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Object pose estimation is a critical task in the field of machine vision. Existing pose estimation methods often 
suffer from challenges such as large parameter sizes, complex architectures, and high computational costs, 
which limit their applica-bility in real-world scenarios. To address these issues, we propose a novel catego-
ry-level object pose estimation model, named MSPF-LMFF. This model eliminates the reliance on attention 
mechanisms or precise 3D models, significantly re-duces computational complexity, and enhances pose esti-
mation accuracy, demonstrating superior performance on both real and synthetic datasets. Specifically, the 
MSPF module enriches the features of point clouds by integrating multi-scale image texture features with 
prior point cloud features, making them closer to the target object point cloud. Subsequently, the LMFF mod-
ule combines geometric features of fused point cloud, depth image features, and geometric features of the 
target object point cloud to enhance the robustness of the model. At the same time, this module fuses adaptive 
point cloud features with the target object’s geometric features to improve the reliability of shape informa-
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1. Introduction
6D object pose estimation is a core research prob-
lem in the field of computer vision, with wide appli-
cations in radar and hyperspectral data processing 
[43], medical image analysis (such as brain tumor de-
tection) [35], and intelligent transportation systems 
(such as traffic sign recognition and autonomous 
driving) [49]. The primary goal is to predict the 6D 
rigid transformation between the object coordinate 
system and the camera coordinate system based on 
given observation data (such as RGB images, RGB-D 
images, or point cloud data). To achieve high-pre-
cision object pose estimation in complex environ-
ments or occlusion scenarios, researchers have 
proposed various instance-level object pose estima-
tion methods, which have demonstrated significant 
success in handling complex scenes and oc-clusions 
[30], [2], [13], [42], [5], [14], [32], [18], [37], [12], [38], 
[25], [26]. However, instance-level methods typi-
cally rely on precise 3D models and surface texture 
information of objects. When the target object lacks 
a corresponding 3D model or distinctive texture fea-
tures, the accuracy of pose estimation declines sig-
nificantly, limiting the broader applicability of these 
methods in real-world scenarios.
To address this issue, Wang et al. [39] proposed a 
category-level object pose estimation method. Un-
like instance-level approaches, category-level meth-
ods exhibit stronger generalization capabilities, 
enabling the prediction of the poses of previously 
unseen instances within the same category, thereby 
expanding their applicability. This method employs 
the normalized object coordinate space (NOCS) to 
provide a unified representation of different object 
instances within a category, serving as a reference 

tion, thereby enhancing the model’s generalization capability across different instances of the same category. 
Following this, a multi-layer perceptron (MLP) generates deformation and mapping matrices to reconstruct 
the target object’s normalized object coordinate space (NOCS) model. Finally, based on the NOCS model, the 
point cloud registration module computes the target object’s 6D pose and 3D dimensions. Experimental re-
sults demonstrate that MSPF-LMFF outperforms existing methods on the NOCS-REAL and NOCS-CAM-
ERA datasets while significantly reducing parameter sizes and training time. Moreover, the proposed model 
exhibits exceptional generalization capabilities on the Wild 6D dataset, further validating its effective-ness.  
The code is open-sourced at https://github.com/caopenging/MSPF-LMFF.git.
KEYWORDS: Feature Fusion, Fusion Point Cloud, Lightweight Model, Multi-Scale Feature Fusion, Light-
weight Multi-Feature Fusion.

for object pose prediction. However, category-lev-
el methods typically lack detailed 3D model infor-
mation for specific instances and primarily rely on 
extracting key geometric features from the object's 
3D point cloud. Nonetheless, NOCS struggles to ac-
curately capture the intra-category shape variations, 
leading to reduced estimation accuracy.
To address this challenge, researchers have intro-
duced several shape prior-based methods [3], [52], 
[28], [45], [27], [47]. While these approaches have 
made notable progress in enhancing accuracy, they 
often perform suboptimally when handling point 
clouds of objects with complex geometric struc-
tures, such as cameras, particularly at object edges. 
This limitation adversely affects the precision of 
pose estimation.
To further address these challenges, researchers 
have also proposed several prior-free methods [20], 
[4], [6], [48], [24], [21], [50], which directly regress 
object poses to achieve better real-time performance 
during inference. However, these methods still face 
certain limitations. Due to the absence of prior point 
clouds, the extracted features often exhibit signif-
icant discrepancies from the target object's point 
cloud features, thereby affecting the accuracy of 
pose estimation.
For instance, CD-POSE [51] estimates object pos-
es by extracting features from both prior and target 
object point clouds using a single-scale extraction 
strategy. However, this approach presents notable 
limitations in practical object pose estimation tasks. 
Even when prior point clouds undergo comprehen-
sive feature extrac-tion, substantial inconsistencies 
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may still exist between them and the target object's 
point cloud, ultimately compromising pose estima-
tion performance in real-world scenarios. This is-
sue becomes even more pronounced in complex or 
dynamically changing environments, where texture 
errors further degrade estimation accuracy.
Therefore, effectively reducing the feature discrep-
ancy between prior and target point clouds and 
enhancing model performance in real-world appli-
cations remain critical challenges that need to be 
addressed in this field.
To this end, we propose a Multi-Scale Prior Point 
Cloud Fusion Module (MSPF). This module sig-
nificantly enhances the feature representation ca-
pability of prior point clouds by integrating multi-
scale image texture features with prior point cloud 
features. By performing pixel-wise aggregation of 
texture and geometric features at multiple scales, 
MSPF generates more ac-curate prior point cloud 
feature representations, which are more consistent 
with the pose of the target object.
Compared to CD-POSE, which relies solely on a sin-
gle-scale feature extraction strategy, the proposed 
multi-scale information fusion approach demon-
strates higher robustness and accuracy in handling 
complex environments and unseen objects. This 
method provides a more effective solution for re-
al-world applications, ensuring improved pose esti-
mation performance under challenging conditions.
Recently, several methods based on attention mech-
anisms or Transformer architectures have been pro-
posed for object pose estimation. For instance, CR-
Net [40] achieves accurate category-level 6D pose 
estimation through a cascaded relational and recur-
sive reconstruction network. SGPA [3] enhances 6D 
object pose estimation performance by dynamically 
adjusting the structural similarity between shape 
priors and observed instances, ensuring better align-
ment with the target object.
AG-Pose [22] leverages four attention modules to 
adaptively detect sparse keypoints, effectively rep-
resenting the geometric structures of different in-
stances. This enhances instance feature extraction 
capability, leading to improved pose estimation ac-
curacy. CD-Pose captures global geometric features 
in point clouds using a self-attention mechanism, 
making it particularly suitable for handling objects 
with complex structures.

Furthermore, GPT-COPE utilizes self-attention 
mechanisms to learn multi-scale geometric features 
from observed point clouds. It employs a graph-guid-
ed point transformer to extract these features and 
integrates them using an iterative non-parametric 
decoder, thereby achieving more precise pose esti-
mation.
However, CD-Pose, GPT-COPE, and AG-Pose  all 
rely on Transformer architectures, resulting in large 
model parameters and slow inference speeds, which 
limit their performance in real-time applications.
To address the limitations of existing methods in cat-
egory-level object pose estimation, this paper propos-
es a novel MSPF-LMFF network, which integrates 
four key components: a Multi-Scale Prior Point 
Cloud Fusion Module, a Lightweight Multi-Fea-
ture Fusion Module, a Normalized Object Coordi-
nate Space (NOCS) Model Reconstruction Module, 
and a Point Cloud Registration Module. Existing 
approaches often struggle with accurately captur-
ing multi-scale texture and geometric information, 
leading to suboptimal pose estimation accuracy and 
robustness. The proposed MSPF-LMFF network ad-
dresses these challenges by effectively fusing image 
and point cloud features at multiple scales, thereby 
enriching the feature representation of point clouds 
and enhancing the model's robustness.
First, the Multi-Scale Prior Point Cloud Fusion Mod-
ule (MSPF) integrates prior point cloud features and 
image texture features at multiple scales, leveraging 
residual networks and PointFeatureNet to extract 
and aggregate multi-scale features. This fusion 
process ensures that the prior point cloud closely 
resembles the target object’s shape, significantly 
improving pose estimation accuracy. Second, the 
Lightweight Multi-Feature Fu-sion Module (LMFF) 
enhances the model's robustness by cross-fusing 
and concatenating shape prior features with target 
object point cloud features. This fusion em-beds the 
geometric information of the fused point cloud into 
the target object point cloud, improving ro-bustness, 
while simultaneously refining the accuracy and reli-
ability of prior point cloud features.
Subsequently, the NOCS Model Reconstruction 
Module generates deformation and mapping matri-
ces to restore object shapes and establish dense cor-
respondences with NOCS coordinates. Finally, the 
Umeyama algorithm [36] is employed to compute 
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the optimal similarity transformation between the 
observed point cloud and the reconstructed NOCS 
coordinates, thereby obtaining the 6D object pose 
and 3D object size.
By integrating and fusing image and point cloud 
features at multiple scales, the MSPF and LMFF 
modules effectively capture multi-scale texture 
and geometric information of objects, thereby en-
riching the feature representation of the point 
cloud. The LMFF module not only enhances the 
perception of object shape and texture features but 
also eliminates the need for attention mechanisms 
while generating high-quality NOCS coordinate 
representations, significantly improving object 
pose estimation accuracy.
Experimental results demonstrate that the proposed 
MSPF-LMFF network achieves significantly higher 
accuracy than existing methods on the NOCS-RE-
AL and NOCS-CAMERA datasets, with inference 
speeds reaching 20 fps and 23 fps, respectively. 
Moreover, the network exhibits exceptional perfor-
mance and strong generalization capability in cat-
egory-level object pose estimation tasks. The eval-
uation on the Wild 6D dataset further validates its 
reliability and practicality.
Our Key Contributions Are Summarized as Follows:
1	 We propose a category-level pose estimation net-

work (MSPF-LMFF) based on multi-scale prior 
point cloud fusion and lightweight multi-feature 
fusion. The network leverages residual networks 
and PointFeatureNet to enrich prior point cloud 
features and performs cross-fusion of fused point 
cloud features and target object point cloud fea-
tures, thereby enhancing the geometric robustness 
of the prior point cloud.

2	 We introduce the Multi-Scale Prior Point Cloud 
Fusion Module (MSPF), which first extracts mul-
ti-scale features from images using a residual 
network and then employs PointFeatureNet to 
extract multi-scale geometric features from the 
prior point cloud. These features are subsequent-
ly aggregated at corresponding scales through 
pixel-wise addition. By fusing texture and geo-
metric features, the prior point cloud acquires 
rich multi-scale information, making it more 
closely resemble the target object’s shape, thereby 
improving pose estimation accuracy.

3	 We design a Lightweight Multi-Feature Fusion 
Module (LMFF), which cross-fuses the current 
point cloud features with prior point cloud fea-
tures, enhancing the fused point cloud’s percep-
tion of geometric and texture information. This 
improves the robustness and generalization ca-pa-
bility of the model.

4	 Our method achieves higher accuracy than existing 
approaches on the NOCS-REAL and NOCS-CAM-
ERA datasets, while maintaining inference speeds 
of 20 fps and 23 fps, respectively. Additionally, our 
approach significantly reduces parameter com-
plexity, demonstrating higher efficiency and light-
weight advantages compared to state-of-the-art 
methods.

The structure of this paper is as follows: Section 
2 provides an overview of related research on 6D 
object pose estimation, categorizing existing ap-
proaches into instance-level methods (Section 2.1) 
and category-level methods (Section 2.2).
Section 3 presents a detailed description of the pro-
posed MSPF-LMFF model, including its technical 
details (Sections 3.1-3.5) and a description of the 
loss functions used for training (Section 3.6). Sec-
tion 4 reports the experimental results, covering the 
experimental setup (Section 4.4) and performance 
comparisons with state-of-the-art methods on the 
NOCS-CAMERA (Section 4.5), NOCS-REAL (Sec-
tion 4.6), and WILD6D (Section 4.7) datasets. The 
results demonstrate that our method outperforms 
existing approaches across multiple evaluation met-
rics. Additionally, this section includes a compara-
tive analysis across object categories (Section 4.8), 
an ablation study (Section 4.9), and an evaluation 
of runtime performance and parameter efficien-
cy (Section 4.10). Section 5 concludes the paper by 
summarizing the findings.

2. An Overview of Related Research 
on 6D Object Pose Estimation 
2.1. Instance-Level Object Pose Estimation
Instance-level object pose estimation methods are 
trained on known objects [22] and can be primarily 
categorized into three types: correspondence-based 
methods, template-based methods, and direct re-
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gression-based methods. Correspondence-based 
methods can be further divided into 2D-3D corre-
spondence and 3D-3D correspondence. The 2D-3D 
correspondence methods [30], [2] define keypoints 
between RGB images and CAD models of objects, 
train models to predict 2D keypoints, and solve the 
object pose using perspective algorithms. The 3D-3D 
correspondence methods [13], [42] directly define 
keypoints on CAD models and use observed point 
clouds to predict predefined 3D key-points, followed 
by applying least-squares algorithms to solve the 
object pose. However, most correspondence-based 
methods heavily rely on rich texture information, 
and their performance may degrade when applied 
to textureless objects. Template-based methods pri-
marily rely on point cloud registration [5], [14]. Here, 
the template is a CAD model of the object in a canon-
ical pose, and the goal of these methods is to find the 
optimal relative pose that aligns the observed point 
cloud with the template. Additionally, there are 
RGB-based template methods [32], [18], which re-
quire collecting and annotating images of the object 
from different viewpoints during the training phase 
to create templates. Subsequently, these methods 
train a template matching model to find the tem-
plate that best matches the observed image and use 
the template's pose as the actual pose of the object. 
Overall, template-based methods can be effective-
ly applied to textureless objects, but the template 
matching process is often computationally intensive 
and time-consuming. With the rapid development of 
deep learning techniques, direct regression-based 
methods [37], [12], [38], [25], [26] have gained in-
creasing attention in recent years. These methods 
use the ground truth object pose as supervi-sion sig-
nals to train models for end-to-end pose regression. 
DenseFusion [37] fuses RGB and depth fea-tures 
and proposes a pixel-wise dense fusion network for 
pose regression. FFB6D [12] further designs a bidi-
rectional feature fusion network to fully integrate 
RGB and depth features. GDR-Net [38] introduces 
a geometry-guided network for end-to-end monoc-
ular object pose regression. HFF6D [25] designs a 
hierarchical feature fusion framework suitable for 
object pose tracking in dynamic scenes. Although 
instance-level methods exhibit excellent accuracy, 
they are limited to fixed instances and are only ap-
plicable to specific objects seen during training.

2.2. Category-Level Object Pose Estimation
In recent years, category-level methods have gar-
nered significant attention in the field of object pose 
estimation, primarily due to their ability to general-
ize to unseen objects within the same category, there-
by enhancing their practical applicability. NOCS 
[39] introduced the Normalized Object Coordinate 
Space, providing a standardized representation for 
objects within the same category and utilizing the 
Umeyama algorithm to recover object poses. SPD 
[33] proposed a shape prior deformation mechanism 
to address the challenge of sig-nificant intra-class 
shape variations. Given the notable performance ad-
vantages of SPD, subsequent research has proposed 
more shape prior-based methods. For instance, CR-
Net [40] designed a recurrent framework to enhance 
pose estimation capabilities through iterative re-
sidual optimization, achieving a coarse-to-fine pose 
estimation process. SGPA [3] dynamically adjusts 
shape priors by computing structural similarity be-
tween shape priors and observed instances, there-
by adapting to different object instances. 6D-ViT 
[52] incorporated Transformer architectures, in-
troducing Pixelformer and Pointformer networks 
to extract more refined object features. STG6D [28] 
further fused feature differences between shape 
priors and observed objects, enabling more precise 
shape deformation. RBP-Pose [45] proposed a ge-
ometry-guided residual object bounding box pro-
jection network to address the issue of insufficient 
pose-sensitive feature extraction. CATRE [27] re-
fined poses by aligning observed point clouds with 
shape priors, which can be used to further optimize 
pose estimation results from the aforementioned 
methods. GeoReF [47] built upon CATRE [27] by 
introducing hybrid scope layers and learnable affine 
transformations to handle geometric variations. De-
spite the significant progress made by these shape 
prior-based methods in pose estimation, they still 
exhibit certain limitations. First, the process of con-
structing CAD model libraries is cumbersome and 
time-consuming, particularly when dealing with 
geometrically complex prior point clouds, leading to 
suboptimal results. Additionally, these methods may 
fail to produce accurate results when object surface 
textures change. Meanwhile, some prior-free meth-
ods have also gained attention. DualPoseNet [20] 
introduced a dual pose encoder, employing two par-
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allel decoding paths for pose regression to enhance 
pose consistency learning. FS-Net [4] proposed a 
shape-based 3D graph convolution network to sep-
arately regress translation, rotation, and scale infor-
mation. GPV-Pose [6] adopted a geometry-guided 
point-wise voting approach to strengthen the learn-
ing of category-level pose-sensitive features. HS-
Pose [48] proposed a hybrid scope feature extraction 
network to address the limitations of 3D graph con-
volution networks in terms of size and displacement 
invariance. IST-Net [24] explored the necessity of 
shape priors in category-level pose estimation and 
proposed a prior-free method based on latent space 
transformation. VI-Net [21] improved estimation 
accuracy by decoupling rotation into viewpoint and 
inplane rotation, addressing the instability in rota-
tion estimation. Diff9D, on the other hand, elimi-
nates the need for any 3D shape priors during train-
ing or inference by employing a denoising diffusion 
implicit model (DDIM) to enhance pose estimation 
accuracy, although its precision remains lower com-
pared to methods utilizing prior point clouds.

2.3. Transformer-Based Object Pose 
Estimation
In recent years, attention-based methods have been 
widely applied to object pose estimation. GPT-
COPE [50] leverages a graph-guided point attention 
mechanism to extract geometric features of point 
clouds from local to global levels. CD-Pose [51] em-
ploys a geometry consistency and geometry differ-
ence learning framework, combining self-attention 
mechanisms with depth images to achieve catego-
ry-level 6D pose estimation. Although depth images 
provide rich geometric information, relying solely 
on them may overlook important visual information 
in RGB images.
Lin et al. proposed AG-Pose [22], which includes 
two key designs: first, an instance-adaptive keypoint 
detection mechanism utilizes four attention mod-
ules to adaptively detect a set of sparse keypoints 
representing the geometric structures of different 
instances; second, a geometry-aware feature aggre-
gation module effectively integrates local and global 
geometric information into keypoint features. These 
two modules work collaboratively to establish robust 
keypoint-level correspondences for unseen instanc-
es, thereby enhancing the model's generalization 

capability. Despite the performance improvements 
achieved by these attention-based and Transform-
er methods, they suffer from high computational 
complexity, large parameter counts, and the need for 
further exploration of multi-modal feature fusion. 
Currently, only a few studies [44] have focused on 
the application of multimodal feature fusion in cate-
gory-level 6D pose estimation.
Our work is based on multimodal feature fusion for 
category-level object pose estimation. Specifically, 
we adopt the shape prior deformation step intro-
duced in [50], [51] to reconstruct the Normalized 
Object Coordinate Space (NOCS) representation. 
However, unlike [50], [51], we do not rely on attention 
mechanisms or Transformer architectures. Instead, 
we enhance the model's robustness and the reliabili-
ty of shape priors through lightweight multi-feature 
fusion, thereby improving the model's generaliza-
tion ability across different instances of the same 
category. Experimental results demonstrate that the 
proposed method significantly outperforms exist-
ing attention-based or Transformer-based methods, 
particularly on the NOCS-REAL dataset, where a 
notable improvement in accuracy is achieved.

2.4. Lightweight-Based Object Pose 
Estimation
Zhang et al. [46] proposed a lightweight network for 
pose estimation. This method employs a two-stage 
refinement training strategy: first, an efficient skel-
eton detection network is used to obtain an initial 
pose estimation, and then a refinement module is 
applied in the second stage to further optimize key-
point detection results. This approach significantly 
improves keypoint detection accuracy while reduc-
ing computational complexity. Yang et al. [44], on the 
other hand, enhanced the accuracy of category-level 
6D object pose estimation by eliminating RGB fea-
tures, optimizing geometric information extraction, 
and designing a lightweight feature fusion encoder. 
Additionally, this method reduces the number of 
model parameters while increasing inference speed 
to 32 fps, making it more suitable for resource-con-
strained devices and real-time applications. How-
ever, this network fails to effectively capture the 
feature differences between the prior point cloud 
and the current point cloud, resulting in lower pose 
estimation accuracy. To address this limitation, we 
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introduce a Prior Adaptation module into the light-
weight network and incorporate a point cloud fea-
ture subtraction operation to explicitly highlight the 
feature differences between the two. This enhanc-
es the model's sensitivity to point cloud variations, 
thereby improving the stability and accuracy of pose 
estimation.

2.5. Loss Function-Based Object Pose 
Estimation
In 6D pose estimation, geometric loss functions 
play a crucial role. Traditional loss functions, such 
as Cham-fer Distance (CD) and Earth Mover’s Dis-
tance (EMD), offer certain advantages in handling 
geometric errors but also exhibit limitations. To 
improve the accuracy and stability of models, many 
studies have introduced more complex loss terms to 
optimize point cloud alignment and deformation. 
Chamfer Distance (CD) is the most commonly used 
point cloud alignment loss function, which calcu-
lates the distance between each point in one point 
cloud to its nearest point in another. It is widely 
used in point cloud matching and reconstruction 
tasks. However, since CD only considers the dis-
tance between nearest points, it may fail to fully 
capture the global geometric structure and details of 
point clouds, particularly under incomplete or miss-
ing point cloud conditions. Earth Mover’s Distance 
(EMD) measures the overall structural differences 
between point clouds, providing a better represen-
tation of geometric shapes and distributions. How-
ever, its computational cost is high, making it less 
efficient for real-time applications, especially when 
dealing with large-scale point clouds. ICP Loss, a 
classic point cloud alignment algorithm, computes 
rigid transformations by minimizing the Euclid-
ean distance between point clouds. However, ICP 
is primarily suitable for rigid transformations and 
performs poorly in handling occlusions or missing 
points, with limited capability in optimizing defor-
mations. Quaternion Loss is mainly used for rotation 
optimization, effectively avoiding the singularity is-
sues associated with Euler angles. How-ever, it is not 
the optimal choice for pose estimation tasks, partic-
ularly in terms of point cloud spatial alignment and 
deformation.
Although the design of loss functions is not the in-
novation of this study, we have combined existing 

geometric loss functions to develop an efficient op-
timization strategy for addressing geometric errors, 
deformation smoothness, and global consistency 
in 6D pose estimation tasks. In our MSPF-LMFF 
(Multi-Scale Prior Point Cloud Fusion and Light-
weight Multi-Feature Fu-sion) framework, the fol-
lowing loss functions are employed: Chamfer Loss: 
Used to optimize the deformation matrix by calculat-
ing the Chamfer distance between the reconstructed 
3D point cloud model and the ground truth 3D point 
cloud model, ensuring geometric alignment between 
point clouds and further improving the accuracy of 
the deformation matrix.Laplace Loss: Ensures the 
smoothness of point cloud deformation. Drawing on 
the method from [38], we introduce Laplace Loss to 
constrain the differences between the original prior 
point cloud and the fused point cloud, preventing 
excessive deformation and ensuring physical con-
sistency. Smooth Loss (L1 Loss): Used to optimize 
the correspondence matrix by calculating the error 
between predicted coordinates and ground truth co-
ordinates, ensuring accurate estimation of pose and 
spatial transformations while reducing error accu-
mulation. Regularization Terms: Penalize excessive 
deformation caused by the deformation field D and 
enforce sparsity in the correspondence matrix. We 
introduce two regularization terms to ensure the ra-
tionality of the deformation process and avoid over-
fitting. By combining these loss terms, we effectively 
address geometric errors, deformation smoothness, 
and global consistency, enhancing the accuracy 
and stability of the model in 6D pose estimation. 
Although the design of loss functions is not our in-
novation, the careful selection and combination of 
these loss functions enable us to develop an efficient 
and stable optimization strategy tailored to the task 
requirements.
 

3. Method
3.1. Overview
To address the limitations of existing category-level 
object pose estimation methods in real-world sce-
narios, this paper proposes the MSPF-LMFF net-
work. The core feature of this network is its ability 
to significantly enhance the feature representation 
of point clouds through a multi-scale feature fu-
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sion module, enabling more precise alignment with 
the geometric information of target object point 
clouds. Additionally, a lightweight multi-feature fu-
sion module is introduced to optimize the interac-
tion process between fused and target point clouds, 
thereby improving the network’s ability to perceive 
and predict object poses with higher accuracy. The 
overall framework of MSPF-LMFF is illustrated 
in Figure 1, comprising five main compo-nents: (a) 
target segmentation module, (b) multi-scale prior 
point cloud feature fusion module, (c) light-weight 
multi-feature fusion module, (d) NOCS coordinate 
space reconstruction module, and (e) point cloud 
registration module.

The input to the MSPF-LMFF network includes an 
RGB image I  RH×W×3,a depth image D  RH×W×1, and a 
known 3D model (point cloud) P  RNr×3 of the object 
category. First, the RGB image and its correspond-
ing depth image are fed into the target segmenta-
tion module to crop the images to include only the 
target object Io  RH×W×3 and Do  RH×W×1, as shown in 
Figure 1(a). The cropped RGB image Io  RH×W×3 and 
the 3D model  Pr  RNr×3 of the known category are 
then passed into the multi-scale prior point cloud 
feature fusion module, which generates a fused 
point cloud PR  RNr×3 by integrating multi-scale tex-
ture features with prior point cloud features, as de-
picted in Figure 1(b).

Figure 1
The Architecture of MSPF-LMFF. The overall workflow of our framework is as follows. The network consists of five main 
modules: (a) Object Detection and Segmentation: First, we use Mask R-CNN to detect the object and crop the RGB image, while 
simultaneously cropping the corresponding depth map to generate the target object’s point cloud.(b) Multi-Scale Prior Point 
Cloud Fusion Module: Next, the point cloud is enriched with features through the multi-scale prior point cloud fusion module 
to enhance its adaptability to the target object.(c) Feature Extraction and Fusion: Subsequently, fea-tures from the fused point 
cloud, the target object point cloud, and the cropped RGB image are extracted. These features are input into the lightweight 
multi-feature fusion module to generate the fused features GR, Gd, and Gc.(d) NOCS Coordi-nate Space Reconstruction: 
These three features are then fed into the NOCS coordinate space reconstruction module to gen-erate the target object’s NOCS 
representation.(e) Point Cloud Registration: Finally, the Umeyama algorithm [36] is used for point cloud registration, calculating 
the target object’s 6D pose and 3D dimensions.
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Next, the fused point cloud PR  RNr×3, along with the 
RGB Io  RH×W×3 and depth images Do  RH×W×1, is in-put 
into the lightweight multi-feature fusion module to 
produce enhanced features GR  RB×C×1 Gd  RB×C×1 Gc 

 RB×C×1, as illustrated in Figure 1(c). These features 
are then provided to the NOCS coordinate space re-
construction module, which reconstructs the NOCS 
coordinate space of the target object to generate a 
normalized model of the object, as shown in Figure 
1(d). Finally, the reconstructed NOCS coordinate 
space is input into the point cloud registration mod-
ule, where the Umeyama algorithm is used to com-
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3.3. Multi-scale Point Cloud Fusion Module

The objective of this section is to enhance the fea-
ture representation of point clouds by integrating 
multi-scale prior point cloud features with image 
texture features, thereby improving the complete-
ness of geometric information. Through multi-scale 
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prehensively capture both local details and global 
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ing potential information loss caused by single-scale 
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points, aiming for the global shape to capture shared 
geometric features of objects within the same cate-

gory. This global shape serves as prior information 
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The architecture of the proposed multi-scale prior 
point cloud module is shown in Figure 1(b). The in-
put to this module consists of the cropped RGB im-
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model P  RNr×3 is fed into GSENet to extract the pri-
or point cloud Pr  RNr×3. The loss is then calculated 
using the Chamfer Distance, as described by the fol-
lowing equation:
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Here, Mc
i and Mc

g represent the 3D model (point 
cloud) of instance i in category c and the corre-
sponding 3D global shape (point cloud) extracted by 
GSENet, respectively. The first term of the Chamfer 
Distance represents the sum of the minimum dis-
tances from each point in Mc

i to Mc
g, while the second 

term represents the sum of the minimum distances 
from each point in Mc

g to Mc
i. A smaller Chamfer Dis-

tance indicates better alignment between the prior 
shape and the instance point cloud.
However, existing methods, after extracting prior 
shapes, only consider single-scale and single-fea-
ture extraction for prior point clouds, failing to fully 
utilize the fusion of multi-scale image texture fea-
tures and prior point cloud features. This limitation 
leads to significant discrepancies between the prior 
point cloud and the surface texture of the object, as 
well as between the prior point cloud and the target 
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object point cloud. To address this issue, this paper 
employs ResNet-18 [10] and PointFeatureNet to 
extract multi-scale image features and prior point 
cloud features. Specifically, for the target object im-
age, ResNet-18 is used to extract four different scales 
of image features Xi(i=1,2,3,4), as expressed by the 
following equation:
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Here, Io represents the cropped RGB image of the tar-
get object, and Xi denotes the feature map extracted 
from the i-th layer of ResNet-18. Each feature map   
Xi corresponds to a different scale of information, 
capturing more detailed texture features. This pro-
vides rich feature support for the subsequent multi-
scale feature fusion operations.
The architecture of the proposed multi-scale prior 
point cloud module is shown in Figure 2. Specifical-
ly, for the prior point cloud Pr  RB×Nr×3, the coordinate 
distance between each central point and the remain-
ing points is first calculated. This operation gener-
ates a distance matrix D  RNr×Nr, where Di,j = d(pi,pj)
represents the distance between the i-th central 
point and the j-th point. Based on the distance ma-
trix D the K-nearest points are selected for each cen-
tral point Pi using the K-nearest neighbors (KNN) 
algorithm, as de-scribed by the following equation:

of cameras while preserving key point infor-
mation, thereby 
prior features for 
etries. 

The architecture of the proposed multi-scale 
prior point cloud module is shown in Figure 

 The input to this module consists of the 

cropped RGB image 0 0 3
0

H WI R   and the 
3rNP R   of 

the object category. First, the known 3D model 
3rNP R   is 

prior point cloud 3rN
rP R  . The loss is then 

calculated using the Chamfer Distance, as de-
scribed by the following  

2

2

2

2

min

                     min

gi y Mcc

i
g c
i

i g
cd c c

x M

x My M

D M M x y

x y
. (3  

Here, i
cM   and g

cM   represent the 3D model 
(point i   in category c   and 
the corresponding 3D global shape (point 

 by GSENet, respectively. The 
 Chamfer Distance represents 

the sum of the minimum distances from each 
point in i

cM  to g
cM , while the second term rep-

resents the sum of the minimum distances 
from each point in g

cM   to i
cM  . A smaller 

Chamfer Distance indicates be er alignment 
between the prior shape and the instance point 
cloud. 

ft  
prior shapes, only consider single-scale and 
single-
clouds, 
multi-scale 
point cloud features. This limitation leads to 

 discrepancies between the prior 
point cloud and the 
ject, as well as between the prior point cloud 
and the target object point cloud. To address 
this issue, this paper employs ResNet-18 Error! 
Reference source not found. and PointFea-

 multi-scale image features 
and prior point cloud 
the target object image, ResNet-18 is used to 

 scales of image features 
1,2,3,4iX i  , as 

 

Re 18    1, 2,3, 4i oX sNet I i . (4  

Here, oI   represents the cropped RGB image 
of the target object, and iX  denotes the feature 
map i th  layer of ResNet-

18. Each feature map iX  corresponds to a dif-
ferent scale of information, capturing more de-

ture support for the -scale 
feature fusion operations. 

The architecture of the proposed multi-scale 
prior point cloud module is shown in Figure 2. 

3rB N
rP R  , the coordinate distance between 

each central point and the remaining points is 
 calculated. This operation generates a dis-

tance r rN ND R  , where , ,i j i jD d p p  
represents the distance between the i th  cen-
tral point and the j th   point. Based on the 

D   the K-nearest points are 
selected for each central point iP  using the K-

 

2

1 2

1 2

, ,

arg ,

, , ,

, , ,

B B B B B B
i j i j i j r

B B B B
k i i j

B B B B
k i j j jk

B B B B B B
i j i j i j

d p p p p p p P

N x top kd x x

N x x x x

d x x d x x d x x

. (5  

Here, ,B B
i jd p p  represents the distance be-

tween the point ip  and the point jp ,  de-

notes the Euclidean norm, 
B

ip  is the central 

point of the B th   point cloud, and B
jp   re-

fers to the coordinates of the remaining points 
in the B th  point cloud. B

k iN x  represents 
the set of K-nearest neighbors of the i-th point 
in the point cloud. 

At the same time, a directed graph ,G V E  

is constructed, where 1, rV N   represents 
the set of vertices and E V V  represents the 
set of edges. The graph G is constructed using 
the K-
This graph includes self-loops, meaning that 

e 
local neighborhood for each point through the 
KNN algorithm, the spatial relationships 

tablished. This enables the network to capture 
the geometric structure information between 
points and their neighboring points. 

concatenated with the relative coordinates of 
its k-nearest neighbors, ultimately forming 
point cloud features 

1

rB C N k
KF   enriched 

 

. (5)

Here,  represents the distance between 
the point pi and the point pj,  denotes the Euclid-
ean norm,  is the central point of the B-th point 
cloud, and  refers to the coordinates of the re-
maining points in the B-th point cloud.  
represents the set of K-nearest neighbors of the i-th 
point in the point cloud.
At the same time, a directed graph G = (V, E) is con-
structed, where V = {1,...Nr} represents the set of 
vertices and  represents the set of edges. 
The graph G is constructed using the K-Nearest 

Neighbor (KNN) algorithm. This graph includes 
self-loops, meaning that each node also points to 
itself. By defining the local neighborhood for each 
point through the KNN algorithm, the spatial rela-
tionships within the point cloud data are explicitly 
established. This enables the network to capture the 
geometric structure in-formation between points 
and their neighboring points.
Next, for each point, its 3D coordinates are concat-
enated with the relative coordinates of its k-nearest 
neigh-bors, ultimately forming point cloud features   
FK1  

~B×C×Nr×k enriched with local geometric informa-
tion. In this way, the extracted features not only cap-
ture the geometric relationships between each point 
and its neighborhood but also provide abundant lo-
cal structural information. This process enables the 
network to effectively capture the local geometric 
features and global shape information of the pri-
or point cloud, providing a stronger foundation for 
feature input into subsequent modules. The process 
can be described by the following equation:
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Here, d(pi,pj) represents the distance between point   
pi and point pjB = 16 denotes the batch size of the 
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each point.
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nonlinear activation function:
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Here, hθ:~F×~F→~Fʹ is a nonlinear function with learn-
able parameters θ, where θm and ϕm are learnable 
weight parameters.
xi – xj captures local spatial information (the rela-
tive positions of neighboring points with respect 
to the central point), while xi captures global shape 
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information (the coordinates of the central point). 
LeakyReLU  is the activation function, introduced to 
incorporate nonlinearity. This nonlinear function 
effectively combines local features and global fea-
tures by extracting the relative geometric informa-
tion xi – xj of neighboring points with respect to the 
central point and the global shape information xi.
The convolution process is illustrated in Figure 3, 
which shows the changes in the relationship be-
tween the central point and its neighboring points 
before and after the convolution operation. Before 
the convolution, as shown in Figure 4(a), the relative 
coordinate iformation of the neighborhood points 
is modeled through the adjacency relations con-
structed by the KNN graph. After the convolution, 
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its neighborhood but also provide abundant 
local structural information. This process ena-
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Finally, max pooling is applied to aggregate the 
neighborhood features . This oper-
ation extracts the most salient features within the 
neighborhood, enhancing the network’s ability to 
perceive geometric information while reducing re-
dundant information. This process generates point 
cloud features with enhanced local geometric and 
global shape characteristics, providing richer fea-
ture representations for subsequent modules. The 
process is expressed as follows:
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Here, the max pooling operation   is used to 
select the maximum value for each feature dimen-
sion within the neighborhood. Specifically, the max 
pooling operation selects the maximum value from 
the features of 20 neighbors for each feature dimen-
sion, effectively filtering out the strongest responses 
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in the local region. For each central point, the result 
of the max pooling operation can be regarded as ex-
tracting the most geometrically significant features 
from its neighborhood. After max pooling, the mod-
ule does not retain all the features of the neighbors 
but instead selects the most representative features 
within the neighborhood. These retained features 
capture the most critical geometric information of 
the point in the local space, effectively representing 
the structural relationship between the central point 
and its neighborhood. Ultimately, the combination 
of the central point’s features with the most signif-
icant features from its neighborhood constitutes a 
compact and representative feature representation. 
This approach avoids the interference of redundant 
information during subsequent processing, enabling 
the model to focus on the key geometric features of 
the point cloud. Meanwhile, max pooling preserves 
the “most significant” feature information from the 
central point and its neighborhood, optimizing the 
data structure and improving the model’s computa-
tional efficiency and robustness in feature represen-
tation. The resulting feature  is obtained, 
and similar operations are applied to extract corre-
sponding features O2, O3, O4.
Next, the image features and the prior point cloud 
features are fused at the corresponding scales by 
performing elementwise addition. This integration 
combines the coordinate information of the point 
cloud with the texture information of the image, re-
sulting in a new feature representation. This fusion 
method effectively combines the data from both mo-
dalities, enabling the model to simultaneously lever-
age the texture information from the image and the 
geometric information from the point cloud. This 
enhances the model’s ability to comprehensively 
understand the scene and objects. The element-wise 
addition is illustrated in Figure 5.  The fusion pro-
cess is expressed as follows:
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Finally, the NOCS shape of the unknown ob-
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Finally, the NOCS shape of the unknown object 
within the category is reconstructed as follows:
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Here, +  and ×  
 RP   repre-

sents the points in the fused point cloud, with 
a dimension of 3 3rN  , where rN   is the 
number of points in the point cloud. The de-

 mD   is used to deform the 
fused point cloud. The transformation rela-
tionship between the deformed shape and the 
target object’s NOCS shape 3oN

pC   is de-
 o rN N

mM . 

3.5. Point Cloud Registration Module 

This process is illustrated in Figure 1(e  After 
obtaining the current NOCS shape pC , the 6D 
pose of an unknown object within the category 
can be estimated through point cloud registra-
tion. The core objective of point cloud registra-
tion is to model the geometric relationship be-
tween the target object point cloud and pC  , 

thereby deriving 3R SO , 
translation vector 3t  , and scaling factor 
s  . We adopt the Umeyama algorithm, 

point cloud oP  and pC . The process is formu-
lated as follows: 
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Here, Nr represents the number of points in 
the point cloud, ,o iP   is the coordinate of the 
i th  point in the target object point cloud, and 

,p iC  is the coordinate of the i th  point in the 
reconstructed point cloud 3R SO   denotes 
the rotational relationship between the recon-
structed point cloud and the target object point 
cloud, 3t  represents the translation vector 
from the reconstructed point cloud to the tar-
get object point cloud, and s  is the scaling 
factor used to adjust the scale of the point 
cloud.   
distance between two points. 

First, the centroids of the target object point 
cloud and the reconstructed point cloud are 
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Here, oP   represents the centroid coordinates 

of the target object point cloud, PC   repre-
sents the centroid coordinates of the recon-
structed point cloud, ,o iP   denotes the coordi-
nates of the i th   point in the target object 
point cloud, and ,p iC  denotes the coordinates 
of the i th   point in the reconstructed point 
cloud. 

tracting their respective centroids. The process 
 

, , oo i o i PP P  (30  

, , pp i p i CC C . (31  

Here, ,o iP  represents the i th  point of the de-

 ,p iC  
represents the i th  
reconstructed point cloud. 

Aft
n 

 

, ,
1

1 rN

o i p i
ir

P C
N

. (32  

Here,   
which is used to 
tween the target object point cloud and the re-
constructed point cloud.  denotes the ma-

 

formu  

USV . (33  

Here, U  and V  represent orthogonal matri-
ces, and S 
the values on its diagonal being the singular 
values. 

R , scaling factor 
s, and translation vector t  are computed. The 

 

R VU  (34  

2

,
1

rN

o i
i

Tr S
s

P
 (35  

p oC Pt sR . (36  

(26)
R mT P D  (25  

p mC M T . (26  

Here, +  and ×  
 RP   repre-

sents the points in the fused point cloud, with 
a dimension of 3 3rN  , where rN   is the 
number of points in the point cloud. The de-

 mD   is used to deform the 
fused point cloud. The transformation rela-
tionship between the deformed shape and the 
target object’s NOCS shape 3oN

pC   is de-
 o rN N

mM . 

3.5. Point Cloud Registration Module 

This process is illustrated in Figure 1(e  After 
obtaining the current NOCS shape pC , the 6D 
pose of an unknown object within the category 
can be estimated through point cloud registra-
tion. The core objective of point cloud registra-
tion is to model the geometric relationship be-
tween the target object point cloud and pC  , 

thereby deriving 3R SO , 
translation vector 3t  , and scaling factor 
s  . We adopt the Umeyama algorithm, 

point cloud oP  and pC . The process is formu-
lated as follows: 

2

, ,
1

1 rN

MSE o i p i
ir

sRP t C
N

. (27  

Here, Nr represents the number of points in 
the point cloud, ,o iP   is the coordinate of the 
i th  point in the target object point cloud, and 

,p iC  is the coordinate of the i th  point in the 
reconstructed point cloud 3R SO   denotes 
the rotational relationship between the recon-
structed point cloud and the target object point 
cloud, 3t  represents the translation vector 
from the reconstructed point cloud to the tar-
get object point cloud, and s  is the scaling 
factor used to adjust the scale of the point 
cloud.   
distance between two points. 

First, the centroids of the target object point 
cloud and the reconstructed point cloud are 

 fol-
lows: 

,
1

1 r

o

N

P o i
ir

P
N

 (28  

,
1

1 r

p

N

C p i
ir

P
N

. (29  

Here, oP   represents the centroid coordinates 

of the target object point cloud, PC   repre-
sents the centroid coordinates of the recon-
structed point cloud, ,o iP   denotes the coordi-
nates of the i th   point in the target object 
point cloud, and ,p iC  denotes the coordinates 
of the i th   point in the reconstructed point 
cloud. 

tracting their respective centroids. The process 
 

, , oo i o i PP P  (30  

, , pp i p i CC C . (31  

Here, ,o iP  represents the i th  point of the de-

 ,p iC  
represents the i th  
reconstructed point cloud. 

Aft
n 

 

, ,
1

1 rN

o i p i
ir

P C
N

. (32  

Here,   
which is used to 
tween the target object point cloud and the re-
constructed point cloud.  denotes the ma-

 

formu  

USV . (33  

Here, U  and V  represent orthogonal matri-
ces, and S 
the values on its diagonal being the singular 
values. 

R , scaling factor 
s, and translation vector t  are computed. The 

 

R VU  (34  

2

,
1

rN

o i
i

Tr S
s

P
 (35  

p oC Pt sR . (36  

 . (27)

Here, “+” and “×” denote matrix addition and ma-
trix multiplication, respectively PR represents the 
points in the fused point cloud, with a dimension 
of Nr×3×3, where Nr is the number of points in the 
point cloud. The deformation matrix Dm is used to 
deform the fused point cloud. The transformation 
relationship between the deformed shape and the 
target object’s NOCS shape  is described by 
the mapping matrix .

3.5. Point Cloud Registration Module

This process is illustrated in Figure 1(e). After ob-
taining the current NOCS shape Cp, the 6D pose of an 
unknown object within the category can be estimat-
ed through point cloud registration. The core objec-
tive of point cloud registration is to model the geo-
metric relationship between the target object point 
cloud and Cp, thereby deriving the rotation matrix  
R  SO(3), translation vector t  

~3, and scaling factor 
s  

~. We adopt the Umeyama algorithm, which aligns 
point clouds by minimizing the mean squared error 
between the target object point cloud Po and Cp. The 
process is formulated as follows:
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Here, μPo represents the centroid coordinates of the 
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of the target object point cloud, PC   repre-
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obtaining the current NOCS shape pC , the 6D 
pose of an unknown object within the category 
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Here, P̃o,i represents the i–th point of the decentral-
ized target object point cloud, and C̃p,i represents the 
i–th point of the decentralized reconstructed point 
cloud.
After decentralizing the point clouds, the covariance 
matrix is computed. The calculation is expressed as 
follows:
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Here, oP   represents the centroid coordinates 

of the target object point cloud, PC   repre-
sents the centroid coordinates of the recon-
structed point cloud, ,o iP   denotes the coordi-
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Here,  represents the covariance matrix, which 
is used to express the correlation between the tar-
get object point cloud and the reconstructed point 
cloud. ()T denotes the matrix transpose operation.
Next, a Singular Value Decomposition (SVD) is per-
formed on the covariance matrix. The formula is ex-
pressed as follows:
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Here, oP   represents the centroid coordinates 

of the target object point cloud, PC   repre-
sents the centroid coordinates of the recon-
structed point cloud, ,o iP   denotes the coordi-
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Here, U and V represent orthogonal matrices, and S 
represents a diagonal matrix, with the values on its 
diagonal being the singular values.
Finally, the rotation matrix R, scaling factor s, and 
translation vector t are computed. The formula is 
expressed as follows:
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Using the above formulas, the optimal alignment 
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Using the above formulas, the optimal align-
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4. Experiment
In this section, we conducted extensive experiments 
on the NOCS-REAL [39] and NOCS-CAMERA [39] 
da-tasets to evaluate the performance of MSPF-
LMFF and compare it with state-of-the-art methods. 
Additionally, we assessed the generalization capabil-
ity of our MSPF-LMFF on the Wild6D [8] dataset, 
which provides more challenging real-world scenar-
ios compared to the NOCS datasets. To further vali-
date the advantages of MSPF-LMFF, we performed 
comprehensive ablation studies and provided visual-
izations of the pose estimation results, qualitatively 
demonstrating the effectiveness of our approach.

4.1. Dataset
Our experiments are rigorously conducted based 
on the following three benchmark datasets: 
NOCS-CAMERA, NOCS-REAL, and WILD6D. The 
NOCS-CAMERA dataset consists of 300,000 care-
fully designed images, generated using advanced 
rendering techniques to simulate objects in re-
al-world scenes, ensuring data richness and diversi-
ty. By leveraging virtual rendering, NOCS-CAMERA 
provides a highly controllable image environment, 
which facilitates the training and evaluation of ob-
ject pose estimation algorithms.
In contrast, the NOCS-REAL dataset contains 4,300 
images captured by real cameras, with 2,750 imag-
es collected from six different real-world scenes. 
These images reflect the authentic appearance of 
objects and include complex lighting conditions and 
background information, making this dataset an 
ideal choice for evaluating algorithm performance 
in real-world environments. The complexity of the 
NOCS-REAL dataset poses greater challenges for 
pose estimation and provides a more rigorous testing 
environment for practical application scenarios.
Both datasets cover six common categories of every-
day objects: bottles, bowls, cameras, cans, laptops, 
and mugs. These object categories provide a com-
prehensive testing benchmark for object pose esti-
mation algorithms.

The WILD6D dataset consists of images captured 
from real everyday scenes rather than being gener-
ated in controlled laboratory environments. This 
results in a greater diversity of objects and higher 
scene complexity, significantly increasing the diffi-
culty of object pose estimation. Objects in the data-
set are captured from multiple view-points, covering 
a wide range of angles and lighting conditions, fur-
ther enhancing the requirements for testing the gen-
eralization capability of the algorithms.

4.2. Preprocessing
We load images, depth maps, masks, coordinate 
maps, and annotation information from the speci-
fied data directories. The data sources include a syn-
thetic dataset (NOCS-CAMERA) and a real-world 
dataset (NOCS-REAL). After loading, the image and 
depth map data undergo preprocessing to ensure 
data quality and consistency. Simultaneously, point 
cloud data is sampled to ensure that each sample 
contains a fixed number of points.
In training mode, data augmentation is applied by 
introducing color jittering to the images and ran-
dom translation and jittering to the point cloud data. 
These augmentation operations help increase data 
diversity, thereby enhancing the model's robustness, 
particularly when dealing with varying viewing an-
gles, lighting conditions, and partial occlusions. Sub-
sequently, the system loads predefined 3D models and 
category-averaged shapes, which will be used for sub-
sequent pose estimation tasks. For symmetric objects 
(e.g., cups, bowls, etc.), we apply pose normalization 
by rotating these objects to a canonical pose, effec-
tively reducing ambiguity in pose estimation. This ap-
proach enables the model to handle pose estimation 
for symmetric objects more accurately.
Finally, the preprocessing pipeline returns pro-
cessed point cloud data, images, selected indices, 
category labels, 3D models, shape priors, transfor-
mation matrices, and normalized object coordinates 
(NOCS). These data provide a unified input format 
for the 3D object pose estimation task, facilitating 
subsequent model training and inference.
For point cloud sampling from .obj model files, all 
sampled model points undergo standardization to en-
sure they reside within a unified coordinate range and 
are centered at the origin. Additionally, models of dif-
ferent categories (e.g., cups, bottles, etc.) are realigned 
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and normalized to ensure consistency and compara-
bility across categories. The entire dataset is divided 
into training (train) and validation (val) subsets, with 
point cloud data in each subset organized and stored 
according to category labels. This data processing 
pipeline supports the use of the Farthest Point Sam-
pling (FPS) method to control the number of sampled 
points, ensuring sample representativeness and uni-
form distribution. All processed point cloud data and 
their corresponding labels are saved in HDF5 format, 
which not only facilitates large-scale data storage but 
also improves data reading efficiency.

4.3. Evaluation Metrics 
We use two criteria to evaluate the performance of 
MSPF-LMFF and compare it with state-of-the-art 
methods. First, we report the mean Average Preci-
sion (mAP) of the 3D Intersection over Union (IoU) 
at different thresholds to jointly assess the accuracy 
of rotation, translation, and size estimation. Second, 
we use the n°m cm metric to directly compare the er-
rors in rotation and translation. These two metrics 
are applied to the NOCS-REAL, NOCS-CAMERA, 
and Wild6D datasets.
IoUx: We use the 3D Intersection over Union (IoU) 
and centimeter-level accuracy (n°m cm) to quanti-
tatively evaluate the performance of MSPF-LMFF. 
Specifically, a predicted pose is considered accurate 
only when the IoU value between the predicted 3D 
bounding box and the ground truth bounding box 
exceeds a predefined threshold. We adopt IoU50 and 
IoU75 as evaluation standards, where the predicted 
pose is deemed accurate if the IoU value reaches or 
exceeds 50% and 75%, respectively.
n°m cm: This metric is used to evaluate the model’s 
performance based on rotation and translation errors 
of the pose. A prediction is considered successful if the 
difference between the predicted and ground-truth ro-
tations is less than n°, and the difference between the 
predicted and ground-truth translations is less than 
m centimeters. In this paper, we use n°m cm, 5°5cm, 
10°2cm, 10°5cm, and 10°10cm as evaluation metrics.

4.4. Implementation Details 
In our experiments, we used instance segmentation 
masks generated by Mask R-CNN [51] to extract No = 

1024 points from the depth image, forming the current 
point cloud. The unfused prior point cloud was ob-

tained by extracting Nr = 1024 points from the GSEN-
et network. In Section 3.2, the feature dimensions of 
the RGB image were X1[16,64,1024], X2[16,128,1024], 
X3[16,256,1024], X4[16,512,1024]; while the dimen-
sions of the prior point cloud were O1[16,64,1024], 
O2[16,128,1024], O3[16,256,1024], O4[16,512,1024]. 
In Section 3.3, the dimensions of Fr,  Frgb, and Fo were 
all [16,64,1024]; the dimensions of Ft and Frgb, were 
[16128,1024]; the dimensions of FtM and F(rgb,o)M were 
[16,128,1024]; and the dimensions of Ff,r, Ff,c, and Fd 
were [16,320,1024]; The dimensions of GR, Gd, and Gc 
were [16,128,1], [16,320,1], and [16,128,1], respective-
ly. In Section 3.4, the dimensions of FD and FM were 
both [16,896,1024]. The regularization coefficients 
{λ1, λ2, λ3, λ4, λ5} were set to {5.0,1.0,1.0,0.01,0.0001}.

4.5. Performance on NOCS-REAL Dataset

We used the Adam optimizer [16] to train the net-
work, with the learning rate set to 1e-3, and trained 
for up to 100 epochs. The learning rate was decayed 
by factors of 0.6, 0.3, 0.1, and 0.01 at every 20th ep-
och. All experiments were conducted on a comput-
er equipped with an NVIDIA GeForce RTX 4090 
GPU, with a batch size of 16. The NOCS-REAL 
dataset presents greater challenges compared to 
the NOCS-CAMERA dataset due to its real-world 
complexity and limited training data. This dataset 
contains only 18 object instances (3 per category) 
and uses 4,300 images for training. Since the limited 
data in NOCS-REAL is insufficient to fully support 
network training, we utilized the synthetic dataset 
NOCS-CAMERA (which includes 275K training 
images) to assist training. During training, we ran-
domly selected images from NOCS-CAMERA and 
NOCS-REAL with a 1:3 ratio for joint training. Ta-
ble 1 presents the performance of our MSPF-LMFF 
method compared to 13 state-of-the-art methods 
on the NOCS-REAL dataset [5]. The experimental 
results show that our method surpasses existing 
methods on multiple metrics. For instance, on the 
IoU75, 5°2cm, 5°5cm, 10°2cm, and 10°5cm evalua-
tion metrics, our method achieved average accura-
cies of 69.1%, 52%, 60.5%, 70.2%, and 81.5%, respec-
tively. These results exceed those of CD-POSE [37] 
by 0.5%, 12.2%, 15.6%, 8.4%, and 9.9%, respectively. 
On the IoU50 metric, our MSPF-LMFF achieved an 
average accuracy of 88.9%, outperforming CD-POSE 
by 7.9%. Figure 6 shows some qualitative results on 
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the NOCS-REAL dataset. Both the quantitative and 
qualitative analyses demonstrate that our method 
exhibits high accuracy and robustness in real world 

scenarios. Figure 7 illustrates the 6D object poses 
estimated by MSPF-LMFF under complex occlu-
sion conditions.

Method Data Prior
NOCS-REAL

3D50 3D75 5°2cm 5°5cm 10°2cm 10°5cm 10°10cm

NOCS [CVPR'19] RGB-D × 78.0 30.1 7.2 10.0 13.8 25.2 -

SPD [ECCV'20] RGB-D √ 77.3 53.2 19.3 21.4 43.2 54.1 -

DPN [ICCV'21] RGB-D × 79.8 62.2 29.3 35.9 50.0 66.8 -

 SS–Conv [NeurlIPS'21] RGB-D × 79.8 65.6 36.6 43.4 52.6 63.5 -

 CR–Net [IROS'21] RGB-D √ 79.3 55.9 27.8 34.3 47.2 60.8 -

SGPA[ICCV'21] RGB-D √ 80.1 61.9 35.9 39.6 61.3 70.7 -

CenterSnap [ICRA'22] RGB-D × 80.2 - - 29.1 - 64.3 -

 SD–Pose [WACV'23] RGB-D × 83.2 67.0 34.2 39.4 53.0 64.6 -

Diff9D ['24] RGB-D × 76.48 38.16 25.52 30.46 32.48 40.94 -

SAR–Net [CVPR'22]  D × 79.3 62.4 31.6 42.3 50.3 68.3 -

GPV–Pose [CVPR'22] D × 83.0 64.4 32.0 42.9 - 73.3 -

GPT–Cope ['24]  D × 82.0 70.4 45.9 53.8 63.1 77.7 79.8

CD–Pose ['24] D √ 81.0 68.6 39.8 44.9 61.8 71.6 -

Our RGB-D √ 88.9 69.1 52.0 60.5 70.2 81.5 82.2

Table 1
The quantitative results of our method and the state-of-the-art (SOTA) methods on the NOCS-REAL dataset are 
presented, evaluated using IoU and n°m cm metrics.
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Figure 6 presents a comparison of the 6D object poses estimated by MSPF-LMFF and the GPT-COPE 
method, along with the NOCS coordinate space generated by our approach. All images are sourced 
from the NOCS-REAL dataset. The predicted poses are indicated by red lines, while the ground truth 
poses are represented by green lines. 
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Figure 6 presents a comparison of the 6D object poses estimated by MSPF-LMFF and the GPT-COPE method, along with the 
NOCS coordinate space generated by our approach. All images are sourced from the NOCS-REAL dataset. The predict-ed poses 
are indicated by red lines, while the ground truth poses are represented by green lines.
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4.6. Performance on NOCS-CAMERA Da-taset 
Table 2 presents the performance of our MSPF-
LMFF method compared to 9 state-of-the-art meth-
ods on the NOCS-CAMERA dataset [5] NOCS-CAM-
ERA is a synthetic dataset with a large number of 
training images (~275K), resulting in higher testing 
accuracy compared to NOCS-REAL. Following the 
approach in [28], we conducted both training and 
testing on the NOCS-CAMERA dataset. Our MSPF-
LMFF achieved accuracy rates of 92.4%, 84.9%, 
70.8%, 73.8%, 83.2%, 88.8%, and 89.9% on the evalu-

Figure 7 

Figure 7 shows the 6D object poses estimated by MSPF-
images are from the NOCS-REAL dataset. The predicted poses are indicated by red lines, while the 
ground truth poses are represented by green lines. 
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Figure 7 shows the 6D object poses estimated by MSPF-LMFF under complex occlusion conditions. All images are from the 
NOCS-REAL dataset. The predicted poses are indicated by red lines, while the ground truth poses are represented by green lines.

ation metrics IoU50, IoU75, 5°2cm, 5°5cm, 10°2cm, 
10°5cm, and 10°10cm, respectively. However, it is 
important to emphasize that MSPF-LMFF does not 
rely on attention mechanisms; instead, it utilizes a 
lightweight multi-feature fusion approach. In con-
trast, CD-POSE and GPT-COPE both incorporate 
attention mechanisms, which significantly increase 
computational overhead and inference time.
Overall, the comparative results on the NOCS-RE-
AL and NOCS-CAMERA datasets demonstrate the 
superiority of our approach. Figure 8 shows some 

Method Training 
Data prior

NOCS-CAMERA

 3D50  3D75  5°2cm  5°5cm  10°2cm  10°5cm 10°10cm 

NOCS [CVPR'19] RGB-D × 83.9 69.5 32.3 40.9 48.2 64.6 -

 SPD [ECCV'20] RGB-D √ 93.2 83.1 54.3 59.0 73.3 81.5 -

 SGPA[ICCV'21]  RGB-D √ 93.2 88.1 70.7 74.5 82.7 88.4 -

 CterSnap [ICRA'22]  RGB-D × 92.5 - - 66.2 - 81.3 -

 SD–Pose [WACV'23]  RGB-D × 93.5 88.4 64.9 69.1 80.5 86.6 -

 Diff9D ['25]  RGB-D × 79.8 55.8 50.5 57.1 72.1 81.5 -

 SAR–Net [CVPR'22] D × 86.8 79.0 66.7 70.9 75.3 80.3 -

GPT–COPE ['24]   D × 92.5 86.9 70.4 76.5 81.3 88.7 89.9

 GPV–Pose ['22]  D × 92.9 86.6 67.4 76.2 - 87.4 -

 CD–Pose ['24]  D √ 82.2 87.7 68.6 73.0 81.6 87.3 -

 Our  RGB-D √ 92.4 84.9 70.8 73.8 83.2 88.8 89.9

Table 2
The quantitative results of our method and the state-of-the-art (SOTA) methods on the NOCS-CAMERA dataset are 
presented, evaluated using IoU and n°m cm metrics.
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qualitative results on the NOCS-CAMERA dataset. 
The experimental results indicate that our method 
not only achieves high accuracy on the synthetic 
dataset but also improves inference speed, without 
relying on complex attention mechanisms.

4.7. Performance on wild6d Dataset
To further validate the generalization capability of 
the MSPF-LMFF model, we directly evaluated the 
model, originally trained on the NOCS-REAL data-
set, on the test set of the Wild6D dataset without any 
additional finetuning. We compared its performance 
with five state-of-the-art methods (SPD [33], CR-Net 
[40], SGPA [3], GPV-Pose [6], and GPT-COPE [50]). 
The test results are presented in Table 3. Specifical-
ly, MSPF-LMFF achieved an mAP of 68.5% under 
IoU50, outperforming SGPA by 4.9% and GPT-

 
SGPA I  R   

      

- 

 
CterSn  R   

 

  

 

 

 

- 

 
SD P  R   

      

- 

 
9Diff D  R   

      

- 

 
SAR N  D   

      

- 

 

GPT  D   

      

8
9
.
9 

 

GPV  D   

    

 

 

- 

 

CD Po  D   

      

- 

 

Our  R   

      

8
9
.
9 

Figure 7  

The 6D object poses estimated by MSPF-LMFF. All images are sourced from the NOCS-CAMERA da-
taset. The predicted poses are represented by red lines, while the ground truth poses are represented 
by green lines. 
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Figure 8 
The 6D object poses estimated by MSPF-LMFF. All images are sourced from the NOCS-CAMERA dataset. The predicted 
poses are represented by red lines, while the ground truth poses are represented by green lines.

COPE by 2.4%. Additionally, MSPF-LMFF achieved 
mAPs of 19.3%, 24.2%, and 37.8% under the metrics 
of 5°2cm, 5°5cm, and 10°5cm, respectively, surpass-
ing SGPA but falling slightly behind GPT-COPE. 
To provide a more intuitive demonstration of our 
model's performance. As demonstrated in Figure 9, 
MSPF-LMFF achieves faster inference speeds than 
attention-based methods, making it more applicable 
for real-world deployment. To provide a more intui-
tive demonstration of the model’s performance, we 
present visual comparisons with SGPA in Figure 9, 
where MSPF-LMFF generates high-quality 6D ob-
ject pose estimations even in challenging real-world 
conditions. The visualization results highlight 
MSPF-LMFF’s superior ability to handle occlusions, 
clutter, and shape variations compared to SGPA. Ad-
ditional Comparisons with SGPA in Figure 9: Our vi-

-of-the-art methods (SPD [33], 
CR-Net [40], SGPA [3], GPV-Pose [6], and 
GPT-COPE [50

-LMFF 

performing SGPA -COPE 
-LMFF 

under the metrics of 5°2cm, 5°5cm, and 
10°5cm, respectively, surpassing SGPA but 
falling slightly behind GPT-COPE. To pro-
vide a more intuitive demonstration of our 
model's performance. As demonstrated in 
Figure 9, MSPF-LMFF achieves faster infer-

-based methods, 
making it more applicable for real-world de-
ployment. To provide a more intuitive 
demonstration of the model’s performance, 
we present visual comparisons with SGPA 
in Figure 9, where MSPF-LMFF generates 
high-
even in challenging real-world conditions. 

SPF-
LMFF’s superior ability to handle occlu-

pared to SGPA. Additional Comparisons 

sults show that MSPF-LMFF provides more 
stable pose predictions, even for objects with 
compl  Unlike SGPA, which 
struggles with partially occluded objects, 
MSPF-LMFF leverages prior information 

timation errors. The superior alignment of 
predicted poses with ground truth further 

t our method achieves more ac-
curate and consistent predictions across var-
ious object categories. These enhancements 
and analyses have been incorporated into 
the revised manuscript, and we sincerely ap-
preciate your insightful suggestions, which 
have helped 

Figure 9  

SGPA  and the proposed MSPF-LMFF, respectively. Green and red represent the ground truth and 
predicted results, respectively. It can be observed that MSPF-LMFF outperforms SGPA. 

.  

 
  

-of-the-art methods (SPD [33], 
CR-Net [40], SGPA [3], GPV-Pose [6], and 
GPT-COPE [50

-LMFF 

performing SGPA -COPE 
-LMFF 

under the metrics of 5°2cm, 5°5cm, and 
10°5cm, respectively, surpassing SGPA but 
falling slightly behind GPT-COPE. To pro-
vide a more intuitive demonstration of our 
model's performance. As demonstrated in 
Figure 9, MSPF-LMFF achieves faster infer-

-based methods, 
making it more applicable for real-world de-
ployment. To provide a more intuitive 
demonstration of the model’s performance, 
we present visual comparisons with SGPA 
in Figure 9, where MSPF-LMFF generates 
high-
even in challenging real-world conditions. 

SPF-
LMFF’s superior ability to handle occlu-

pared to SGPA. Additional Comparisons 

sults show that MSPF-LMFF provides more 
stable pose predictions, even for objects with 
compl  Unlike SGPA, which 
struggles with partially occluded objects, 
MSPF-LMFF leverages prior information 

timation errors. The superior alignment of 
predicted poses with ground truth further 

t our method achieves more ac-
curate and consistent predictions across var-
ious object categories. These enhancements 
and analyses have been incorporated into 
the revised manuscript, and we sincerely ap-
preciate your insightful suggestions, which 
have helped 

Figure 9  

SGPA  and the proposed MSPF-LMFF, respectively. Green and red represent the ground truth and 
predicted results, respectively. It can be observed that MSPF-LMFF outperforms SGPA. 

.  

 
  

(a) (b)

Figure 9 
The visualization results on the Wild6D dataset are shown in (a) and (b), which display the results of SGPA  and the pro-
posed MSPF-LMFF, respectively. Green and red represent the ground truth and predicted results, respectively. It can be 
observed that MSPF-LMFF outperforms SGPA.
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sualization results show that MSPF-LMFF provides 
more stable pose predictions, even for objects with 
complex structures. Unlike SGPA, which struggles 

Method prior
Wild6D

 3D50  5°2cm  5°5cm  10°5cm 

 SPD [ECCV'20] √ 32.5 2.6 3.5 13.9

 CR–Net [IRSº21] √ 49.5 16.1 19.2 36.4

 SGPA[ICCV'21] √ 63.6 26.2 29.2 39.5

 GPV–Pose [CVPR'22] × 67.8 14.1 21.5 41.1

GPT–COPE ['24] √ 66.1 29.8 35.6 42.3

Our √ 68.5 19.3 24.2 37.8

Table 3
Comparison of our MSPF-LMFF with state-of-the-art methods on the WILD 6D dataset.

with partially occluded objects, MSPF-LMFF lever-
ages prior information more effectively, resulting in 
fewer pose estimation errors. The superior align-
ment of predicted poses with ground truth further 
confirms that our method achieves more accurate 
and consistent predictions across various object 
categories. These enhancements and analyses have 
been incorporated into the revised manuscript, and 
we sincerely appreciate your insightful suggestions, 
which have helped us further refine the discussion 
on generalization capability. 

4.8. Comparison of Objects with Different 
Structures 
To further analyze the performance of the MSPF-
LMFF model when handling objects with different 
structures, Figure 8 presents a detailed per-cate-
gory comparison of MSPF-LMFF with the corre-
spondence-based methods SGPA and GPT-COPE 
in terms of 3D IoU, rotation accuracy, and transla-
tion accuracy. The results show that MSPF-LMFF 
outperforms SGPA and GPT-COPE in terms of av-
erage accuracy for certain metrics and categories, 
particularly in 3D IoU estimation. Notably, our 
method demonstrates excellent performance when 
processing bottle and can instances (represented in 
blue and pink in the Figure 8, respectively). These 
instances correspond to relatively simple object 
categories, where existing methods typically per-
form well. While MSPF-LMFF achieves comparable 
performance to SGPA and GPT-COPE when han-
dling complex geometric objects such as cameras, it 
significantly outperforms both methods on simpler 

Table 3 

Comparison of our MSPF-LMFF with state-of-the-art methods on the WILD 6D dataset. 
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Figure 10
A quantitative comparison of our model with SGPA [3] and 
GPT-COPE on the NOCS-REAL dataset [39] is presented. 
The mAP (%) is shown for different thresholds of 3D IoU, 
rotation, and translation errors.
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object categories. This result strongly demonstrates 
the advantages of our model across different ob-
ject structures, especially its superior performance 
when processing simple object categories.

4.9. Ablation Study
To evaluate the effectiveness of the individual com-
ponents proposed in MSPF-LMFF, we conducted 
detailed ablation experiments on the NOCS-REAL 
and NOCS-CAMERA datasets [39]. Starting from 
a baseline model, we incrementally added the pro-
posed components, including the MSPF block for 
enriching point cloud feature information and the 
LMFF block for feature fusion. The baseline mod-
el does not include any multi-scale feature fusion 
module or lightweight multi-feature fusion module. 
The experimental results are shown in Tables 4 and 
5. Compared to the baseline model, the mean aver-
age precision (mAP) significantly improved after 
incorporating the multi-scale feature fusion mod-
ule, indicating that this module effectively extracts 
multi-scale point cloud features and helps the model 
better capture texture information. Subsequently, 
the mAP further increased after adding the light-
weight multi-feature fusion module, although the 
improvement was relatively modest due to the dif-
ferences between the fused point cloud and the tar-
get point cloud. Finally, when both modules were ap-
plied together, the model achieved the highest mAP, 
demonstrating the best evaluation performance.
a	 Baseline
Our baseline model is a modified version of T-S 
[28], where the hidden dimensions in the feature 
extraction layers are adjusted to accommodate the 
modified feature dimensions. The training strategy 
of the baseline model is consistent with that of our 
MSPF-LMFF. The results in Table 4 show that the 

baseline model performs poorly in the 6D pose es-
timation task, serving as a comparative benchmark 
for the evaluation of subsequent components.
b	 Effect of MSPF 
To evaluate the impact of the MSPF module on mod-
el performance, we incorporated PointFeatureNet 
and ResNet-18 into the baseline model and adjust-
ed the feature dimensions in the MLP layers. The 
results in Tables 4-5 demonstrate that adding the 
MSPF module significantly improves model per-
formance. On the NOCS-CAMERA dataset: IoU50 
increased by 32.7%, IoU75 increased by 47%, 5°2cm 
increased by 59.6%, 5°5cm increased by 61%, 10°2cm 
increased by 69.5%, 10°5cm increased by 68.4%, and 
10°10cm in-creased by 68.4%. On the NOCS-REAL 
dataset: IoU50 increased by 2.7%, IoU75 increased by 
1.7%, 5°2cm in-creased by 1.2%, 5°5cm increased by 
0.7%, 10°2cm in-creased by 1.1%, 10°5cm increased 
by 2%, and 10°10cm increased by 0.7%. These results 
strongly demonstrate the effectiveness of the MSPF 
module in enhancing the model’s ability to capture 
texture features.
c	 Effect of LMFF
To assess the efficacy of the LMFF module, we 
incorporated it into the baseline model and fine-
tuned the dimensions of the MLP hidden layers to 
align with the feature fusion requirements. The 
integration of the LMFF module led to a notable 
enhancement in the model's performance, with 
particularly substantial improvements observed 
on the NOCS-CAMERA dataset. Specifically, the 
module yielded increases of 32.3% in IoU50, 42.0% 
in IoU75, 57.1% in 5°2cm, 57.4% in 5°5cm, 67.1% in 
10°2cm, 63.7% in 10°5cm, and 67.7% in 10°10cm. On 
the NOCS-REAL dataset, the improvements were 
0.4% in IoU50, 0.6% in IoU75, 0.9% in 5°2cm, 0.5% 
in 5°5cm, 1.2% in 10°2cm, 1.1% in 10°5cm, and 0.4% 

Method MSPF LMFF
NOCS-REAL

 3D50  3D75  5°2cm  5°5cm  10°2cm  10°5cm  10°10cm

1 — — 74.7 58.9 45.9 49.1 66.3 73.1 76.5

2 —  √ 75.1 59.5 46.8 49.6 67.5 74.2 76.9

3  √ — 76.0 60.6 47.1 49.8 67.4 75.1 77.2

4  √  √ 88.9 69.1 52.0 60.5 70.2 81.5 82.2

Table 4
Ablation Study of Different Modules on NOCS-REAL Evaluated Using IoU and n°m cm Metrics.
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in 10°10cm. These findings underscore the LMFF 
module's significant contribution to the enhance-
ment of point cloud feature fusion. The data pre-
sented in Tables 4-5 further corroborate that the 
inclusion of the LMFF module markedly boosts the 
model's performance.
d	 Effect of PFN (PointFeatureNet)
To evaluate the effectiveness of the PointFeatureN-
et module, we decomposed the four-layer Point-
FeatureNet and ResNet-18 modules into 1, 2, 3, and 

Table 5
Ablation Study of Different Modules on NOCS-REAL Evaluated Using IoU and n°m cm Metrics.

Method MSPF LMFF
NOCS-CAMERA

 3D50  3D75  5°2cm  5°5cm  10°2cm  10°5cm  10°10cm

1 — — 59.6 37.5 5.1 7.3 12.6 19.4 20.2

2 —  √ 91.9 79.5 62.2 64.7 79.7 83.1 87.9

3  √ — 92.3 84.5 64.7 68.3 82.1 87.8 88.6

4  √  √ 92.4 84.9 70.8 73.8 83.2 88.8 89.9

5 layers, respectively, and compared their perfor-
mance. The results in Tables 6-7 show that in the 
NOCS-REAL dataset, the performance of the 1-lay-
er, 2-layer, 3-layer, and 5-layer configurations was 
inferior to that of the 4-layer configuration. There-
fore, we selected the 4-layer configuration as the fi-
nal validation layer. In the NOCS-CAMERA dataset, 
the experimental results for the 1-layer and 2-layer 
configurations were lower than those of the 4-lay-
er configuration. For the 3-layer configuration, the 

Method PFN  RESNet
NOCS-REAL

 3D50  3D75  5°2cm  5°5cm  10°2cm  10°5cm  10°10cm

1 PFN1+ResNet1 75.1 59.6 46.8 51.3 67.9 75.2 77.5

2 PFN2+ResNet2 76.9 63.1 49.2 56.5 68.2 76.8 78.1

3 PFN3+ResNet3 80.6 65.5 50.6 58.9 69.5 78.1 81.5

4 PFN4+ResNet4 88.9 69.1 52.0 60.5 70.2 81.5 82.2

5 PFN5+ResNet5 79.1 62.8 43.2 49.9 63.1 75.7 80.1

Table 6
Ablation Study of Different Layers in the PointFeatureNet Module on NOCS-REAL, Represented by IoU and n°m cm.

Table 7
Ablation Study of Different Layers in the PointFeatureNet Module on NOCS-CAMERA, Represented by IoU and n°m cm.

Method PFN   RESNet
NOCS-CAMERA

 3D50  3D75  5°2cm  5°5cm  10°2cm  10°5cm  10°10cm

1 PFN1+ResNet1 62.3 39.7 8.6 10.1 15.3 24.2 26.9

2 PFN2+ResNet2 75.4 46.6 35.5 46.6 54.1 59.3 62.7

3 PFN3+ResNet3 89.2 87.5 62.1 67.4 75.9 85.2 87.6

4 PFN4+ResNet4 92.4 84.9 70.8 73.8 83.2 88.8 89.9

5 PFN5+ResNet5 92.5 85.6 69.2 76.8 81.3 84.6 86.1
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3D75 metric was 2.9% higher than that of the 4-lay-
er configuration, while the remaining metrics were 
lower. In the 5-layer configuration, the 3D75 met-
ric was 0.7% higher, and the 5°5cm metric was 3.0% 
higher than those of the 4-layer configuration. Con-
sequently, we ultimately selected the 4-layer config-
uration as the final validation layer.
e	 Effect of Training Strategy
To validate the effectiveness of different training 
strategies, we conducted experiments without us-

Method Prior point
NOCS-REAL

 3D50  3D75  5°2cm  5°5cm  10°2cm  10°5cm  10°10cm

1 — 82.5 61.3 49.7 52.4 67.3 75.7 81.6

2 √ 88.9 69.1 52.0 60.5 70.2 81.5 82.2

Table 8
Ablation Study of Prior Point Clouds on the NOCS-REAL Dataset, Represented by IoU and n°m cm.

Table 9
Ablation Study of Prior Point Clouds on the NOCS-CAMERA Dataset, Represented by IoU and n°m cm.

Method Prior point
NOCS-CAMERA

 3D50  3D75  5°2cm  5°5cm  10°2cm  10°5cm  10°10cm

1 — 92.5 86.5 65.6 79.2 81.7 88.5 85.4

2  √ 92.4 84.9 70.8 73.8 83.2 88.8 89.9

ing prior point clouds, training the model solely on 
depth maps and images on the NOCS-REAL dataset. 
The results in Tables 8 and 9 demonstrate that the 
use of prior point clouds significantly improves the 
accuracy of pose estimation. On the NOCS-REAL 
dataset, using prior point clouds increased IoU50 
by 6.4%, IoU75 by 7.8%, 5°2cm by 2.3%, 5°5cm by 
8.1%, 10°2cm by 2.9%, 10°5cm by 5.8%, and 10°10cm 
by 0.6%. On the NOCS-CAMERA dataset, improve-
ments were observed in 5°2cm by 5.2%, 10°2cm by 
1.5%, 10°5cm by 0.3%, and 10°10cm by 3.8%.

f	 Effect of Parameters
To investigate the impact of learning rate, maximum 
training epochs (Max Epoch), and batch size on 
model performance, we set different learning rates 
(0.001, 0.0001, and 0.00001). In the experiments, we 
fixed the maximum training epochs and batch size 
and observed the model's performance under differ-
ent learning rates. According to the experimental re-
sults in Table 10, a learning rate of 0.0001 yielded the 
best performance in terms of convergence speed and 
final accuracy, achieving a better balance between 
training stability and performance improvement 
compared to other learning rate settings.
To evaluate the effect of maximum training epochs, 
we set different numbers of epochs (4, 8, 12, and 16). 
In the experiments, we fixed the learning rate and 
batch size and observed the performance under dif-

ferent maximum training epochs. As shown in Table 
11, the model achieved the best performance with 
a maximum of 16 epochs, exhibiting faster conver-
gence and reaching the highest accuracy.
To assess the influence of batch size, we tested dif-
ferent batch sizes (8, 16, 32, and 64). In the exper-
iments, we fixed the learning rate and maximum 
training epochs and compared the model's perfor-
mance under different batch sizes. According to 
the results in Table 12, a batch size of 16 provided 
the best performance, enabling faster convergence 
during training and achieving an optimal balance in 
final accuracy.
In summary, the model achieved the best perfor-
mance across all metrics with a learning rate of 
0.0001, a maximum of 16 training epochs, and a 
batch size of 16.
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4.10. Runtime Analysis and Parameters
On a system equipped with an NVIDIA GeForce 
RTX 4090 GPU, our MSPF-LMFF model achieved 
an average processing speed of 20 frames per sec-
ond (FPS) on the NOCS-REAL [39] dataset and 
23 FPS on the NOCS-CAMERA [39] dataset. To 
ensure the fairness and comprehensiveness of the 
evaluation, we compared the runtime of MSPF-
LMFF with three correspondence-based methods 
(CR-Net [40], SGPA [3], and CD-POSE [51]) on the 
same machine. We observed that models using at-
tention mechanisms or transformer architectures 
required 11 hours for a full training cycle, while 

the MSPF-LMFF model completed training in just 
2 hours, significantly reducing training time. As 
shown in Table 6, our method demonstrated supe-
rior inference speed compared to these methods. 
Notably, CD-POSE exhibited significantly slower 
runtime on the NOCS-REAL dataset  due to its use 
of attention mechanisms. Additional-ly, CD-POSE 
experiments were conducted on a less powerful 
NVIDIA GeForce RTX 2080Ti GPU. Diff9D [23] 
also showed slower runtime on both the NOCS-RE-
AL and NOCS-CAMERA datasets, primarily due to 
its reliance on attention mechanisms, which in-
creased computational complexity and impacted 

Learning Rate
NOCS-REAL

 3D50  3D75  5°2cm  5°5cm  10°2cm  10°5cm  10°10cm

0.001 65.2 64.4 44.3 46.9 65.4 73.5 71.8

0.0001 88.9 69.1 52.0 60.5 70.2 81.5 82.2

0.00001 74.9 59.6 48.9 51.4 69.5 76.8 79.2

Table 10
Ablation Study of Different Learning Rates on the NOCS-REAL Dataset.

Table 11
Ablation Study of Different Max Epochs on the NOCS-REAL Dataset.

Max Epoch
NOCS-REAL

 3D50  3D75  5°2cm  5°5cm  10°2cm  10°5cm  10°10cm

4 60.7 53.1 43.1 45.5 64.3 72.8 75.4

8 73.7 60.7 50.2 53.2 70.3 77.8 79.2

12 74.9 59.6 48.9 51.4 70.2 76.8 79.6

16 88.9 69.1 52.0 60.5 70.2 81.5 82.2

Table 12
Ablation Study of Different Batch Sizes on the NOCS-REAL Dataset.

Batch size
NOCS-REAL

 3D50  3D75  5°2cm  5°5cm  10°2cm  10°5cm  10°10cm

8 66.8 54.6 42.6 46.2 66.6 75.5 78.2

16 88.9 69.1 52.0 60.5 70.2 81.5 82.2

32 84.5 62.3 52.9 61.2 69.1 78.2 81.4

64 79.6 68.5 49.8 55.1 69.5 79.2 80.5
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inference speed. Our MSPF-LMFF, running on the 
more powerful NVIDIA GeForce RTX 4090 GPU 
and without using attention mechanisms, demon-
strated a clear advantage in speed.
Furthermore, our MSPF-LMFF model also ex-
hibited advantages in terms of parameter count. 
Specifically, MSPF-LMFF has 81.5M parameters, 
which is fewer than SGPA (89.0M) and CD-POSE 

Method Training Data
SPEED(FPS)

Parameters
NOCS-REAL NOCS-CAMERA

 CR–Net ['21] RGB-D 14.0 15.0 81.7M

SGPA[ICCV'21] RGB-D 14.0 17.0 89.0M

CD–Pose ['24] D 7.0 - 87.3M

Diff9D ['25] RGB-D 17.2 17.2 -

Our RGB-D 20.0 23.0 81.5M

Table 13 
Comparison of Inference Time and Parameter Counts for Different Correspondence-Based Methods on the NOCS-
REAL and NOCS-CAMERA Datasets [14].

(87.3M), and comparable to CR-Net (81.7M), while 
delivering superior performance. This indicates 
that our model not only excels in speed but also 
achieves better efficiency and resource utilization. 
In summary, MSPF-LMFF optimizes the model ar-
chitecture to balance speed and parameter count, 
outperforming existing methods across various ex-
perimental settings.

4.11. Lightweight Network Comparison
To comprehensively compare the effectiveness of 
lightweight networks in category-level 6D pose es-ti-
mation, we conducted a detailed comparative anal-ysis 
of the latest lightweight networks, as shown in Tables 
14 and 15. Among them, the LFF [44] model uses only 
depth maps as input, which gives it an advantage in in-
ference speed and parameter count, resulting in low-
er computational costs and shorter inference times. 
However, despite its computational efficiency, LFF ex-
hibits significantly lower accuracy on the NOCS-RE-
AL dataset compared to our method. In contrast, our 
method combines RGB images and depth maps as in-
puts to fully leverage image texture features and geo-

metric depth information, thereby enhancing the mod-
el's expressive power and pose estimation accuracy. 
Although this fusion strategy increases inference time 
and parameter count, it achieves a significant improve-
ment in accuracy, making our method superior to LFF 
in terms of overall performance.

Table 14  
Comparison of Inference Time for Different Lightweight 
Methods on the NOCS-REAL Dataset.

Method Input SPEED(FPS) Parameters

LFF ['23] D 32.0 35.2

 Our RGB-D 20.0 81.5M

Method Training 
Data prior

NOCS-REAL

 3D50  3D75  5°2cm  5°5cm  10°2cm  10°5cm  10°10cm

 LFF ['23]  D √ 82.5 70.9 36.6 44.5 61.9 76.9 -

 Our  RGB-D √ 88.9 69.1 52.0 60.5 70.2 81.5 82.2

Table 15  
Quantitative Results of Our Method and State-of-the-Art Lightweight Methods on NOCS-REAL, Represented by IoU 
and n°m cm.
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5. Conclusion
In this study, we propose the MSPF-LMFF model, 
which effectively addresses issues such as high com-
putational complexity and large model size in ex-
isting 6D object pose estimation methods. Through 
multi-scale prior point cloud fusion and lightweight 
multi-feature fusion strategies, MSPF-LMFF not 
only achieves high accuracy and robustness but also 
significantly reduces training time and inference la-
tency. Experimental results demonstrate that the pro-
posed method outperforms state-of-the-art methods 
on multiple datasets. Although significant progress 
has been made, there are still many potential research 
directions worthy of further exploration.
First, multimodal learning, as a cutting-edge tech-
nology in the field of computer vision, has shown 
great potential in various application areas. In the 
future, we plan to further integrate data from differ-
ent modalities, such as visual, depth, and LiDAR, le-
veraging these multidimensional information sourc-
es to enhance the performance of the MSPF-LMFF 
model. For instance, in fields such as electricity 
price prediction [11] and trajectory prediction [29], 
multimodal fusion has proven to effectively improve 
prediction accuracy and model generalization capa-
bilities. Additionally, the application of multimodal 
technologies in power markets and intelligent trans-
portation systems [15] provides important insights 
for further optimizing the MSPF-LMFF model.
Furthermore, future research will explore integrating 
the MSPF-LMFF model with multimodal learning 
frameworks, particularly in handling complex envi-
ronments and dynamic changes (e.g., joint learning of 
visual and depth information). By fusing point cloud 
and image data and leveraging multimodal informa-
tion, the model's robustness and adaptability in un-
certain scenarios can be further enhanced, providing 
more effective solutions for practical applications 
such as autonomous driving [17] and robotic grasping 
[34]. Additionally, we consider incorporating self-su-
pervised learning methods into the MSPF-LMFF 
model to utilize unlabeled data for further improving 
the model's generalization capabilities. Combining 
advanced technologies such as graph neural net-
works (GNNs) can also enable efficient processing of 
large-scale point cloud data in large-scale scenarios, 
demonstrating significant application potential.

Appendix A.
Nomenclature:

I Cropped red, green, blue (RGB)image.

Fo Features extracted from the scene point cloud.

Frgb Features extracted from the RGB image

Pr Prior point cloud

PR Fusion point cloud

xi Image features at the ith scale

Oi Prior Point cloud features at the ith scale

Fr Features extracted from the prior point cloud

Ft Features generated by Prior adaptation

Frgb,o Features generated by Frgb and Fo

FtM Ft  Features  generated by MLP

F(rgb,o)M F(rgb,o)  Features generated by MLP

Ff,r
Features generated by Fr, FtM and F(rgb,o)M concat-
enation

Ff,c
Features generated by Fo, FtM and F(rgb,o)M con-
catenation

Fd Features generated by Ff,r and Ff,c subtraction

GR Ff,r Features  generated by pool

Gd Fd Features  generated by pool

Gc Ff,c Features  generated by pool

FD
Features generated by GR , Gd , Gc and Ff,r and 
concatenation

FM
Features generated by GR , Gd , Gc and Ff,c and 
concatenation

 F
Features formed by concatenating a prior point 
cloud features and image features and then 
stitching them together

No Number of Scene Point Clouds

Nr
Number of a prior point clouds before deforma-
tion

NR Number of deformed a fusion point clouds
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