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Detecting unknown cyber-attacks (i.e., zero-day) is difficult because network environments change fre-
quently and there are few labeled examples of anomalies. Traditional methods for detecting anomalies often 
struggle to handle unknown attack types and work effectively with complex, high-dimensional data. To over-
come these problems, we propose a new approach called the synthetic attack-enhanced detection framework 
(SAEDF). SAEDF combines synthetic anomaly generation, flexible feature extraction, and unsupervised 
anomaly detection. The framework employs a model known as the adaptive and dynamic generative vari-
ational autoencoder (ADGVAE). This model generates realistic synthetic attacks and adapts its structure 
to work effectively with datasets of varying complexity. This helps the model work well with a wide range of 
attack patterns while still being efficient. Tests on benchmark datasets show that SAEDF performs better 
than other methods. It achieves higher scores for F1, Recall, and has a much lower rate of false positives. 
These results show that SAEDF is effective in finding unknown attacks, improving detection accuracy, and 
handling complex and changing network traffic.
KEYWORDS: Unknown attack detection, synthetic attack anomalies, deep generative model, intrusion detec-
tion, network security
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1. Introduction
Network security is confronting an increasingly 
complex challenge as cyberattacks become more so-
phisticated and develop in unpredictable ways. The 
risk posed by previously unknown attacks, often re-
ferred to as zero-day attacks, continues to rise. Con-
ventional intrusion detection systems (IDS) that 
are anchored in signature-based detection methods 
are proving to be progressively ineffective at identi-
fying these emerging threats [13]. Such systems are 
primarily limited to recognizing established attack 
patterns and are unable to generalize to new, unrec-
ognized attack types. Consequently, there is a criti-
cal need for more adaptive and intelligent detection 
mechanisms.
Anomaly detection is an important component of 
network security to identify novel threats by ana-
lyzing patterns in network traffic data with the help 
of machine learning (ML). As a result, ML based 
anomaly detection systems are able to model nor-
mal behavior and raise an alarm at the onset of any 
anomaly that may indicate an attack [21]. Among 
these techniques, generative models such as Vari-
ational Autoencoders (VAEs) [20] and Generative 
Adversarial Networks (GANs) [16] have been found 
to be very useful. These models are particularly use-
ful in learning the probability distribution of high 
dimensional data and therefore are able to capture 
the characteristics of the normal behaviour and any 
point that lies far from the learned distribution is an 
anomaly [8,19,40,41]. GAN have been successfully 
applied to unsupervised network anomaly detec-
tion and provided improved detection performance 
since they are able to identify anomalous traffic 
without needing any labelled data [35]. VAEs when 
combined with a deep neural network model (DNN) 
[39] outperformed traditional DNN in terms of ac-
curacy for detection on standard datasets like NSL-
KDD [34] and UNSW-NB15[25].
While machine learning techniques present signif-
icant potential for detecting network anomalies, 
several substantial challenges continue to hinder 
the development of effective systems. A critical 
barrier is the scarcity of labeled data for unidenti-
fied attacks. In the absence of labeled datasets that 
encompass examples of all possible attack types, it 

is challenging for machine learning models to ac-
curately identify novel, previously unrecognized 
threats [33]. The problem is further exacerbated 
by the prevalence of imbalanced datasets. Typical-
ly, in network traffic, normal activity significantly 
outnumbers attack traffic, creating difficulties for 
training models to effectively differentiate between 
standard behavior and infrequent, anomalous oc-
currences [3]. Additionally, adapting existing intru-
sion detection models to recognize unknown attack 
types remains a complex issue [26]. A lot of studies 
use experiments that are based on certain assump-
tions or artificial data, but this does not really cap-
ture the messy and unpredictable reality of actual 
zero-day attacks. As a result, the true effectiveness 
of these systems in identifying actual zero-day at-
tacks remains uncertain. To address these chal-
lenges, we employ adaptive and dynamic generative 
variational autoencoder (ADGVAE). Unlike GAN or 
conditional VAE, ADGVAE provides a dynamic and 
adaptive architecture that aligns with the evolv-
ing nature of network traffic features, offering im-
proved generalization to unknown attack patterns.

1.1 Contribution of Paper
We propose a framework called synthetic anoma-
ly-enhanced detection framework (SAEDF). The 
main idea behind SAEDF is to train a variational au-
toencoder (VAE) using a specialized data normaliza-
tion method and feature selection approach to learn 
the latent representation of network attack traffic, 
enabling it to reconstruct anomalous traffic with 
high accuracy.
The contributions of this work are as follows:
Design and Development of the SAEDF: The SAEDF 
represents an innovative detection framework that 
integrates Variational Autoencoder (VAE)-based 
modeling of attack traffic, the synthesis of anomalous 
data, and unsupervised anomaly detection methodol-
ogies, in order to tackle the complexities associated 
with the identification of previously unknown threats.
Proposal for an ADGVAE model: The ADGVAE 
model features a projection layer along with a dy-
namic layer count mechanism (DLCM), which 
empowers it to adapt to datasets characterized by 
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diverse input dimensions and varying feature com-
plexities. These attributes facilitate the model’s ca-
pacity for dynamic structural adjustment, thereby 
enhancing feature extraction, mitigating the risks 
of overfitting and underfitting through adaptive 
depth, and improving both scalability and the qual-
ity of synthetic anomaly generation in varied and 
dynamic environments.
Cross-Dataset Generalization and Robustness of 
SAEDF: Comprehensive empirical investigations 
performed on established benchmark datasets, such 
as NSL-KDD, UNSW-NB15, and CICIDS2017, sub-
stantiate the holistic efficacy of SAEDF in the iden-
tification of previously unrecognized categories of 
attacks. The model demonstrates superior general-
ization capability, achieving consistently higher F1-
Scores, Recall, and lower False Positive Rates (FPR) 
compared to baseline methods. Notably, cross-data-
set evaluations highlight SAEDF’s ability to adapt 
to unseen attack patterns and maintain robustness 
in minimizing false alarms, showcasing its practical 
applicability in dynamic and diverse real-world net-
work environments.

1.2 Organization of Paper
This paper is organized as follows: Section 2 pro-
vides a review of pertinent literature on supervised 
learning, unsupervised learning, and generative 
methodologies pertinent to network attack detec-
tion. Section 3 details the proposed SAEDF frame-
work, encompassing its architecture and method-
ology. Section 4 delineates the experimental setup 
and procedures utilized for the assessment of the 
framework. Section 5 engages in a discussion of the 
results, offering a comprehensive analysis of the 
strengths, limitations, and practical implications in-
herent to the proposed approach. Finally, Section 6 
concludes the paper and delineates prospective ave-
nues for future research.

2. Related Work
Machine learning-based intrusion detection (ID) 
methods have become fundamental to contemporary 
network security, providing automated and adaptive 
solutions for identifying and addressing both known 
and unknown cyber threats.

2.1. Supervised Learning-Based Methods
Supervised learning methodologies for network in-
trusion detection utilize labeled datasets to train 
models capable of categorizing network activities 
as either benign or malicious. Das et al. [6] proposed 
an ensemble framework t that integrates both su-
pervised and unsupervised methodologies in order 
to identify distributed denial-of-service (DDoS) 
attacks, encompassing zero-day variants. Their 
approach integrated supervised models for iden-
tifying known attacks with unsupervised novelty 
detection models for zero-day threats, achieving 
high accuracy across datasets such as NSL-KDD, 
UNSW-NB15, and CICIDS2017. Ban et al. [4] in-
troduced an IoT intrusion detection model leverag-
ing convolutional neural networks with attention 
mechanisms (CNN-SE) and particle swarm opti-
mization (APSO), which significantly improved 
classification accuracy on benchmark datasets 
such as UNSW-NB15 and NSL-KDD. Alashhab et 
al. [1] presented an ensemble online machine learn-
ing approach for DDoS detection in software-de-
fined networks (SDN), demonstrating improved 
detection rates on datasets like CIC-DDoS2019 and 
custom SDN traffic data.
Despite their high detection accuracy, supervised 
learning-based methods depend heavily on labeled 
data, making them less effective in handling zero-day 
attacks or adapting to rapidly evolving threats. The 
labeling process is often time-consuming and la-
bor-intensive, limiting the scalability of these meth-
ods in dynamic environments.

2.2. Unsupervised and Semi-Supervised 
Learning-Based Methods
Researchers have explored unsupervised and 
semi-supervised methods, which focus on detect-
ing anomalies without requiring extensive labeled 
datasets. Pinto et al. [29] presented a novel meth-
odology that integrates variational autoencoders 
(VAE) with long short-term memory (LSTM) ar-
chitectures for the purpose of real-time anoma-
ly detection within industrial Internet of Things 
(IIoT) systems, enhancing efficacy through the ap-
plication of KL-divergence regularization. Truong 
and Le [36] introduced a privacy-preserving col-
laborative intrusion detection system (MetaCIDS) 
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using federated learning and unsupervised auto-
encoders, achieving detection accuracies between 
96% and 99% across multiple datasets. Zhang et 
al. [42] introduced a two-stage intrusion detec-
tion system that uses light gradient boosting ma-
chine (LightGBM) and autoencoder technologies. 
This system employs recursive feature elimination 
(RFE) for feature selection and incorporates focal 
loss within the LightGBM framework to improve 
its learning efficiency. Falowo et al. [11] conduct-
ed a decadal longitudinal analysis of malware and 
DDoS attack evolution using unsupervised autore-
gressive integrated moving average (ARIMA) mod-
els to predict future attack trends.
Unsupervised and semi-supervised approach-
es demonstrate strong capabilities in identifying 
emerging threats and minimizing reliance on labeled 
datasets. Nevertheless, they often encounter consid-
erable obstacles, such as overfitting, enhanced false 
positive rates, and a limited availability of anoma-
lous traffic or unfamiliar attack data samples. These 
issues finally restrict the model's generalization 
ability, which may not sufficiently meet the demands 
of real-world attack scenarios.

2.3. Generative-based Methods
Generative models became an important focus in 
network intrusion detection because of their ca-
pability to produce synthetic data, improve model 
training with uneven datasets, and identify detailed 
attack patterns. These methods are especially useful 
for addressing zero-day attacks and handling rare or 
unseen threats in cybersecurity.
Dunmore et al. [9] conducted a comprehensive sur-
vey on the application of GANs in cybersecurity 
intrusion detection. They emphasized that GANs 
demonstrate exceptional capability in creating re-
alistic synthetic samples for imbalanced datasets, 
thereby enhancing detection rates for infrequent 
attack types. Aldhaheri and Alhuzali [2] presented 
the SGAN-IDS framework, which uses GAN and 
self-attention mechanisms to produce adversari-
al attack traffic for IDS. Their approach evaluated 
various IDSs’ detection rates against these synthet-
ic attack flows, demonstrating an average reduction 
of false alarm rates by 15.93%. Peppes et al. [28] 
proposed the Zero-Day GAN (ZDGAN) to generate 

near-realistic synthetic data for zero-day attacks. 
By integrating this synthetic data with original 
datasets, their method improved the accuracy and 
robustness of deep learning classifiers while mini-
mizing validation loss. 
VAE-based approaches that improve anomaly de-
tection through sophisticated feature extraction 
and representation techniques have been proposed 
[12, 22, 31, 37]. These studies employ VAE to tack-
le issues such as imbalanced datasets [12, 37], a 
scarcity of anomalous traffic samples [22], and the 
extraction of important latent features [31]. VAE-
based methods have shown considerable promise 
in increasing detection accuracy and resilience 
against zero-day threats by refining feature repre-
sentation and addressing data imbalance. Genera-
tive-based methods present substantial benefits; 
however, they face challenges associated with high 
computational complexity and restricted scal-
ability when implemented in practical settings. 
The synthetic data generated by these models fre-
quently fails to short in accurately representing 
the complexity and diversity of real-world attack 
scenarios, limiting their effectiveness in practical 
applications. Table 1 shows the summary of the re-
lated works discussed above.
Through the analysis of the aforementioned lit-
erature, it was found that while GANs are power-
ful for generating realistic data, they often suffer 
from training instability and mode collapse, which 
can pose significant challenges when dealing with 
high-dimensional network traffic data characterized 
by sparse anomalies. On the other hand, conditional 
VAEs provide conditional control during the gener-
ation process but rely on a fixed architecture, which 
limits their adaptability to datasets with varying fea-
ture complexities.
Therefore, the ADGVAE model proposed in this 
study is designed to address the limitations of mod-
els like GAN and CVAE when generating samples. It 
is particularly suitable for scenarios involving un-
known input data characteristics, ensuring scalabil-
ity across various network traffic scenarios. More-
over, it is well-suited for structured data scenarios, 
such as network anomaly attack traffic. Its varia-
tional framework maintains stable training dynam-
ics and reduces training time.



597Information Technology and Control 2025/2/54

Reference Existing Technique Summary

Das et al., (2024) [6]
Ensemble Learning:  

Supervised and Unsuper-
vised

Classifier: ensemble model (SVM, NN, DT, One-class SVM)
Dataset: NSL-KDD, UNSW-NB15, CICIDS2017

Measures: TN FN FP TP

Ban et al., (2024) [4] Adaptive CNN with APSO
Classifier: APSO, CNN, Channel Attention Mechanism 

Dataset: UNSW-NB15, NSLKDD
Measures: TP FN FP TN

Alashhab et al., (2024) [1] Ensemble Online Machine 
Learning

Classifier: Ensemble Online Machine Learning
Dataset: CICDDoS2019, InSDN, Slowread-DDoS, Custom 

dataset
Measures: Accuracy Precision Recall F1score FAR

Pinto et al., (2024) [29] Unsupervised Learning:  
VAE and LSTM

Classifier: VAE, LSTM mode
Dataset: SWAT

Measures: Precision Recall F1score AUC TP TN FP FN

Truong et al., (2023) [36] Federated Learning  
and Blockchain

Classifier: Autoencoder, Attention Classifier and Federated 
Learning (FL)

Dataset: 4 Network Intrusion Datasets
Measures: Accuracy Precision Recall

Zhang et al., (2023) [42]
Two-stage Intrusion  

Detection: LightGBM  
and Autoencoder

Classifier: LightGBM and Autoencoder
Dataset: NSL-KDD, UNSW-NB15

Measures: Accuracy Precision Recall F1

Falowo et al., (2024) [11] Time Series Analysis:  
ARIMA

Classifier: ARIMA
Dataset: CSIS Database, DBIR

Dunmore et al., (2023) [9] Generative Adversarial  
Networks (GANs)

Classifier: GANs
Dataset: Multiple Public Datasets

Aldhaheri et al., (2023) [2] Self-Attention GAN for IDS
Classifier: SGAN, Self-Attention Mechanism

Dataset: Not specified
Measures: Detection rate Precision Recall F1

Peppes et al., (2023) [28] GANs for Zero-Day Attack 
Data Generation

Classifier: GAN, Neural Network
Dataset: SWAT

Measures: Precision Recall F1-score

Wang et al., (2024) [37] VAE-LSTM-DRN for  
Encrypted Traffic

Classifier: VAE, LSTM, Deep Residual Network (DRN)
Dataset: Tor, VPN Datasets

Measures: Accuracy Recall Precision F1-score

Prabakaran et al., (2023) [31] Deep Learning for  
Phishing Detection

Classifier: VAE
Dataset: ISCX-URL2016, Kaggle Datasets

Measures: Confusion matrix Precision Recall F1-score

Fathima et al., (2024) [12] Hybrid Framework:  
GRU-VAE

Classifier: GRU-VAE
Dataset: CIC-IDS-2017, CIC-IDS2018

Measures: Accuracy Precision Recall F1-score Temporal 
Correlation Index (TCI)

Liu, (2023) [22] AI-based DDoS Attack  
Protection

Classifier: VAE
Dataset: Not specified

Measures: Accuracy Precision Recall  F1-score

Table 1 
Summary of the related work.
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3. Proposed Framework: SAEDF
Hence to accurately identify zero-day anomalies, 
we combined synthetic anomaly generation with 
VAE-based modeling and an anomaly-enhanced un-
supervised detection process. A novel zero-day at-
tack detection framework (SAEDF) was developed 
by integrating data resampling, synthetic anomaly 
generation, and anomaly-enhanced unsupervised 
detection. To improve detection performance, we 
applied advanced data preprocessing techniques, as 
discussed in Section 3.2, to normalize and optimize 
the feature space for model training.

3.1. Workflow
SAEDF enhances the detection of unknown attack 
patterns through three stages: data resampling, 
synthetic anomaly generation, and anomaly-en-
hanced detection, as shown in Figure 1. The pro-
cedure commences with data resampling, during 
which a GMM-based approach is employed for the 
normalization and quantification of selected attack 
samples. This is followed by a four-step feature se-
lection process aimed at enhancing the dataset for 
synthetic attack samples.

Synthetic anomaly generation is then performed, 
with a VAE sampling regions beyond the normal 
distribution to create realistic synthetic anomalies. 
This step enriches the dataset and enhances the 
model’s ability to detect unknown attack patterns. 
Anomaly-enhanced detection integrates both syn-
thetic and real anomalies to train an unsupervised 
detection model, improving its generalization to un-
known attacks. Detailed algorithms and settings for 
each stage are provided in subsequent sections.

3.2. Data Preprocessing

The benchmark datasets (NSL-KDD, UNSW-NB15, 
and CICIDS2017) contain diverse features rep-
resenting various network traffic characteristics. 
These datasets encompass numerical and categori-
cal attributes, varying scales, and occasionally miss-
ing or inconsistent values, necessitating a systemat-
ic preprocessing approach.

3.2.1. Normalization
The benchmark datasets exhibit a mix of continuous 
and discrete features, reflecting the diverse nature 
of network traffic data. Continuous features, such as 
packet size and flow duration, span wide numerical 
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and CICIDS2017) contain diverse features 
representing various network traffic 
characteristics. These datasets encompass 
numerical and categorical attributes, varying 
scales, and occasionally missing or inconsistent 
values, necessitating a systematic preprocessing 
approach. 

3.2.1. Normalization 

The benchmark datasets exhibit a mix of 
continuous and discrete features, reflecting the 
diverse nature of network traffic data. Continuous 
features, such as packet size and flow duration, 
span wide numerical ranges, while discrete 
features, such as protocol type and connection 
status, are represented by categorical values. 
Handing these differences is critical for ensuring 
uniformity in data representation and optimizing 
model performance.  

To address this variability, the specialized 
normalization technique introduced in CTGAN 
[38] was employed. This method demonstrated 
considerable effectiveness in managing mixed-type 
data by normalizing continuous variables and 
encoding categorical variables while maintaining 
their intrinsic distributions and relationships. 
Further details regarding this approach are 
outlined in Section 3.3.2. 

3.2.2 Feature Selection 

Feature selection is a fundamental process 
that substantially improves the effectiveness 
of predictive models by identifying the most 
pertinent features, thereby reducing both 
computational expenses and training time. In 
this study, a systematic approach was 
employed to refine features from the 
benchmark datasets, ensuring adaptability 
across their varying characteristics and 
complexities. The main methods applied in 
this study are outlined below. 

Correlation Analysis: Statistical techniques 
were used to compute the correlation 
coefficients between independent features 
and target labels [17]. Features with low 
correlation were eliminated to reduce 
redundancy and irrelevant information. A 
heatmap was generated to visually represent 
the relationships and assist in feature 
interpretability. 

Model-Based Importance Scoring: An extra 
trees classifier [15] was employed to assess 
feature importance scores. Features with 
higher scores were considered essential due to 
their strong contribution to the target variable. 
This method provided a quantitative basis for 
feature prioritization. 

Feature Distribution Analysis Across 
Datasets: A comparative analysis was 
performed to evaluate the consistency of 
feature significance across the benchmark 

Figure 1
Workflow of SAEDF Data Resampling:
GMM-based normalization, quantification, and a four-step feature selection optimize.
Synthetic Anomaly Generation: The VAE generates synthetic anomalies by sampling abnormal regions in the latent space. 
Anomaly-Enhanced Detection: A binary classifier is trained on real and synthetic anomalies to detect known and 
unknown attacks
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ranges, while discrete features, such as protocol type 
and connection status, are represented by categori-
cal values. Handing these differences is critical for 
ensuring uniformity in data representation and op-
timizing model performance. 
To address this variability, the specialized normal-
ization technique introduced in CTGAN [38] was 
employed. This method demonstrated considerable 
effectiveness in managing mixed-type data by nor-
malizing continuous variables and encoding cate-
gorical variables while maintaining their intrinsic 
distributions and relationships. Further details re-
garding this approach are outlined in Section 3.3.2.

3.2.2 Feature Selection
Feature selection is a fundamental process that sub-
stantially improves the effectiveness of predictive 
models by identifying the most pertinent features, 
thereby reducing both computational expenses and 
training time. In this study, a systematic approach 
was employed to refine features from the benchmark 
datasets, ensuring adaptability across their varying 
characteristics and complexities. The main methods 
applied in this study are outlined below.
Correlation Analysis: Statistical techniques were 
used to compute the correlation coefficients be-
tween independent features and target labels [17]. 
Features with low correlation were eliminated to 
reduce redundancy and irrelevant information. A 
heatmap was generated to visually represent the re-
lationships and assist in feature interpretability.
Model-Based Importance Scoring: An extra trees 
classifier [15] was employed to assess feature impor-
tance scores. Features with higher scores were con-
sidered essential due to their strong contribution to 
the target variable. This method provided a quanti-
tative basis for feature prioritization.
Feature Distribution Analysis Across Datasets: 
A comparative analysis was performed to evaluate 
the consistency of feature significance across the 
benchmark datasets [27]. This guaranteed that the 
chosen features were resilient and preserved their 
ability to differentiate.
Domain Knowledge Refinement: Domain-specific 
expertise in network security was applied to manu-
ally refine the feature subset. This step incorporated 
features such as packet entropy and flow duration 
[32]. Through the systematic application of the afore-

mentioned methodologies, a refined feature subset 
was derived, effectively capturing the key attributes 
of network traffic within the benchmark datasets. 
Detailed insights into the selected features and their 
statistical significance are presented in Section 4.2.

3.3. Synthetic Anomaly Generation

The ADGVAE focused on generating synthetic anom-
alies specifically from attack categories in benchmark 
datasets. To present the structure of ADGVAE con-
cisely and accurately, we defined the relevant notations 
and used them to describe the model design in detail.

3.3.1. Notations
x1⊕ x2 ⊕… Concatenate vectors x1, x2 …
FCu→v(x): Perform a linear transformation on a u-di-
mensional input to produce a v-dimensional output. 
BN: batch normalization [18].  
r: A row of the dataset, including both continuous 
and categorical features.  
z: Latent variable representing the compressed  
representation of r. 
Nc: Number of continuous features in the dataset.  
Nd: Number of categorical features in the dataset.  
αi, βi, di: Representations of the i-th continuousfea-
ture (scalar and one-hot) and categorical feature 
(one-hot), respectively.

3.3.2. Anomaly Sampling and Feature 
Representation
The attack category data was first sampled from the 
dataset, rather than using the full dataset. This en-
sured that the ADGVAE model focused on learning 
the distribution of attack data, thereby improving its 
ability to generate diverse and high-quality synthet-
ic anomalies. For continuous features, a variational 
gaussian mixture model (VGM) [38] was used to esti-
mate modes, normalize values within selected modes, 
and represent them as a combination of a scalar and 
one-hot mode vector. For categorical features, one-
hot encoding was applied, and the final representa-
tion combined normalized continuous features and 
one-hot encoded categorical features for each row.
In this study, the VGM was employed to capture the 
multimodal nature of continuous features by modeling 
their underlying distributions with a mixture of Gauss-
ian components. This approach ensured a precise rep-



Information Technology and Control 2025/2/54600

resentation of complex data patterns. For each value, 
probability densities across modes were computed, a 
mode was sampled, and the feature value was normal-
ized within the selected mode using the formula:
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was applied, and the final representation 
combined normalized continuous features 
and one-hot encoded categorical features for 
each row. 

In this study, the VGM was employed to 
capture the multimodal nature of continuous 
features by modeling their underlying 
distributions with a mixture of Gaussian 
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representation of complex data patterns. For 
each value, probability densities across modes 
were computed, a mode was sampled, and the 
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𝛽𝛽�
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 0  otherwise                 (2) 

where c represents the feature value, η 
denotes the mean of the selected mode 
computed from the VGM, and φ indicates the 
standard deviation of the selected mode 
computed by the VGM. Represent the 
continuous feature as a concatenation of α 
(scalar) and a one-hot vector β indicating the 
sampled mode.   

For each row of data, the normalization is 
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3.3.3. ADGVAE Model Structure 

The ADGVAE model incorporated three key 
components: a projection layer ( 𝑑𝑑���� ), a 
dynamic hidden layer structure, and a 
dynamic layer count mechanism, which 
together enabled adaptability to diverse 
datasets. The projection layer ( 𝑑𝑑����  ) 
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representation for the model. 

Projection Layer (𝑑𝑑����): The projection layer was 
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dimensions of the datasets, mapping the raw 
input features 𝑟𝑟 (with dataset-specific 
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datasets [27]. This guaranteed that the chosen 
features were resilient and preserved their ability to 
differentiate. 
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expertise in network security was applied to 
manually refine the feature subset. This step 
incorporated features such as packet entropy and 
flow duration [32]. Through the systematic 
application of the aforementioned methodologies, 
a refined feature subset was derived, effectively 
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Here, 𝑑𝑑proj is a predefined projection dimension
and the detailed dimensionality reduction methods 
are provided in Section 4.2.2. 

𝐹𝐹𝐶𝐶|�|→�proj is a fully connected layer that maps the 
original input to the projection space.
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Encoder (𝑞𝑞�(𝑧𝑧|𝑟𝑟)): The encoder mapped the input 
projection 𝑟𝑟���� to the latent space 𝑧𝑧 of dimension 
𝑑𝑑latent . It consisted of dynamically determined 
hidden layers (𝑛𝑛hidden) where each layer reduced 
the dimensionality by half until 𝑑𝑑latent was reached. 
The encoder transformation is defined as:
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� →
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ℎ�hidden = ReLU�𝐹𝐹𝐶𝐶 �proj
��hidden⋅��hidden���

→�latent
�ℎ�hidden����. (7)

At the final layer, the encoder output the 
parameters of the latent distribution:

𝜇𝜇 = 𝐹𝐹𝐶𝐶 �proj
��⋅hidden��

→�latent
�ℎ�hidden�                                     (8)

𝜎𝜎 = exp��
� ⋅ 𝐹𝐹𝐶𝐶 �proj
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where µ and 𝜎𝜎 are the mean and standard deviation 
of the latent variable 𝑧𝑧. The latent variable is 
sampled as:

𝑞𝑞�( 𝑧𝑧 ∣ 𝑟𝑟 ) ∼ 𝒩𝒩(𝜇𝜇, 𝜎𝜎�𝐼𝐼).                                               (10)

Decoder ( 𝑝𝑝�(𝑟𝑟|𝑧𝑧) ): The decoder replicated the 
architecture of the encoder, methodically 
augmented the dimensionality from 𝑑𝑑latent back to 
𝑑𝑑proj, and ultimately reverted to the original input 
dimensionality |𝑟𝑟| .The decoder transformation is 
defined as: 
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The hidden layer ℎ�hidden  of the decoder is the
same as equation (7). At the final layer, the 
decoder reconstructed the original input:

𝑟𝑟reconstructed = 𝐹𝐹𝐶𝐶�proj→���ℎ�hidden�                       (13)

Loss Function: The ADGVAE model was 
trained by optimizing the evidence lower 
bound (ELBO) [32]. The ELBO is given as:

ℒ = 𝐸𝐸��(𝑧𝑧|𝑟𝑟)[lo g 𝑝𝑝� (𝑟𝑟|𝑧𝑧)] − KL �𝑞𝑞�(𝑧𝑧|𝑟𝑟)|𝑝𝑝(𝑧𝑧)�, (14)

where the first term represents the 
reconstruction loss, and the second term is the 
Kullback-Leibler (KL) divergence, which 
regularizes the latent variable 𝑧𝑧 to follow a 
standard Gaussian distribution 𝑝𝑝(𝑧𝑧) =
𝒩𝒩(0, 𝐼𝐼).
Dynamic Hidden Layer Count Mechanism:
The dynamic hidden layer count mechanism 
determined the optimal number of hidden 
layers (𝑛𝑛hidden) for the encoder and decoder by 
training, based on the input dimensions of the 
dataset. Unlike fixed architectures, this 
mechanism learned the number of layers that 
yielded the best performance for datasets with 
varying complexities. The determination of 
𝑛𝑛hidden was guided by the input dimension of 
the dataset (𝑑𝑑input), the latent space dimension 
( 𝑑𝑑latent ), and a dataset-specific complexity 
factor (𝑤𝑤dataset).

The number of hidden layers is dynamically 
computed as follows:

𝑛𝑛hidden = �𝑤𝑤dataset ⋅ log� �
�input

�latent
��.                     (15)

The specific determination process of 𝑤𝑤dataset
is elaborated in Section 4.2.2

3.4. Anomaly-Enhanced Detection
The anomaly-enhanced detection module was 
developed to detect anomalies by using a 
comprehensive dataset that includes both 
original traffic data and synthetic anomalies 
produced by the ADGVAE module. This 
module enhanced the decision boundary 
between normal and anomalous samples by 
modeling their distributions and computing 
scores based on density and distance metrics. 
The detection process consists of two main 

. (4)

Here, dproj is a predefi ned projection dimension and 
the detailed dimensionality reduction methods are 
provided in Section 4.2.2.  

FC|r|→dproj is a fully connected layer that maps the orig-
inal input to the projection space.

Encoder (qφ(z|r)): The encoder mapped the input 
projection rproj to the latent space z of dimension 
dlatent. It consisted of dynamically determined hidden 
layers (nhidden) where each layer reduced the dimen-
sionality by half until dlatent was reached. The encoder 
transformation is defi ned as:

𝑟𝑟proj = ReLU�𝐵𝐵𝐵𝐵 �𝐹𝐹𝐶𝐶|�|→�proj(𝑟𝑟)��.                       (4)

Here, 𝑑𝑑proj is a predefined projection dimension
and the detailed dimensionality reduction methods 
are provided in Section 4.2.2. 

𝐹𝐹𝐶𝐶|�|→�proj is a fully connected layer that maps the 
original input to the projection space.

Figure 2

Principle of projection layer.

Encoder (𝑞𝑞�(𝑧𝑧|𝑟𝑟)): The encoder mapped the input 
projection 𝑟𝑟���� to the latent space 𝑧𝑧 of dimension 
𝑑𝑑latent . It consisted of dynamically determined 
hidden layers (𝑛𝑛hidden) where each layer reduced 
the dimensionality by half until 𝑑𝑑latent was reached. 
The encoder transformation is defined as:

ℎ� = ReLU�𝐹𝐹𝐶𝐶
�proj→

�proj
�
�𝑟𝑟proj��                                 (5)

ℎ� = ReLU�𝐹𝐹𝐶𝐶�proj
� →

�proj
�
(ℎ�)�                                    (6)

ℎ�hidden = ReLU�𝐹𝐹𝐶𝐶 �proj
��hidden⋅��hidden���

→�latent
�ℎ�hidden����. (7)

At the final layer, the encoder output the 
parameters of the latent distribution:

𝜇𝜇 = 𝐹𝐹𝐶𝐶 �proj
��⋅hidden��

→�latent
�ℎ�hidden�                                     (8)

𝜎𝜎 = exp��
� ⋅ 𝐹𝐹𝐶𝐶 �proj

��⋅hidden��
→�latent

�ℎ�hidden��,               (9)

where µ and 𝜎𝜎 are the mean and standard deviation 
of the latent variable 𝑧𝑧. The latent variable is 
sampled as:

𝑞𝑞�( 𝑧𝑧 ∣ 𝑟𝑟 ) ∼ 𝒩𝒩(𝜇𝜇, 𝜎𝜎�𝐼𝐼).                                               (10)

Decoder ( 𝑝𝑝�(𝑟𝑟|𝑧𝑧) ): The decoder replicated the 
architecture of the encoder, methodically 
augmented the dimensionality from 𝑑𝑑latent back to 
𝑑𝑑proj, and ultimately reverted to the original input 
dimensionality |𝑟𝑟| .The decoder transformation is 
defined as: 

ℎ� = ReLU�𝐹𝐹𝐶𝐶
�latent→

�proj
��⋅hidden��

(𝑧𝑧)�                   (11)

ℎ� = ReLU�𝐹𝐹𝐶𝐶 �proj
��⋅hidden��

→
�proj

��⋅hidden��
(ℎ�)�.      (12)

The hidden layer ℎ�hidden  of the decoder is the
same as equation (7). At the final layer, the 
decoder reconstructed the original input:

𝑟𝑟reconstructed = 𝐹𝐹𝐶𝐶�proj→���ℎ�hidden�                       (13)

Loss Function: The ADGVAE model was 
trained by optimizing the evidence lower 
bound (ELBO) [32]. The ELBO is given as:

ℒ = 𝐸𝐸��(𝑧𝑧|𝑟𝑟)[lo g 𝑝𝑝� (𝑟𝑟|𝑧𝑧)] − KL �𝑞𝑞�(𝑧𝑧|𝑟𝑟)|𝑝𝑝(𝑧𝑧)�, (14)

where the first term represents the 
reconstruction loss, and the second term is the 
Kullback-Leibler (KL) divergence, which 
regularizes the latent variable 𝑧𝑧 to follow a 
standard Gaussian distribution 𝑝𝑝(𝑧𝑧) =
𝒩𝒩(0, 𝐼𝐼).
Dynamic Hidden Layer Count Mechanism:
The dynamic hidden layer count mechanism 
determined the optimal number of hidden 
layers (𝑛𝑛hidden) for the encoder and decoder by 
training, based on the input dimensions of the 
dataset. Unlike fixed architectures, this 
mechanism learned the number of layers that 
yielded the best performance for datasets with 
varying complexities. The determination of 
𝑛𝑛hidden was guided by the input dimension of 
the dataset (𝑑𝑑input), the latent space dimension 
( 𝑑𝑑latent ), and a dataset-specific complexity 
factor (𝑤𝑤dataset).

The number of hidden layers is dynamically 
computed as follows:

𝑛𝑛hidden = �𝑤𝑤dataset ⋅ log� �
�input

�latent
��.                     (15)

The specific determination process of 𝑤𝑤dataset
is elaborated in Section 4.2.2

3.4. Anomaly-Enhanced Detection
The anomaly-enhanced detection module was 
developed to detect anomalies by using a 
comprehensive dataset that includes both 
original traffic data and synthetic anomalies 
produced by the ADGVAE module. This 
module enhanced the decision boundary 
between normal and anomalous samples by 
modeling their distributions and computing 
scores based on density and distance metrics. 
The detection process consists of two main 

(5)

𝑟𝑟proj = ReLU�𝐵𝐵𝐵𝐵 �𝐹𝐹𝐶𝐶|�|→�proj(𝑟𝑟)��.                       (4)

Here, 𝑑𝑑proj is a predefined projection dimension
and the detailed dimensionality reduction methods 
are provided in Section 4.2.2. 

𝐹𝐹𝐶𝐶|�|→�proj is a fully connected layer that maps the 
original input to the projection space.

Figure 2

Principle of projection layer.

Encoder (𝑞𝑞�(𝑧𝑧|𝑟𝑟)): The encoder mapped the input 
projection 𝑟𝑟���� to the latent space 𝑧𝑧 of dimension 
𝑑𝑑latent . It consisted of dynamically determined 
hidden layers (𝑛𝑛hidden) where each layer reduced 
the dimensionality by half until 𝑑𝑑latent was reached. 
The encoder transformation is defined as:

ℎ� = ReLU�𝐹𝐹𝐶𝐶
�proj→

�proj
�
�𝑟𝑟proj��                                 (5)

ℎ� = ReLU�𝐹𝐹𝐶𝐶�proj
� →

�proj
�
(ℎ�)�                                    (6)

ℎ�hidden = ReLU�𝐹𝐹𝐶𝐶 �proj
��hidden⋅��hidden���

→�latent
�ℎ�hidden����. (7)

At the final layer, the encoder output the 
parameters of the latent distribution:

𝜇𝜇 = 𝐹𝐹𝐶𝐶 �proj
��⋅hidden��

→�latent
�ℎ�hidden�                                     (8)

𝜎𝜎 = exp��
� ⋅ 𝐹𝐹𝐶𝐶 �proj

��⋅hidden��
→�latent

�ℎ�hidden��,               (9)

where µ and 𝜎𝜎 are the mean and standard deviation 
of the latent variable 𝑧𝑧. The latent variable is 
sampled as:

𝑞𝑞�( 𝑧𝑧 ∣ 𝑟𝑟 ) ∼ 𝒩𝒩(𝜇𝜇, 𝜎𝜎�𝐼𝐼).                                               (10)

Decoder ( 𝑝𝑝�(𝑟𝑟|𝑧𝑧) ): The decoder replicated the 
architecture of the encoder, methodically 
augmented the dimensionality from 𝑑𝑑latent back to 
𝑑𝑑proj, and ultimately reverted to the original input 
dimensionality |𝑟𝑟| .The decoder transformation is 
defined as: 

ℎ� = ReLU�𝐹𝐹𝐶𝐶
�latent→

�proj
��⋅hidden��

(𝑧𝑧)�                   (11)

ℎ� = ReLU�𝐹𝐹𝐶𝐶 �proj
��⋅hidden��

→
�proj

��⋅hidden��
(ℎ�)�.      (12)

The hidden layer ℎ�hidden  of the decoder is the
same as equation (7). At the final layer, the 
decoder reconstructed the original input:

𝑟𝑟reconstructed = 𝐹𝐹𝐶𝐶�proj→���ℎ�hidden�                       (13)

Loss Function: The ADGVAE model was 
trained by optimizing the evidence lower 
bound (ELBO) [32]. The ELBO is given as:

ℒ = 𝐸𝐸��(𝑧𝑧|𝑟𝑟)[lo g 𝑝𝑝� (𝑟𝑟|𝑧𝑧)] − KL �𝑞𝑞�(𝑧𝑧|𝑟𝑟)|𝑝𝑝(𝑧𝑧)�, (14)

where the first term represents the 
reconstruction loss, and the second term is the 
Kullback-Leibler (KL) divergence, which 
regularizes the latent variable 𝑧𝑧 to follow a 
standard Gaussian distribution 𝑝𝑝(𝑧𝑧) =
𝒩𝒩(0, 𝐼𝐼).
Dynamic Hidden Layer Count Mechanism:
The dynamic hidden layer count mechanism 
determined the optimal number of hidden 
layers (𝑛𝑛hidden) for the encoder and decoder by 
training, based on the input dimensions of the 
dataset. Unlike fixed architectures, this 
mechanism learned the number of layers that 
yielded the best performance for datasets with 
varying complexities. The determination of 
𝑛𝑛hidden was guided by the input dimension of 
the dataset (𝑑𝑑input), the latent space dimension 
( 𝑑𝑑latent ), and a dataset-specific complexity 
factor (𝑤𝑤dataset).

The number of hidden layers is dynamically 
computed as follows:

𝑛𝑛hidden = �𝑤𝑤dataset ⋅ log� �
�input

�latent
��.                     (15)

The specific determination process of 𝑤𝑤dataset
is elaborated in Section 4.2.2

3.4. Anomaly-Enhanced Detection
The anomaly-enhanced detection module was 
developed to detect anomalies by using a 
comprehensive dataset that includes both 
original traffic data and synthetic anomalies 
produced by the ADGVAE module. This 
module enhanced the decision boundary 
between normal and anomalous samples by 
modeling their distributions and computing 
scores based on density and distance metrics. 
The detection process consists of two main 

(6)

𝑟𝑟proj = ReLU�𝐵𝐵𝐵𝐵 �𝐹𝐹𝐶𝐶|�|→�proj(𝑟𝑟)��.                       (4)

Here, 𝑑𝑑proj is a predefined projection dimension
and the detailed dimensionality reduction methods 
are provided in Section 4.2.2. 

𝐹𝐹𝐶𝐶|�|→�proj is a fully connected layer that maps the 
original input to the projection space.

Figure 2

Principle of projection layer.

Encoder (𝑞𝑞�(𝑧𝑧|𝑟𝑟)): The encoder mapped the input 
projection 𝑟𝑟���� to the latent space 𝑧𝑧 of dimension 
𝑑𝑑latent . It consisted of dynamically determined 
hidden layers (𝑛𝑛hidden) where each layer reduced 
the dimensionality by half until 𝑑𝑑latent was reached. 
The encoder transformation is defined as:

ℎ� = ReLU�𝐹𝐹𝐶𝐶
�proj→

�proj
�
�𝑟𝑟proj��                                 (5)

ℎ� = ReLU�𝐹𝐹𝐶𝐶�proj
� →

�proj
�
(ℎ�)�                                    (6)

ℎ�hidden = ReLU�𝐹𝐹𝐶𝐶 �proj
��hidden⋅��hidden���

→�latent
�ℎ�hidden����. (7)

At the final layer, the encoder output the 
parameters of the latent distribution:

𝜇𝜇 = 𝐹𝐹𝐶𝐶 �proj
��⋅hidden��

→�latent
�ℎ�hidden�                                     (8)

𝜎𝜎 = exp��
� ⋅ 𝐹𝐹𝐶𝐶 �proj

��⋅hidden��
→�latent

�ℎ�hidden��,               (9)

where µ and 𝜎𝜎 are the mean and standard deviation 
of the latent variable 𝑧𝑧. The latent variable is 
sampled as:

𝑞𝑞�( 𝑧𝑧 ∣ 𝑟𝑟 ) ∼ 𝒩𝒩(𝜇𝜇, 𝜎𝜎�𝐼𝐼).                                               (10)

Decoder ( 𝑝𝑝�(𝑟𝑟|𝑧𝑧) ): The decoder replicated the 
architecture of the encoder, methodically 
augmented the dimensionality from 𝑑𝑑latent back to 
𝑑𝑑proj, and ultimately reverted to the original input 
dimensionality |𝑟𝑟| .The decoder transformation is 
defined as: 

ℎ� = ReLU�𝐹𝐹𝐶𝐶
�latent→

�proj
��⋅hidden��

(𝑧𝑧)�                   (11)

ℎ� = ReLU�𝐹𝐹𝐶𝐶 �proj
��⋅hidden��

→
�proj

��⋅hidden��
(ℎ�)�.      (12)

The hidden layer ℎ�hidden  of the decoder is the
same as equation (7). At the final layer, the 
decoder reconstructed the original input:

𝑟𝑟reconstructed = 𝐹𝐹𝐶𝐶�proj→���ℎ�hidden�                       (13)

Loss Function: The ADGVAE model was 
trained by optimizing the evidence lower 
bound (ELBO) [32]. The ELBO is given as:

ℒ = 𝐸𝐸��(𝑧𝑧|𝑟𝑟)[lo g 𝑝𝑝� (𝑟𝑟|𝑧𝑧)] − KL �𝑞𝑞�(𝑧𝑧|𝑟𝑟)|𝑝𝑝(𝑧𝑧)�, (14)

where the first term represents the 
reconstruction loss, and the second term is the 
Kullback-Leibler (KL) divergence, which 
regularizes the latent variable 𝑧𝑧 to follow a 
standard Gaussian distribution 𝑝𝑝(𝑧𝑧) =
𝒩𝒩(0, 𝐼𝐼).
Dynamic Hidden Layer Count Mechanism:
The dynamic hidden layer count mechanism 
determined the optimal number of hidden 
layers (𝑛𝑛hidden) for the encoder and decoder by 
training, based on the input dimensions of the 
dataset. Unlike fixed architectures, this 
mechanism learned the number of layers that 
yielded the best performance for datasets with 
varying complexities. The determination of 
𝑛𝑛hidden was guided by the input dimension of 
the dataset (𝑑𝑑input), the latent space dimension 
( 𝑑𝑑latent ), and a dataset-specific complexity 
factor (𝑤𝑤dataset).

The number of hidden layers is dynamically 
computed as follows:

𝑛𝑛hidden = �𝑤𝑤dataset ⋅ log� �
�input

�latent
��.                     (15)

The specific determination process of 𝑤𝑤dataset
is elaborated in Section 4.2.2

3.4. Anomaly-Enhanced Detection
The anomaly-enhanced detection module was 
developed to detect anomalies by using a 
comprehensive dataset that includes both 
original traffic data and synthetic anomalies 
produced by the ADGVAE module. This 
module enhanced the decision boundary 
between normal and anomalous samples by 
modeling their distributions and computing 
scores based on density and distance metrics. 
The detection process consists of two main 

(7)

At the fi nal layer, the encoder output the parameters 
of the latent distribution:

𝑟𝑟proj = ReLU�𝐵𝐵𝐵𝐵 �𝐹𝐹𝐶𝐶|�|→�proj(𝑟𝑟)��.                       (4)

Here, 𝑑𝑑proj is a predefined projection dimension
and the detailed dimensionality reduction methods 
are provided in Section 4.2.2. 

𝐹𝐹𝐶𝐶|�|→�proj is a fully connected layer that maps the 
original input to the projection space.

Figure 2

Principle of projection layer.

Encoder (𝑞𝑞�(𝑧𝑧|𝑟𝑟)): The encoder mapped the input 
projection 𝑟𝑟���� to the latent space 𝑧𝑧 of dimension 
𝑑𝑑latent . It consisted of dynamically determined 
hidden layers (𝑛𝑛hidden) where each layer reduced 
the dimensionality by half until 𝑑𝑑latent was reached. 
The encoder transformation is defined as:

ℎ� = ReLU�𝐹𝐹𝐶𝐶
�proj→

�proj
�
�𝑟𝑟proj��                                 (5)

ℎ� = ReLU�𝐹𝐹𝐶𝐶�proj
� →

�proj
�
(ℎ�)�                                    (6)

ℎ�hidden = ReLU�𝐹𝐹𝐶𝐶 �proj
��hidden⋅��hidden���

→�latent
�ℎ�hidden����. (7)

At the final layer, the encoder output the 
parameters of the latent distribution:

𝜇𝜇 = 𝐹𝐹𝐶𝐶 �proj
��⋅hidden��

→�latent
�ℎ�hidden�                                     (8)

𝜎𝜎 = exp��
� ⋅ 𝐹𝐹𝐶𝐶 �proj

��⋅hidden��
→�latent

�ℎ�hidden��,               (9)

where µ and 𝜎𝜎 are the mean and standard deviation 
of the latent variable 𝑧𝑧. The latent variable is 
sampled as:

𝑞𝑞�( 𝑧𝑧 ∣ 𝑟𝑟 ) ∼ 𝒩𝒩(𝜇𝜇, 𝜎𝜎�𝐼𝐼).                                               (10)

Decoder ( 𝑝𝑝�(𝑟𝑟|𝑧𝑧) ): The decoder replicated the 
architecture of the encoder, methodically 
augmented the dimensionality from 𝑑𝑑latent back to 
𝑑𝑑proj, and ultimately reverted to the original input 
dimensionality |𝑟𝑟| .The decoder transformation is 
defined as: 

ℎ� = ReLU�𝐹𝐹𝐶𝐶
�latent→

�proj
��⋅hidden��

(𝑧𝑧)�                   (11)

ℎ� = ReLU�𝐹𝐹𝐶𝐶 �proj
��⋅hidden��

→
�proj

��⋅hidden��
(ℎ�)�.      (12)

The hidden layer ℎ�hidden  of the decoder is the
same as equation (7). At the final layer, the 
decoder reconstructed the original input:

𝑟𝑟reconstructed = 𝐹𝐹𝐶𝐶�proj→���ℎ�hidden�                       (13)

Loss Function: The ADGVAE model was 
trained by optimizing the evidence lower 
bound (ELBO) [32]. The ELBO is given as:

ℒ = 𝐸𝐸��(𝑧𝑧|𝑟𝑟)[lo g 𝑝𝑝� (𝑟𝑟|𝑧𝑧)] − KL �𝑞𝑞�(𝑧𝑧|𝑟𝑟)|𝑝𝑝(𝑧𝑧)�, (14)

where the first term represents the 
reconstruction loss, and the second term is the 
Kullback-Leibler (KL) divergence, which 
regularizes the latent variable 𝑧𝑧 to follow a 
standard Gaussian distribution 𝑝𝑝(𝑧𝑧) =
𝒩𝒩(0, 𝐼𝐼).
Dynamic Hidden Layer Count Mechanism:
The dynamic hidden layer count mechanism 
determined the optimal number of hidden 
layers (𝑛𝑛hidden) for the encoder and decoder by 
training, based on the input dimensions of the 
dataset. Unlike fixed architectures, this 
mechanism learned the number of layers that 
yielded the best performance for datasets with 
varying complexities. The determination of 
𝑛𝑛hidden was guided by the input dimension of 
the dataset (𝑑𝑑input), the latent space dimension 
( 𝑑𝑑latent ), and a dataset-specific complexity 
factor (𝑤𝑤dataset).

The number of hidden layers is dynamically 
computed as follows:

𝑛𝑛hidden = �𝑤𝑤dataset ⋅ log� �
�input

�latent
��.                     (15)

The specific determination process of 𝑤𝑤dataset
is elaborated in Section 4.2.2

3.4. Anomaly-Enhanced Detection
The anomaly-enhanced detection module was 
developed to detect anomalies by using a 
comprehensive dataset that includes both 
original traffic data and synthetic anomalies 
produced by the ADGVAE module. This 
module enhanced the decision boundary 
between normal and anomalous samples by 
modeling their distributions and computing 
scores based on density and distance metrics. 
The detection process consists of two main 

(8)

𝑟𝑟proj = ReLU�𝐵𝐵𝐵𝐵 �𝐹𝐹𝐶𝐶|�|→�proj(𝑟𝑟)��.                       (4)

Here, 𝑑𝑑proj is a predefined projection dimension
and the detailed dimensionality reduction methods 
are provided in Section 4.2.2. 

𝐹𝐹𝐶𝐶|�|→�proj is a fully connected layer that maps the 
original input to the projection space.

Figure 2

Principle of projection layer.

Encoder (𝑞𝑞�(𝑧𝑧|𝑟𝑟)): The encoder mapped the input 
projection 𝑟𝑟���� to the latent space 𝑧𝑧 of dimension 
𝑑𝑑latent . It consisted of dynamically determined 
hidden layers (𝑛𝑛hidden) where each layer reduced 
the dimensionality by half until 𝑑𝑑latent was reached. 
The encoder transformation is defined as:

ℎ� = ReLU�𝐹𝐹𝐶𝐶
�proj→

�proj
�
�𝑟𝑟proj��                                 (5)

ℎ� = ReLU�𝐹𝐹𝐶𝐶�proj
� →

�proj
�
(ℎ�)�                                    (6)

ℎ�hidden = ReLU�𝐹𝐹𝐶𝐶 �proj
��hidden⋅��hidden���

→�latent
�ℎ�hidden����. (7)

At the final layer, the encoder output the 
parameters of the latent distribution:

𝜇𝜇 = 𝐹𝐹𝐶𝐶 �proj
��⋅hidden��

→�latent
�ℎ�hidden�                                     (8)

𝜎𝜎 = exp��
� ⋅ 𝐹𝐹𝐶𝐶 �proj

��⋅hidden��
→�latent

�ℎ�hidden��,               (9)

where µ and 𝜎𝜎 are the mean and standard deviation 
of the latent variable 𝑧𝑧. The latent variable is 
sampled as:

𝑞𝑞�( 𝑧𝑧 ∣ 𝑟𝑟 ) ∼ 𝒩𝒩(𝜇𝜇, 𝜎𝜎�𝐼𝐼).                                               (10)

Decoder ( 𝑝𝑝�(𝑟𝑟|𝑧𝑧) ): The decoder replicated the 
architecture of the encoder, methodically 
augmented the dimensionality from 𝑑𝑑latent back to 
𝑑𝑑proj, and ultimately reverted to the original input 
dimensionality |𝑟𝑟| .The decoder transformation is 
defined as: 

ℎ� = ReLU�𝐹𝐹𝐶𝐶
�latent→

�proj
��⋅hidden��

(𝑧𝑧)�                   (11)

ℎ� = ReLU�𝐹𝐹𝐶𝐶 �proj
��⋅hidden��

→
�proj

��⋅hidden��
(ℎ�)�.      (12)

The hidden layer ℎ�hidden  of the decoder is the
same as equation (7). At the final layer, the 
decoder reconstructed the original input:

𝑟𝑟reconstructed = 𝐹𝐹𝐶𝐶�proj→���ℎ�hidden�                       (13)

Loss Function: The ADGVAE model was 
trained by optimizing the evidence lower 
bound (ELBO) [32]. The ELBO is given as:

ℒ = 𝐸𝐸��(𝑧𝑧|𝑟𝑟)[lo g 𝑝𝑝� (𝑟𝑟|𝑧𝑧)] − KL �𝑞𝑞�(𝑧𝑧|𝑟𝑟)|𝑝𝑝(𝑧𝑧)�, (14)

where the first term represents the 
reconstruction loss, and the second term is the 
Kullback-Leibler (KL) divergence, which 
regularizes the latent variable 𝑧𝑧 to follow a 
standard Gaussian distribution 𝑝𝑝(𝑧𝑧) =
𝒩𝒩(0, 𝐼𝐼).
Dynamic Hidden Layer Count Mechanism:
The dynamic hidden layer count mechanism 
determined the optimal number of hidden 
layers (𝑛𝑛hidden) for the encoder and decoder by 
training, based on the input dimensions of the 
dataset. Unlike fixed architectures, this 
mechanism learned the number of layers that 
yielded the best performance for datasets with 
varying complexities. The determination of 
𝑛𝑛hidden was guided by the input dimension of 
the dataset (𝑑𝑑input), the latent space dimension 
( 𝑑𝑑latent ), and a dataset-specific complexity 
factor (𝑤𝑤dataset).

The number of hidden layers is dynamically 
computed as follows:

𝑛𝑛hidden = �𝑤𝑤dataset ⋅ log� �
�input

�latent
��.                     (15)

The specific determination process of 𝑤𝑤dataset
is elaborated in Section 4.2.2

3.4. Anomaly-Enhanced Detection
The anomaly-enhanced detection module was 
developed to detect anomalies by using a 
comprehensive dataset that includes both 
original traffic data and synthetic anomalies 
produced by the ADGVAE module. This 
module enhanced the decision boundary 
between normal and anomalous samples by 
modeling their distributions and computing 
scores based on density and distance metrics. 
The detection process consists of two main 

, (9)

where μ and σ are the mean and standard deviation of 
the latent variable z. The latent variable is sampled as:

𝑟𝑟proj = ReLU�𝐵𝐵𝐵𝐵 �𝐹𝐹𝐶𝐶|�|→�proj(𝑟𝑟)��.                       (4)

Here, 𝑑𝑑proj is a predefined projection dimension
and the detailed dimensionality reduction methods 
are provided in Section 4.2.2. 

𝐹𝐹𝐶𝐶|�|→�proj is a fully connected layer that maps the 
original input to the projection space.

Figure 2

Principle of projection layer.

Encoder (𝑞𝑞�(𝑧𝑧|𝑟𝑟)): The encoder mapped the input 
projection 𝑟𝑟���� to the latent space 𝑧𝑧 of dimension 
𝑑𝑑latent . It consisted of dynamically determined 
hidden layers (𝑛𝑛hidden) where each layer reduced 
the dimensionality by half until 𝑑𝑑latent was reached. 
The encoder transformation is defined as:

ℎ� = ReLU�𝐹𝐹𝐶𝐶
�proj→

�proj
�
�𝑟𝑟proj��                                 (5)

ℎ� = ReLU�𝐹𝐹𝐶𝐶�proj
� →

�proj
�
(ℎ�)�                                    (6)

ℎ�hidden = ReLU�𝐹𝐹𝐶𝐶 �proj
��hidden⋅��hidden���

→�latent
�ℎ�hidden����. (7)

At the final layer, the encoder output the 
parameters of the latent distribution:

𝜇𝜇 = 𝐹𝐹𝐶𝐶 �proj
��⋅hidden��

→�latent
�ℎ�hidden�                                     (8)

𝜎𝜎 = exp��
� ⋅ 𝐹𝐹𝐶𝐶 �proj

��⋅hidden��
→�latent

�ℎ�hidden��,               (9)

where µ and 𝜎𝜎 are the mean and standard deviation 
of the latent variable 𝑧𝑧. The latent variable is 
sampled as:

𝑞𝑞�( 𝑧𝑧 ∣ 𝑟𝑟 ) ∼ 𝒩𝒩(𝜇𝜇, 𝜎𝜎�𝐼𝐼).                                               (10)

Decoder ( 𝑝𝑝�(𝑟𝑟|𝑧𝑧) ): The decoder replicated the 
architecture of the encoder, methodically 
augmented the dimensionality from 𝑑𝑑latent back to 
𝑑𝑑proj, and ultimately reverted to the original input 
dimensionality |𝑟𝑟| .The decoder transformation is 
defined as: 

ℎ� = ReLU�𝐹𝐹𝐶𝐶
�latent→

�proj
��⋅hidden��

(𝑧𝑧)�                   (11)

ℎ� = ReLU�𝐹𝐹𝐶𝐶 �proj
��⋅hidden��

→
�proj

��⋅hidden��
(ℎ�)�.      (12)

The hidden layer ℎ�hidden  of the decoder is the
same as equation (7). At the final layer, the 
decoder reconstructed the original input:

𝑟𝑟reconstructed = 𝐹𝐹𝐶𝐶�proj→���ℎ�hidden�                       (13)

Loss Function: The ADGVAE model was 
trained by optimizing the evidence lower 
bound (ELBO) [32]. The ELBO is given as:

ℒ = 𝐸𝐸��(𝑧𝑧|𝑟𝑟)[lo g 𝑝𝑝� (𝑟𝑟|𝑧𝑧)] − KL �𝑞𝑞�(𝑧𝑧|𝑟𝑟)|𝑝𝑝(𝑧𝑧)�, (14)

where the first term represents the 
reconstruction loss, and the second term is the 
Kullback-Leibler (KL) divergence, which 
regularizes the latent variable 𝑧𝑧 to follow a 
standard Gaussian distribution 𝑝𝑝(𝑧𝑧) =
𝒩𝒩(0, 𝐼𝐼).
Dynamic Hidden Layer Count Mechanism:
The dynamic hidden layer count mechanism 
determined the optimal number of hidden 
layers (𝑛𝑛hidden) for the encoder and decoder by 
training, based on the input dimensions of the 
dataset. Unlike fixed architectures, this 
mechanism learned the number of layers that 
yielded the best performance for datasets with 
varying complexities. The determination of 
𝑛𝑛hidden was guided by the input dimension of 
the dataset (𝑑𝑑input), the latent space dimension 
( 𝑑𝑑latent ), and a dataset-specific complexity 
factor (𝑤𝑤dataset).

The number of hidden layers is dynamically 
computed as follows:

𝑛𝑛hidden = �𝑤𝑤dataset ⋅ log� �
�input

�latent
��.                     (15)

The specific determination process of 𝑤𝑤dataset
is elaborated in Section 4.2.2

3.4. Anomaly-Enhanced Detection
The anomaly-enhanced detection module was 
developed to detect anomalies by using a 
comprehensive dataset that includes both 
original traffic data and synthetic anomalies 
produced by the ADGVAE module. This 
module enhanced the decision boundary 
between normal and anomalous samples by 
modeling their distributions and computing 
scores based on density and distance metrics. 
The detection process consists of two main 

. (10)

𝑟𝑟proj = ReLU�𝐵𝐵𝐵𝐵 �𝐹𝐹𝐶𝐶|�|→�proj(𝑟𝑟)��.                       (4)

Here, 𝑑𝑑proj is a predefined projection dimension
and the detailed dimensionality reduction methods 
are provided in Section 4.2.2. 

𝐹𝐹𝐶𝐶|�|→�proj is a fully connected layer that maps the 
original input to the projection space.

Figure 2

Principle of projection layer.

Encoder (𝑞𝑞�(𝑧𝑧|𝑟𝑟)): The encoder mapped the input 
projection 𝑟𝑟���� to the latent space 𝑧𝑧 of dimension 
𝑑𝑑latent . It consisted of dynamically determined 
hidden layers (𝑛𝑛hidden) where each layer reduced 
the dimensionality by half until 𝑑𝑑latent was reached. 
The encoder transformation is defined as:

ℎ� = ReLU�𝐹𝐹𝐶𝐶
�proj→

�proj
�
�𝑟𝑟proj��                                 (5)

ℎ� = ReLU�𝐹𝐹𝐶𝐶�proj
� →

�proj
�
(ℎ�)�                                    (6)

ℎ�hidden = ReLU�𝐹𝐹𝐶𝐶 �proj
��hidden⋅��hidden���

→�latent
�ℎ�hidden����. (7)

At the final layer, the encoder output the 
parameters of the latent distribution:

𝜇𝜇 = 𝐹𝐹𝐶𝐶 �proj
��⋅hidden��

→�latent
�ℎ�hidden�                                     (8)

𝜎𝜎 = exp��
� ⋅ 𝐹𝐹𝐶𝐶 �proj

��⋅hidden��
→�latent

�ℎ�hidden��,               (9)

where µ and 𝜎𝜎 are the mean and standard deviation 
of the latent variable 𝑧𝑧. The latent variable is 
sampled as:

𝑞𝑞�( 𝑧𝑧 ∣ 𝑟𝑟 ) ∼ 𝒩𝒩(𝜇𝜇, 𝜎𝜎�𝐼𝐼).                                               (10)

Decoder ( 𝑝𝑝�(𝑟𝑟|𝑧𝑧) ): The decoder replicated the 
architecture of the encoder, methodically 
augmented the dimensionality from 𝑑𝑑latent back to 
𝑑𝑑proj, and ultimately reverted to the original input 
dimensionality |𝑟𝑟| .The decoder transformation is 
defined as: 

ℎ� = ReLU�𝐹𝐹𝐶𝐶
�latent→

�proj
��⋅hidden��

(𝑧𝑧)�                   (11)

ℎ� = ReLU�𝐹𝐹𝐶𝐶 �proj
��⋅hidden��

→
�proj

��⋅hidden��
(ℎ�)�.      (12)

The hidden layer ℎ�hidden  of the decoder is the
same as equation (7). At the final layer, the 
decoder reconstructed the original input:

𝑟𝑟reconstructed = 𝐹𝐹𝐶𝐶�proj→���ℎ�hidden�                       (13)

Loss Function: The ADGVAE model was 
trained by optimizing the evidence lower 
bound (ELBO) [32]. The ELBO is given as:

ℒ = 𝐸𝐸��(𝑧𝑧|𝑟𝑟)[lo g 𝑝𝑝� (𝑟𝑟|𝑧𝑧)] − KL �𝑞𝑞�(𝑧𝑧|𝑟𝑟)|𝑝𝑝(𝑧𝑧)�, (14)

where the first term represents the 
reconstruction loss, and the second term is the 
Kullback-Leibler (KL) divergence, which 
regularizes the latent variable 𝑧𝑧 to follow a 
standard Gaussian distribution 𝑝𝑝(𝑧𝑧) =
𝒩𝒩(0, 𝐼𝐼).
Dynamic Hidden Layer Count Mechanism:
The dynamic hidden layer count mechanism 
determined the optimal number of hidden 
layers (𝑛𝑛hidden) for the encoder and decoder by 
training, based on the input dimensions of the 
dataset. Unlike fixed architectures, this 
mechanism learned the number of layers that 
yielded the best performance for datasets with 
varying complexities. The determination of 
𝑛𝑛hidden was guided by the input dimension of 
the dataset (𝑑𝑑input), the latent space dimension 
( 𝑑𝑑latent ), and a dataset-specific complexity 
factor (𝑤𝑤dataset).

The number of hidden layers is dynamically 
computed as follows:

𝑛𝑛hidden = �𝑤𝑤dataset ⋅ log� �
�input

�latent
��.                     (15)

The specific determination process of 𝑤𝑤dataset
is elaborated in Section 4.2.2

3.4. Anomaly-Enhanced Detection
The anomaly-enhanced detection module was 
developed to detect anomalies by using a 
comprehensive dataset that includes both 
original traffic data and synthetic anomalies 
produced by the ADGVAE module. This 
module enhanced the decision boundary 
between normal and anomalous samples by 
modeling their distributions and computing 
scores based on density and distance metrics. 
The detection process consists of two main 

Figure 2
Principle of projection layer.



601Information Technology and Control 2025/2/54
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𝑟𝑟proj = ReLU�𝐵𝐵𝐵𝐵 �𝐹𝐹𝐶𝐶|�|→�proj(𝑟𝑟)��.                       (4)

Here, 𝑑𝑑proj is a predefined projection dimension
and the detailed dimensionality reduction methods 
are provided in Section 4.2.2. 

𝐹𝐹𝐶𝐶|�|→�proj is a fully connected layer that maps the 
original input to the projection space.
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𝜎𝜎 = exp��
� ⋅ 𝐹𝐹𝐶𝐶 �proj

��⋅hidden��
→�latent

�ℎ�hidden��,               (9)

where µ and 𝜎𝜎 are the mean and standard deviation 
of the latent variable 𝑧𝑧. The latent variable is 
sampled as:

𝑞𝑞�( 𝑧𝑧 ∣ 𝑟𝑟 ) ∼ 𝒩𝒩(𝜇𝜇, 𝜎𝜎�𝐼𝐼).                                               (10)

Decoder ( 𝑝𝑝�(𝑟𝑟|𝑧𝑧) ): The decoder replicated the 
architecture of the encoder, methodically 
augmented the dimensionality from 𝑑𝑑latent back to 
𝑑𝑑proj, and ultimately reverted to the original input 
dimensionality |𝑟𝑟| .The decoder transformation is 
defined as: 

ℎ� = ReLU�𝐹𝐹𝐶𝐶
�latent→

�proj
��⋅hidden��

(𝑧𝑧)�                   (11)

ℎ� = ReLU�𝐹𝐹𝐶𝐶 �proj
��⋅hidden��

→
�proj

��⋅hidden��
(ℎ�)�.      (12)

The hidden layer ℎ�hidden  of the decoder is the
same as equation (7). At the final layer, the 
decoder reconstructed the original input:

𝑟𝑟reconstructed = 𝐹𝐹𝐶𝐶�proj→���ℎ�hidden�                       (13)

Loss Function: The ADGVAE model was 
trained by optimizing the evidence lower 
bound (ELBO) [32]. The ELBO is given as:

ℒ = 𝐸𝐸��(𝑧𝑧|𝑟𝑟)[lo g 𝑝𝑝� (𝑟𝑟|𝑧𝑧)] − KL �𝑞𝑞�(𝑧𝑧|𝑟𝑟)|𝑝𝑝(𝑧𝑧)�, (14)

where the first term represents the 
reconstruction loss, and the second term is the 
Kullback-Leibler (KL) divergence, which 
regularizes the latent variable 𝑧𝑧 to follow a 
standard Gaussian distribution 𝑝𝑝(𝑧𝑧) =
𝒩𝒩(0, 𝐼𝐼).
Dynamic Hidden Layer Count Mechanism:
The dynamic hidden layer count mechanism 
determined the optimal number of hidden 
layers (𝑛𝑛hidden) for the encoder and decoder by 
training, based on the input dimensions of the 
dataset. Unlike fixed architectures, this 
mechanism learned the number of layers that 
yielded the best performance for datasets with 
varying complexities. The determination of 
𝑛𝑛hidden was guided by the input dimension of 
the dataset (𝑑𝑑input), the latent space dimension 
( 𝑑𝑑latent ), and a dataset-specific complexity 
factor (𝑤𝑤dataset).

The number of hidden layers is dynamically 
computed as follows:

𝑛𝑛hidden = �𝑤𝑤dataset ⋅ log� �
�input

�latent
��.                     (15)

The specific determination process of 𝑤𝑤dataset
is elaborated in Section 4.2.2

3.4. Anomaly-Enhanced Detection
The anomaly-enhanced detection module was 
developed to detect anomalies by using a 
comprehensive dataset that includes both 
original traffic data and synthetic anomalies 
produced by the ADGVAE module. This 
module enhanced the decision boundary 
between normal and anomalous samples by 
modeling their distributions and computing 
scores based on density and distance metrics. 
The detection process consists of two main 

. (15)

The specifi c determination process of wdataset is elabo-
rated in Section 4.2.2

3.4. Anomaly-Enhanced Detection
The anomaly-enhanced detection module was de-
veloped to detect anomalies by using a comprehen-
sive dataset that includes both original traffi  c data 
and synthetic anomalies produced by the ADGVAE 
module. This module enhanced the decision bound-
ary between normal and anomalous samples by mod-
eling their distributions and computing scores based 
on density and distance metrics. The detection pro-
cess consists of two main steps: density-based mod-
eling and anomaly scoring and classifi cation. 
In the density-based modeling step, a gaussian mix-
ture model (GMM) [5] was used to estimate the 
probability distribution of latent representations. 
GMM modeled the data distribution as a mixture 
of Gaussian components, each characterized by a 
mean, variance, and weight. The expectation-maxi-
mization (EM) algorithm [7] was employed to learn 
these parameters, allowing the GMM to identify 
high-density regions where normal samples resided, 
while anomalies, including synthetic samples, are 
located in lower-density areas.
The anomaly scoring and classifi cation step com-
puted an anomaly score for each sample by combin-
ing density-based [10] and distance-based metrics 
[14]. The density-based score evaluated how well a 
sample fi t the learned Gaussian components, with 
lower scores indicating potential anomalies. The 
distance-based score measured the proximity of a 
sample to the nearest Gaussian center, with larg-
er distances suggesting a higher likelihood of being 
anomalous. Table 2. shows the complete parameters 
and strategy used in the proposed approach.

Model Parameters Value

GMM Number of 
Components (K) 5

Anomaly Scoring Density Weight (λ1) 0.7

Anomaly Scoring Mahalanobis Distance 
Weight (λ2) 0.3

Anomaly 
Classifi cation Threshold (τ) 95th 

Percentile

Dataset Split Training Set Percentage 67%

Dataset Split Validation Set Percentage 33%

Table 2 
Anomaly attack detection model parameters.



Information Technology and Control 2025/2/54602

As shown in Table 2, the anomaly-enhanced detection 
approach uses five Gaussian components (K=5) in the 
GMM as an initial value, which is optimized based 
on evaluation metrics during the experiments. The 
density weight (λ1) is set to 0.7, and the Mahalanobis 
distance weight (λ2) is set to 0.3. The threshold (τ) for 
anomaly classification is set to the 95th percentile of 
anomaly scores. The dataset has been allocated 67% 
for training purposes and 33% for validation. This 
configuration of parameters facilitates the accurate 
identification of both normal and anomalous samples. 

4. Experiments
4.1. Datasets
This study employed three prominent network intru-
sion detection datasets: NSL-KDD, UNSW-NB15, and 
CICIDS2017, serving as benchmark datasets. The se-
lection of these datasets was based on a comprehensive 
literature review, which indicated that approximately 
75% of recent studies on intrusion detection employed 
one or more of these datasets [8, 13, 21]. Their wide-
spread use is due to their extensive coverage of attack 
scenarios, a diverse array of features, and their efficacy 
in benchmarking anomaly detection models. A sum-
mary of the datasets is presented in Table 3.

The datasets were standardized using the normal-
ization process described in Section 3.2.1, ensuring 
all features were scaled to a uniform range to im-
prove model performance. Feature selection were 
performed following the four-step process outlined 
in Section 3.2.2.
Correlation analysis was performed to identify and 
remove features with high collinearity (correlation 
coefficient > 0.9), reducing redundancy in the data-
set. Table 4 presents the highly correlated features 
in each dataset. 

Dataset Samples Features Attack Types

NSL-KDD 125,973 41 DoS, Probe, U2R, R2L

UN-
SW-NB15 257,673 49

Fuzzers, Analysis, 
Backdoors, DoS, Ex-

ploits, Generic, Recon-
naissance, Shellcode

CIC-
IDS2017 2,830,743 78

Brute Force, Heart-
bleed, Botnet, DoS, 
DDoS, Infiltration, 

Web Attacks

Table 3
Summary of benchmark datasets

These datasets encompass a mix of normal and 
anomalous traffic, covering modern and traditional 
attack types. NSL-KDD focuses on traditional at-
tacks, UNSW-NB15 introduces hybrid traffic sce-
narios, and CICIDS2017 provides a realistic repre-
sentation of modern network attacks.

Dataset Feature Pairs with Correlation (> 90%)

NSL-KDD  dst_bytes & src_bytes, srv_serror_rate & 
serror_rate ,  srv_rerror_rate & rerror_rate

UNSW-NB15  sttl & dttl ,  ct_dst_sport_ltm & ct_dst_src_
ltm ,  ct_src_dport_ltm & ct_src_src_ltm

CICIDS2017
 Flow Bytes/s & Flow Packets/s , Total 

Length of Fwd Packets & Total Fwd Pack-
et Length , Fwd IAT Mean & Fwd IAT Std

Table 4 
Highly correlated features identified in datasets.

Then a Random Forest (RF)-based importance scor-
ing method [15] was applied to rank features based 
on their contribution to classification performance. 
The parameters used in the RF model for impor-
tance scoring are listed in Table 5. 

Parameter Value Description

Number of 
Trees 100 Number of decision trees in 

the forest

Max Depth None Unlimited tree depth

Min Samples 
Split 2 Minimum samples required to 

split an internal node

Min Samples 
Leaf 1 Minimum samples required to 

be at a leaf node

Max Features sqrt Number of features to consider 
when looking for the best split

Bootstrap True Whether bootstrap sampling is 
used when building trees

Table 5
RF-based feature importance scoring parameter settings.

In the results, features with scores below the dynamic 
threshold were excluded as summarized in Table 6. 
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Correlation (> 90%) 
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srv_serror_rate & serror_rate 
,  srv_rerror_rate & 
rerror_rate 

UNSW-NB15  s�l & d�l ,  ct_dst_sport_ltm 
& ct_dst_src_ltm ,  
ct_src_dport_ltm & 
ct_src_src_ltm 

CICIDS2017  Flow Bytes/s & Flow 
Packets/s , Total Length of 
Fwd Packets & Total Fwd 
Packet Length , Fwd IAT 
Mean & Fwd IAT Std 

Then a Random Forest (RF)-based importance 
scoring method [15] was applied to rank features 
based on their contribution to classification 
performance. The parameters used in the RF model 
for importance scoring are listed in Table 5.  

Table 5 

RF-based feature importance scoring parameter 
settings. 
Parameter Value Description 

Number of 
Trees 

100 Number of decision trees in 
the forest 

Max Depth None Unlimited tree depth 
Min Samples 
Split 

2 Minimum samples required 
to split an internal node 

Min Samples 
Leaf 

1 Minimum samples required 
to be at a leaf node 

Max Features sqrt Number of features to 
consider when looking for 
the best split 

Bootstrap True Whether bootstrap sampling 
is used when building trees 

In the results, features with scores below the 
dynamic threshold were excluded as summarized 
in Table 6.  

Table 6 
Features excluded by dynamic thresholds. 

The feature importance scores for the three datasets 
are shown in Figure 3, These charts illustrate the 
relative importance of selected features, sorted in 
descending order based on their contribution to 
classification performance. 

Figure 3 

Feature importance for benchmark datasets: 
(a) Feature importance for NSL-kDD; (b) 
Feature importance for UNSW-NB15; 
(c)Feature importance for CICIDS2017. 
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Subsequently, the feature distribution analysis 
across datasets method was applied to ensure 
consistency of selected features across NSL-KDD, 
UNSW-NB15, and CICIDS2017. This process 
involved comparing the statistical metrics (mean, 
variance, maximum, and minimum) of each feature 
across datasets. Features with significant variance 
instability (variance ratio > 5) or mean deviation 
(mean offset > 30%) were deemed inconsistent and 
removed. Following this analysis, NSL-KDD had 4 
features removed due to distribution differences, 
UNSW-NB15 also had 4 such features removed. In 
CICIDS2017, 10 features were excluded, such as 
Init_Win_Bytes_Backward and 
Bwd_Header_Length, due to significant cross-
dataset variability. 

The remaining features were further refined using 
domain knowledge. Features unrelated to network 
security tasks were removed, including those with 
no direct correlation to attack behavior. Features 
characterized by high dynamic variability, marked 
by rapid or unpredictable value changes, were also 
excluded. Statistical features (e.g., Packet_Length, 
Flow_Bytes_Per_Second) and attack-related 
features (e.g., Protocol_Type, Service) were 
retained to ensure stability and relevance. The final 
selected features for all datasets are summarized in 
Table 7. 

Table 7 
Final selected features 

Dataset Feature 
Count 

Selected Features 

NSL-KDD 24 service, flag, src_bytes, 
dst_bytes, land, urgent, hot, 
logged_in, root_shell, 
is_host_login, serror_rate, 
srv_serror_rate, rerror_rate, 

same_srv_rate, 
srv_diff_host_rate, 
dst_host_count, 
dst_host_same_srv_rate, 
dst_host_diff_srv_rate, 
dst_host_same_src_port_rate, 
dst_host_srv_diff_host_rate, 
dst_host_srv_serror_rate, 
dst_host_serror_rate, 
num_failed_logins, num_root 

UNSW-
NB15 

27 srcip, sport, dstip, dsport, 
proto, state, is_ftp_login, 
res_bdy_len, ct_dst_src_ltm, 
ct_dst_sport_ltm, Sload, 
Dload, is_sm_ips_ports, d�l, 
ct_src_ ltm, ct_src_dport_ltm, 
dur, ct_ftp_cmd, ct_srv_dst, 
Dintpkt, Ltime, Sintpkt, 
synack, ct_srv_src, ct_dst_ltm, 
Djit, Stime 

CICIDS 
2017 

33 flow duration, destination 
port, total fwd packets, total 
backward packets, ece flag 
count, flow packets/s, flow 
bytes/s, average packet size, 
fwd iat mean, bwd iat std, fwd 
header length, 
init_win_bytes_forward, bwd 
packet length max, bwd 
packet length mean, subflow 
fwd packets, subflow bwd 
bytes, active max, active std, 
min packet length, fwd iat std, 
bwd iat total, bwd header 
length, active min, fwd 
packets/s, total length of fwd 
packets, bwd packet length 
std, total length of bwd 
packets, flow iat mean, cwe 
flag count, flow iat std, fin flag 
count, active mean, idle mean 

4.2. Experimental Setup 
4.2.1. Baseline Methods 

To evaluate the performance of SAEDF, we 
compared it with four baseline methods, 
including traditional detection techniques and 
advanced generative-based approaches. 
These baselines were selected to cover a range 
of methodologies, including unsupervised 
detection, supervised learning, and 
generative models for data augmentation. 
Specifically, we included isolation forest (IF) 
[23] and local outlier factor (LOF) [24] as 
unsupervised anomaly detection methods, 
SGAN-IDS [2] as a GAN-based generative 
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(c)

Datasets Threshold Removed Features

NSL-KDD 0.018 7

UNSW-NB15 0.03 9 

CICIDS2017 0.04 14

Table 6
Features excluded by dynamic thresholds.

Figure 3
Feature importance for benchmark datasets: (a) Feature 
importance for NSL-kDD; (b) Feature importance for 
UNSW-NB15; (c)Feature importance for CICIDS2017.

The feature importance scores for the three data-
sets are shown in Figure 3, These charts illustrate 
the relative importance of selected features, sorted 
in descending order based on their contribution to 
classification performance.

Dataset Feature 
Count Selected Features

NSL-
KDD 24

service, flag, src_bytes, dst_bytes, 
land, urgent, hot, logged_in, root_shell, 
is_host_login, serror_rate, srv_serror_
rate, rerror_rate, same_srv_rate, srv_
diff_host_rate, dst_host_count, dst_
host_same_srv_rate, dst_host_diff_

srv_rate, dst_host_same_src_port_rate, 
dst_host_srv_diff_host_rate, dst_host_
srv_serror_rate, dst_host_serror_rate, 

num_failed_logins, num_root

UN-
SW-NB15 27

srcip, sport, dstip, dsport, proto, state, 
is_ftp_login, res_bdy_len, ct_dst_src_
ltm, ct_dst_sport_ltm, Sload, Dload, 

is_sm_ips_ports, dttl, ct_src_ ltm, 
ct_src_dport_ltm, dur, ct_ftp_cmd, 
ct_srv_dst, Dintpkt, Ltime, Sintpkt, 
synack, ct_srv_src, ct_dst_ltm, Djit, 

Stime

CICIDS 
2017 33

flow duration, destination port, total 
fwd packets, total backward packets, 

ece flag count, flow packets/s, flow 
bytes/s, average packet size, fwd iat 

mean, bwd iat std, fwd header length, 
init_win_bytes_forward, bwd packet 
length max, bwd packet length mean, 

subflow fwd packets, subflow bwd 
bytes, active max, active std, min 
packet length, fwd iat std, bwd iat 

total, bwd header length, active min, 
fwd packets/s, total length of fwd 

packets, bwd packet length std, total 
length of bwd packets, flow iat mean, 

cwe flag count, flow iat std, fin flag 
count, active mean, idle mean

Table 7
Final selected features
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Subsequently, the feature distribution analysis across 
datasets method was applied to ensure consistency of 
selected features across NSL-KDD, UNSW-NB15, and 
CICIDS2017. This process involved comparing the sta-
tistical metrics (mean, variance, maximum, and min-
imum) of each feature across datasets. Features with 
significant variance instability (variance ratio > 5) or 
mean deviation (mean offset > 30%) were deemed in-
consistent and removed. Following this analysis, NSL-
KDD had 4 features removed due to distribution differ-
ences, UNSW-NB15 also had 4 such features removed. 
In CICIDS2017, 10 features were excluded, such as 
Init_Win_Bytes_Backward and Bwd_Header_Length, 
due to significant cross-dataset variability.
The remaining features were further refined using 
domain knowledge. Features unrelated to network 
security tasks were removed, including those with 
no direct correlation to attack behavior. Features 
characterized by high dynamic variability, marked 
by rapid or unpredictable value changes, were also 
excluded. Statistical features (e.g., Packet_Length, 
Flow_Bytes_Per_Second) and attack-related fea-
tures (e.g., Protocol_Type, Service) were retained 
to ensure stability and relevance. The final selected 
features for all datasets are summarized in Table 7.

4.2. Experimental Setup
4.2.1. Baseline Methods
To evaluate the performance of SAEDF, we compared 
it with four baseline methods, including traditional 
detection techniques and advanced generative-based 
approaches. These baselines were selected to cover a 
range of methodologies, including unsupervised de-
tection, supervised learning, and generative models for 
data augmentation. Specifically, we included isolation 
forest (IF) [23] and local outlier factor (LOF) [24] as 
unsupervised anomaly detection methods, SGAN-IDS 
[2] as a GAN-based generative model for anomaly de-
tection. These methods were chosen based on their rel-
evance to the scope of this study, as they either repre-
sent state-of-the-art generative approaches or provide 
benchmark techniques commonly used for intrusion 
detection in the existing literature. Furthermore, they 
are well-suited for the datasets used in this study, en-
suring a fair and meaningful comparison.
In order to assess the performance of SAEDF, we 
conducted a comparative analysis against four foun-
dational methodologies, which encompassed both 

traditional detection techniques and sophisticated 
generative-based strategies. These baselines methods 
were selected to encompass a spectrum of methodol-
ogies, including unsupervised detection, supervised 
learning, and generative models utilized for data aug-
mentation. Specifically, our selection included the 
isolation forest (IF) [23] and local outlier factor (LOF) 
[24] as unsupervised anomaly detection techniques, 
SGAN-IDS [2] as a GAN-based generative model for 
anomaly detection, and a hybrid supervised two-stage 
detection approach that combines LightGBM and an 
autoencoder [42]. These methodologies were chosen 
based on their robust performance documented in ex-
isting literature and their suitability for the datasets 
employed in this research.

4.2.2. Implementation Details
This section delineates the structural specifics of the 
ADGVAE model (as detailed in Section 3.3.3), encom-
passing its network architecture, primary components, 
hyperparameters, and training configurations. The 
model integrates three fundamental components: a pro-
jection layer (dproj), a dynamic hidden layer structure, 
and a mechanism for dynamic layer counting. A summa-
ry of the parameters defining the network architecture 
of ADGVAE for each dataset is provided in Table 8.

Dataset din dproj
Hid- 

Layers Nodes wdataset

NSL-
KDD 28 16 6 [64, 128, 256, 

256, 128, 64] 1.5

UN-
SW-NB15 34 20 8

[128, 256, 
512, 512, 256, 

128, 64, 32]
2.0

CIC-
IDS2017 50 32 10

[256, 512, 
1024, 1024, 

512, 256, 128, 
64, 32, 16]

2.5

Table 8
Network architecture for each dataset.

For each dataset,  was determined experimentally 
based on the dataset size and feature complexity, 
balancing the trade-off between detection perfor-
mance and computational efficiency.
The training process was configured to ensure stable 
convergence and effective anomaly detection. The 
key hyperparameters are shown in Table 9.
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5. Results and Discussion 
5.1 Evaluation metrics
The evaluation metrics we designed in this study 
focus on both the quality of the generated anoma-
lous samples and the detection performance of the 
framework. The Fréchet Inception Distance (FID) 
was employed to assess the quality of the generat-
ed anomalous samples, representing the similarity 
between the distributions of the generated samples 
and the original samples through the distance be-
tween the two distributions.
The FID is defined as:

  

model for anomaly detection. These methods were 
chosen based on their relevance to the scope of this 
study, as they either represent state-of-the-art 
generative approaches or provide benchmark 
techniques commonly used for intrusion detection 
in the existing literature. Furthermore, they are 
well-suited for the datasets used in this study, 
ensuring a fair and meaningful comparison. 

In order to assess the performance of SAEDF, we 
conducted a comparative analysis against four 
foundational methodologies, which encompassed 
both traditional detection techniques and 
sophisticated generative-based strategies. These 
baselines methods were selected to encompass a 
spectrum of methodologies, including 
unsupervised detection, supervised learning, and 
generative models utilized for data augmentation. 
Specifically, our selection included the isolation 
forest (IF) [23] and local outlier factor (LOF) [24] as 
unsupervised anomaly detection techniques, 
SGAN-IDS [2] as a GAN-based generative model 
for anomaly detection, and a hybrid supervised 
two-stage detection approach that combines 
LightGBM and an autoencoder [42]. These 
methodologies were chosen based on their robust 
performance documented in existing literature and 
their suitability for the datasets employed in this 
research. 

4.2.2. Implementation Details 

This section delineates the structural specifics of the 
ADGVAE model (as detailed in Section 3.3.3), 
encompassing its network architecture, primary 
components, hyperparameters, and training 
configurations. The model integrates three 
fundamental components: a projection layer 
(𝑑𝑑����  ), a dynamic hidden layer structure, and a 
mechanism for dynamic layer counting. A 
summary of the parameters defining the network 
architecture of ADGVAE for each dataset is 
provided in Table 8. 

Table 8 
Network architecture for each dataset. 

Dataset 𝒅𝒅𝒊𝒊𝒊𝒊 𝒅𝒅𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 Hid-
Layers 

Nodes 𝒘𝒘dataset 

NSL-
KDD 

28 16 6 [64, 128, 256, 
256, 128, 64] 

1.5 

UNSW-
NB15 

34 20 8 [128, 256, 512, 
512, 256, 128, 
64, 32] 

2.0 

CICIDS
2017 

50 32 10 [256, 512, 1024, 
1024, 512, 256, 
128, 64, 32, 16] 

2.5 

For each dataset, 𝑤𝑤dataset  was determined 
experimentally based on the dataset size and 
feature complexity, balancing the trade-off 
between detection performance and 
computational efficiency. 

The training process was configured to ensure 
stable convergence and effective anomaly 
detection. The key hyperparameters are 
shown in Table 9. 

Table 9 
Hyperparameters for training ADGVAE. 

Parameters NSL-
KDD 

UNSW-
NB15 

CICIDS2017 

Learning rate  0.001 0.0005 0.0001 

Batch size 32 64 128 

Epochs 100 150 200 

Latent space 8 16 32 

Dropout rate 0.2 0.3 0.3 

Regularization 0.01 0.005 0.001 
Optimizer Adam AdamW AdamW 
Learning rate 
decay 0.95 0.9 0.85 

 

5.Results and Discussion  
5.1 Evaluation metrics 
The evaluation metrics we designed in this 
study focus on both the quality of the 
generated anomalous samples and the 
detection performance of the framework. The 
Fréchet Inception Distance (FID) was 
employed to assess the quality of the 
generated anomalous samples, representing 
the similarity between the distributions of the 
generated samples and the original samples 
through the distance between the two 
distributions. 

The FID is defined as: 

FID = ∥∥𝜇𝜇� − 𝜇𝜇�∥∥� + Tr�Σ� + Σ� − 2�Σ�Σ��,  (16) 

where 𝜇𝜇�  and 𝜇𝜇�  are the mean feature 
representations of real and generated 
anomalous samples, respectively, and Σ�  and 
Σ� are their covariance matrices. A lower FID 
indicates higher similarity, reflecting better 
fidelity and diversity in the generated samples. 

The detection performance of the framework 
was evaluated using metrics derived from the 
confusion matrix [30]. Specifically, the metrics 
included Precision, which measures the 
proportion of correctly identified anomalies 
among predicted anomalies; Recall, which 
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where μr and μg are the mean feature representations 
of real and generated anomalous samples, respec-
tively, and Σr and Σg are their covariance matrices. A 
lower FID indicates higher similarity, reflecting bet-
ter fidelity and diversity in the generated samples.
The detection performance of the framework was 
evaluated using metrics derived from the confusion 
matrix [30]. Specifically, the metrics included Pre-
cision, which measures the proportion of correctly 
identified anomalies among predicted anomalies; 
Recall, which reflects the model’s ability to detect 
all true anomalies; F1-Score, the harmonic mean of 
Precision and Recall; and AUC-ROC, which assess-
es the model’s ability to distinguish between normal 
and anomalous samples. 

Table 9
Hyperparameters for training ADGVAE.

Parameters NSL-KDD UNSW-NB15 CICIDS2017

Learning rate 0.001 0.0005 0.0001

Batch size 32 64 128

Epochs 100 150 200

Latent space 8 16 32

Dropout rate 0.2 0.3 0.3

Regularization 0.01 0.005 0.001

Optimizer Adam AdamW AdamW

Learning rate 
decay 0.95 0.9 0.85

5.2. Results 
5.2.1. Attack Sample Generation Quality
The FID values in Table 10 summarize the quality of 
the generated samples for each dataset. On average, 
CICIDS2017 achieved the lowest mean FID (8.96), 
indicating the highest similarity between the generat-
ed and real samples, followed by UNSW-NB15 (10.78) 
and NSL-KDD (12.34). Across all datasets, the maxi-
mum FID values remain low (<19), reflecting consis-
tent fidelity and diversity in the generated samples. 
The standard deviation of FID values is also small, 
suggesting stable performance across features. 
The observed low FID values in this study reflects 
the high fidelity and diversity of the generated sam-
ples. The CICIDS2017 dataset achieved the lowest 
mean FID value (8.96), demonstrating that the ADG-
VAE model effectively captures the underlying dis-
tribution of complex modern network attacks. This 
allows the model to learn more realistic decision 
boundaries and improves its ability to detect previ-
ously unseen anomalies.
The small standard deviation (STD) of FID val-
ues across datasets, such as 2.47 for CICIDS2017, 
emphasizes the stability of the ADGVAE model in 
generating consistent data distributions. This con-
sistency minimizes fluctuations in the training pro-
cess, guaranteeing that the model is less susceptible 
to biases resulting from inconsistent or low-quality 
synthetic samples.

In order to visually demonstrate the caliber of the pro-
duced anomalous samples, we performed a compara-
tive assessment of their distributions relative to gen-
uine anomalies through the utilization of scatter plots. 
Figure 4 depicts the distribution of both authentic and 
generated samples for the benchmark datasets. 
From Figure 4, the horizontal (Component 1) and 
vertical (Component 2) axes represent the reduced 
dimensions obtained through PCA, preserving the 

Dataset Mean FID Max FID Min FID STD

NSL-KDD 12.34 18.56 6.78 3.21

UNSW-NB15 10.78 15.89 5.43 2.95

CICIDS2017 8.96 14.32 4.87 2.47

Table 10
FID results for generated samples.
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reflects the model’s ability to detect all true 
anomalies; F1-Score, the harmonic mean of 
Precision and Recall; and AUC-ROC, which 
assesses the model’s ability to distinguish between 
normal and anomalous samples. 

5.2. Results
5.2.1. Attack Sample Generation Quality

The FID values in Table 10 summarize the quality 
of the generated samples for each dataset. On 
average, CICIDS2017 achieved the lowest mean 
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by UNSW-NB15 (10.78) and NSL-KDD (12.34). 
Across all datasets, the maximum FID values 
remain low (<19), reflecting consistent fidelity and 
diversity in the generated samples. The standard 
deviation of FID values is also small, suggesting 
stable performance across features. 

The observed low FID values in this study reflects 
the high fidelity and diversity of the generated 
samples. The CICIDS2017 dataset achieved the 
lowest mean FID value (8.96), demonstrating that 
the ADGVAE model effectively captures the 
underlying distribution of complex modern 
network attacks. This allows the model to learn 
more realistic decision boundaries and improves its 
ability to detect previously unseen anomalies.

The small standard deviation (STD) of FID values 
across datasets, such as 2.47 for CICIDS2017, 
emphasizes the stability of the ADGVAE model in 
generating consistent data distributions. This 
consistency minimizes fluctuations in the training 
process, guaranteeing that the model is less 
susceptible to biases resulting from inconsistent or 
low-quality synthetic samples.

Table 10
FID results for generated samples.

Dataset Mean 
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Max 
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FID

STD

NSL-KDD 12.34 18.56 6.78 3.21

UNSW-NB15 10.78 15.89 5.43 2.95

CICIDS2017 8.96 14.32 4.87 2.47

In order to visually demonstrate the caliber of the 
produced anomalous samples, we performed a 
comparative assessment of their distributions 
relative to genuine anomalies through the 
utilization of scatter plots. Figure 4 depicts the 
distribution of both authentic and generated 
samples for the benchmark datasets. 

From Figure 4, the horizontal (Component 1) and 
vertical (Component 2) axes represent the reduced 

dimensions obtained through PCA, 
preserving the primary relationships in the 
feature space. The generated samples closely 
align with the real anomalies in feature space, 
reflecting the high fidelity and diversity of our 
ADGVAE model.

We conducted a comparative analysis of the 
FID metrics pertaining to ADGVAE alongside 
those of SGAN-IDS for the samples produced 
across the benchmark datasets.

Figure 4

Synthetic sample distribution for benchmark 
datasets: (a) sample distribution for NSL-KDD;
(b) sample distribution for UNSW-NB15; (c)
sample distribution for CICIDS2017.

                (a)

                (b)

                     (c)

Figure 5 presents a comprehensive comparison of 
FID metrics (Mean, Max, Min, and STD) between 
ADGVAE and SGAN-IDS. ADGVAE consistently 
outperforms SGAN-IDS in all metrics, with 
significantly lower Mean FID values, reflecting 
higher fidelity in generated samples. Additionally, 
the lower Max FID and STD values for ADGVAE 
indicate better distribution consistency and 
reduced variance, highlighting its superiority in 
generating high-quality anomaly samples. These 
results demonstrate that ADGVAE more effectively 
captures the underlying feature distributions of 
real anomalies compared to SGAN-IDS.

   Figure 5
Comparison of FID metrics across datasets.

5.2.2. Detection Performance for Unknown 
Attacks

We summarize the detection performance 
results for unknown attacks in Table 11, 
comparing SAEDF with baseline methods 
across three datasets.
Table 11
Best performance for unknown attacks 
detection.

Dataset Model F1 Acc. Prec. Rec. FPR

NSL-

KDD

SAEDF 0.971 0.975 0.965 0.978 0.003 

SGAN-

IDS
0.943 0.952 0.931 0.955 0.007 

IF 0.891 0.916 0.902 0.882 0.015 

LOF 0.872 0.894 0.880 0.865 0.020 

UNSW-
NB15

SAEDF 0.945 0.962 0.940 0.951 0.004 

SGAN-
IDS

0.912 0.938 0.900 0.924 0.012 

IF 0.861 0.887 0.870 0.853 0.018 

LOF 0.848 0.873 0.860 0.837 0.022 

CICIDS

2017

SAEDF 0.984 0.988 0.981 0.987 0.002 

SGAN-

IDS
0.957 0.965 0.950 0.964 0.006 

IF 0.902 0.925 0.910 0.895 0.012 

LOF 0.889 0.910 0.895 0.882 0.020 

For the NSL-KDD dataset, SAEDF achieves 
the most significant improvement in Recall, 
outperforming LOF by 13.02% and 
demonstrating its ability to detect anomalies 
effectively. On UNSW-NB15, SAEDF shows 
the largest increase in F1-Score, with a 11.45% 
improvement compared to LOF. For 
CICIDS2017, SAEDF achieves the highest 
improvement in Recall, surpassing LOF by 
11.05%. From Figure 6, we can observe that 
SAEDF's ROC curves consistently stay closer 
to the top-left corner compared to other 
models, reflecting its superior ability to 
achieve higher True Positive Rates at lower 
False Positive Rates. These results highlight 
SAEDF's unmatched ability to detect 
unknown attacks, particularly in handling 
imbalanced datasets, and emphasize its 
significant performance gains over baseline 
models.

Figure 6

ROC curves of benchmark datasets: (a) NSL-
KDD; (b) UNSW-NB15; (c) CICIDS2017.

(a)

(b)

(c)
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samples for the benchmark datasets. 
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dimensions obtained through PCA, 
preserving the primary relationships in the 
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ADGVAE model.
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We conducted a comparative analysis of the FID 
metrics pertaining to ADGVAE alongside those of 
SGAN-IDS for the samples produced across the 
benchmark datasets.
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FID metrics (Mean, Max, Min, and STD) between 
ADGVAE and SGAN-IDS. ADGVAE consistently 
outperforms SGAN-IDS in all metrics, with sig-
nificantly lower Mean FID values, reflecting high-
er fidelity in generated samples. Additionally, the 
lower Max FID and STD values for ADGVAE indi-
cate better distribution consistency and reduced 
variance, highlighting its superiority in generat-
ing high-quality anomaly samples. These results 
demonstrate that ADGVAE more effectively cap-
tures the underlying feature distributions of real 
anomalies compared to SGAN-IDS.
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indicate better distribution consistency and 
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captures the underlying feature distributions of 
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5.2.2. Detection Performance for Unknown 
Attacks

We summarize the detection performance 
results for unknown attacks in Table 11, 
comparing SAEDF with baseline methods 
across three datasets.
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Best performance for unknown attacks 
detection.
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SGAN-
IDS
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IF 0.902 0.925 0.910 0.895 0.012 
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For the NSL-KDD dataset, SAEDF achieves 
the most significant improvement in Recall, 
outperforming LOF by 13.02% and 
demonstrating its ability to detect anomalies 
effectively. On UNSW-NB15, SAEDF shows 
the largest increase in F1-Score, with a 11.45% 
improvement compared to LOF. For 
CICIDS2017, SAEDF achieves the highest 
improvement in Recall, surpassing LOF by 
11.05%. From Figure 6, we can observe that 
SAEDF's ROC curves consistently stay closer 
to the top-left corner compared to other 
models, reflecting its superior ability to 
achieve higher True Positive Rates at lower 
False Positive Rates. These results highlight 
SAEDF's unmatched ability to detect 
unknown attacks, particularly in handling 
imbalanced datasets, and emphasize its 
significant performance gains over baseline 
models.
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ROC curves of benchmark datasets: (a) NSL-
KDD; (b) UNSW-NB15; (c) CICIDS2017.
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Comparison of FID metrics across datasets.

5.2.2. Detection Performance for Unknown 
Attacks
We summarize the detection performance results 
for unknown attacks in Table 11, comparing SAEDF 
with baseline methods across three datasets.
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5.2.3. Cross-Dataset Unknown Attack Detection

To further validate the effectiveness of SAEDF in 
detecting unknown attacks, particularly zero-day 
attacks, we designed a cross-dataset unknown 
attack detection experiment. This experiment 
evaluates the generalization capability of SAEDF 
by training the model on one dataset and testing it 
on entirely different datasets. This setup mimics 
real-world scenarios where the model encounters 
previously unseen attack patterns from diverse 
environments. The model was trained on the NSL-
KDD dataset using all normal samples and a subset 
of known attack samples, and it was tested on two 
separate datasets (UNSW-NB15 and CICIDS2017) 
containing unknown attack types and normal 
traffic, with the results shown in Table 12.
Table 12

Cross-dataset detection performance for 
unknown attacks.
Dataset Model F1 Prec. Rec. FPR

UNSW-

NB15

SAEDF 0.922 0.915 0.930 0.005

SGAN-

IDS

0.876 0.860 0.893 0.013

IF 0.831 0.845 0.818 0.018

LOF 0.812 0.820 0.805 0.022

CICIDS

2017

SAEDF 0.937 0.930 0.945 0.004

SGAN-

IDS

0.892 0.880 0.905 0.011

IF 0.850 0.865 0.837 0.016

LOF 0.828 0.835 0.820 0.019

From Table 12, It is observed that SAEDF 
achieves significantly higher F1-Score and 
Recall compared to baseline methods, 
demonstrating its ability to generalize to 
unknown attack patterns across datasets. On 
the UNSW-NB15 dataset, SAEDF 
outperforms SGAN-IDS by 4.4% in F1-Score 
and 3.5% in Recall, while on the CICIDS2017 
dataset, it achieves an F1-Score of 0.938, which 
is 4.2% higher than SGAN-IDS. Additionally, 
the False Positive Rate (FPR) of SAEDF 
remains remarkably low across both datasets, 
with values of 0.005 (UNSW-NB15) and 0.004 
(CICIDS2017), indicating its robustness in 
minimizing false alarms.

5.2.4. Ablation Study

We conducted an ablation study to 
understand the importance of each 
component in our model. Table 13 shows the 
performance impact, measured as the average 
F1-score and training time across three 
datasets, when specific components are 
removed or replaced. 

Table 13
Performance decrease (%) in ablation study.

Synthetic 

Anomalies

Feature

Representation

Network

Architecture

Model
Performance

w/o -12.5%w/o -18.7% w/o 

ADGVAE 

-19.3%

Training 
Time

—— —— w/o 

ADGVAE

-8 %

As shown in Table 13, ADGVAE provides 
superior performance while incurring only a 
minor decrease in training time 
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From Table 12, It is observed that SAEDF 
achieves significantly higher F1-Score and 
Recall compared to baseline methods, 
demonstrating its ability to generalize to 
unknown attack patterns across datasets. On 
the UNSW-NB15 dataset, SAEDF 
outperforms SGAN-IDS by 4.4% in F1-Score 
and 3.5% in Recall, while on the CICIDS2017 
dataset, it achieves an F1-Score of 0.938, which 
is 4.2% higher than SGAN-IDS. Additionally, 
the False Positive Rate (FPR) of SAEDF 
remains remarkably low across both datasets, 
with values of 0.005 (UNSW-NB15) and 0.004 
(CICIDS2017), indicating its robustness in 
minimizing false alarms.
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understand the importance of each 
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For the NSL-KDD dataset, SAEDF achieves the most 
signifi cant improvement in Recall, outperforming 
LOF by 13.02% and demonstrating its ability to de-
tect anomalies eff ectively. On UNSW-NB15, SAEDF 
shows the largest increase in F1-Score, with a 11.45% 
improvement compared to LOF. For CICIDS2017, 
SAEDF achieves the highest improvement in Recall, 
surpassing LOF by 11.05%. From Figure 6, we can 
observe that SAEDF's ROC curves consistently stay 
closer to the top-left corner compared to other mod-
els, refl ecting its superior ability to achieve higher 
True Positive Rates at lower False Positive Rates. 

These results highlight SAEDF's unmatched ability 
to detect unknown attacks, particularly in handling 
imbalanced datasets, and emphasize its signifi cant 
performance gains over baseline models.

5.2.3. Cross-Dataset Unknown Attack Detection
To further validate the eff ectiveness of SAEDF in 
detecting unknown attacks, particularly zero-day at-
tacks, we designed a cross-dataset unknown attack 
detection experiment. This experiment evaluates 
the generalization capability of SAEDF by training 
the model on one dataset and testing it on entirely 

Dataset Model F1 Acc. Prec. Rec. FPR

NSL-KDD

SAEDF 0.971 0.975 0.965 0.978 0.003 

SGAN-IDS 0.943 0.952 0.931 0.955 0.007 

IF 0.891 0.916 0.902 0.882 0.015 

LOF 0.872 0.894 0.880 0.865 0.020 

UNSW-NB15

SAEDF 0.945 0.962 0.940 0.951 0.004 

SGAN-IDS 0.912 0.938 0.900 0.924 0.012 

IF 0.861 0.887 0.870 0.853 0.018 

LOF 0.848 0.873 0.860 0.837 0.022 

CICIDS
2017

SAEDF 0.984 0.988 0.981 0.987 0.002 

SGAN-IDS 0.957 0.965 0.950 0.964 0.006 

IF 0.902 0.925 0.910 0.895 0.012 

LOF 0.889 0.910 0.895 0.882 0.020

Table 11
Best performance for unknown attacks detection.

Figure 6
ROC curves of benchmark datasets: (a) NSL-KDD; (b) UNSW-NB15; (c) CICIDS2017.
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diff erent datasets. This setup mimics real-world 
scenarios where the model encounters previously 
unseen attack patterns from diverse environments. 
The model was trained on the NSL-KDD dataset us-
ing all normal samples and a subset of known attack 
samples, and it was tested on two separate datasets 
(UNSW-NB15 and CICIDS2017) containing un-
known attack types and normal traffi  c, with the re-
sults shown in Table 12.

From Table 12, It is observed that SAEDF achieves 
signifi cantly higher F1-Score and Recall compared 
to baseline methods, demonstrating its ability to 
generalize to unknown attack patterns across data-
sets. On the UNSW-NB15 dataset, SAEDF outper-
forms SGAN-IDS by 4.4% in F1-Score and 3.5% in 
Recall, while on the CICIDS2017 dataset, it achieves 
an F1-Score of 0.938, which is 4.2% higher than 
SGAN-IDS. Additionally, the False Positive Rate 
(FPR) of SAEDF remains remarkably low across 
both datasets, with values of 0.005 (UNSW-NB15) 
and 0.004 (CICIDS2017), indicating its robustness 
in minimizing false alarms.

5.2.4. Ablation Study
We conducted an ablation study to understand the 
importance of each component in our model. Table 13 
shows the performance impact, measured as the aver-
age F1-score and training time across three datasets, 
when specifi c components are removed or replaced. 
As shown in Table 13, ADGVAE provides superior 
performance while incurring only a minor decrease 
in training time (approximately 8% shorter than the 
simpler autoencoder).

 Dataset Model F1 Prec. Rec. FPR

UN-
SW-NB15

SAEDF 0.922 0.915 0.930 0.005

SGAN-IDS 0.876 0.860 0.893 0.013

IF 0.831 0.845 0.818 0.018

LOF 0.812 0.820 0.805 0.022

CIC-
IDS2017

SAEDF 0.937 0.930 0.945 0.004

SGAN-IDS 0.892 0.880 0.905 0.011

IF 0.850 0.865 0.837 0.016

LOF 0.828 0.835 0.820 0.019

Table 12
Cross-dataset detection performance for unknown attacks.

The study focuses on the following components:
Synthetic Anomaly Sampling: We analyzed the im-
pact of removing synthetic anomaly samples from the 
training process. Without these samples, the model 
relies solely on real data, which limits its ability to 
generalize to unknown attacks. Synthetic anomalies 
expand the decision boundary by introducing diverse 
and augmented anomalous patterns that real-world 
data alone cannot provide. These patterns allow the 
model to better capture the variability of unknown 
attacks, avoiding overfi tting to seen data and im-
proving its generalization performance. Figure 7 il-
lustrates this comparison, showing the ROC curves 
for benchmark datasets. In each dataset, the perfor-
mance of the model trained with synthetic anomalies 
(SAEDF) signifi cantly outperforms the one trained 
without synthetic anomalies (w/o Synthetic Anoma-
lies), as evidenced by the higher AUC values and ROC 
curves closer to the top-left corner.

Synthetic 
Anomalies

Feature 
Representation

Network 
Architecture

Model
Performance w/o -12.5% w/o -18.7%

w/o 
ADGVAE

-19.3%

Training 
Time —— ——

w/o 
ADGVAE 

-8 %

Table 13
Performance decrease (%) in ablation study.

Figure 7
ROC curves for ablation.

(approximately 8% shorter than the simpler 
autoencoder).

The study focuses on the following components:

Synthetic Anomaly Sampling: We analyzed the 
impact of removing synthetic anomaly samples 
from the training process. Without these samples, 
the model relies solely on real data, which limits its 
ability to generalize to unknown attacks. Synthetic 
anomalies expand the decision boundary by 
introducing diverse and augmented anomalous 
patterns that real-world data alone cannot provide. 
These patterns allow the model to better capture 
the variability of unknown attacks, avoiding 
overfitting to seen data and improving its 
generalization performance. Figure 7 illustrates this 
comparison, showing the ROC curves for 
benchmark datasets. In each dataset, the 
performance of the model trained with synthetic 
anomalies (SAEDF) significantly outperforms the 
one trained without synthetic anomalies (w/o 
Synthetic Anomalies), as evidenced by the higher 
AUC values and ROC curves closer to the top-left 
corner.

Figure 7
ROC curves for ablation.

Feature Representation: To evaluate the 
importance of feature representation, we replaced 
the feature transformation module with raw input 
features. This tests the contribution of 
representation learning to anomaly detection, and 
the training time increased by 8% when using raw 
features.

ADGVAE Model: We substituted the ADGVAE 
model with a simpler autoencoder (a unified 3-
layer FC mirrored structure) to evaluate its role in 
generating high-quality synthetic anomalies and 
learning robust latent representations. In addition 
to performance degradation, we also compared the 
training and inference times of the two models to 
evaluate computational efficiency.

5.3 Analysis and Discussion
5.3.1. SAEDF’s Capability to Detect Zero-
Day Attacks

The above experiments conclusively show 
that SAEDF significantly outperforms 
baseline methods, primarily due to its ability 
to detect unknown attack types, improved 
generalization through synthetic anomaly 
generation, and scalability to high-
dimensional network traffic data. By 
generating synthetic anomalies that extend 
beyond the normal distribution, SAEDF 
effectively simulates potential unknown 
attack patterns, enabling the model to 
generalize to previously unseen threats. This 
capability is particularly critical for detecting 
zero-day attacks, which are inherently 
unknown during training.

(1) Synthetic Anomaly Generation for 
Generalization: The use of synthetic 
anomalies is a critical component of SAEDF's 
success, as it enables the model to effectively 
learn decision boundaries that distinguish 
normal behavior from diverse and unseen 
attack patterns. The synthetic anomaly 
generation process leverages the latent space 
of the VAE to model the normal data 
distribution effectively. By sampling regions 
of low density in the latent space, SAEDF 
generates realistic synthetic anomalies that 
mimic unknown attack patterns, enhancing 
the model’s capacity to detect zero-day attacks. 
This process exposes the model to a broader 
range of abnormal scenarios during training, 
significantly improving its generalization 
ability and reducing overfitting to known 
attack types.

(2) Density-Based Modeling with GMM: The 
classification process further strengthens 
SAEDF's ability to detect unknown attacks 
through the use of GMM-based density 
modeling. The GMM identifies low-density 
regions in the latent space, corresponding to 
potential unknown attack patterns. This 
probabilistic approach ensures that anomalies, 
including synthetic ones, are effectively 
separated from normal samples, enabling 
robust detection of unknown threats. By 
modeling the data distribution as a mixture of 
Gaussian components, the GMM isolates 
high-density (normal) regions while flagging 
low-density (abnormal) samples. This not 
only aids in detecting synthetic anomalies but 
also provides a robust mechanism for 
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Feature Representation: To evaluate the impor-
tance of feature representation, we replaced the 
feature transformation module with raw input fea-
tures. This tests the contribution of representation 
learning to anomaly detection, and the training time 
increased by 8% when using raw features.
ADGVAE Model: We substituted the ADGVAE 
model with a simpler autoencoder (a unified 3-layer 
FC mirrored structure) to evaluate its role in gener-
ating high-quality synthetic anomalies and learning 
robust latent representations. In addition to perfor-
mance degradation, we also compared the training 
and inference times of the two models to evaluate 
computational efficiency.

5.3 Analysis and Discussion
5.3.1. SAEDF’s Capability to Detect Zero-Day 
Attacks
The above experiments conclusively show that 
SAEDF significantly outperforms baseline methods, 
primarily due to its ability to detect unknown attack 
types, improved generalization through synthetic 
anomaly generation, and scalability to high-dimen-
sional network traffic data. By generating synthetic 
anomalies that extend beyond the normal distri-
bution, SAEDF effectively simulates potential un-
known attack patterns, enabling the model to gener-
alize to previously unseen threats. This capability is 
particularly critical for detecting zero-day attacks, 
which are inherently unknown during training.
1 Synthetic Anomaly Generation for Generaliza-

tion: The use of synthetic anomalies is a critical 
component of SAEDF's success, as it enables the 
model to effectively learn decision boundaries that 
distinguish normal behavior from diverse and un-
seen attack patterns. The synthetic anomaly gener-
ation process leverages the latent space of the VAE 
to model the normal data distribution effectively. 
By sampling regions of low density in the latent 
space, SAEDF generates realistic synthetic anom-
alies that mimic unknown attack patterns, enhanc-
ing the model’s capacity to detect zero-day attacks. 
This process exposes the model to a broader range 
of abnormal scenarios during training, significant-
ly improving its generalization ability and reducing 
overfitting to known attack types.

2 Density-Based Modeling with GMM: The clas-
sification process further strengthens SAEDF's 

ability to detect unknown attacks through the use 
of GMM-based density modeling. The GMM iden-
tifies low-density regions in the latent space, cor-
responding to potential unknown attack patterns. 
This probabilistic approach ensures that anoma-
lies, including synthetic ones, are effectively sep-
arated from normal samples, enabling robust de-
tection of unknown threats. By modeling the data 
distribution as a mixture of Gaussian components, 
the GMM isolates high-density (normal) regions 
while flagging low-density (abnormal) samples. 
This not only aids in detecting synthetic anomalies 
but also provides a robust mechanism for identify-
ing real-world unknown attack patterns.

3 Scalability and Adaptability: Another key 
strength of SAEDF lies in its adaptability and scal-
ability to various datasets with diverse feature 
complexities. The ADGVAE model incorporates 
a projection layer (dproj), a dynamic hidden layer 
structure, and a dynamic layer count mechanism, 
which together ensure consistency in input rep-
resentation and adaptability to different dataset 
characteristics. These features are essential for 
detecting unknown attacks across varying network 
environments, as they allow the model to maintain 
high performance even when dealing with high-di-
mensional and heterogeneous network traffic data. 
The dynamic layer count mechanism enables the 
model to adjust its depth based on the complexity 
of the input data, ensuring that sufficient represen-
tational capacity is allocated for intricate patterns 
while avoiding overfitting on simpler data. This 
flexibility is critical for addressing the diverse and 
evolving nature of network traffic anomalies.

5.3.2. Limitations 
1 Framework Limitations: While SAEDF demon-

strates strong performance, it is not without lim-
itations. Its reliance on high-quality, anomaly-free 
training data is crucial. If the training data contains 
contamination or mislabeled samples, the model’s 
ability to accurately detect true anomalies can be 
significantly hindered. This limitation highlights 
the importance of robust data preprocessing and 
careful curation of training datasets to ensure that 
they are free from noise or anomalies.
The effectiveness of synthetic anomaly genera-
tion depends heavily on the quality and diversity 
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of the generated samples. Poorly generated anom-
alies may negatively impact decision boundaries 
and generalization, potentially reducing the mod-
el's ability to detect unknown attacks.

2 The Challenge of True Zero-Day Attacks:
It should be noted that these simulated scenari-
os, while effective in controlled experiments, may 
not fully reflect the complexity and diversity of 
real-world zero-day attacks. Real-world zero-day 
attacks often involve highly sophisticated tech-
niques, rapid evolution, and adaptive adversarial 
behaviors that are challenging to replicate in ex-
perimental settings. These limitations provide 
opportunities for future research. Expanding the 
evaluation to include real-world datasets and live 
network traffic, as well as incorporating adaptive 
adversarial testing, will be essential to further 
demonstrate the robustness and practicality of 
SAEDF in real-world zero-day scenarios.

6. Conclusion
In this study, we proposed a flexible and robust 
framework for detecting unknown attacks in net-
work traffic data. Through extensive experiments, 
we demonstrated the effectiveness of SAEDF in ad-

dressing the challenge of unknown attack detection, 
highlighting the critical role of synthetic anomalies 
in enhancing detection performance and improv-
ing generalization. By leveraging synthetic anomaly 
generation, SAEDF establishes a more comprehen-
sive decision boundary and achieves scalability to 
high-dimensional network traffic data, outperform-
ing baseline methods across multiple datasets.
As future work, we aim to explore more deep learn-
ing models and distributed learning within a single 
ADGVAE framework to simplify the architecture 
and enhance learning efficiency. Adapting SAEDF 
for real-time detection in dynamic network environ-
ments, such as those found in IoT, cloud computing, 
and 5G networks, is a key future direction. Further 
investigation will involve validating SAEDF on larg-
er datasets and diverse network settings to assess its 
real-world robustness and scalability. 
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