataset.

𝑁𝑁�: Number of categorical features in the dataset.

𝛼𝛼�, 𝛽𝛽�, 𝑑𝑑�: Representations of the 𝑖𝑖-th continuous

feature (scalar and one-hot) and categorical feature
(one-hot), respectively.

3.3.2. Anomaly Sampling and Feature
Representation

The attack category data was first sampled from the
dataset, rather than using the full dataset. This
ensured that the ADGVAE model focused on
learning the distribution of attack data, thereby
improving its ability to generate diverse and high-
quality synthetic anomalies. For continuous
features, a variational gaussian mixture model
(VGM) [38] was used to estimate modes, normalize
values within selected modes, and represent them
as a combination of a scalar and one-hot mode
vector. For categorical features, one-hot encoding

was applied, and the final representation
combined normalized continuous features
and one-hot encoded categorical features for
each row.

In this study, the VGM was employed to
capture the multimodal nature of continuous
features by modeling their underlying
distributions with a mixture of Gaussian
components. This approach ensured a precise
representation of complex data patterns. For
each value, probability densities across modes
were computed, a mode was sampled, and the
feature value was normalized within the
selected mode using the formula:

𝛼𝛼 = (𝑐𝑐 − 𝜂𝜂)/(4𝜑𝜑) (1)

𝛽𝛽�
(�) = � 1 if k = selected mode index ,

 0 otherwise (2)

where c represents the feature value, η
denotes the mean of the selected mode
computed from the VGM, and φ indicates the
standard deviation of the selected mode
computed by the VGM. Represent the
continuous feature as a concatenation of α
(scalar) and a one-hot vector β indicating the
sampled mode.

For each row of data, the normalization is
expressed as:

 𝑟𝑟 = α� ⊕ β� ⊕ … ⊕ α�� ⊕ β�� ⊕ 𝑑𝑑� ⊕ … ⊕ 𝑑𝑑�� (3)

3.3.3. ADGVAE Model Structure

The ADGVAE model incorporated three key
components: a projection layer (𝑑𝑑����), a
dynamic hidden layer structure, and a
dynamic layer count mechanism, which
together enabled adaptability to diverse
datasets. The projection layer (𝑑𝑑����)
standardized input dimensions from different
datasets, ensuring consistent input
representation for the model.

Projection Layer (𝑑𝑑����): The projection layer was
introduced to standardize the input
dimensions of the datasets, mapping the raw
input features 𝑟𝑟 (with dataset-specific
dimensionality |𝑟𝑟|) to a fixed dimension 𝑑𝑑���� ,
which served as the starting point for the
encoder. This modification ensured that the
model could effectively process datasets with
variable input dimensions, thereby providing
a uniform input format for the subsequent
network.

As shown in Figure 2, the transformation is
defined as:

, (2)

where c represents the feature value, η denotes the
mean of the selected mode computed from the VGM,
and φ indicates the standard deviation of the select-
ed mode computed by the VGM. Represent the con-
tinuous feature as a concatenation of α (scalar) and a
one-hot vector β indicating the sampled mode.
For each row of data, the normalization is expressed as:

datasets [27]. This guaranteed that the chosen
features were resilient and preserved their ability to
differentiate.

Domain Knowledge Refinement: Domain-specific
expertise in network security was applied to
manually refine the feature subset. This step
incorporated features such as packet entropy and
flow duration [32]. Through the systematic
application of the aforementioned methodologies,
a refined feature subset was derived, effectively
capturing the key attributes of network traffic
within the benchmark datasets. Detailed insights
into the selected features and their statistical
significance are presented in Section 4.2.

3.3. Synthetic Anomaly Generation
The ADGVAE focused on generating synthetic
anomalies specifically from attack categories in
benchmark datasets. To present the structure of
ADGVAE concisely and accurately, we defined the
relevant notations and used them to describe the
model design in detail.

3.3.1. Notations

𝑥𝑥� ⊕ 𝑥𝑥� ⊕… Concatenate vectors 𝑥𝑥�, 𝑥𝑥�, …

𝐹𝐹𝐹𝐹�→�(𝑥𝑥): Perform a linear transformation on a u-
dimensional input to produce a v-dimensional
output. BN: batch normalization [18].

𝑟𝑟: A row of the dataset, including both continuous

and categorical features.

𝑧𝑧: Latent variable representing the compressed

representation of 𝑟𝑟.

𝑁𝑁�: Number of continuous features in the dataset.

𝑁𝑁�: Number of categorical features in the dataset.

𝛼𝛼�, 𝛽𝛽�, 𝑑𝑑�: Representations of the 𝑖𝑖-th continuous

feature (scalar and one-hot) and categorical feature
(one-hot), respectively.

3.3.2. Anomaly Sampling and Feature
Representation

The attack category data was first sampled from the
dataset, rather than using the full dataset. This
ensured that the ADGVAE model focused on
learning the distribution of attack data, thereby
improving its ability to generate diverse and high-
quality synthetic anomalies. For continuous
features, a variational gaussian mixture model
(VGM) [38] was used to estimate modes, normalize
values within selected modes, and represent them
as a combination of a scalar and one-hot mode
vector. For categorical features, one-hot encoding

was applied, and the final representation
combined normalized continuous features
and one-hot encoded categorical features for
each row.

In this study, the VGM was employed to
capture the multimodal nature of continuous
features by modeling their underlying
distributions with a mixture of Gaussian
components. This approach ensured a precise
representation of complex data patterns. For
each value, probability densities across modes
were computed, a mode was sampled, and the
feature value was normalized within the
selected mode using the formula:

𝛼𝛼 = (𝑐𝑐 − 𝜂𝜂)/(4𝜑𝜑) (1)

𝛽𝛽�
(�) = � 1 if k = selected mode index ,

 0 otherwise (2)

where c represents the feature value, η
denotes the mean of the selected mode
computed from the VGM, and φ indicates the
standard deviation of the selected mode
computed by the VGM. Represent the
continuous feature as a concatenation of α
(scalar) and a one-hot vector β indicating the
sampled mode.

For each row of data, the normalization is
expressed as:

 𝑟𝑟 = α� ⊕ β� ⊕ … ⊕ α�� ⊕ β�� ⊕ 𝑑𝑑� ⊕ … ⊕ 𝑑𝑑�� (3)

3.3.3. ADGVAE Model Structure

The ADGVAE model incorporated three key
components: a projection layer (𝑑𝑑����), a
dynamic hidden layer structure, and a
dynamic layer count mechanism, which
together enabled adaptability to diverse
datasets. The projection layer (𝑑𝑑����)
standardized input dimensions from different
datasets, ensuring consistent input
representation for the model.

Projection Layer (𝑑𝑑����): The projection layer was
introduced to standardize the input
dimensions of the datasets, mapping the raw
input features 𝑟𝑟 (with dataset-specific
dimensionality |𝑟𝑟|) to a fixed dimension 𝑑𝑑���� ,
which served as the starting point for the
encoder. This modification ensured that the
model could effectively process datasets with
variable input dimensions, thereby providing
a uniform input format for the subsequent
network.

As shown in Figure 2, the transformation is
defined as:

(3)

3.3.3. ADGVAE Model Structure
The ADGVAE model incorporated three key com-
ponents: a projection layer (dproj), a dynamic hidden
layer structure, and a dynamic layer count mecha-
nism, which together enabled adaptability to diverse
datasets. The projection layer (dproj) standardized
input dimensions from diff erent datasets, ensuring
consistent input representation for the model.
Projection Layer (dproj): The projection layer was
introduced to standardize the input dimensions of
the datasets, mapping the raw input features r (with
dataset-specifi c dimensionality |r|) to a fi xed dimen-
sion dproj, which served as the starting point for the
encoder. This modifi cation ensured that the model
could eff ectively process datasets with variable in-
put dimensions, thereby providing a uniform input
format for the subsequent network.
As shown in Figure 2, the transformation is defi ned as:

𝑟𝑟proj = ReLU�𝐵𝐵𝐵𝐵 �𝐹𝐹𝐶𝐶|�|→�proj(𝑟𝑟)��. (4)

Here, 𝑑𝑑proj is a predefined projection dimension
and the detailed dimensionality reduction methods
are provided in Section 4.2.2.

𝐹𝐹𝐶𝐶|�|→�proj is a fully connected layer that maps the
original input to the projection space.

Figure 2

Principle of projection layer.

Encoder (𝑞𝑞�(𝑧𝑧|𝑟𝑟)): The encoder mapped the input
projection 𝑟𝑟���� to the latent space 𝑧𝑧 of dimension
𝑑𝑑latent . It consisted of dynamically determined
hidden layers (𝑛𝑛hidden) where each layer reduced
the dimensionality by half until 𝑑𝑑latent was reached.
The encoder transformation is defined as:

ℎ� = ReLU�𝐹𝐹𝐶𝐶
�proj→

�proj
�
�𝑟𝑟proj�� (5)

ℎ� = ReLU�𝐹𝐹𝐶𝐶�proj
� →

�proj
�
(ℎ�)� (6)

ℎ�hidden = ReLU�𝐹𝐹𝐶𝐶 �proj
��hidden⋅��hidden���

→�latent
�ℎ�hidden����. (7)

At the final layer, the encoder output the
parameters of the latent distribution:

𝜇𝜇 = 𝐹𝐹𝐶𝐶 �proj
��⋅hidden��

→�latent
�ℎ�hidden� (8)

𝜎𝜎 = exp��
� ⋅ 𝐹𝐹𝐶𝐶 �proj

��⋅hidden��
→�latent

�ℎ�hidden��, (9)

where µ and 𝜎𝜎 are the mean and standard deviation
of the latent variable 𝑧𝑧. The latent variable is
sampled as:

𝑞𝑞�(𝑧𝑧 ∣ 𝑟𝑟) ∼ 𝒩𝒩(𝜇𝜇, 𝜎𝜎�𝐼𝐼). (10)

Decoder (𝑝𝑝�(𝑟𝑟|𝑧𝑧)): The decoder replicated the
architecture of the encoder, methodically
augmented the dimensionality from 𝑑𝑑latent back to
𝑑𝑑proj, and ultimately reverted to the original input
dimensionality |𝑟𝑟| .The decoder transformation is
defined as:

ℎ� = ReLU�𝐹𝐹𝐶𝐶
�latent→

�proj
��⋅hidden��

(𝑧𝑧)� (11)

ℎ� = ReLU�𝐹𝐹𝐶𝐶 �proj
��⋅hidden��

→
�proj

��⋅hidden��
(ℎ�)�. (12)

The hidden layer ℎ�hidden of the decoder is the
same as equation (7). At the final layer, the
decoder reconstructed the original input:

𝑟𝑟reconstructed = 𝐹𝐹𝐶𝐶�proj→���ℎ�hidden� (13)

Loss Function: The ADGVAE model was
trained by optimizing the evidence lower
bound (ELBO) [32]. The ELBO is given as:

ℒ = 𝐸𝐸��(𝑧𝑧|𝑟𝑟)[lo g 𝑝𝑝� (𝑟𝑟|𝑧𝑧)] − KL �𝑞𝑞�(𝑧𝑧|𝑟𝑟)|𝑝𝑝(𝑧𝑧)�, (14)

where the first term represents the
reconstruction loss, and the second term is the
Kullback-Leibler (KL) divergence, which
regularizes the latent variable 𝑧𝑧 to follow a
standard Gaussian distribution 𝑝𝑝(𝑧𝑧) =
𝒩𝒩(0, 𝐼𝐼).
Dynamic Hidden Layer Count Mechanism:
The dynamic hidden layer count mechanism
determined the optimal number of hidden
layers (𝑛𝑛hidden) for the encoder and decoder by
training, based on the input dimensions of the
dataset. Unlike fixed architectures, this
mechanism learned the number of layers that
yielded the best performance for datasets with
varying complexities. The determination of
𝑛𝑛hidden was guided by the input dimension of
the dataset (𝑑𝑑input), the latent space dimension
(𝑑𝑑latent), and a dataset-specific complexity
factor (𝑤𝑤dataset).

The number of hidden layers is dynamically
computed as follows:

𝑛𝑛hidden = �𝑤𝑤dataset ⋅ log� �
�input

�latent
��. (15)

The specific determination process of 𝑤𝑤dataset
is elaborated in Section 4.2.2

3.4. Anomaly-Enhanced Detection
The anomaly-enhanced detection module was
developed to detect anomalies by using a
comprehensive dataset that includes both
original traffic data and synthetic anomalies
produced by the ADGVAE module. This
module enhanced the decision boundary
between normal and anomalous samples by
modeling their distributions and computing
scores based on density and distance metrics.
The detection process consists of two main

. (4)

Here, dproj is a predefi ned projection dimension and
the detailed dimensionality reduction methods are
provided in Section 4.2.2.

FC|r|→dproj is a fully connected layer that maps the orig-
inal input to the projection space.

Encoder (qφ(z|r)): The encoder mapped the input
projection rproj to the latent space z of dimension
dlatent. It consisted of dynamically determined hidden
layers (nhidden) where each layer reduced the dimen-
sionality by half until dlatent was reached. The encoder
transformation is defi ned as:

𝑟𝑟proj = ReLU�𝐵𝐵𝐵𝐵 �𝐹𝐹𝐶𝐶|�|→�proj(𝑟𝑟)��. (4)

Here, 𝑑𝑑proj is a predefined projection dimension
and the detailed dimensionality reduction methods
are provided in Section 4.2.2.

𝐹𝐹𝐶𝐶|�|→�proj is a fully connected layer that maps the
original input to the projection space.

Figure 2

Principle of projection layer.

Encoder (𝑞𝑞�(𝑧𝑧|𝑟𝑟)): The encoder mapped the input
projection 𝑟𝑟���� to the latent space 𝑧𝑧 of dimension
𝑑𝑑latent . It consisted of dynamically determined
hidden layers (𝑛𝑛hidden) where each layer reduced
the dimensionality by half until 𝑑𝑑latent was reached.
The encoder transformation is defined as:

ℎ� = ReLU�𝐹𝐹𝐶𝐶
�proj→

�proj
�
�𝑟𝑟proj�� (5)

ℎ� = ReLU�𝐹𝐹𝐶𝐶�proj
� →

�proj
�
(ℎ�)� (6)

ℎ�hidden = ReLU�𝐹𝐹𝐶𝐶 �proj
��hidden⋅��hidden���

→�latent
�ℎ�hidden����. (7)

At the final layer, the encoder output the
parameters of the latent distribution:

𝜇𝜇 = 𝐹𝐹𝐶𝐶 �proj
��⋅hidden��

→�latent
�ℎ�hidden� (8)

𝜎𝜎 = exp��
� ⋅ 𝐹𝐹𝐶𝐶 �proj

��⋅hidden��
→�latent

�ℎ�hidden��, (9)

where µ and 𝜎𝜎 are the mean and standard deviation
of the latent variable 𝑧𝑧. The latent variable is
sampled as:

𝑞𝑞�(𝑧𝑧 ∣ 𝑟𝑟) ∼ 𝒩𝒩(𝜇𝜇, 𝜎𝜎�𝐼𝐼). (10)

Decoder (𝑝𝑝�(𝑟𝑟|𝑧𝑧)): The decoder replicated the
architecture of the encoder, methodically
augmented the dimensionality from 𝑑𝑑latent back to
𝑑𝑑proj, and ultimately reverted to the original input
dimensionality |𝑟𝑟| .The decoder transformation is
defined as:

ℎ� = ReLU�𝐹𝐹𝐶𝐶
�latent→

�proj
��⋅hidden��

(𝑧𝑧)� (11)

ℎ� = ReLU�𝐹𝐹𝐶𝐶 �proj
��⋅hidden��

→
�proj

��⋅hidden��
(ℎ�)�. (12)

The hidden layer ℎ�hidden of the decoder is the
same as equation (7). At the final layer, the
decoder reconstructed the original input:

𝑟𝑟reconstructed = 𝐹𝐹𝐶𝐶�proj→���ℎ�hidden� (13)

Loss Function: The ADGVAE model was
trained by optimizing the evidence lower
bound (ELBO) [32]. The ELBO is given as:

ℒ = 𝐸𝐸��(𝑧𝑧|𝑟𝑟)[lo g 𝑝𝑝� (𝑟𝑟|𝑧𝑧)] − KL �𝑞𝑞�(𝑧𝑧|𝑟𝑟)|𝑝𝑝(𝑧𝑧)�, (14)

where the first term represents the
reconstruction loss, and the second term is the
Kullback-Leibler (KL) divergence, which
regularizes the latent variable 𝑧𝑧 to follow a
standard Gaussian distribution 𝑝𝑝(𝑧𝑧) =
𝒩𝒩(0, 𝐼𝐼).
Dynamic Hidden Layer Count Mechanism:
The dynamic hidden layer count mechanism
determined the optimal number of hidden
layers (𝑛𝑛hidden) for the encoder and decoder by
training, based on the input dimensions of the
dataset. Unlike fixed architectures, this
mechanism learned the number of layers that
yielded the best performance for datasets with
varying complexities. The determination of
𝑛𝑛hidden was guided by the input dimension of
the dataset (𝑑𝑑input), the latent space dimension
(𝑑𝑑latent), and a dataset-specific complexity
factor (𝑤𝑤dataset).

The number of hidden layers is dynamically
computed as follows:

𝑛𝑛hidden = �𝑤𝑤dataset ⋅ log� �
�input

�latent
��. (15)

The specific determination process of 𝑤𝑤dataset
is elaborated in Section 4.2.2

3.4. Anomaly-Enhanced Detection
The anomaly-enhanced detection module was
developed to detect anomalies by using a
comprehensive dataset that includes both
original traffic data and synthetic anomalies
produced by the ADGVAE module. This
module enhanced the decision boundary
between normal and anomalous samples by
modeling their distributions and computing
scores based on density and distance metrics.
The detection process consists of two main

(5)

𝑟𝑟proj = ReLU�𝐵𝐵𝐵𝐵 �𝐹𝐹𝐶𝐶|�|→�proj(𝑟𝑟)��. (4)

Here, 𝑑𝑑proj is a predefined projection dimension
and the detailed dimensionality reduction methods
are provided in Section 4.2.2.

𝐹𝐹𝐶𝐶|�|→�proj is a fully connected layer that maps the
original input to the projection space.

Figure 2

Principle of projection layer.

Encoder (𝑞𝑞�(𝑧𝑧|𝑟𝑟)): The encoder mapped the input
projection 𝑟𝑟���� to the latent space 𝑧𝑧 of dimension
𝑑𝑑latent . It consisted of dynamically determined
hidden layers (𝑛𝑛hidden) where each layer reduced
the dimensionality by half until 𝑑𝑑latent was reached.
The encoder transformation is defined as:

ℎ� = ReLU�𝐹𝐹𝐶𝐶
�proj→

�proj
�
�𝑟𝑟proj�� (5)

ℎ� = ReLU�𝐹𝐹𝐶𝐶�proj
� →

�proj
�
(ℎ�)� (6)

ℎ�hidden = ReLU�𝐹𝐹𝐶𝐶 �proj
��hidden⋅��hidden���

→�latent
�ℎ�hidden����. (7)

At the final layer, the encoder output the
parameters of the latent distribution:

𝜇𝜇 = 𝐹𝐹𝐶𝐶 �proj
��⋅hidden��

→�latent
�ℎ�hidden� (8)

𝜎𝜎 = exp��
� ⋅ 𝐹𝐹𝐶𝐶 �proj

��⋅hidden��
→�latent

�ℎ�hidden��, (9)

where µ and 𝜎𝜎 are the mean and standard deviation
of the latent variable 𝑧𝑧. The latent variable is
sampled as:

𝑞𝑞�(𝑧𝑧 ∣ 𝑟𝑟) ∼ 𝒩𝒩(𝜇𝜇, 𝜎𝜎�𝐼𝐼). (10)

Decoder (𝑝𝑝�(𝑟𝑟|𝑧𝑧)): The decoder replicated the
architecture of the encoder, methodically
augmented the dimensionality from 𝑑𝑑latent back to
𝑑𝑑proj, and ultimately reverted to the original input
dimensionality |𝑟𝑟| .The decoder transformation is
defined as:

ℎ� = ReLU�𝐹𝐹𝐶𝐶
�latent→

�proj
��⋅hidden��

(𝑧𝑧)� (11)

ℎ� = ReLU�𝐹𝐹𝐶𝐶 �proj
��⋅hidden��

→
�proj

��⋅hidden��
(ℎ�)�. (12)

The hidden layer ℎ�hidden of the decoder is the
same as equation (7). At the final layer, the
decoder reconstructed the original input:

𝑟𝑟reconstructed = 𝐹𝐹𝐶𝐶�proj→���ℎ�hidden� (13)

Loss Function: The ADGVAE model was
trained by optimizing the evidence lower
bound (ELBO) [32]. The ELBO is given as:

ℒ = 𝐸𝐸��(𝑧𝑧|𝑟𝑟)[lo g 𝑝𝑝� (𝑟𝑟|𝑧𝑧)] − KL �𝑞𝑞�(𝑧𝑧|𝑟𝑟)|𝑝𝑝(𝑧𝑧)�, (14)

where the first term represents the
reconstruction loss, and the second term is the
Kullback-Leibler (KL) divergence, which
regularizes the latent variable 𝑧𝑧 to follow a
standard Gaussian distribution 𝑝𝑝(𝑧𝑧) =
𝒩𝒩(0, 𝐼𝐼).
Dynamic Hidden Layer Count Mechanism:
The dynamic hidden layer count mechanism
determined the optimal number of hidden
layers (𝑛𝑛hidden) for the encoder and decoder by
training, based on the input dimensions of the
dataset. Unlike fixed architectures, this
mechanism learned the number of layers that
yielded the best performance for datasets with
varying complexities. The determination of
𝑛𝑛hidden was guided by the input dimension of
the dataset (𝑑𝑑input), the latent space dimension
(𝑑𝑑latent), and a dataset-specific complexity
factor (𝑤𝑤dataset).

The number of hidden layers is dynamically
computed as follows:

𝑛𝑛hidden = �𝑤𝑤dataset ⋅ log� �
�input

�latent
��. (15)

The specific determination process of 𝑤𝑤dataset
is elaborated in Section 4.2.2

3.4. Anomaly-Enhanced Detection
The anomaly-enhanced detection module was
developed to detect anomalies by using a
comprehensive dataset that includes both
original traffic data and synthetic anomalies
produced by the ADGVAE module. This
module enhanced the decision boundary
between normal and anomalous samples by
modeling their distributions and computing
scores based on density and distance metrics.
The detection process consists of two main

(6)

𝑟𝑟proj = ReLU�𝐵𝐵𝐵𝐵 �𝐹𝐹𝐶𝐶|�|→�proj(𝑟𝑟)��. (4)

Here, 𝑑𝑑proj is a predefined projection dimension
and the detailed dimensionality reduction methods
are provided in Section 4.2.2.

𝐹𝐹𝐶𝐶|�|→�proj is a fully connected layer that maps the
original input to the projection space.

Figure 2

Principle of projection layer.

Encoder (𝑞𝑞�(𝑧𝑧|𝑟𝑟)): The encoder mapped the input
projection 𝑟𝑟���� to the latent space 𝑧𝑧 of dimension
𝑑𝑑latent . It consisted of dynamically determined
hidden layers (𝑛𝑛hidden) where each layer reduced
the dimensionality by half until 𝑑𝑑latent was reached.
The encoder transformation is defined as:

ℎ� = ReLU�𝐹𝐹𝐶𝐶
�proj→

�proj
�
�𝑟𝑟proj�� (5)

ℎ� = ReLU�𝐹𝐹𝐶𝐶�proj
� →

�proj
�
(ℎ�)� (6)

ℎ�hidden = ReLU�𝐹𝐹𝐶𝐶 �proj
��hidden⋅��hidden���

→�latent
�ℎ�hidden����. (7)

At the final layer, the encoder output the
parameters of the latent distribution:

𝜇𝜇 = 𝐹𝐹𝐶𝐶 �proj
��⋅hidden��

→�latent
�ℎ�hidden� (8)

𝜎𝜎 = exp��
� ⋅ 𝐹𝐹𝐶𝐶 �proj

��⋅hidden��
→�latent

�ℎ�hidden��, (9)

where µ and 𝜎𝜎 are the mean and standard deviation
of the latent variable 𝑧𝑧. The latent variable is
sampled as:

𝑞𝑞�(𝑧𝑧 ∣ 𝑟𝑟) ∼ 𝒩𝒩(𝜇𝜇, 𝜎𝜎�𝐼𝐼). (10)

Decoder (𝑝𝑝�(𝑟𝑟|𝑧𝑧)): The decoder replicated the
architecture of the encoder, methodically
augmented the dimensionality from 𝑑𝑑latent back to
𝑑𝑑proj, and ultimately reverted to the original input
dimensionality |𝑟𝑟| .The decoder transformation is
defined as:

ℎ� = ReLU�𝐹𝐹𝐶𝐶
�latent→

�proj
��⋅hidden��

(𝑧𝑧)� (11)

ℎ� = ReLU�𝐹𝐹𝐶𝐶 �proj
��⋅hidden��

→
�proj

��⋅hidden��
(ℎ�)�. (12)

The hidden layer ℎ�hidden of the decoder is the
same as equation (7). At the final layer, the
decoder reconstructed the original input:

𝑟𝑟reconstructed = 𝐹𝐹𝐶𝐶�proj→���ℎ�hidden� (13)

Loss Function: The ADGVAE model was
trained by optimizing the evidence lower
bound (ELBO) [32]. The ELBO is given as:

ℒ = 𝐸𝐸��(𝑧𝑧|𝑟𝑟)[lo g 𝑝𝑝� (𝑟𝑟|𝑧𝑧)] − KL �𝑞𝑞�(𝑧𝑧|𝑟𝑟)|𝑝𝑝(𝑧𝑧)�, (14)

where the first term represents the
reconstruction loss, and the second term is the
Kullback-Leibler (KL) divergence, which
regularizes the latent variable 𝑧𝑧 to follow a
standard Gaussian distribution 𝑝𝑝(𝑧𝑧) =
𝒩𝒩(0, 𝐼𝐼).
Dynamic Hidden Layer Count Mechanism:
The dynamic hidden layer count mechanism
determined the optimal number of hidden
layers (𝑛𝑛hidden) for the encoder and decoder by
training, based on the input dimensions of the
dataset. Unlike fixed architectures, this
mechanism learned the number of layers that
yielded the best performance for datasets with
varying complexities. The determination of
𝑛𝑛hidden was guided by the input dimension of
the dataset (𝑑𝑑input), the latent space dimension
(𝑑𝑑latent), and a dataset-specific complexity
factor (𝑤𝑤dataset).

The number of hidden layers is dynamically
computed as follows:

𝑛𝑛hidden = �𝑤𝑤dataset ⋅ log� �
�input

�latent
��. (15)

The specific determination process of 𝑤𝑤dataset
is elaborated in Section 4.2.2

3.4. Anomaly-Enhanced Detection
The anomaly-enhanced detection module was
developed to detect anomalies by using a
comprehensive dataset that includes both
original traffic data and synthetic anomalies
produced by the ADGVAE module. This
module enhanced the decision boundary
between normal and anomalous samples by
modeling their distributions and computing
scores based on density and distance metrics.
The detection process consists of two main

(7)

At the fi nal layer, the encoder output the parameters
of the latent distribution:

𝑟𝑟proj = ReLU�𝐵𝐵𝐵𝐵 �𝐹𝐹𝐶𝐶|�|→�proj(𝑟𝑟)��. (4)

Here, 𝑑𝑑proj is a predefined projection dimension
and the detailed dimensionality reduction methods
are provided in Section 4.2.2.

𝐹𝐹𝐶𝐶|�|→�proj is a fully connected layer that maps the
original input to the projection space.

Figure 2

Principle of projection layer.

Encoder (𝑞𝑞�(𝑧𝑧|𝑟𝑟)): The encoder mapped the input
projection 𝑟𝑟���� to the latent space 𝑧𝑧 of dimension
𝑑𝑑latent . It consisted of dynamically determined
hidden layers (𝑛𝑛hidden) where each layer reduced
the dimensionality by half until 𝑑𝑑latent was reached.
The encoder transformation is defined as:

ℎ� = ReLU�𝐹𝐹𝐶𝐶
�proj→

�proj
�
�𝑟𝑟proj�� (5)

ℎ� = ReLU�𝐹𝐹𝐶𝐶�proj
� →

�proj
�
(ℎ�)� (6)

ℎ�hidden = ReLU�𝐹𝐹𝐶𝐶 �proj
��hidden⋅��hidden���

→�latent
�ℎ�hidden����. (7)

At the final layer, the encoder output the
parameters of the latent distribution:

𝜇𝜇 = 𝐹𝐹𝐶𝐶 �proj
��⋅hidden��

→�latent
�ℎ�hidden� (8)

𝜎𝜎 = exp��
� ⋅ 𝐹𝐹𝐶𝐶 �proj

��⋅hidden��
→�latent

�ℎ�hidden��, (9)

where µ and 𝜎𝜎 are the mean and standard deviation
of the latent variable 𝑧𝑧. The latent variable is
sampled as:

𝑞𝑞�(𝑧𝑧 ∣ 𝑟𝑟) ∼ 𝒩𝒩(𝜇𝜇, 𝜎𝜎�𝐼𝐼). (10)

Decoder (𝑝𝑝�(𝑟𝑟|𝑧𝑧)): The decoder replicated the
architecture of the encoder, methodically
augmented the dimensionality from 𝑑𝑑latent back to
𝑑𝑑proj, and ultimately reverted to the original input
dimensionality |𝑟𝑟| .The decoder transformation is
defined as:

ℎ� = ReLU�𝐹𝐹𝐶𝐶
�latent→

�proj
��⋅hidden��

(𝑧𝑧)� (11)

ℎ� = ReLU�𝐹𝐹𝐶𝐶 �proj
��⋅hidden��

→
�proj

��⋅hidden��
(ℎ�)�. (12)

The hidden layer ℎ�hidden of the decoder is the
same as equation (7). At the final layer, the
decoder reconstructed the original input:

𝑟𝑟reconstructed = 𝐹𝐹𝐶𝐶�proj→���ℎ�hidden� (13)

Loss Function: The ADGVAE model was
trained by optimizing the evidence lower
bound (ELBO) [32]. The ELBO is given as:

ℒ = 𝐸𝐸��(𝑧𝑧|𝑟𝑟)[lo g 𝑝𝑝� (𝑟𝑟|𝑧𝑧)] − KL �𝑞𝑞�(𝑧𝑧|𝑟𝑟)|𝑝𝑝(𝑧𝑧)�, (14)

where the first term represents the
reconstruction loss, and the second term is the
Kullback-Leibler (KL) divergence, which
regularizes the latent variable 𝑧𝑧 to follow a
standard Gaussian distribution 𝑝𝑝(𝑧𝑧) =
𝒩𝒩(0, 𝐼𝐼).
Dynamic Hidden Layer Count Mechanism:
The dynamic hidden layer count mechanism
determined the optimal number of hidden
layers (𝑛𝑛hidden) for the encoder and decoder by
training, based on the input dimensions of the
dataset. Unlike fixed architectures, this
mechanism learned the number of layers that
yielded the best performance for datasets with
varying complexities. The determination of
𝑛𝑛hidden was guided by the input dimension of
the dataset (𝑑𝑑input), the latent space dimension
(𝑑𝑑latent), and a dataset-specific complexity
factor (𝑤𝑤dataset).

The number of hidden layers is dynamically
computed as follows:

𝑛𝑛hidden = �𝑤𝑤dataset ⋅ log� �
�input

�latent
��. (15)

The specific determination process of 𝑤𝑤dataset
is elaborated in Section 4.2.2

3.4. Anomaly-Enhanced Detection
The anomaly-enhanced detection module was
developed to detect anomalies by using a
comprehensive dataset that includes both
original traffic data and synthetic anomalies
produced by the ADGVAE module. This
module enhanced the decision boundary
between normal and anomalous samples by
modeling their distributions and computing
scores based on density and distance metrics.
The detection process consists of two main

(8)

𝑟𝑟proj = ReLU�𝐵𝐵𝐵𝐵 �𝐹𝐹𝐶𝐶|�|→�proj(𝑟𝑟)��. (4)

Here, 𝑑𝑑proj is a predefined projection dimension
and the detailed dimensionality reduction methods
are provided in Section 4.2.2.

𝐹𝐹𝐶𝐶|�|→�proj is a fully connected layer that maps the
original input to the projection space.

Figure 2

Principle of projection layer.

Encoder (𝑞𝑞�(𝑧𝑧|𝑟𝑟)): The encoder mapped the input
projection 𝑟𝑟���� to the latent space 𝑧𝑧 of dimension
𝑑𝑑latent . It consisted of dynamically determined
hidden layers (𝑛𝑛hidden) where each layer reduced
the dimensionality by half until 𝑑𝑑latent was reached.
The encoder transformation is defined as:

ℎ� = ReLU�𝐹𝐹𝐶𝐶
�proj→

�proj
�
�𝑟𝑟proj�� (5)

ℎ� = ReLU�𝐹𝐹𝐶𝐶�proj
� →

�proj
�
(ℎ�)� (6)

ℎ�hidden = ReLU�𝐹𝐹𝐶𝐶 �proj
��hidden⋅��hidden���

→�latent
�ℎ�hidden����. (7)

At the final layer, the encoder output the
parameters of the latent distribution:

𝜇𝜇 = 𝐹𝐹𝐶𝐶 �proj
��⋅hidden��

→�latent
�ℎ�hidden� (8)

𝜎𝜎 = exp��
� ⋅ 𝐹𝐹𝐶𝐶 �proj

��⋅hidden��
→�latent

�ℎ�hidden��, (9)

where µ and 𝜎𝜎 are the mean and standard deviation
of the latent variable 𝑧𝑧. The latent variable is
sampled as:

𝑞𝑞�(𝑧𝑧 ∣ 𝑟𝑟) ∼ 𝒩𝒩(𝜇𝜇, 𝜎𝜎�𝐼𝐼). (10)

Decoder (𝑝𝑝�(𝑟𝑟|𝑧𝑧)): The decoder replicated the
architecture of the encoder, methodically
augmented the dimensionality from 𝑑𝑑latent back to
𝑑𝑑proj, and ultimately reverted to the original input
dimensionality |𝑟𝑟| .The decoder transformation is
defined as:

ℎ� = ReLU�𝐹𝐹𝐶𝐶
�latent→

�proj
��⋅hidden��

(𝑧𝑧)� (11)

ℎ� = ReLU�𝐹𝐹𝐶𝐶 �proj
��⋅hidden��

→
�proj

��⋅hidden��
(ℎ�)�. (12)

The hidden layer ℎ�hidden of the decoder is the
same as equation (7). At the final layer, the
decoder reconstructed the original input:

𝑟𝑟reconstructed = 𝐹𝐹𝐶𝐶�proj→���ℎ�hidden� (13)

Loss Function: The ADGVAE model was
trained by optimizing the evidence lower
bound (ELBO) [32]. The ELBO is given as:

ℒ = 𝐸𝐸��(𝑧𝑧|𝑟𝑟)[lo g 𝑝𝑝� (𝑟𝑟|𝑧𝑧)] − KL �𝑞𝑞�(𝑧𝑧|𝑟𝑟)|𝑝𝑝(𝑧𝑧)�, (14)

where the first term represents the
reconstruction loss, and the second term is the
Kullback-Leibler (KL) divergence, which
regularizes the latent variable 𝑧𝑧 to follow a
standard Gaussian distribution 𝑝𝑝(𝑧𝑧) =
𝒩𝒩(0, 𝐼𝐼).
Dynamic Hidden Layer Count Mechanism:
The dynamic hidden layer count mechanism
determined the optimal number of hidden
layers (𝑛𝑛hidden) for the encoder and decoder by
training, based on the input dimensions of the
dataset. Unlike fixed architectures, this
mechanism learned the number of layers that
yielded the best performance for datasets with
varying complexities. The determination of
𝑛𝑛hidden was guided by the input dimension of
the dataset (𝑑𝑑input), the latent space dimension
(𝑑𝑑latent), and a dataset-specific complexity
factor (𝑤𝑤dataset).

The number of hidden layers is dynamically
computed as follows:

𝑛𝑛hidden = �𝑤𝑤dataset ⋅ log� �
�input

�latent
��. (15)

The specific determination process of 𝑤𝑤dataset
is elaborated in Section 4.2.2

3.4. Anomaly-Enhanced Detection
The anomaly-enhanced detection module was
developed to detect anomalies by using a
comprehensive dataset that includes both
original traffic data and synthetic anomalies
produced by the ADGVAE module. This
module enhanced the decision boundary
between normal and anomalous samples by
modeling their distributions and computing
scores based on density and distance metrics.
The detection process consists of two main

, (9)

where μ and σ are the mean and standard deviation of
the latent variable z. The latent variable is sampled as:

𝑟𝑟proj = ReLU�𝐵𝐵𝐵𝐵 �𝐹𝐹𝐶𝐶|�|→�proj(𝑟𝑟)��. (4)

Here, 𝑑𝑑proj is a predefined projection dimension
and the detailed dimensionality reduction methods
are provided in Section 4.2.2.

𝐹𝐹𝐶𝐶|�|→�proj is a fully connected layer that maps the
original input to the projection space.

Figure 2

Principle of projection layer.

Encoder (𝑞𝑞�(𝑧𝑧|𝑟𝑟)): The encoder mapped the input
projection 𝑟𝑟���� to the latent space 𝑧𝑧 of dimension
𝑑𝑑latent . It consisted of dynamically determined
hidden layers (𝑛𝑛hidden) where each layer reduced
the dimensionality by half until 𝑑𝑑latent was reached.
The encoder transformation is defined as:

ℎ� = ReLU�𝐹𝐹𝐶𝐶
�proj→

�proj
�
�𝑟𝑟proj�� (5)

ℎ� = ReLU�𝐹𝐹𝐶𝐶�proj
� →

�proj
�
(ℎ�)� (6)

ℎ�hidden = ReLU�𝐹𝐹𝐶𝐶 �proj
��hidden⋅��hidden���

→�latent
�ℎ�hidden����. (7)

At the final layer, the encoder output the
parameters of the latent distribution:

𝜇𝜇 = 𝐹𝐹𝐶𝐶 �proj
��⋅hidden��

→�latent
�ℎ�hidden� (8)

𝜎𝜎 = exp��
� ⋅ 𝐹𝐹𝐶𝐶 �proj

��⋅hidden��
→�latent

�ℎ�hidden��, (9)

where µ and 𝜎𝜎 are the mean and standard deviation
of the latent variable 𝑧𝑧. The latent variable is
sampled as:

𝑞𝑞�(𝑧𝑧 ∣ 𝑟𝑟) ∼ 𝒩𝒩(𝜇𝜇, 𝜎𝜎�𝐼𝐼). (10)

Decoder (𝑝𝑝�(𝑟𝑟|𝑧𝑧)): The decoder replicated the
architecture of the encoder, methodically
augmented the dimensionality from 𝑑𝑑latent back to
𝑑𝑑proj, and ultimately reverted to the original input
dimensionality |𝑟𝑟| .The decoder transformation is
defined as:

ℎ� = ReLU�𝐹𝐹𝐶𝐶
�latent→

�proj
��⋅hidden��

(𝑧𝑧)� (11)

ℎ� = ReLU�𝐹𝐹𝐶𝐶 �proj
��⋅hidden��

→
�proj

��⋅hidden��
(ℎ�)�. (12)

The hidden layer ℎ�hidden of the decoder is the
same as equation (7). At the final layer, the
decoder reconstructed the original input:

𝑟𝑟reconstructed = 𝐹𝐹𝐶𝐶�proj→���ℎ�hidden� (13)

Loss Function: The ADGVAE model was
trained by optimizing the evidence lower
bound (ELBO) [32]. The ELBO is given as:

ℒ = 𝐸𝐸��(𝑧𝑧|𝑟𝑟)[lo g 𝑝𝑝� (𝑟𝑟|𝑧𝑧)] − KL �𝑞𝑞�(𝑧𝑧|𝑟𝑟)|𝑝𝑝(𝑧𝑧)�, (14)

where the first term represents the
reconstruction loss, and the second term is the
Kullback-Leibler (KL) divergence, which
regularizes the latent variable 𝑧𝑧 to follow a
standard Gaussian distribution 𝑝𝑝(𝑧𝑧) =
𝒩𝒩(0, 𝐼𝐼).
Dynamic Hidden Layer Count Mechanism:
The dynamic hidden layer count mechanism
determined the optimal number of hidden
layers (𝑛𝑛hidden) for the encoder and decoder by
training, based on the input dimensions of the
dataset. Unlike fixed architectures, this
mechanism learned the number of layers that
yielded the best performance for datasets with
varying complexities. The determination of
𝑛𝑛hidden was guided by the input dimension of
the dataset (𝑑𝑑input), the latent space dimension
(𝑑𝑑latent), and a dataset-specific complexity
factor (𝑤𝑤dataset).

The number of hidden layers is dynamically
computed as follows:

𝑛𝑛hidden = �𝑤𝑤dataset ⋅ log� �
�input

�latent
��. (15)

The specific determination process of 𝑤𝑤dataset
is elaborated in Section 4.2.2

3.4. Anomaly-Enhanced Detection
The anomaly-enhanced detection module was
developed to detect anomalies by using a
comprehensive dataset that includes both
original traffic data and synthetic anomalies
produced by the ADGVAE module. This
module enhanced the decision boundary
between normal and anomalous samples by
modeling their distributions and computing
scores based on density and distance metrics.
The detection process consists of two main

. (10)

𝑟𝑟proj = ReLU�𝐵𝐵𝐵𝐵 �𝐹𝐹𝐶𝐶|�|→�proj(𝑟𝑟)��. (4)

Here, 𝑑𝑑proj is a predefined projection dimension
and the detailed dimensionality reduction methods
are provided in Section 4.2.2.

𝐹𝐹𝐶𝐶|�|→�proj is a fully connected layer that maps the
original input to the projection space.

Figure 2

Principle of projection layer.

Encoder (𝑞𝑞�(𝑧𝑧|𝑟𝑟)): The encoder mapped the input
projection 𝑟𝑟���� to the latent space 𝑧𝑧 of dimension
𝑑𝑑latent . It consisted of dynamically determined
hidden layers (𝑛𝑛hidden) where each layer reduced
the dimensionality by half until 𝑑𝑑latent was reached.
The encoder transformation is defined as:

ℎ� = ReLU�𝐹𝐹𝐶𝐶
�proj→

�proj
�
�𝑟𝑟proj�� (5)

ℎ� = ReLU�𝐹𝐹𝐶𝐶�proj
� →

�proj
�
(ℎ�)� (6)

ℎ�hidden = ReLU�𝐹𝐹𝐶𝐶 �proj
��hidden⋅��hidden���

→�latent
�ℎ�hidden����. (7)

At the final layer, the encoder output the
parameters of the latent distribution:

𝜇𝜇 = 𝐹𝐹𝐶𝐶 �proj
��⋅hidden��

→�latent
�ℎ�hidden� (8)

𝜎𝜎 = exp��
� ⋅ 𝐹𝐹𝐶𝐶 �proj

��⋅hidden��
→�latent

�ℎ�hidden��, (9)

where µ and 𝜎𝜎 are the mean and standard deviation
of the latent variable 𝑧𝑧. The latent variable is
sampled as:

𝑞𝑞�(𝑧𝑧 ∣ 𝑟𝑟) ∼ 𝒩𝒩(𝜇𝜇, 𝜎𝜎�𝐼𝐼). (10)

Decoder (𝑝𝑝�(𝑟𝑟|𝑧𝑧)): The decoder replicated the
architecture of the encoder, methodically
augmented the dimensionality from 𝑑𝑑latent back to
𝑑𝑑proj, and ultimately reverted to the original input
dimensionality |𝑟𝑟| .The decoder transformation is
defined as:

ℎ� = ReLU�𝐹𝐹𝐶𝐶
�latent→

�proj
��⋅hidden��

(𝑧𝑧)� (11)

ℎ� = ReLU�𝐹𝐹𝐶𝐶 �proj
��⋅hidden��

→
�proj

��⋅hidden��
(ℎ�)�. (12)

The hidden layer ℎ�hidden of the decoder is the
same as equation (7). At the final layer, the
decoder reconstructed the original input:

𝑟𝑟reconstructed = 𝐹𝐹𝐶𝐶�proj→���ℎ�hidden� (13)

Loss Function: The ADGVAE model was
trained by optimizing the evidence lower
bound (ELBO) [32]. The ELBO is given as:

ℒ = 𝐸𝐸��(𝑧𝑧|𝑟𝑟)[lo g 𝑝𝑝� (𝑟𝑟|𝑧𝑧)] − KL �𝑞𝑞�(𝑧𝑧|𝑟𝑟)|𝑝𝑝(𝑧𝑧)�, (14)

where the first term represents the
reconstruction loss, and the second term is the
Kullback-Leibler (KL) divergence, which
regularizes the latent variable 𝑧𝑧 to follow a
standard Gaussian distribution 𝑝𝑝(𝑧𝑧) =
𝒩𝒩(0, 𝐼𝐼).
Dynamic Hidden Layer Count Mechanism:
The dynamic hidden layer count mechanism
determined the optimal number of hidden
layers (𝑛𝑛hidden) for the encoder and decoder by
training, based on the input dimensions of the
dataset. Unlike fixed architectures, this
mechanism learned the number of layers that
yielded the best performance for datasets with
varying complexities. The determination of
𝑛𝑛hidden was guided by the input dimension of
the dataset (𝑑𝑑input), the latent space dimension
(𝑑𝑑latent), and a dataset-specific complexity
factor (𝑤𝑤dataset).

The number of hidden layers is dynamically
computed as follows:

𝑛𝑛hidden = �𝑤𝑤dataset ⋅ log� �
�input

�latent
��. (15)

The specific determination process of 𝑤𝑤dataset
is elaborated in Section 4.2.2

3.4. Anomaly-Enhanced Detection
The anomaly-enhanced detection module was
developed to detect anomalies by using a
comprehensive dataset that includes both
original traffic data and synthetic anomalies
produced by the ADGVAE module. This
module enhanced the decision boundary
between normal and anomalous samples by
modeling their distributions and computing
scores based on density and distance metrics.
The detection process consists of two main

Figure 2
Principle of projection layer.

601Information Technology and Control 2025/2/54

Decoder (pθ (r|z)): The decoder replicated the archi-
tecture of the encoder, methodically augmented the
dimensionality from dlatent back to dproj, and ultimately
reverted to the original input dimensionality |r|.The
decoder transformation is defi ned as:

𝑟𝑟proj = ReLU�𝐵𝐵𝐵𝐵 �𝐹𝐹𝐶𝐶|�|→�proj(𝑟𝑟)��. (4)

Here, 𝑑𝑑proj is a predefined projection dimension
and the detailed dimensionality reduction methods
are provided in Section 4.2.2.

𝐹𝐹𝐶𝐶|�|→�proj is a fully connected layer that maps the
original input to the projection space.

Figure 2

Principle of projection layer.

Encoder (𝑞𝑞�(𝑧𝑧|𝑟𝑟)): The encoder mapped the input
projection 𝑟𝑟���� to the latent space 𝑧𝑧 of dimension
𝑑𝑑latent . It consisted of dynamically determined
hidden layers (𝑛𝑛hidden) where each layer reduced
the dimensionality by half until 𝑑𝑑latent was reached.
The encoder transformation is defined as:

ℎ� = ReLU�𝐹𝐹𝐶𝐶
�proj→

�proj
�
�𝑟𝑟proj�� (5)

ℎ� = ReLU�𝐹𝐹𝐶𝐶�proj
� →

�proj
�
(ℎ�)� (6)

ℎ�hidden = ReLU�𝐹𝐹𝐶𝐶 �proj
��hidden⋅��hidden���

→�latent
�ℎ�hidden����. (7)

At the final layer, the encoder output the
parameters of the latent distribution:

𝜇𝜇 = 𝐹𝐹𝐶𝐶 �proj
��⋅hidden��

→�latent
�ℎ�hidden� (8)

𝜎𝜎 = exp��
� ⋅ 𝐹𝐹𝐶𝐶 �proj

��⋅hidden��
→�latent

�ℎ�hidden��, (9)

where µ and 𝜎𝜎 are the mean and standard deviation
of the latent variable 𝑧𝑧. The latent variable is
sampled as:

𝑞𝑞�(𝑧𝑧 ∣ 𝑟𝑟) ∼ 𝒩𝒩(𝜇𝜇, 𝜎𝜎�𝐼𝐼). (10)

Decoder (𝑝𝑝�(𝑟𝑟|𝑧𝑧)): The decoder replicated the
architecture of the encoder, methodically
augmented the dimensionality from 𝑑𝑑latent back to
𝑑𝑑proj, and ultimately reverted to the original input
dimensionality |𝑟𝑟| .The decoder transformation is
defined as:

ℎ� = ReLU�𝐹𝐹𝐶𝐶
�latent→

�proj
��⋅hidden��

(𝑧𝑧)� (11)

ℎ� = ReLU�𝐹𝐹𝐶𝐶 �proj
��⋅hidden��

→
�proj

��⋅hidden��
(ℎ�)�. (12)

The hidden layer ℎ�hidden of the decoder is the
same as equation (7). At the final layer, the
decoder reconstructed the original input:

𝑟𝑟reconstructed = 𝐹𝐹𝐶𝐶�proj→���ℎ�hidden� (13)

Loss Function: The ADGVAE model was
trained by optimizing the evidence lower
bound (ELBO) [32]. The ELBO is given as:

ℒ = 𝐸𝐸��(𝑧𝑧|𝑟𝑟)[lo g 𝑝𝑝� (𝑟𝑟|𝑧𝑧)] − KL �𝑞𝑞�(𝑧𝑧|𝑟𝑟)|𝑝𝑝(𝑧𝑧)�, (14)

where the first term represents the
reconstruction loss, and the second term is the
Kullback-Leibler (KL) divergence, which
regularizes the latent variable 𝑧𝑧 to follow a
standard Gaussian distribution 𝑝𝑝(𝑧𝑧) =
𝒩𝒩(0, 𝐼𝐼).
Dynamic Hidden Layer Count Mechanism:
The dynamic hidden layer count mechanism
determined the optimal number of hidden
layers (𝑛𝑛hidden) for the encoder and decoder by
training, based on the input dimensions of the
dataset. Unlike fixed architectures, this
mechanism learned the number of layers that
yielded the best performance for datasets with
varying complexities. The determination of
𝑛𝑛hidden was guided by the input dimension of
the dataset (𝑑𝑑input), the latent space dimension
(𝑑𝑑latent), and a dataset-specific complexity
factor (𝑤𝑤dataset).

The number of hidden layers is dynamically
computed as follows:

𝑛𝑛hidden = �𝑤𝑤dataset ⋅ log� �
�input

�latent
��. (15)

The specific determination process of 𝑤𝑤dataset
is elaborated in Section 4.2.2

3.4. Anomaly-Enhanced Detection
The anomaly-enhanced detection module was
developed to detect anomalies by using a
comprehensive dataset that includes both
original traffic data and synthetic anomalies
produced by the ADGVAE module. This
module enhanced the decision boundary
between normal and anomalous samples by
modeling their distributions and computing
scores based on density and distance metrics.
The detection process consists of two main

(11)𝑟𝑟proj = ReLU�𝐵𝐵𝐵𝐵 �𝐹𝐹𝐶𝐶|�|→�proj(𝑟𝑟)��. (4)

Here, 𝑑𝑑proj is a predefined projection dimension
and the detailed dimensionality reduction methods
are provided in Section 4.2.2.

𝐹𝐹𝐶𝐶|�|→�proj is a fully connected layer that maps the
original input to the projection space.

Figure 2

Principle of projection layer.

Encoder (𝑞𝑞�(𝑧𝑧|𝑟𝑟)): The encoder mapped the input
projection 𝑟𝑟���� to the latent space 𝑧𝑧 of dimension
𝑑𝑑latent . It consisted of dynamically determined
hidden layers (𝑛𝑛hidden) where each layer reduced
the dimensionality by half until 𝑑𝑑latent was reached.
The encoder transformation is defined as:

ℎ� = ReLU�𝐹𝐹𝐶𝐶
�proj→

�proj
�
�𝑟𝑟proj�� (5)

ℎ� = ReLU�𝐹𝐹𝐶𝐶�proj
� →

�proj
�
(ℎ�)� (6)

ℎ�hidden = ReLU�𝐹𝐹𝐶𝐶 �proj
��hidden⋅��hidden���

→�latent
�ℎ�hidden����. (7)

At the final layer, the encoder output the
parameters of the latent distribution:

𝜇𝜇 = 𝐹𝐹𝐶𝐶 �proj
��⋅hidden��

→�latent
�ℎ�hidden� (8)

𝜎𝜎 = exp��
� ⋅ 𝐹𝐹𝐶𝐶 �proj

��⋅hidden��
→�latent

�ℎ�hidden��, (9)

where µ and 𝜎𝜎 are the mean and standard deviation
of the latent variable 𝑧𝑧. The latent variable is
sampled as:

𝑞𝑞�(𝑧𝑧 ∣ 𝑟𝑟) ∼ 𝒩𝒩(𝜇𝜇, 𝜎𝜎�𝐼𝐼). (10)

Decoder (𝑝𝑝�(𝑟𝑟|𝑧𝑧)): The decoder replicated the
architecture of the encoder, methodically
augmented the dimensionality from 𝑑𝑑latent back to
𝑑𝑑proj, and ultimately reverted to the original input
dimensionality |𝑟𝑟| .The decoder transformation is
defined as:

ℎ� = ReLU�𝐹𝐹𝐶𝐶
�latent→

�proj
��⋅hidden��

(𝑧𝑧)� (11)

ℎ� = ReLU�𝐹𝐹𝐶𝐶 �proj
��⋅hidden��

→
�proj

��⋅hidden��
(ℎ�)�. (12)

The hidden layer ℎ�hidden of the decoder is the
same as equation (7). At the final layer, the
decoder reconstructed the original input:

𝑟𝑟reconstructed = 𝐹𝐹𝐶𝐶�proj→���ℎ�hidden� (13)

Loss Function: The ADGVAE model was
trained by optimizing the evidence lower
bound (ELBO) [32]. The ELBO is given as:

ℒ = 𝐸𝐸��(𝑧𝑧|𝑟𝑟)[lo g 𝑝𝑝� (𝑟𝑟|𝑧𝑧)] − KL �𝑞𝑞�(𝑧𝑧|𝑟𝑟)|𝑝𝑝(𝑧𝑧)�, (14)

where the first term represents the
reconstruction loss, and the second term is the
Kullback-Leibler (KL) divergence, which
regularizes the latent variable 𝑧𝑧 to follow a
standard Gaussian distribution 𝑝𝑝(𝑧𝑧) =
𝒩𝒩(0, 𝐼𝐼).
Dynamic Hidden Layer Count Mechanism:
The dynamic hidden layer count mechanism
determined the optimal number of hidden
layers (𝑛𝑛hidden) for the encoder and decoder by
training, based on the input dimensions of the
dataset. Unlike fixed architectures, this
mechanism learned the number of layers that
yielded the best performance for datasets with
varying complexities. The determination of
𝑛𝑛hidden was guided by the input dimension of
the dataset (𝑑𝑑input), the latent space dimension
(𝑑𝑑latent), and a dataset-specific complexity
factor (𝑤𝑤dataset).

The number of hidden layers is dynamically
computed as follows:

𝑛𝑛hidden = �𝑤𝑤dataset ⋅ log� �
�input

�latent
��. (15)

The specific determination process of 𝑤𝑤dataset
is elaborated in Section 4.2.2

3.4. Anomaly-Enhanced Detection
The anomaly-enhanced detection module was
developed to detect anomalies by using a
comprehensive dataset that includes both
original traffic data and synthetic anomalies
produced by the ADGVAE module. This
module enhanced the decision boundary
between normal and anomalous samples by
modeling their distributions and computing
scores based on density and distance metrics.
The detection process consists of two main

. (12)

The hidden layer hnhidden
of the decoder is the same as

equation (7). At the fi nal layer, the decoder recon-
structed the original input:

𝑟𝑟proj = ReLU�𝐵𝐵𝐵𝐵 �𝐹𝐹𝐶𝐶|�|→�proj(𝑟𝑟)��. (4)

Here, 𝑑𝑑proj is a predefined projection dimension
and the detailed dimensionality reduction methods
are provided in Section 4.2.2.

𝐹𝐹𝐶𝐶|�|→�proj is a fully connected layer that maps the
original input to the projection space.

Figure 2

Principle of projection layer.

Encoder (𝑞𝑞�(𝑧𝑧|𝑟𝑟)): The encoder mapped the input
projection 𝑟𝑟���� to the latent space 𝑧𝑧 of dimension
𝑑𝑑latent . It consisted of dynamically determined
hidden layers (𝑛𝑛hidden) where each layer reduced
the dimensionality by half until 𝑑𝑑latent was reached.
The encoder transformation is defined as:

ℎ� = ReLU�𝐹𝐹𝐶𝐶
�proj→

�proj
�
�𝑟𝑟proj�� (5)

ℎ� = ReLU�𝐹𝐹𝐶𝐶�proj
� →

�proj
�
(ℎ�)� (6)

ℎ�hidden = ReLU�𝐹𝐹𝐶𝐶 �proj
��hidden⋅��hidden���

→�latent
�ℎ�hidden����. (7)

At the final layer, the encoder output the
parameters of the latent distribution:

𝜇𝜇 = 𝐹𝐹𝐶𝐶 �proj
��⋅hidden��

→�latent
�ℎ�hidden� (8)

𝜎𝜎 = exp��
� ⋅ 𝐹𝐹𝐶𝐶 �proj

��⋅hidden��
→�latent

�ℎ�hidden��, (9)

where µ and 𝜎𝜎 are the mean and standard deviation
of the latent variable 𝑧𝑧. The latent variable is
sampled as:

𝑞𝑞�(𝑧𝑧 ∣ 𝑟𝑟) ∼ 𝒩𝒩(𝜇𝜇, 𝜎𝜎�𝐼𝐼). (10)

Decoder (𝑝𝑝�(𝑟𝑟|𝑧𝑧)): The decoder replicated the
architecture of the encoder, methodically
augmented the dimensionality from 𝑑𝑑latent back to
𝑑𝑑proj, and ultimately reverted to the original input
dimensionality |𝑟𝑟| .The decoder transformation is
defined as:

ℎ� = ReLU�𝐹𝐹𝐶𝐶
�latent→

�proj
��⋅hidden��

(𝑧𝑧)� (11)

ℎ� = ReLU�𝐹𝐹𝐶𝐶 �proj
��⋅hidden��

→
�proj

��⋅hidden��
(ℎ�)�. (12)

The hidden layer ℎ�hidden of the decoder is the
same as equation (7). At the final layer, the
decoder reconstructed the original input:

𝑟𝑟reconstructed = 𝐹𝐹𝐶𝐶�proj→���ℎ�hidden� (13)

Loss Function: The ADGVAE model was
trained by optimizing the evidence lower
bound (ELBO) [32]. The ELBO is given as:

ℒ = 𝐸𝐸��(𝑧𝑧|𝑟𝑟)[lo g 𝑝𝑝� (𝑟𝑟|𝑧𝑧)] − KL �𝑞𝑞�(𝑧𝑧|𝑟𝑟)|𝑝𝑝(𝑧𝑧)�, (14)

where the first term represents the
reconstruction loss, and the second term is the
Kullback-Leibler (KL) divergence, which
regularizes the latent variable 𝑧𝑧 to follow a
standard Gaussian distribution 𝑝𝑝(𝑧𝑧) =
𝒩𝒩(0, 𝐼𝐼).
Dynamic Hidden Layer Count Mechanism:
The dynamic hidden layer count mechanism
determined the optimal number of hidden
layers (𝑛𝑛hidden) for the encoder and decoder by
training, based on the input dimensions of the
dataset. Unlike fixed architectures, this
mechanism learned the number of layers that
yielded the best performance for datasets with
varying complexities. The determination of
𝑛𝑛hidden was guided by the input dimension of
the dataset (𝑑𝑑input), the latent space dimension
(𝑑𝑑latent), and a dataset-specific complexity
factor (𝑤𝑤dataset).

The number of hidden layers is dynamically
computed as follows:

𝑛𝑛hidden = �𝑤𝑤dataset ⋅ log� �
�input

�latent
��. (15)

The specific determination process of 𝑤𝑤dataset
is elaborated in Section 4.2.2

3.4. Anomaly-Enhanced Detection
The anomaly-enhanced detection module was
developed to detect anomalies by using a
comprehensive dataset that includes both
original traffic data and synthetic anomalies
produced by the ADGVAE module. This
module enhanced the decision boundary
between normal and anomalous samples by
modeling their distributions and computing
scores based on density and distance metrics.
The detection process consists of two main

(13)

Loss Function: The ADGVAE model was trained by
optimizing the evidence lower bound (ELBO) [32].
The ELBO is given as:

𝑟𝑟proj = ReLU�𝐵𝐵𝐵𝐵 �𝐹𝐹𝐶𝐶|�|→�proj(𝑟𝑟)��. (4)

Here, 𝑑𝑑proj is a predefined projection dimension
and the detailed dimensionality reduction methods
are provided in Section 4.2.2.

𝐹𝐹𝐶𝐶|�|→�proj is a fully connected layer that maps the
original input to the projection space.

Figure 2

Principle of projection layer.

Encoder (𝑞𝑞�(𝑧𝑧|𝑟𝑟)): The encoder mapped the input
projection 𝑟𝑟���� to the latent space 𝑧𝑧 of dimension
𝑑𝑑latent . It consisted of dynamically determined
hidden layers (𝑛𝑛hidden) where each layer reduced
the dimensionality by half until 𝑑𝑑latent was reached.
The encoder transformation is defined as:

ℎ� = ReLU�𝐹𝐹𝐶𝐶
�proj→

�proj
�
�𝑟𝑟proj�� (5)

ℎ� = ReLU�𝐹𝐹𝐶𝐶�proj
� →

�proj
�
(ℎ�)� (6)

ℎ�hidden = ReLU�𝐹𝐹𝐶𝐶 �proj
��hidden⋅��hidden���

→�latent
�ℎ�hidden����. (7)

At the final layer, the encoder output the
parameters of the latent distribution:

𝜇𝜇 = 𝐹𝐹𝐶𝐶 �proj
��⋅hidden��

→�latent
�ℎ�hidden� (8)

𝜎𝜎 = exp��
� ⋅ 𝐹𝐹𝐶𝐶 �proj

��⋅hidden��
→�latent

�ℎ�hidden��, (9)

where µ and 𝜎𝜎 are the mean and standard deviation
of the latent variable 𝑧𝑧. The latent variable is
sampled as:

𝑞𝑞�(𝑧𝑧 ∣ 𝑟𝑟) ∼ 𝒩𝒩(𝜇𝜇, 𝜎𝜎�𝐼𝐼). (10)

Decoder (𝑝𝑝�(𝑟𝑟|𝑧𝑧)): The decoder replicated the
architecture of the encoder, methodically
augmented the dimensionality from 𝑑𝑑latent back to
𝑑𝑑proj, and ultimately reverted to the original input
dimensionality |𝑟𝑟| .The decoder transformation is
defined as:

ℎ� = ReLU�𝐹𝐹𝐶𝐶
�latent→

�proj
��⋅hidden��

(𝑧𝑧)� (11)

ℎ� = ReLU�𝐹𝐹𝐶𝐶 �proj
��⋅hidden��

→
�proj

��⋅hidden��
(ℎ�)�. (12)

The hidden layer ℎ�hidden of the decoder is the
same as equation (7). At the final layer, the
decoder reconstructed the original input:

𝑟𝑟reconstructed = 𝐹𝐹𝐶𝐶�proj→���ℎ�hidden� (13)

Loss Function: The ADGVAE model was
trained by optimizing the evidence lower
bound (ELBO) [32]. The ELBO is given as:

ℒ = 𝐸𝐸��(𝑧𝑧|𝑟𝑟)[lo g 𝑝𝑝� (𝑟𝑟|𝑧𝑧)] − KL �𝑞𝑞�(𝑧𝑧|𝑟𝑟)|𝑝𝑝(𝑧𝑧)�, (14)

where the first term represents the
reconstruction loss, and the second term is the
Kullback-Leibler (KL) divergence, which
regularizes the latent variable 𝑧𝑧 to follow a
standard Gaussian distribution 𝑝𝑝(𝑧𝑧) =
𝒩𝒩(0, 𝐼𝐼).
Dynamic Hidden Layer Count Mechanism:
The dynamic hidden layer count mechanism
determined the optimal number of hidden
layers (𝑛𝑛hidden) for the encoder and decoder by
training, based on the input dimensions of the
dataset. Unlike fixed architectures, this
mechanism learned the number of layers that
yielded the best performance for datasets with
varying complexities. The determination of
𝑛𝑛hidden was guided by the input dimension of
the dataset (𝑑𝑑input), the latent space dimension
(𝑑𝑑latent), and a dataset-specific complexity
factor (𝑤𝑤dataset).

The number of hidden layers is dynamically
computed as follows:

𝑛𝑛hidden = �𝑤𝑤dataset ⋅ log� �
�input

�latent
��. (15)

The specific determination process of 𝑤𝑤dataset
is elaborated in Section 4.2.2

3.4. Anomaly-Enhanced Detection
The anomaly-enhanced detection module was
developed to detect anomalies by using a
comprehensive dataset that includes both
original traffic data and synthetic anomalies
produced by the ADGVAE module. This
module enhanced the decision boundary
between normal and anomalous samples by
modeling their distributions and computing
scores based on density and distance metrics.
The detection process consists of two main

, (14)

where the fi rst term represents the reconstruction
loss, and the second term is the Kullback-Leibler (KL)
divergence, which regularizes the latent variable z to
follow a standard Gaussian distribution p(z) = N(0,I).
Dynamic Hidden Layer Count Mechanism: The dy-
namic hidden layer count mechanism determined the
optimal number of hidden layers (nhidden) for the encoder
and decoder by training, based on the input dimensions
of the dataset. Unlike fi xed architectures, this mecha-
nism learned the number of layers that yielded the best
performance for datasets with varying complexities.
The determination of nhidden was guided by the input di-
mension of the dataset (dinput), the latent space dimension
(dlatent), and a dataset-specifi c complexity factor (wdataset).
The number of hidden layers is dynamically com-
puted as follows:

𝑟𝑟proj = ReLU�𝐵𝐵𝐵𝐵 �𝐹𝐹𝐶𝐶|�|→�proj(𝑟𝑟)��. (4)

Here, 𝑑𝑑proj is a predefined projection dimension
and the detailed dimensionality reduction methods
are provided in Section 4.2.2.

𝐹𝐹𝐶𝐶|�|→�proj is a fully connected layer that maps the
original input to the projection space.

Figure 2

Principle of projection layer.

Encoder (𝑞𝑞�(𝑧𝑧|𝑟𝑟)): The encoder mapped the input
projection 𝑟𝑟���� to the latent space 𝑧𝑧 of dimension
𝑑𝑑latent . It consisted of dynamically determined
hidden layers (𝑛𝑛hidden) where each layer reduced
the dimensionality by half until 𝑑𝑑latent was reached.
The encoder transformation is defined as:

ℎ� = ReLU�𝐹𝐹𝐶𝐶
�proj→

�proj
�
�𝑟𝑟proj�� (5)

ℎ� = ReLU�𝐹𝐹𝐶𝐶�proj
� →

�proj
�
(ℎ�)� (6)

ℎ�hidden = ReLU�𝐹𝐹𝐶𝐶 �proj
��hidden⋅��hidden���

→�latent
�ℎ�hidden����. (7)

At the final layer, the encoder output the
parameters of the latent distribution:

𝜇𝜇 = 𝐹𝐹𝐶𝐶 �proj
��⋅hidden��

→�latent
�ℎ�hidden� (8)

𝜎𝜎 = exp��
� ⋅ 𝐹𝐹𝐶𝐶 �proj

��⋅hidden��
→�latent

�ℎ�hidden��, (9)

where µ and 𝜎𝜎 are the mean and standard deviation
of the latent variable 𝑧𝑧. The latent variable is
sampled as:

𝑞𝑞�(𝑧𝑧 ∣ 𝑟𝑟) ∼ 𝒩𝒩(𝜇𝜇, 𝜎𝜎�𝐼𝐼). (10)

Decoder (𝑝𝑝�(𝑟𝑟|𝑧𝑧)): The decoder replicated the
architecture of the encoder, methodically
augmented the dimensionality from 𝑑𝑑latent back to
𝑑𝑑proj, and ultimately reverted to the original input
dimensionality |𝑟𝑟| .The decoder transformation is
defined as:

ℎ� = ReLU�𝐹𝐹𝐶𝐶
�latent→

�proj
��⋅hidden��

(𝑧𝑧)� (11)

ℎ� = ReLU�𝐹𝐹𝐶𝐶 �proj
��⋅hidden��

→
�proj

��⋅hidden��
(ℎ�)�. (12)

The hidden layer ℎ�hidden of the decoder is the
same as equation (7). At the final layer, the
decoder reconstructed the original input:

𝑟𝑟reconstructed = 𝐹𝐹𝐶𝐶�proj→���ℎ�hidden� (13)

Loss Function: The ADGVAE model was
trained by optimizing the evidence lower
bound (ELBO) [32]. The ELBO is given as:

ℒ = 𝐸𝐸��(𝑧𝑧|𝑟𝑟)[lo g 𝑝𝑝� (𝑟𝑟|𝑧𝑧)] − KL �𝑞𝑞�(𝑧𝑧|𝑟𝑟)|𝑝𝑝(𝑧𝑧)�, (14)

where the first term represents the
reconstruction loss, and the second term is the
Kullback-Leibler (KL) divergence, which
regularizes the latent variable 𝑧𝑧 to follow a
standard Gaussian distribution 𝑝𝑝(𝑧𝑧) =
𝒩𝒩(0, 𝐼𝐼).
Dynamic Hidden Layer Count Mechanism:
The dynamic hidden layer count mechanism
determined the optimal number of hidden
layers (𝑛𝑛hidden) for the encoder and decoder by
training, based on the input dimensions of the
dataset. Unlike fixed architectures, this
mechanism learned the number of layers that
yielded the best performance for datasets with
varying complexities. The determination of
𝑛𝑛hidden was guided by the input dimension of
the dataset (𝑑𝑑input), the latent space dimension
(𝑑𝑑latent), and a dataset-specific complexity
factor (𝑤𝑤dataset).

The number of hidden layers is dynamically
computed as follows:

𝑛𝑛hidden = �𝑤𝑤dataset ⋅ log� �
�input

�latent
��. (15)

The specific determination process of 𝑤𝑤dataset
is elaborated in Section 4.2.2

3.4. Anomaly-Enhanced Detection
The anomaly-enhanced detection module was
developed to detect anomalies by using a
comprehensive dataset that includes both
original traffic data and synthetic anomalies
produced by the ADGVAE module. This
module enhanced the decision boundary
between normal and anomalous samples by
modeling their distributions and computing
scores based on density and distance metrics.
The detection process consists of two main

. (15)

The specifi c determination process of wdataset is elabo-
rated in Section 4.2.2

3.4. Anomaly-Enhanced Detection
The anomaly-enhanced detection module was de-
veloped to detect anomalies by using a comprehen-
sive dataset that includes both original traffi c data
and synthetic anomalies produced by the ADGVAE
module. This module enhanced the decision bound-
ary between normal and anomalous samples by mod-
eling their distributions and computing scores based
on density and distance metrics. The detection pro-
cess consists of two main steps: density-based mod-
eling and anomaly scoring and classifi cation.
In the density-based modeling step, a gaussian mix-
ture model (GMM) [5] was used to estimate the
probability distribution of latent representations.
GMM modeled the data distribution as a mixture
of Gaussian components, each characterized by a
mean, variance, and weight. The expectation-maxi-
mization (EM) algorithm [7] was employed to learn
these parameters, allowing the GMM to identify
high-density regions where normal samples resided,
while anomalies, including synthetic samples, are
located in lower-density areas.
The anomaly scoring and classifi cation step com-
puted an anomaly score for each sample by combin-
ing density-based [10] and distance-based metrics
[14]. The density-based score evaluated how well a
sample fi t the learned Gaussian components, with
lower scores indicating potential anomalies. The
distance-based score measured the proximity of a
sample to the nearest Gaussian center, with larg-
er distances suggesting a higher likelihood of being
anomalous. Table 2. shows the complete parameters
and strategy used in the proposed approach.

Model Parameters Value

GMM Number of
Components (K) 5

Anomaly Scoring Density Weight (λ1) 0.7

Anomaly Scoring Mahalanobis Distance
Weight (λ2) 0.3

Anomaly
Classifi cation Threshold (τ) 95th

Percentile

Dataset Split Training Set Percentage 67%

Dataset Split Validation Set Percentage 33%

Table 2
Anomaly attack detection model parameters.

Information Technology and Control 2025/2/54602

As shown in Table 2, the anomaly-enhanced detection
approach uses five Gaussian components (K=5) in the
GMM as an initial value, which is optimized based
on evaluation metrics during the experiments. The
density weight (λ1) is set to 0.7, and the Mahalanobis
distance weight (λ2) is set to 0.3. The threshold (τ) for
anomaly classification is set to the 95th percentile of
anomaly scores. The dataset has been allocated 67%
for training purposes and 33% for validation. This
configuration of parameters facilitates the accurate
identification of both normal and anomalous samples.

4. Experiments
4.1. Datasets
This study employed three prominent network intru-
sion detection datasets: NSL-KDD, UNSW-NB15, and
CICIDS2017, serving as benchmark datasets. The se-
lection of these datasets was based on a comprehensive
literature review, which indicated that approximately
75% of recent studies on intrusion detection employed
one or more of these datasets [8, 13, 21]. Their wide-
spread use is due to their extensive coverage of attack
scenarios, a diverse array of features, and their efficacy
in benchmarking anomaly detection models. A sum-
mary of the datasets is presented in Table 3.

The datasets were standardized using the normal-
ization process described in Section 3.2.1, ensuring
all features were scaled to a uniform range to im-
prove model performance. Feature selection were
performed following the four-step process outlined
in Section 3.2.2.
Correlation analysis was performed to identify and
remove features with high collinearity (correlation
coefficient > 0.9), reducing redundancy in the data-
set. Table 4 presents the highly correlated features
in each dataset.

Dataset Samples Features Attack Types

NSL-KDD 125,973 41 DoS, Probe, U2R, R2L

UN-
SW-NB15 257,673 49

Fuzzers, Analysis,
Backdoors, DoS, Ex-

ploits, Generic, Recon-
naissance, Shellcode

CIC-
IDS2017 2,830,743 78

Brute Force, Heart-
bleed, Botnet, DoS,
DDoS, Infiltration,

Web Attacks

Table 3
Summary of benchmark datasets

These datasets encompass a mix of normal and
anomalous traffic, covering modern and traditional
attack types. NSL-KDD focuses on traditional at-
tacks, UNSW-NB15 introduces hybrid traffic sce-
narios, and CICIDS2017 provides a realistic repre-
sentation of modern network attacks.

Dataset Feature Pairs with Correlation (> 90%)

NSL-KDD dst_bytes & src_bytes, srv_serror_rate &
serror_rate , srv_rerror_rate & rerror_rate

UNSW-NB15 sttl & dttl , ct_dst_sport_ltm & ct_dst_src_
ltm , ct_src_dport_ltm & ct_src_src_ltm

CICIDS2017
 Flow Bytes/s & Flow Packets/s , Total

Length of Fwd Packets & Total Fwd Pack-
et Length , Fwd IAT Mean & Fwd IAT Std

Table 4
Highly correlated features identified in datasets.

Then a Random Forest (RF)-based importance scor-
ing method [15] was applied to rank features based
on their contribution to classification performance.
The parameters used in the RF model for impor-
tance scoring are listed in Table 5.

Parameter Value Description

Number of
Trees 100 Number of decision trees in

the forest

Max Depth None Unlimited tree depth

Min Samples
Split 2 Minimum samples required to

split an internal node

Min Samples
Leaf 1 Minimum samples required to

be at a leaf node

Max Features sqrt Number of features to consider
when looking for the best split

Bootstrap True Whether bootstrap sampling is
used when building trees

Table 5
RF-based feature importance scoring parameter settings.

In the results, features with scores below the dynamic
threshold were excluded as summarized in Table 6.

603Information Technology and Control 2025/2/54

presents the highly correlated features in each
dataset.

Table 4

Highly correlated features identified in datasets.
Dataset Feature Pairs with

Correlation (> 90%)
NSL-KDD dst_bytes & src_bytes,

srv_serror_rate & serror_rate
, srv_rerror_rate &
rerror_rate

UNSW-NB15 s�l & d�l , ct_dst_sport_ltm
& ct_dst_src_ltm ,
ct_src_dport_ltm &
ct_src_src_ltm

CICIDS2017 Flow Bytes/s & Flow
Packets/s , Total Length of
Fwd Packets & Total Fwd
Packet Length , Fwd IAT
Mean & Fwd IAT Std

Then a Random Forest (RF)-based importance
scoring method [15] was applied to rank features
based on their contribution to classification
performance. The parameters used in the RF model
for importance scoring are listed in Table 5.

Table 5

RF-based feature importance scoring parameter
settings.
Parameter Value Description

Number of
Trees

100 Number of decision trees in
the forest

Max Depth None Unlimited tree depth
Min Samples
Split

2 Minimum samples required
to split an internal node

Min Samples
Leaf

1 Minimum samples required
to be at a leaf node

Max Features sqrt Number of features to
consider when looking for
the best split

Bootstrap True Whether bootstrap sampling
is used when building trees

In the results, features with scores below the
dynamic threshold were excluded as summarized
in Table 6.

Table 6
Features excluded by dynamic thresholds.

The feature importance scores for the three datasets
are shown in Figure 3, These charts illustrate the
relative importance of selected features, sorted in
descending order based on their contribution to
classification performance.

Figure 3

Feature importance for benchmark datasets:
(a) Feature importance for NSL-kDD; (b)
Feature importance for UNSW-NB15;
(c)Feature importance for CICIDS2017.

(a)

(b)

Datasets Threshold
Removed
Features

NSL-KDD 0.018 7

UNSW-NB15 0.03 9

CICIDS2017 0.04 14

presents the highly correlated features in each
dataset.

Table 4

Highly correlated features identified in datasets.
Dataset Feature Pairs with

Correlation (> 90%)
NSL-KDD dst_bytes & src_bytes,

srv_serror_rate & serror_rate
, srv_rerror_rate &
rerror_rate

UNSW-NB15 s�l & d�l , ct_dst_sport_ltm
& ct_dst_src_ltm ,
ct_src_dport_ltm &
ct_src_src_ltm

CICIDS2017 Flow Bytes/s & Flow
Packets/s , Total Length of
Fwd Packets & Total Fwd
Packet Length , Fwd IAT
Mean & Fwd IAT Std

Then a Random Forest (RF)-based importance
scoring method [15] was applied to rank features
based on their contribution to classification
performance. The parameters used in the RF model
for importance scoring are listed in Table 5.

Table 5

RF-based feature importance scoring parameter
settings.
Parameter Value Description

Number of
Trees

100 Number of decision trees in
the forest

Max Depth None Unlimited tree depth
Min Samples
Split

2 Minimum samples required
to split an internal node

Min Samples
Leaf

1 Minimum samples required
to be at a leaf node

Max Features sqrt Number of features to
consider when looking for
the best split

Bootstrap True Whether bootstrap sampling
is used when building trees

In the results, features with scores below the
dynamic threshold were excluded as summarized
in Table 6.

Table 6
Features excluded by dynamic thresholds.

The feature importance scores for the three datasets
are shown in Figure 3, These charts illustrate the
relative importance of selected features, sorted in
descending order based on their contribution to
classification performance.

Figure 3

Feature importance for benchmark datasets:
(a) Feature importance for NSL-kDD; (b)
Feature importance for UNSW-NB15;
(c)Feature importance for CICIDS2017.

(a)

(b)

Datasets Threshold
Removed
Features

NSL-KDD 0.018 7

UNSW-NB15 0.03 9

CICIDS2017 0.04 14

(c)

Subsequently, the feature distribution analysis
across datasets method was applied to ensure
consistency of selected features across NSL-KDD,
UNSW-NB15, and CICIDS2017. This process
involved comparing the statistical metrics (mean,
variance, maximum, and minimum) of each feature
across datasets. Features with significant variance
instability (variance ratio > 5) or mean deviation
(mean offset > 30%) were deemed inconsistent and
removed. Following this analysis, NSL-KDD had 4
features removed due to distribution differences,
UNSW-NB15 also had 4 such features removed. In
CICIDS2017, 10 features were excluded, such as
Init_Win_Bytes_Backward and
Bwd_Header_Length, due to significant cross-
dataset variability.

The remaining features were further refined using
domain knowledge. Features unrelated to network
security tasks were removed, including those with
no direct correlation to attack behavior. Features
characterized by high dynamic variability, marked
by rapid or unpredictable value changes, were also
excluded. Statistical features (e.g., Packet_Length,
Flow_Bytes_Per_Second) and attack-related
features (e.g., Protocol_Type, Service) were
retained to ensure stability and relevance. The final
selected features for all datasets are summarized in
Table 7.

Table 7
Final selected features

Dataset Feature
Count

Selected Features

NSL-KDD 24 service, flag, src_bytes,
dst_bytes, land, urgent, hot,
logged_in, root_shell,
is_host_login, serror_rate,
srv_serror_rate, rerror_rate,

same_srv_rate,
srv_diff_host_rate,
dst_host_count,
dst_host_same_srv_rate,
dst_host_diff_srv_rate,
dst_host_same_src_port_rate,
dst_host_srv_diff_host_rate,
dst_host_srv_serror_rate,
dst_host_serror_rate,
num_failed_logins, num_root

UNSW-
NB15

27 srcip, sport, dstip, dsport,
proto, state, is_ftp_login,
res_bdy_len, ct_dst_src_ltm,
ct_dst_sport_ltm, Sload,
Dload, is_sm_ips_ports, d�l,
ct_src_ ltm, ct_src_dport_ltm,
dur, ct_ftp_cmd, ct_srv_dst,
Dintpkt, Ltime, Sintpkt,
synack, ct_srv_src, ct_dst_ltm,
Djit, Stime

CICIDS
2017

33 flow duration, destination
port, total fwd packets, total
backward packets, ece flag
count, flow packets/s, flow
bytes/s, average packet size,
fwd iat mean, bwd iat std, fwd
header length,
init_win_bytes_forward, bwd
packet length max, bwd
packet length mean, subflow
fwd packets, subflow bwd
bytes, active max, active std,
min packet length, fwd iat std,
bwd iat total, bwd header
length, active min, fwd
packets/s, total length of fwd
packets, bwd packet length
std, total length of bwd
packets, flow iat mean, cwe
flag count, flow iat std, fin flag
count, active mean, idle mean

4.2. Experimental Setup
4.2.1. Baseline Methods

To evaluate the performance of SAEDF, we
compared it with four baseline methods,
including traditional detection techniques and
advanced generative-based approaches.
These baselines were selected to cover a range
of methodologies, including unsupervised
detection, supervised learning, and
generative models for data augmentation.
Specifically, we included isolation forest (IF)
[23] and local outlier factor (LOF) [24] as
unsupervised anomaly detection methods,
SGAN-IDS [2] as a GAN-based generative

(a)

(b)

(c)

Datasets Threshold Removed Features

NSL-KDD 0.018 7

UNSW-NB15 0.03 9

CICIDS2017 0.04 14

Table 6
Features excluded by dynamic thresholds.

Figure 3
Feature importance for benchmark datasets: (a) Feature
importance for NSL-kDD; (b) Feature importance for
UNSW-NB15; (c)Feature importance for CICIDS2017.

The feature importance scores for the three data-
sets are shown in Figure 3, These charts illustrate
the relative importance of selected features, sorted
in descending order based on their contribution to
classification performance.

Dataset Feature
Count Selected Features

NSL-
KDD 24

service, flag, src_bytes, dst_bytes,
land, urgent, hot, logged_in, root_shell,
is_host_login, serror_rate, srv_serror_
rate, rerror_rate, same_srv_rate, srv_
diff_host_rate, dst_host_count, dst_
host_same_srv_rate, dst_host_diff_

srv_rate, dst_host_same_src_port_rate,
dst_host_srv_diff_host_rate, dst_host_
srv_serror_rate, dst_host_serror_rate,

num_failed_logins, num_root

UN-
SW-NB15 27

srcip, sport, dstip, dsport, proto, state,
is_ftp_login, res_bdy_len, ct_dst_src_
ltm, ct_dst_sport_ltm, Sload, Dload,

is_sm_ips_ports, dttl, ct_src_ ltm,
ct_src_dport_ltm, dur, ct_ftp_cmd,
ct_srv_dst, Dintpkt, Ltime, Sintpkt,
synack, ct_srv_src, ct_dst_ltm, Djit,

Stime

CICIDS
2017 33

flow duration, destination port, total
fwd packets, total backward packets,

ece flag count, flow packets/s, flow
bytes/s, average packet size, fwd iat

mean, bwd iat std, fwd header length,
init_win_bytes_forward, bwd packet
length max, bwd packet length mean,

subflow fwd packets, subflow bwd
bytes, active max, active std, min
packet length, fwd iat std, bwd iat

total, bwd header length, active min,
fwd packets/s, total length of fwd

packets, bwd packet length std, total
length of bwd packets, flow iat mean,

cwe flag count, flow iat std, fin flag
count, active mean, idle mean

Table 7
Final selected features

Information Technology and Control 2025/2/54604

Subsequently, the feature distribution analysis across
datasets method was applied to ensure consistency of
selected features across NSL-KDD, UNSW-NB15, and
CICIDS2017. This process involved comparing the sta-
tistical metrics (mean, variance, maximum, and min-
imum) of each feature across datasets. Features with
significant variance instability (variance ratio > 5) or
mean deviation (mean offset > 30%) were deemed in-
consistent and removed. Following this analysis, NSL-
KDD had 4 features removed due to distribution differ-
ences, UNSW-NB15 also had 4 such features removed.
In CICIDS2017, 10 features were excluded, such as
Init_Win_Bytes_Backward and Bwd_Header_Length,
due to significant cross-dataset variability.
The remaining features were further refined using
domain knowledge. Features unrelated to network
security tasks were removed, including those with
no direct correlation to attack behavior. Features
characterized by high dynamic variability, marked
by rapid or unpredictable value changes, were also
excluded. Statistical features (e.g., Packet_Length,
Flow_Bytes_Per_Second) and attack-related fea-
tures (e.g., Protocol_Type, Service) were retained
to ensure stability and relevance. The final selected
features for all datasets are summarized in Table 7.

4.2. Experimental Setup
4.2.1. Baseline Methods
To evaluate the performance of SAEDF, we compared
it with four baseline methods, including traditional
detection techniques and advanced generative-based
approaches. These baselines were selected to cover a
range of methodologies, including unsupervised de-
tection, supervised learning, and generative models for
data augmentation. Specifically, we included isolation
forest (IF) [23] and local outlier factor (LOF) [24] as
unsupervised anomaly detection methods, SGAN-IDS
[2] as a GAN-based generative model for anomaly de-
tection. These methods were chosen based on their rel-
evance to the scope of this study, as they either repre-
sent state-of-the-art generative approaches or provide
benchmark techniques commonly used for intrusion
detection in the existing literature. Furthermore, they
are well-suited for the datasets used in this study, en-
suring a fair and meaningful comparison.
In order to assess the performance of SAEDF, we
conducted a comparative analysis against four foun-
dational methodologies, which encompassed both

traditional detection techniques and sophisticated
generative-based strategies. These baselines methods
were selected to encompass a spectrum of methodol-
ogies, including unsupervised detection, supervised
learning, and generative models utilized for data aug-
mentation. Specifically, our selection included the
isolation forest (IF) [23] and local outlier factor (LOF)
[24] as unsupervised anomaly detection techniques,
SGAN-IDS [2] as a GAN-based generative model for
anomaly detection, and a hybrid supervised two-stage
detection approach that combines LightGBM and an
autoencoder [42]. These methodologies were chosen
based on their robust performance documented in ex-
isting literature and their suitability for the datasets
employed in this research.

4.2.2. Implementation Details
This section delineates the structural specifics of the
ADGVAE model (as detailed in Section 3.3.3), encom-
passing its network architecture, primary components,
hyperparameters, and training configurations. The
model integrates three fundamental components: a pro-
jection layer (dproj), a dynamic hidden layer structure,
and a mechanism for dynamic layer counting. A summa-
ry of the parameters defining the network architecture
of ADGVAE for each dataset is provided in Table 8.

Dataset din dproj
Hid-

Layers Nodes wdataset

NSL-
KDD 28 16 6 [64, 128, 256,

256, 128, 64] 1.5

UN-
SW-NB15 34 20 8

[128, 256,
512, 512, 256,

128, 64, 32]
2.0

CIC-
IDS2017 50 32 10

[256, 512,
1024, 1024,

512, 256, 128,
64, 32, 16]

2.5

Table 8
Network architecture for each dataset.

For each dataset, was determined experimentally
based on the dataset size and feature complexity,
balancing the trade-off between detection perfor-
mance and computational efficiency.
The training process was configured to ensure stable
convergence and effective anomaly detection. The
key hyperparameters are shown in Table 9.

605Information Technology and Control 2025/2/54

5. Results and Discussion
5.1 Evaluation metrics
The evaluation metrics we designed in this study
focus on both the quality of the generated anoma-
lous samples and the detection performance of the
framework. The Fréchet Inception Distance (FID)
was employed to assess the quality of the generat-
ed anomalous samples, representing the similarity
between the distributions of the generated samples
and the original samples through the distance be-
tween the two distributions.
The FID is defined as:

model for anomaly detection. These methods were
chosen based on their relevance to the scope of this
study, as they either represent state-of-the-art
generative approaches or provide benchmark
techniques commonly used for intrusion detection
in the existing literature. Furthermore, they are
well-suited for the datasets used in this study,
ensuring a fair and meaningful comparison.

In order to assess the performance of SAEDF, we
conducted a comparative analysis against four
foundational methodologies, which encompassed
both traditional detection techniques and
sophisticated generative-based strategies. These
baselines methods were selected to encompass a
spectrum of methodologies, including
unsupervised detection, supervised learning, and
generative models utilized for data augmentation.
Specifically, our selection included the isolation
forest (IF) [23] and local outlier factor (LOF) [24] as
unsupervised anomaly detection techniques,
SGAN-IDS [2] as a GAN-based generative model
for anomaly detection, and a hybrid supervised
two-stage detection approach that combines
LightGBM and an autoencoder [42]. These
methodologies were chosen based on their robust
performance documented in existing literature and
their suitability for the datasets employed in this
research.

4.2.2. Implementation Details

This section delineates the structural specifics of the
ADGVAE model (as detailed in Section 3.3.3),
encompassing its network architecture, primary
components, hyperparameters, and training
configurations. The model integrates three
fundamental components: a projection layer
(𝑑𝑑����), a dynamic hidden layer structure, and a
mechanism for dynamic layer counting. A
summary of the parameters defining the network
architecture of ADGVAE for each dataset is
provided in Table 8.

Table 8
Network architecture for each dataset.

Dataset 𝒅𝒅𝒊𝒊𝒊𝒊 𝒅𝒅𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 Hid-
Layers

Nodes 𝒘𝒘dataset

NSL-
KDD

28 16 6 [64, 128, 256,
256, 128, 64]

1.5

UNSW-
NB15

34 20 8 [128, 256, 512,
512, 256, 128,
64, 32]

2.0

CICIDS
2017

50 32 10 [256, 512, 1024,
1024, 512, 256,
128, 64, 32, 16]

2.5

For each dataset, 𝑤𝑤dataset was determined
experimentally based on the dataset size and
feature complexity, balancing the trade-off
between detection performance and
computational efficiency.

The training process was configured to ensure
stable convergence and effective anomaly
detection. The key hyperparameters are
shown in Table 9.

Table 9
Hyperparameters for training ADGVAE.

Parameters NSL-
KDD

UNSW-
NB15

CICIDS2017

Learning rate 0.001 0.0005 0.0001

Batch size 32 64 128

Epochs 100 150 200

Latent space 8 16 32

Dropout rate 0.2 0.3 0.3

Regularization 0.01 0.005 0.001
Optimizer Adam AdamW AdamW
Learning rate
decay 0.95 0.9 0.85

5.Results and Discussion
5.1 Evaluation metrics
The evaluation metrics we designed in this
study focus on both the quality of the
generated anomalous samples and the
detection performance of the framework. The
Fréchet Inception Distance (FID) was
employed to assess the quality of the
generated anomalous samples, representing
the similarity between the distributions of the
generated samples and the original samples
through the distance between the two
distributions.

The FID is defined as:

FID = ∥∥𝜇𝜇� − 𝜇𝜇�∥∥� + Tr�Σ� + Σ� − 2�Σ�Σ��, (16)

where 𝜇𝜇� and 𝜇𝜇� are the mean feature
representations of real and generated
anomalous samples, respectively, and Σ� and
Σ� are their covariance matrices. A lower FID
indicates higher similarity, reflecting better
fidelity and diversity in the generated samples.

The detection performance of the framework
was evaluated using metrics derived from the
confusion matrix [30]. Specifically, the metrics
included Precision, which measures the
proportion of correctly identified anomalies
among predicted anomalies; Recall, which

 , (16)

where μr and μg are the mean feature representations
of real and generated anomalous samples, respec-
tively, and Σr and Σg are their covariance matrices. A
lower FID indicates higher similarity, reflecting bet-
ter fidelity and diversity in the generated samples.
The detection performance of the framework was
evaluated using metrics derived from the confusion
matrix [30]. Specifically, the metrics included Pre-
cision, which measures the proportion of correctly
identified anomalies among predicted anomalies;
Recall, which reflects the model’s ability to detect
all true anomalies; F1-Score, the harmonic mean of
Precision and Recall; and AUC-ROC, which assess-
es the model’s ability to distinguish between normal
and anomalous samples.

Table 9
Hyperparameters for training ADGVAE.

Parameters NSL-KDD UNSW-NB15 CICIDS2017

Learning rate 0.001 0.0005 0.0001

Batch size 32 64 128

Epochs 100 150 200

Latent space 8 16 32

Dropout rate 0.2 0.3 0.3

Regularization 0.01 0.005 0.001

Optimizer Adam AdamW AdamW

Learning rate
decay 0.95 0.9 0.85

5.2. Results
5.2.1. Attack Sample Generation Quality
The FID values in Table 10 summarize the quality of
the generated samples for each dataset. On average,
CICIDS2017 achieved the lowest mean FID (8.96),
indicating the highest similarity between the generat-
ed and real samples, followed by UNSW-NB15 (10.78)
and NSL-KDD (12.34). Across all datasets, the maxi-
mum FID values remain low (<19), reflecting consis-
tent fidelity and diversity in the generated samples.
The standard deviation of FID values is also small,
suggesting stable performance across features.
The observed low FID values in this study reflects
the high fidelity and diversity of the generated sam-
ples. The CICIDS2017 dataset achieved the lowest
mean FID value (8.96), demonstrating that the ADG-
VAE model effectively captures the underlying dis-
tribution of complex modern network attacks. This
allows the model to learn more realistic decision
boundaries and improves its ability to detect previ-
ously unseen anomalies.
The small standard deviation (STD) of FID val-
ues across datasets, such as 2.47 for CICIDS2017,
emphasizes the stability of the ADGVAE model in
generating consistent data distributions. This con-
sistency minimizes fluctuations in the training pro-
cess, guaranteeing that the model is less susceptible
to biases resulting from inconsistent or low-quality
synthetic samples.

In order to visually demonstrate the caliber of the pro-
duced anomalous samples, we performed a compara-
tive assessment of their distributions relative to gen-
uine anomalies through the utilization of scatter plots.
Figure 4 depicts the distribution of both authentic and
generated samples for the benchmark datasets.
From Figure 4, the horizontal (Component 1) and
vertical (Component 2) axes represent the reduced
dimensions obtained through PCA, preserving the

Dataset Mean FID Max FID Min FID STD

NSL-KDD 12.34 18.56 6.78 3.21

UNSW-NB15 10.78 15.89 5.43 2.95

CICIDS2017 8.96 14.32 4.87 2.47

Table 10
FID results for generated samples.

Information Technology and Control 2025/2/54606

reflects the model’s ability to detect all true
anomalies; F1-Score, the harmonic mean of
Precision and Recall; and AUC-ROC, which
assesses the model’s ability to distinguish between
normal and anomalous samples.

5.2. Results
5.2.1. Attack Sample Generation Quality

The FID values in Table 10 summarize the quality
of the generated samples for each dataset. On
average, CICIDS2017 achieved the lowest mean
FID (8.96), indicating the highest similarity
between the generated and real samples, followed
by UNSW-NB15 (10.78) and NSL-KDD (12.34).
Across all datasets, the maximum FID values
remain low (<19), reflecting consistent fidelity and
diversity in the generated samples. The standard
deviation of FID values is also small, suggesting
stable performance across features.

The observed low FID values in this study reflects
the high fidelity and diversity of the generated
samples. The CICIDS2017 dataset achieved the
lowest mean FID value (8.96), demonstrating that
the ADGVAE model effectively captures the
underlying distribution of complex modern
network attacks. This allows the model to learn
more realistic decision boundaries and improves its
ability to detect previously unseen anomalies.

The small standard deviation (STD) of FID values
across datasets, such as 2.47 for CICIDS2017,
emphasizes the stability of the ADGVAE model in
generating consistent data distributions. This
consistency minimizes fluctuations in the training
process, guaranteeing that the model is less
susceptible to biases resulting from inconsistent or
low-quality synthetic samples.

Table 10
FID results for generated samples.

Dataset Mean
FID

Max
FID

Min
FID

STD

NSL-KDD 12.34 18.56 6.78 3.21

UNSW-NB15 10.78 15.89 5.43 2.95

CICIDS2017 8.96 14.32 4.87 2.47

In order to visually demonstrate the caliber of the
produced anomalous samples, we performed a
comparative assessment of their distributions
relative to genuine anomalies through the
utilization of scatter plots. Figure 4 depicts the
distribution of both authentic and generated
samples for the benchmark datasets.

From Figure 4, the horizontal (Component 1) and
vertical (Component 2) axes represent the reduced

dimensions obtained through PCA,
preserving the primary relationships in the
feature space. The generated samples closely
align with the real anomalies in feature space,
reflecting the high fidelity and diversity of our
ADGVAE model.

We conducted a comparative analysis of the
FID metrics pertaining to ADGVAE alongside
those of SGAN-IDS for the samples produced
across the benchmark datasets.

Figure 4

Synthetic sample distribution for benchmark
datasets: (a) sample distribution for NSL-KDD;
(b) sample distribution for UNSW-NB15; (c)
sample distribution for CICIDS2017.

 (a)

 (b)

 (c)

Figure 5 presents a comprehensive comparison of
FID metrics (Mean, Max, Min, and STD) between
ADGVAE and SGAN-IDS. ADGVAE consistently
outperforms SGAN-IDS in all metrics, with
significantly lower Mean FID values, reflecting
higher fidelity in generated samples. Additionally,
the lower Max FID and STD values for ADGVAE
indicate better distribution consistency and
reduced variance, highlighting its superiority in
generating high-quality anomaly samples. These
results demonstrate that ADGVAE more effectively
captures the underlying feature distributions of
real anomalies compared to SGAN-IDS.

 Figure 5
Comparison of FID metrics across datasets.

5.2.2. Detection Performance for Unknown
Attacks

We summarize the detection performance
results for unknown attacks in Table 11,
comparing SAEDF with baseline methods
across three datasets.
Table 11
Best performance for unknown attacks
detection.

Dataset Model F1 Acc. Prec. Rec. FPR

NSL-

KDD

SAEDF 0.971 0.975 0.965 0.978 0.003

SGAN-

IDS
0.943 0.952 0.931 0.955 0.007

IF 0.891 0.916 0.902 0.882 0.015

LOF 0.872 0.894 0.880 0.865 0.020

UNSW-
NB15

SAEDF 0.945 0.962 0.940 0.951 0.004

SGAN-
IDS

0.912 0.938 0.900 0.924 0.012

IF 0.861 0.887 0.870 0.853 0.018

LOF 0.848 0.873 0.860 0.837 0.022

CICIDS

2017

SAEDF 0.984 0.988 0.981 0.987 0.002

SGAN-

IDS
0.957 0.965 0.950 0.964 0.006

IF 0.902 0.925 0.910 0.895 0.012

LOF 0.889 0.910 0.895 0.882 0.020

For the NSL-KDD dataset, SAEDF achieves
the most significant improvement in Recall,
outperforming LOF by 13.02% and
demonstrating its ability to detect anomalies
effectively. On UNSW-NB15, SAEDF shows
the largest increase in F1-Score, with a 11.45%
improvement compared to LOF. For
CICIDS2017, SAEDF achieves the highest
improvement in Recall, surpassing LOF by
11.05%. From Figure 6, we can observe that
SAEDF's ROC curves consistently stay closer
to the top-left corner compared to other
models, reflecting its superior ability to
achieve higher True Positive Rates at lower
False Positive Rates. These results highlight
SAEDF's unmatched ability to detect
unknown attacks, particularly in handling
imbalanced datasets, and emphasize its
significant performance gains over baseline
models.

Figure 6

ROC curves of benchmark datasets: (a) NSL-
KDD; (b) UNSW-NB15; (c) CICIDS2017.

(a)

(b)

(c)

reflects the model’s ability to detect all true
anomalies; F1-Score, the harmonic mean of
Precision and Recall; and AUC-ROC, which
assesses the model’s ability to distinguish between
normal and anomalous samples.

5.2. Results
5.2.1. Attack Sample Generation Quality

The FID values in Table 10 summarize the quality
of the generated samples for each dataset. On
average, CICIDS2017 achieved the lowest mean
FID (8.96), indicating the highest similarity
between the generated and real samples, followed
by UNSW-NB15 (10.78) and NSL-KDD (12.34).
Across all datasets, the maximum FID values
remain low (<19), reflecting consistent fidelity and
diversity in the generated samples. The standard
deviation of FID values is also small, suggesting
stable performance across features.

The observed low FID values in this study reflects
the high fidelity and diversity of the generated
samples. The CICIDS2017 dataset achieved the
lowest mean FID value (8.96), demonstrating that
the ADGVAE model effectively captures the
underlying distribution of complex modern
network attacks. This allows the model to learn
more realistic decision boundaries and improves its
ability to detect previously unseen anomalies.

The small standard deviation (STD) of FID values
across datasets, such as 2.47 for CICIDS2017,
emphasizes the stability of the ADGVAE model in
generating consistent data distributions. This
consistency minimizes fluctuations in the training
process, guaranteeing that the model is less
susceptible to biases resulting from inconsistent or
low-quality synthetic samples.

Table 10
FID results for generated samples.

Dataset Mean
FID

Max
FID

Min
FID

STD

NSL-KDD 12.34 18.56 6.78 3.21

UNSW-NB15 10.78 15.89 5.43 2.95

CICIDS2017 8.96 14.32 4.87 2.47

In order to visually demonstrate the caliber of the
produced anomalous samples, we performed a
comparative assessment of their distributions
relative to genuine anomalies through the
utilization of scatter plots. Figure 4 depicts the
distribution of both authentic and generated
samples for the benchmark datasets.

From Figure 4, the horizontal (Component 1) and
vertical (Component 2) axes represent the reduced

dimensions obtained through PCA,
preserving the primary relationships in the
feature space. The generated samples closely
align with the real anomalies in feature space,
reflecting the high fidelity and diversity of our
ADGVAE model.

We conducted a comparative analysis of the
FID metrics pertaining to ADGVAE alongside
those of SGAN-IDS for the samples produced
across the benchmark datasets.

Figure 4

Synthetic sample distribution for benchmark
datasets: (a) sample distribution for NSL-KDD;
(b) sample distribution for UNSW-NB15; (c)
sample distribution for CICIDS2017.

 (a)

 (b)

primary relationships in the feature space. The gen-
erated samples closely align with the real anomalies
in feature space, refl ecting the high fi delity and di-
versity of our ADGVAE model.
We conducted a comparative analysis of the FID
metrics pertaining to ADGVAE alongside those of
SGAN-IDS for the samples produced across the
benchmark datasets.
Figure 5 presents a comprehensive comparison of
FID metrics (Mean, Max, Min, and STD) between
ADGVAE and SGAN-IDS. ADGVAE consistently
outperforms SGAN-IDS in all metrics, with sig-
nificantly lower Mean FID values, reflecting high-
er fidelity in generated samples. Additionally, the
lower Max FID and STD values for ADGVAE indi-
cate better distribution consistency and reduced
variance, highlighting its superiority in generat-
ing high-quality anomaly samples. These results
demonstrate that ADGVAE more effectively cap-
tures the underlying feature distributions of real
anomalies compared to SGAN-IDS.

Figure 4
Synthetic sample distribution for benchmark datasets: (a)
sample distribution for NSL-KDD; (b) sample distribution
for UNSW-NB15; (c) sample distribution for CICIDS2017.

 (c)

Figure 5 presents a comprehensive comparison of
FID metrics (Mean, Max, Min, and STD) between
ADGVAE and SGAN-IDS. ADGVAE consistently
outperforms SGAN-IDS in all metrics, with
significantly lower Mean FID values, reflecting
higher fidelity in generated samples. Additionally,
the lower Max FID and STD values for ADGVAE
indicate better distribution consistency and
reduced variance, highlighting its superiority in
generating high-quality anomaly samples. These
results demonstrate that ADGVAE more effectively
captures the underlying feature distributions of
real anomalies compared to SGAN-IDS.

 Figure 5
Comparison of FID metrics across datasets.

5.2.2. Detection Performance for Unknown
Attacks

We summarize the detection performance
results for unknown attacks in Table 11,
comparing SAEDF with baseline methods
across three datasets.
Table 11
Best performance for unknown attacks
detection.

Dataset Model F1 Acc. Prec. Rec. FPR

NSL-

KDD

SAEDF 0.971 0.975 0.965 0.978 0.003

SGAN-

IDS
0.943 0.952 0.931 0.955 0.007

IF 0.891 0.916 0.902 0.882 0.015

LOF 0.872 0.894 0.880 0.865 0.020

UNSW-
NB15

SAEDF 0.945 0.962 0.940 0.951 0.004

SGAN-
IDS

0.912 0.938 0.900 0.924 0.012

IF 0.861 0.887 0.870 0.853 0.018

LOF 0.848 0.873 0.860 0.837 0.022

CICIDS

2017

SAEDF 0.984 0.988 0.981 0.987 0.002

SGAN-

IDS
0.957 0.965 0.950 0.964 0.006

IF 0.902 0.925 0.910 0.895 0.012

LOF 0.889 0.910 0.895 0.882 0.020

For the NSL-KDD dataset, SAEDF achieves
the most significant improvement in Recall,
outperforming LOF by 13.02% and
demonstrating its ability to detect anomalies
effectively. On UNSW-NB15, SAEDF shows
the largest increase in F1-Score, with a 11.45%
improvement compared to LOF. For
CICIDS2017, SAEDF achieves the highest
improvement in Recall, surpassing LOF by
11.05%. From Figure 6, we can observe that
SAEDF's ROC curves consistently stay closer
to the top-left corner compared to other
models, reflecting its superior ability to
achieve higher True Positive Rates at lower
False Positive Rates. These results highlight
SAEDF's unmatched ability to detect
unknown attacks, particularly in handling
imbalanced datasets, and emphasize its
significant performance gains over baseline
models.

Figure 6

ROC curves of benchmark datasets: (a) NSL-
KDD; (b) UNSW-NB15; (c) CICIDS2017.

Figure 5
Comparison of FID metrics across datasets.

5.2.2. Detection Performance for Unknown
Attacks
We summarize the detection performance results
for unknown attacks in Table 11, comparing SAEDF
with baseline methods across three datasets.

607Information Technology and Control 2025/2/54

(a)

(b)

(c)

5.2.3. Cross-Dataset Unknown Attack Detection

To further validate the effectiveness of SAEDF in
detecting unknown attacks, particularly zero-day
attacks, we designed a cross-dataset unknown
attack detection experiment. This experiment
evaluates the generalization capability of SAEDF
by training the model on one dataset and testing it
on entirely different datasets. This setup mimics
real-world scenarios where the model encounters
previously unseen attack patterns from diverse
environments. The model was trained on the NSL-
KDD dataset using all normal samples and a subset
of known attack samples, and it was tested on two
separate datasets (UNSW-NB15 and CICIDS2017)
containing unknown attack types and normal
traffic, with the results shown in Table 12.
Table 12

Cross-dataset detection performance for
unknown attacks.
Dataset Model F1 Prec. Rec. FPR

UNSW-

NB15

SAEDF 0.922 0.915 0.930 0.005

SGAN-

IDS

0.876 0.860 0.893 0.013

IF 0.831 0.845 0.818 0.018

LOF 0.812 0.820 0.805 0.022

CICIDS

2017

SAEDF 0.937 0.930 0.945 0.004

SGAN-

IDS

0.892 0.880 0.905 0.011

IF 0.850 0.865 0.837 0.016

LOF 0.828 0.835 0.820 0.019

From Table 12, It is observed that SAEDF
achieves significantly higher F1-Score and
Recall compared to baseline methods,
demonstrating its ability to generalize to
unknown attack patterns across datasets. On
the UNSW-NB15 dataset, SAEDF
outperforms SGAN-IDS by 4.4% in F1-Score
and 3.5% in Recall, while on the CICIDS2017
dataset, it achieves an F1-Score of 0.938, which
is 4.2% higher than SGAN-IDS. Additionally,
the False Positive Rate (FPR) of SAEDF
remains remarkably low across both datasets,
with values of 0.005 (UNSW-NB15) and 0.004
(CICIDS2017), indicating its robustness in
minimizing false alarms.

5.2.4. Ablation Study

We conducted an ablation study to
understand the importance of each
component in our model. Table 13 shows the
performance impact, measured as the average
F1-score and training time across three
datasets, when specific components are
removed or replaced.

Table 13
Performance decrease (%) in ablation study.

Synthetic

Anomalies

Feature

Representation

Network

Architecture

Model
Performance

w/o -12.5%w/o -18.7% w/o

ADGVAE

-19.3%

Training
Time

—— —— w/o

ADGVAE

-8 %

As shown in Table 13, ADGVAE provides
superior performance while incurring only a
minor decrease in training time

(a)

(b)

(c)

5.2.3. Cross-Dataset Unknown Attack Detection

To further validate the effectiveness of SAEDF in
detecting unknown attacks, particularly zero-day
attacks, we designed a cross-dataset unknown
attack detection experiment. This experiment
evaluates the generalization capability of SAEDF
by training the model on one dataset and testing it
on entirely different datasets. This setup mimics
real-world scenarios where the model encounters
previously unseen attack patterns from diverse
environments. The model was trained on the NSL-
KDD dataset using all normal samples and a subset
of known attack samples, and it was tested on two
separate datasets (UNSW-NB15 and CICIDS2017)
containing unknown attack types and normal
traffic, with the results shown in Table 12.
Table 12

Cross-dataset detection performance for
unknown attacks.
Dataset Model F1 Prec. Rec. FPR

UNSW-

NB15

SAEDF 0.922 0.915 0.930 0.005

SGAN-

IDS

0.876 0.860 0.893 0.013

IF 0.831 0.845 0.818 0.018

LOF 0.812 0.820 0.805 0.022

CICIDS

2017

SAEDF 0.937 0.930 0.945 0.004

SGAN-

IDS

0.892 0.880 0.905 0.011

IF 0.850 0.865 0.837 0.016

LOF 0.828 0.835 0.820 0.019

From Table 12, It is observed that SAEDF
achieves significantly higher F1-Score and
Recall compared to baseline methods,
demonstrating its ability to generalize to
unknown attack patterns across datasets. On
the UNSW-NB15 dataset, SAEDF
outperforms SGAN-IDS by 4.4% in F1-Score
and 3.5% in Recall, while on the CICIDS2017
dataset, it achieves an F1-Score of 0.938, which
is 4.2% higher than SGAN-IDS. Additionally,
the False Positive Rate (FPR) of SAEDF
remains remarkably low across both datasets,
with values of 0.005 (UNSW-NB15) and 0.004
(CICIDS2017), indicating its robustness in
minimizing false alarms.

5.2.4. Ablation Study

We conducted an ablation study to
understand the importance of each
component in our model. Table 13 shows the
performance impact, measured as the average
F1-score and training time across three
datasets, when specific components are
removed or replaced.

Table 13
Performance decrease (%) in ablation study.

Synthetic

Anomalies

Feature

Representation

Network

Architecture

Model
Performance

w/o -12.5%w/o -18.7% w/o

ADGVAE

-19.3%

Training
Time

—— —— w/o

ADGVAE

-8 %

As shown in Table 13, ADGVAE provides
superior performance while incurring only a
minor decrease in training time

(a)

(b)

(c)

5.2.3. Cross-Dataset Unknown Attack Detection

To further validate the effectiveness of SAEDF in
detecting unknown attacks, particularly zero-day
attacks, we designed a cross-dataset unknown
attack detection experiment. This experiment
evaluates the generalization capability of SAEDF
by training the model on one dataset and testing it
on entirely different datasets. This setup mimics
real-world scenarios where the model encounters
previously unseen attack patterns from diverse
environments. The model was trained on the NSL-
KDD dataset using all normal samples and a subset
of known attack samples, and it was tested on two
separate datasets (UNSW-NB15 and CICIDS2017)
containing unknown attack types and normal
traffic, with the results shown in Table 12.
Table 12

Cross-dataset detection performance for
unknown attacks.
Dataset Model F1 Prec. Rec. FPR

UNSW-

NB15

SAEDF 0.922 0.915 0.930 0.005

SGAN-

IDS

0.876 0.860 0.893 0.013

IF 0.831 0.845 0.818 0.018

LOF 0.812 0.820 0.805 0.022

CICIDS

2017

SAEDF 0.937 0.930 0.945 0.004

SGAN-

IDS

0.892 0.880 0.905 0.011

IF 0.850 0.865 0.837 0.016

LOF 0.828 0.835 0.820 0.019

From Table 12, It is observed that SAEDF
achieves significantly higher F1-Score and
Recall compared to baseline methods,
demonstrating its ability to generalize to
unknown attack patterns across datasets. On
the UNSW-NB15 dataset, SAEDF
outperforms SGAN-IDS by 4.4% in F1-Score
and 3.5% in Recall, while on the CICIDS2017
dataset, it achieves an F1-Score of 0.938, which
is 4.2% higher than SGAN-IDS. Additionally,
the False Positive Rate (FPR) of SAEDF
remains remarkably low across both datasets,
with values of 0.005 (UNSW-NB15) and 0.004
(CICIDS2017), indicating its robustness in
minimizing false alarms.

5.2.4. Ablation Study

We conducted an ablation study to
understand the importance of each
component in our model. Table 13 shows the
performance impact, measured as the average
F1-score and training time across three
datasets, when specific components are
removed or replaced.

Table 13
Performance decrease (%) in ablation study.

Synthetic

Anomalies

Feature

Representation

Network

Architecture

Model
Performance

w/o -12.5%w/o -18.7% w/o

ADGVAE

-19.3%

Training
Time

—— —— w/o

ADGVAE

-8 %

As shown in Table 13, ADGVAE provides
superior performance while incurring only a
minor decrease in training time

(a) (b) (c)

For the NSL-KDD dataset, SAEDF achieves the most
signifi cant improvement in Recall, outperforming
LOF by 13.02% and demonstrating its ability to de-
tect anomalies eff ectively. On UNSW-NB15, SAEDF
shows the largest increase in F1-Score, with a 11.45%
improvement compared to LOF. For CICIDS2017,
SAEDF achieves the highest improvement in Recall,
surpassing LOF by 11.05%. From Figure 6, we can
observe that SAEDF's ROC curves consistently stay
closer to the top-left corner compared to other mod-
els, refl ecting its superior ability to achieve higher
True Positive Rates at lower False Positive Rates.

These results highlight SAEDF's unmatched ability
to detect unknown attacks, particularly in handling
imbalanced datasets, and emphasize its signifi cant
performance gains over baseline models.

5.2.3. Cross-Dataset Unknown Attack Detection
To further validate the eff ectiveness of SAEDF in
detecting unknown attacks, particularly zero-day at-
tacks, we designed a cross-dataset unknown attack
detection experiment. This experiment evaluates
the generalization capability of SAEDF by training
the model on one dataset and testing it on entirely

Dataset Model F1 Acc. Prec. Rec. FPR

NSL-KDD

SAEDF 0.971 0.975 0.965 0.978 0.003

SGAN-IDS 0.943 0.952 0.931 0.955 0.007

IF 0.891 0.916 0.902 0.882 0.015

LOF 0.872 0.894 0.880 0.865 0.020

UNSW-NB15

SAEDF 0.945 0.962 0.940 0.951 0.004

SGAN-IDS 0.912 0.938 0.900 0.924 0.012

IF 0.861 0.887 0.870 0.853 0.018

LOF 0.848 0.873 0.860 0.837 0.022

CICIDS
2017

SAEDF 0.984 0.988 0.981 0.987 0.002

SGAN-IDS 0.957 0.965 0.950 0.964 0.006

IF 0.902 0.925 0.910 0.895 0.012

LOF 0.889 0.910 0.895 0.882 0.020

Table 11
Best performance for unknown attacks detection.

Figure 6
ROC curves of benchmark datasets: (a) NSL-KDD; (b) UNSW-NB15; (c) CICIDS2017.

Information Technology and Control 2025/2/54608

diff erent datasets. This setup mimics real-world
scenarios where the model encounters previously
unseen attack patterns from diverse environments.
The model was trained on the NSL-KDD dataset us-
ing all normal samples and a subset of known attack
samples, and it was tested on two separate datasets
(UNSW-NB15 and CICIDS2017) containing un-
known attack types and normal traffi c, with the re-
sults shown in Table 12.

From Table 12, It is observed that SAEDF achieves
signifi cantly higher F1-Score and Recall compared
to baseline methods, demonstrating its ability to
generalize to unknown attack patterns across data-
sets. On the UNSW-NB15 dataset, SAEDF outper-
forms SGAN-IDS by 4.4% in F1-Score and 3.5% in
Recall, while on the CICIDS2017 dataset, it achieves
an F1-Score of 0.938, which is 4.2% higher than
SGAN-IDS. Additionally, the False Positive Rate
(FPR) of SAEDF remains remarkably low across
both datasets, with values of 0.005 (UNSW-NB15)
and 0.004 (CICIDS2017), indicating its robustness
in minimizing false alarms.

5.2.4. Ablation Study
We conducted an ablation study to understand the
importance of each component in our model. Table 13
shows the performance impact, measured as the aver-
age F1-score and training time across three datasets,
when specifi c components are removed or replaced.
As shown in Table 13, ADGVAE provides superior
performance while incurring only a minor decrease
in training time (approximately 8% shorter than the
simpler autoencoder).

 Dataset Model F1 Prec. Rec. FPR

UN-
SW-NB15

SAEDF 0.922 0.915 0.930 0.005

SGAN-IDS 0.876 0.860 0.893 0.013

IF 0.831 0.845 0.818 0.018

LOF 0.812 0.820 0.805 0.022

CIC-
IDS2017

SAEDF 0.937 0.930 0.945 0.004

SGAN-IDS 0.892 0.880 0.905 0.011

IF 0.850 0.865 0.837 0.016

LOF 0.828 0.835 0.820 0.019

Table 12
Cross-dataset detection performance for unknown attacks.

The study focuses on the following components:
Synthetic Anomaly Sampling: We analyzed the im-
pact of removing synthetic anomaly samples from the
training process. Without these samples, the model
relies solely on real data, which limits its ability to
generalize to unknown attacks. Synthetic anomalies
expand the decision boundary by introducing diverse
and augmented anomalous patterns that real-world
data alone cannot provide. These patterns allow the
model to better capture the variability of unknown
attacks, avoiding overfi tting to seen data and im-
proving its generalization performance. Figure 7 il-
lustrates this comparison, showing the ROC curves
for benchmark datasets. In each dataset, the perfor-
mance of the model trained with synthetic anomalies
(SAEDF) signifi cantly outperforms the one trained
without synthetic anomalies (w/o Synthetic Anoma-
lies), as evidenced by the higher AUC values and ROC
curves closer to the top-left corner.

Synthetic
Anomalies

Feature
Representation

Network
Architecture

Model
Performance w/o -12.5% w/o -18.7%

w/o
ADGVAE

-19.3%

Training
Time —— ——

w/o
ADGVAE

-8 %

Table 13
Performance decrease (%) in ablation study.

Figure 7
ROC curves for ablation.

(approximately 8% shorter than the simpler
autoencoder).

The study focuses on the following components:

Synthetic Anomaly Sampling: We analyzed the
impact of removing synthetic anomaly samples
from the training process. Without these samples,
the model relies solely on real data, which limits its
ability to generalize to unknown attacks. Synthetic
anomalies expand the decision boundary by
introducing diverse and augmented anomalous
patterns that real-world data alone cannot provide.
These patterns allow the model to better capture
the variability of unknown attacks, avoiding
overfitting to seen data and improving its
generalization performance. Figure 7 illustrates this
comparison, showing the ROC curves for
benchmark datasets. In each dataset, the
performance of the model trained with synthetic
anomalies (SAEDF) significantly outperforms the
one trained without synthetic anomalies (w/o
Synthetic Anomalies), as evidenced by the higher
AUC values and ROC curves closer to the top-left
corner.

Figure 7
ROC curves for ablation.

Feature Representation: To evaluate the
importance of feature representation, we replaced
the feature transformation module with raw input
features. This tests the contribution of
representation learning to anomaly detection, and
the training time increased by 8% when using raw
features.

ADGVAE Model: We substituted the ADGVAE
model with a simpler autoencoder (a unified 3-
layer FC mirrored structure) to evaluate its role in
generating high-quality synthetic anomalies and
learning robust latent representations. In addition
to performance degradation, we also compared the
training and inference times of the two models to
evaluate computational efficiency.

5.3 Analysis and Discussion
5.3.1. SAEDF’s Capability to Detect Zero-
Day Attacks

The above experiments conclusively show
that SAEDF significantly outperforms
baseline methods, primarily due to its ability
to detect unknown attack types, improved
generalization through synthetic anomaly
generation, and scalability to high-
dimensional network traffic data. By
generating synthetic anomalies that extend
beyond the normal distribution, SAEDF
effectively simulates potential unknown
attack patterns, enabling the model to
generalize to previously unseen threats. This
capability is particularly critical for detecting
zero-day attacks, which are inherently
unknown during training.

(1) Synthetic Anomaly Generation for
Generalization: The use of synthetic
anomalies is a critical component of SAEDF's
success, as it enables the model to effectively
learn decision boundaries that distinguish
normal behavior from diverse and unseen
attack patterns. The synthetic anomaly
generation process leverages the latent space
of the VAE to model the normal data
distribution effectively. By sampling regions
of low density in the latent space, SAEDF
generates realistic synthetic anomalies that
mimic unknown attack patterns, enhancing
the model’s capacity to detect zero-day attacks.
This process exposes the model to a broader
range of abnormal scenarios during training,
significantly improving its generalization
ability and reducing overfitting to known
attack types.

(2) Density-Based Modeling with GMM: The
classification process further strengthens
SAEDF's ability to detect unknown attacks
through the use of GMM-based density
modeling. The GMM identifies low-density
regions in the latent space, corresponding to
potential unknown attack patterns. This
probabilistic approach ensures that anomalies,
including synthetic ones, are effectively
separated from normal samples, enabling
robust detection of unknown threats. By
modeling the data distribution as a mixture of
Gaussian components, the GMM isolates
high-density (normal) regions while flagging
low-density (abnormal) samples. This not
only aids in detecting synthetic anomalies but
also provides a robust mechanism for

609Information Technology and Control 2025/2/54

Feature Representation: To evaluate the impor-
tance of feature representation, we replaced the
feature transformation module with raw input fea-
tures. This tests the contribution of representation
learning to anomaly detection, and the training time
increased by 8% when using raw features.
ADGVAE Model: We substituted the ADGVAE
model with a simpler autoencoder (a unified 3-layer
FC mirrored structure) to evaluate its role in gener-
ating high-quality synthetic anomalies and learning
robust latent representations. In addition to perfor-
mance degradation, we also compared the training
and inference times of the two models to evaluate
computational efficiency.

5.3 Analysis and Discussion
5.3.1. SAEDF’s Capability to Detect Zero-Day
Attacks
The above experiments conclusively show that
SAEDF significantly outperforms baseline methods,
primarily due to its ability to detect unknown attack
types, improved generalization through synthetic
anomaly generation, and scalability to high-dimen-
sional network traffic data. By generating synthetic
anomalies that extend beyond the normal distri-
bution, SAEDF effectively simulates potential un-
known attack patterns, enabling the model to gener-
alize to previously unseen threats. This capability is
particularly critical for detecting zero-day attacks,
which are inherently unknown during training.
1 Synthetic Anomaly Generation for Generaliza-

tion: The use of synthetic anomalies is a critical
component of SAEDF's success, as it enables the
model to effectively learn decision boundaries that
distinguish normal behavior from diverse and un-
seen attack patterns. The synthetic anomaly gener-
ation process leverages the latent space of the VAE
to model the normal data distribution effectively.
By sampling regions of low density in the latent
space, SAEDF generates realistic synthetic anom-
alies that mimic unknown attack patterns, enhanc-
ing the model’s capacity to detect zero-day attacks.
This process exposes the model to a broader range
of abnormal scenarios during training, significant-
ly improving its generalization ability and reducing
overfitting to known attack types.

2 Density-Based Modeling with GMM: The clas-
sification process further strengthens SAEDF's

ability to detect unknown attacks through the use
of GMM-based density modeling. The GMM iden-
tifies low-density regions in the latent space, cor-
responding to potential unknown attack patterns.
This probabilistic approach ensures that anoma-
lies, including synthetic ones, are effectively sep-
arated from normal samples, enabling robust de-
tection of unknown threats. By modeling the data
distribution as a mixture of Gaussian components,
the GMM isolates high-density (normal) regions
while flagging low-density (abnormal) samples.
This not only aids in detecting synthetic anomalies
but also provides a robust mechanism for identify-
ing real-world unknown attack patterns.

3 Scalability and Adaptability: Another key
strength of SAEDF lies in its adaptability and scal-
ability to various datasets with diverse feature
complexities. The ADGVAE model incorporates
a projection layer (dproj), a dynamic hidden layer
structure, and a dynamic layer count mechanism,
which together ensure consistency in input rep-
resentation and adaptability to different dataset
characteristics. These features are essential for
detecting unknown attacks across varying network
environments, as they allow the model to maintain
high performance even when dealing with high-di-
mensional and heterogeneous network traffic data.
The dynamic layer count mechanism enables the
model to adjust its depth based on the complexity
of the input data, ensuring that sufficient represen-
tational capacity is allocated for intricate patterns
while avoiding overfitting on simpler data. This
flexibility is critical for addressing the diverse and
evolving nature of network traffic anomalies.

5.3.2. Limitations
1 Framework Limitations: While SAEDF demon-

strates strong performance, it is not without lim-
itations. Its reliance on high-quality, anomaly-free
training data is crucial. If the training data contains
contamination or mislabeled samples, the model’s
ability to accurately detect true anomalies can be
significantly hindered. This limitation highlights
the importance of robust data preprocessing and
careful curation of training datasets to ensure that
they are free from noise or anomalies.
The effectiveness of synthetic anomaly genera-
tion depends heavily on the quality and diversity

Information Technology and Control 2025/2/54610

of the generated samples. Poorly generated anom-
alies may negatively impact decision boundaries
and generalization, potentially reducing the mod-
el's ability to detect unknown attacks.

2 The Challenge of True Zero-Day Attacks:
It should be noted that these simulated scenari-
os, while effective in controlled experiments, may
not fully reflect the complexity and diversity of
real-world zero-day attacks. Real-world zero-day
attacks often involve highly sophisticated tech-
niques, rapid evolution, and adaptive adversarial
behaviors that are challenging to replicate in ex-
perimental settings. These limitations provide
opportunities for future research. Expanding the
evaluation to include real-world datasets and live
network traffic, as well as incorporating adaptive
adversarial testing, will be essential to further
demonstrate the robustness and practicality of
SAEDF in real-world zero-day scenarios.

6. Conclusion
In this study, we proposed a flexible and robust
framework for detecting unknown attacks in net-
work traffic data. Through extensive experiments,
we demonstrated the effectiveness of SAEDF in ad-

dressing the challenge of unknown attack detection,
highlighting the critical role of synthetic anomalies
in enhancing detection performance and improv-
ing generalization. By leveraging synthetic anomaly
generation, SAEDF establishes a more comprehen-
sive decision boundary and achieves scalability to
high-dimensional network traffic data, outperform-
ing baseline methods across multiple datasets.
As future work, we aim to explore more deep learn-
ing models and distributed learning within a single
ADGVAE framework to simplify the architecture
and enhance learning efficiency. Adapting SAEDF
for real-time detection in dynamic network environ-
ments, such as those found in IoT, cloud computing,
and 5G networks, is a key future direction. Further
investigation will involve validating SAEDF on larg-
er datasets and diverse network settings to assess its
real-world robustness and scalability.

Acknowledgement
This research was supported by the Key Research
and Development Project of Henan Province (Big
Data and Artificial Intelligence-Based Decision
Support Platform, Grant No. 251111211800) and by
the Henan Higher Education Teaching Reform Re-
search and Practice Project (Inclusion Research,
Grant No. 2024SJGLX0188).

References
1. Alashhab, A. A., ZaFhid, M. S., Isyaku, B., Elnour, A. A.,

Nagmeldin, W., Abdelmaboud, A., Abdullah, T. A. A.,
Maiwada, U. D. Enhancing DDoS Attack Detection and
Mitigation in SDN Using an Ensemble Online Machine
Learning Model. IEEE Access 2024, 12, 51630-51649.
https://doi.org/10.1109/ACCESS.2024.3384398

2. Aldhaheri, S., Alhuzali, A. SGAN-IDS: Self-Atten-
tion-Based Generative Adversarial Network Against
Intrusion Detection Systems. Sensors, 2023, 23(18),
7796. https://doi.org/10.3390/s23187796

3. Bagui, S., Li, K. Resampling Imbalanced Data for Net-
work Intrusion Detection Datasets. Journal of Big Data,
2021, 8(1), 1-22. https://doi.org/10.1186/s40537-020-
00390-x

4. Ban, Y., Zhang, D., He, Q., Shen, Q. APSO-CNN-SE: An
Adaptive Convolutional Neural Network Approach
for IoT Intrusion Detection. Cmc-Computers Ma-

terials & Continua, 2024, 81(1), 567-601. https://doi.
org/10.32604/cmc.2024.055007

5. Bin, Y., Chen, Y., Ren, Q., Zhang, R., Smith, P. J., Wang, X.,
Ma, A., Gao, H. SCGMAI: A Gaussian Mixture Model for
Clustering Single-Cell RNA-Seq Data Based on Deep
Autoencoder. Briefings in Bioinformatics,2020, 21(3),
123-135. https://doi.org/10.1093/bib/bbaa316

6. Das, S., Ashrafuzzaman, M., Sheldon, F. T., Shiva, S.
Ensembling Supervised and Unsupervised Machine
Learning Algorithms for Detecting Distributed Denial
of Service Attacks. Algorithms, 2024, 17(3), 99. https://
doi.org/10.3390/a17030099

7. Dongqing, W., Shuo, Z., Min, G., Jianlong, Q. A Novel EM
Identification Method for Hammerstein Systems with
Missing Output Data. IEEE Transactions on Indus-
trial Informatics, 2020, 16(4), 2500-2508. https://doi.
org/10.1109/TII.2019.2931792

611Information Technology and Control 2025/2/54

8. Di Mattia, F., Galeone, P., Simoni, M. D., Ghelfi, E. A Sur-
vey on GANs for Anomaly Detection. arXiv:1906.11632,
2019. https://doi.org/10.48550/arXiv.1906.11632

9. Dunmore, A., Jang-Jaccard, J., Sabrina, F., Kwak, J.
A Comprehensive Survey of Generative Adversarial
Networks (GANs) in Cybersecurity Intrusion Detec-
tion. IEEE Access, 2023, 11, 76071-76094. https://doi.
org/10.1109/ACCESS.2023.3296707

10. Elad, A., Rami, B., Daniel, R., Alex, B. Noise Estimation
Using Density Estimation for Self-Supervised Multi-
modal Learning. Proceedings of the AAAI Conference
on Artificial Intelligence, (AAAI 2021), Virtual Confer-
ence, February 2-9, 2021, 35 (8), 6644-6652. https://doi.
org/10.1609/aaai.v35i8.16822

11. Falowo, O. I., Ozer, M., Li, C., Abdo, J. B. Evolving Mal-
ware and DDoS Attacks: Decadal Longitudinal Study.
IEEE Access, 2024, 12, 39221-39237. https://doi.
org/10.1109/ACCESS.2024.3376682

12. Fathima, A. N., Ibrahim, S. S., Khraisat, A. Enhanc-
ing Network Traffic Anomaly Detection: Leveraging
Temporal Correlation Index in a Hybrid Framework.
IEEE Access, 2024, 12, 136805-136824. https://doi.
org/10.1109/ACCESS.2024.3458903

13. Fernandes, G., Rodrigues, J. J., Carvalho, L. F., Al-Mu-
htadi, J. F., Proença, M. L. A Comprehensive Survey
on Network Anomaly Detection. Telecommunication
Systems, 2019, 70, 447-489. https://doi.org/10.1007/
s11235-018-0475-8

14. Feiniu, Y., Lin, Z., Xue, X., Qinghua, H., Xuelong, L. A
Wave-Shaped Deep Neural Network for Smoke Den-
sity Estimation. IEEE Transactions on Image Pro-
cessing, 2020, 29, 2301-2313. https://doi.org/10.1109/
TIP.2019.2946126

15. Gang, Y., Xiaojian, H., Taiyun, Z., Yue, Z. Enterprise
Credit Risk Prediction Using Supply Chain Infor-
mation: A Decision Tree Ensemble Model Based on
the Differential Sampling Rate, Synthetic Minori-
ty Oversampling Technique and AdaBoost. Expert
Systems, 2022, 39(6), 1-15. https://doi.org/10.1111/
exsy.12953

16. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Bengio, Y. Generative Adver-
sarial Networks. Communications of the ACM,2020,
63(11), 139-144. https://doi.org/10.1145/3422622

17. Gang, K., Yong, X., Yi, P., Feng, S., Yang, C., Kun, C.,
Shaomin, K. Bankruptcy Prediction for SMEs Using
Transactional Data and Two-Stage Multiobjective Fea-
ture Selection. Decision Support Systems, 2021, 140,
113429. https://doi.org/10.1016/j.dss.2020.113429

18. Hongwei, Y., Jianqiang, H., Deyu, M., Xian-Sheng,
H., Lei, Z. Momentum Batch Normalization for Deep
Learning with Small Batch Size. Proceedings of the Eu-
ropean Conference on Computer Vision (ECCV 2020),
Glasgow, UK, August 23-28, 2020, 224-240. https://doi.
org/10.1007/978-3-030-58610-2_14

19. Kim, J. Y., Bu, S. J., Cho, S. B. Zero-Day Malware De-
tection Using Transferred Generative Adversarial
Networks Based on Deep Autoencoders. Information
Sciences, 2018, 460, 83-102. https://doi.org/10.1016/j.
ins.2018.04.092

20. Kingma, D. P., Welling, M. An Introduction to Var-
iational Autoencoders. Foundations and Trends in
Machine Learning, 2019, 12(4), 307-392. https://doi.
org/10.1561/2200000056

21. Kwon, D., Kim, H., Kim, J., Suh, S. C., Kim, I., Kim, K. J. A
Survey of Deep Learning-Based Network Anomaly De-
tection. Cluster Computing, 2017, 22, 949-961. https://
doi.org/10.1007/s10586-017-1117-8

22. Liu, C. Design and Implementation of Computer Net-
work Security Protection System Based on Artificial
Intelligence Technology. Applied Mathematics and
Nonlinear Sciences, 2023, 8 (2), 1491-1508. https://doi.
org/10.2478/amns.2023.1.00049

23. Liang, Z., Lingyun, L. Data Anomaly Detection Based
on Isolation Forest Algorithm. Proceedings of the 2022
International Conference on Computation, Big-Da-
ta and Engineering (ICCBE 2022), Yunlin, Taiwan,
May 27-29, 2022, 87-89. https://doi.org/10.1109/IC-
CBE56101.2022.9888169

24. Mahmood, S., Abul Samad, I., Hassan, C., Maha, D., Wa-
dii, B., Shahla, A., Mitra, S. Standalone Noise and Anom-
aly Detection in Wireless Sensor Networks: A Novel
Time-Series and Adaptive Bayesian-network-based
Approach. Software - Practice and Experience, 2020,
50(4), 428-446. https://doi.org/10.1002/spe.2785

25. Moustafa, N., Slay, J. UNSW-NB15: a Comprehensive
Data Set for Network Intrusion Detection Systems
(UNSW-NB15 Network Data Set). Proceedings of the
Military Communications and Information Systems
Conference, (MilCIS 2015), Canberra, ACT, Austral-
ia, November 10-12, 2015, 1-6. https://doi.org/10.1109/
MilCIS.2015.7348942

26. Mulyanto, M., Faisal, M., Prakosa, S. W., Leu, J. S. Ef-
fectiveness of Focal Loss for Minority Classification in
Network Intrusion Detection Systems. Symmetry 2020,
13(1), 1-13. https://doi.org/10.3390/sym13010004

27. Melika, A., Hamid, M. Stable Feature Selection Based
on Probability Estimation in Gene Expression Datasets.

Information Technology and Control 2025/2/54612

Expert Systems with Applications, 2024, 248, 123372.
https://doi.org/10.1016/j.eswa.2024.123372

28. Peppes, N., Alexakis, T., Adamopoulou, E., Demestichas,
K. The Effectiveness of Zero-Day Attacks Data Sam-
ples Generated via GANs on Deep Learning Classifi-
ers. Sensors, 2023, 23(2), 900. https://doi.org/10.3390/
s23020900

29. Pinto, A., Herrera, L.-C., Donoso, Y., Gutierrez, J. A.
Enhancing Critical Infrastructure Security: Unsuper-
vised Learning Approaches for Anomaly Detection.
International Journal of Computational Intelligence
Systems, 2024, 17(1), 236. https://doi.org/10.1007/
s44196-024-00644-z

30. Piya, L., Nirattaya, K., Cholwich, N. Gait Recognition
and Re-Identification Based on Regional LSTM for
2-Second Walks. IEEE Access, 2021, 9, 112057-112068.
https://doi.org/10.1109/ACCESS.2021.3102936

31. Prabakaran, M. K., Meenakshi Sundaram, P., Chan-
drasekar, A. D. An Enhanced Deep Learning-Based
Phishing Detection Mechanism to Effectively Identify
Malicious URLs Using Variational Autoencoders. IET
Information Security, 2023, 17 (3), 423-440. https://doi.
org/10.1049/ise2.12106

32. Phanindra Reddy, K., Noorullah Shariff, C., Rajkumar
Laxmikanth, B. An Anomaly-Based Intrusion Detec-
tion System Using Recursive Feature Elimination
Technique for Improved Attack Detection. Theoret-
ical Computer Science, 2022, 931, 56-64. https://doi.
org/10.1016/j.tcs.2022.07.030

33. Sun, X., Dai, J., Liu, P., Singhal, A., Yen, J. Using Bayesian
Networks for Probabilistic Identification of Zero-Day
Attack Paths. IEEE Transactions on Information Fo-
rensics and Security, 2018, 13(10), 2506-2521. https://
doi.org/10.1109/TIFS.2018.2821095

34. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A. A. A
Detailed Analysis of the KDD CUP 99 Data Set. Pro-
ceedings of the Second IEEE Symposium on Com-
putational Intelligence for Security and Defense
Applications (CISDA 2009), Ottawa, ON, Canada,
July 8-10, 2009, 1-6. https://doi.org/10.1109/CIS-
DA.2009.5356528

35. Truong-Huu, T., Dheenadhayalan, N., Kundu, P. P., Ram-
nath, V., Liao, J., Teo, S. G., Kadiyala, S. P. An Empirical
Study on Unsupervised Network Anomaly Detection Us-
ing Generative Adversarial Networks. Proceedings of the
1st ACM Workshop on Security and Privacy on Artificial
Intelligence, (SPAI 2020), Taipei, Taiwan, October 6,
2020, 20-29. https://doi.org/10.1145/3385003.3410924

36. Truong, V. T., Le, L. B. MetaCIDS: Privacy-Preserv-
ing Collaborative Intrusion Detection for Metaverse
Based on Blockchain and Online Federated Learn-
ing. IEEE Open Journal of the Computer Society,
2023, 4, 253-266. https://doi.org/10.1109/GCWk-
shps58843.2023.10464435

37. Wang, H., Yan, J., Jia, N. A New Encrypted Traffic Iden-
tification Model Based on VAE-LSTM-DRN. Computa-
tional Materials and Continua, 2024, 78 (1). https://doi.
org/10.32604/cmc.2023.046055

38. Xu, L., Skoularidou, M., Cuesta-Infante, A., Veeram-
achaneni, K. Modeling Tabular Data Using Condition-
al GAN. Advances in Neural Information Processing
Systems, (NeurIPS 2019), Vancouver, BC, Canada, De-
cember 8-14, 2019, 32. https://doi.org/10.48550/arX-
iv.1907.00503

39. Yang, Y., Zheng, K., Wu, C., Yang, Y. Improving the Clas-
sification Effectiveness of Intrusion Detection by Us-
ing Improved Conditional Variational Autoencoder
and Deep Neural Network. Sensors, 2019, 19(11), 2528.
https://doi.org/10.3390/s19112528

40. Zavrak, S., Iskefiyeli, M. Anomaly-Based Intrusion De-
tection from Network Flow Features Using Variational
Autoencoder. IEEE Access, 2020, 8, 108346-108358.
https://doi.org/10.1109/ACCESS.2020.3001350

41. Zenati, H., Foo, C.-S., Lecouat, B., Manek, G., Chan-
drasekhar, V. Efficient GAN-Based Anomaly Detection.
arXiv:1802.06222, 2018. https://doi.org/10.48550/arX-
iv.1802.06222

42. Zhang, H., Ge, L., Zhang, G., Fan, J., Li, D., Xu, C. A Two-
Stage Intrusion Detection Method Based on Light
Gradient Boosting Machine and Autoencoder. Math-
ematical Biosciences and Engineering, 2023, 20(4),
6966-6992. https://doi.org/10.3934/mbe.2023301

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

