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Object pose estimation is a critical task in the field of machine vision. Existing pose estimation methods often
suffer from challenges such as large parameter sizes, complex architectures, and high computational costs,
which limit their applica-bility in real-world scenarios. To address these issues, we propose a novel catego-
ry-level object pose estimation model, named MSPF-LMFF. This model eliminates the reliance on attention
mechanisms or precise 3D models, significantly re-duces computational complexity, and enhances pose esti-
mation accuracy, demonstrating superior performance on both real and synthetic datasets. Specifically, the
MSPF module enriches the features of point clouds by integrating multi-scale image texture features with
prior point cloud features, making them closer to the target object point cloud. Subsequently, the LMFF mod-
ule combines geometric features of fused point cloud, depth image features, and geometric features of the
target object point cloud to enhance the robustness of the model. At the same time, this module fuses adaptive
point cloud features with the target object’s geometric features to improve the reliability of shape informa-
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tion, thereby enhancing the model’s generalization capability across different instances of the same category.
Following this, a multi-layer perceptron (MLP) generates deformation and mapping matrices to reconstruct
the target object’s normalized object coordinate space (INOCS) model. Finally, based on the NOCS model, the
point cloud registration module computes the target object’s 6D pose and 3D dimensions. Experimental re-
sults demonstrate that MSPF-LMFF outperforms existing methods on the NOCS-REAL and NOCS-CAM-
ERA datasets while significantly reducing parameter sizes and training time. Moreover, the proposed model
exhibits exceptional generalization capabilities on the Wild 6D dataset, further validating its effective-ness.
The code is open-sourced at https://github.com/caopenging/MSPF-LMFF.git.

KEYWORDS: Feature Fusion, Fusion Point Cloud, Lightweight Model, Multi-Scale Feature Fusion, Light-

weight Multi-Feature Fusion.

1. Introduction

6D object pose estimation is a core research prob-
lem in the field of computer vision, with wide appli-
cations in radar and hyperspectral data processing
[43], medical image analysis (such as brain tumor de-
tection) [35], and intelligent transportation systems
(such as traffic sign recognition and autonomous
driving) [49]. The primary goal is to predict the 6D
rigid transformation between the object coordinate
system and the camera coordinate system based on
given observation data (such as RGB images, RGB-D
images, or point cloud data). To achieve high-pre-
cision object pose estimation in complex environ-
ments or occlusion scenarios, researchers have
proposed various instance-level object pose estima-
tion methods, which have demonstrated significant
success in handling complex scenes and oc-clusions
[30], [2], [13], [42], [5], [14], [32], [18], [37], [12], [38],
[25], [26]. However, instance-level methods typi-
cally rely on precise 3D models and surface texture
information of objects. When the target object lacks
a corresponding 3D model or distinctive texture fea-
tures, the accuracy of pose estimation declines sig-
nificantly, limiting the broader applicability of these
methods in real-world scenarios.

To address this issue, Wang et al. [39] proposed a
category-level object pose estimation method. Un-
like instance-level approaches, category-level meth-
ods exhibit stronger generalization capabilities,
enabling the prediction of the poses of previously
unseen instances within the same category, thereby
expanding their applicability. This method employs
the normalized object coordinate space (NOCS) to
provide a unified representation of different object
instances within a category, serving as a reference

for object pose prediction. However, category-lev-
el methods typically lack detailed 3D model infor-
mation for specific instances and primarily rely on
extracting key geometric features from the object’s
3D point cloud. Nonetheless, NOCS struggles to ac-
curately capture the intra-category shape variations,
leading to reduced estimation accuracy.

To address this challenge, researchers have intro-
duced several shape prior-based methods [3], [52],
[28], [45], [27], [47]. While these approaches have
made notable progress in enhancing accuracy, they
often perform suboptimally when handling point
clouds of objects with complex geometric struc-
tures, such as cameras, particularly at object edges.
This limitation adversely affects the precision of
pose estimation.

To further address these challenges, researchers
have also proposed several prior-free methods [20],
[4], [6], [48], [24], [21], [50], which directly regress
object poses to achieve better real-time performance
during inference. However, these methods still face
certain limitations. Due to the absence of prior point
clouds, the extracted features often exhibit signif-
icant discrepancies from the target object’s point
cloud features, thereby affecting the accuracy of
pose estimation.

For instance, CD-POSE [51] estimates object pos-
es by extracting features from both prior and target
object point clouds using a single-scale extraction
strategy. However, this approach presents notable
limitations in practical object pose estimation tasks.
Even when prior point clouds undergo comprehen-
sive feature extrac-tion, substantial inconsistencies
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may still exist between them and the target object’s
point cloud, ultimately compromising pose estima-
tion performance in real-world scenarios. This is-
sue becomes even more pronounced in complex or
dynamically changing environments, where texture
errors further degrade estimation accuracy.

Therefore, effectively reducing the feature discrep-
ancy between prior and target point clouds and
enhancing model performance in real-world appli-
cations remain critical challenges that need to be
addressed in this field.

To this end, we propose a Multi-Scale Prior Point
Cloud Fusion Module (MSPF). This module sig-
nificantly enhances the feature representation ca-
pability of prior point clouds by integrating multi-
scale image texture features with prior point cloud
features. By performing pixel-wise aggregation of
texture and geometric features at multiple scales,
MSPF generates more ac-curate prior point cloud
feature representations, which are more consistent
with the pose of the target object.

Compared to CD-POSE, which relies solely on a sin-
gle-scale feature extraction strategy, the proposed
multi-scale information fusion approach demon-
strates higher robustness and accuracy in handling
complex environments and unseen objects. This
method provides a more effective solution for re-
al-world applications, ensuring improved pose esti-
mation performance under challenging conditions.

Recently, several methods based on attention mech-
anisms or Transformer architectures have been pro-
posed for object pose estimation. For instance, CR-
Net [40] achieves accurate category-level 6D pose
estimation through a cascaded relational and recur-
sive reconstruction network. SGPA [3] enhances 6D
object pose estimation performance by dynamically
adjusting the structural similarity between shape
priors and observed instances, ensuring better align-
ment with the target object.

AG-Pose [22] leverages four attention modules to
adaptively detect sparse keypoints, effectively rep-
resenting the geometric structures of different in-
stances. This enhances instance feature extraction
capability, leading to improved pose estimation ac-
curacy. CD-Pose captures global geometric features
in point clouds using a self-attention mechanism,
making it particularly suitable for handling objects
with complex structures.
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Furthermore, GPT-COPE utilizes self-attention
mechanisms to learn multi-scale geometric features
from observed point clouds. It employs a graph-guid-
ed point transformer to extract these features and
integrates them using an iterative non-parametric
decoder, thereby achieving more precise pose esti-
mation.

However, CD-Pose, GPT-COPE, and AG-Pose all
rely on Transformer architectures, resulting in large
model parameters and slow inference speeds, which
limit their performance in real-time applications.

To address the limitations of existing methods in cat-
egory-level object pose estimation, this paper propos-
es a novel MSPF-LMFF network, which integrates
four key components: a Multi-Scale Prior Point
Cloud Fusion Module, a Lightweight Multi-Fea-
ture Fusion Module, a Normalized Object Coordi-
nate Space (NOCS) Model Reconstruction Module,
and a Point Cloud Registration Module. Existing
approaches often struggle with accurately captur-
ing multi-scale texture and geometric information,
leading to suboptimal pose estimation accuracy and
robustness. The proposed MSPF-LMFF network ad-
dresses these challenges by effectively fusing image
and point cloud features at multiple scales, thereby
enriching the feature representation of point clouds
and enhancing the model’s robustness.

First,the Multi-Scale Prior Point Cloud Fusion Mod-
ule (MSPF) integrates prior point cloud features and
image texture features at multiple scales, leveraging
residual networks and PointFeatureNet to extract
and aggregate multi-scale features. This fusion
process ensures that the prior point cloud closely
resembles the target object’s shape, significantly
improving pose estimation accuracy. Second, the
Lightweight Multi-Feature Fu-sion Module (LMFF)
enhances the model’s robustness by cross-fusing
and concatenating shape prior features with target
object point cloud features. This fusion em-beds the
geometric information of the fused point cloud into
the target object point cloud, improving ro-bustness,
while simultaneously refining the accuracy and reli-
ability of prior point cloud features.

Subsequently, the NOCS Model Reconstruction
Module generates deformation and mapping matri-
ces to restore object shapes and establish dense cor-
respondences with NOCS coordinates. Finally, the
Umeyama algorithm [36] is employed to compute
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the optimal similarity transformation between the
observed point cloud and the reconstructed NOCS
coordinates, thereby obtaining the 6D object pose
and 3D object size.

By integrating and fusing image and point cloud
features at multiple scales, the MSPF and LMFF
modules effectively capture multi-scale texture
and geometric information of objects, thereby en-
riching the feature representation of the point
cloud. The LMFF module not only enhances the
perception of object shape and texture features but
also eliminates the need for attention mechanisms
while generating high-quality NOCS coordinate
representations, significantly improving object
pose estimation accuracy.

Experimental results demonstrate that the proposed
MSPF-LMFF network achieves significantly higher
accuracy than existing methods on the NOCS-RE-
AL and NOCS-CAMERA datasets, with inference
speeds reaching 20 fps and 23 fps, respectively.
Moreover, the network exhibits exceptional perfor-
mance and strong generalization capability in cat-
egory-level object pose estimation tasks. The eval-
uation on the Wild 6D dataset further validates its
reliability and practicality.

Our Key Contributions Are Summarized as Follows:

1 We propose a category-level pose estimation net-
work (MSPF-LMFF) based on multi-scale prior
point cloud fusion and lightweight multi-feature
fusion. The network leverages residual networks
and PointFeatureNet to enrich prior point cloud
features and performs cross-fusion of fused point
cloud features and target object point cloud fea-
tures, thereby enhancing the geometric robustness
of the prior point cloud.

2 We introduce the Multi-Scale Prior Point Cloud
Fusion Module (MSPF), which first extracts mul-
ti-scale features from images using a residual
network and then employs PointFeatureNet to
extract multi-scale geometric features from the
prior point cloud. These features are subsequent-
ly aggregated at corresponding scales through
pixel-wise addition. By fusing texture and geo-
metric features, the prior point cloud acquires
rich multi-scale information, making it more
closely resemble the target object’s shape, thereby
improving pose estimation accuracy.
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3 We design a Lightweight Multi-Feature Fusion
Module (LMFF), which cross-fuses the current
point cloud features with prior point cloud fea-
tures, enhancing the fused point cloud’s percep-
tion of geometric and texture information. This
improves the robustness and generalization ca-pa-
bility of the model.

4 Ourmethod achieves higher accuracy than existing
approaches on the NOCS-REAL and NOCS-CAM-
ERA datasets, while maintaining inference speeds
of 20 fps and 23 fps, respectively. Additionally, our
approach significantly reduces parameter com-
plexity, demonstrating higher efficiency and light-
weight advantages compared to state-of-the-art
methods.

The structure of this paper is as follows: Section
2 provides an overview of related research on 6D
object pose estimation, categorizing existing ap-
proaches into instance-level methods (Section 2.1)
and category-level methods (Section 2.2).

Section 3 presents a detailed description of the pro-
posed MSPF-LMFF model, including its technical
details (Sections 3.1-3.5) and a description of the
loss functions used for training (Section 3.6). Sec-
tion 4 reports the experimental results, covering the
experimental setup (Section 4.4) and performance
comparisons with state-of-the-art methods on the
NOCS-CAMERA (Section 4.5), NOCS-REAL (Sec-
tion 4.6), and WILD6D (Section 4.7) datasets. The
results demonstrate that our method outperforms
existing approaches across multiple evaluation met-
rics. Additionally, this section includes a compara-
tive analysis across object categories (Section 4.8),
an ablation study (Section 4.9), and an evaluation
of runtime performance and parameter efficien-
cy (Section 4.10). Section 5 concludes the paper by
summarizing the findings.

2. An Overview of Related Research
on 6D Object Pose Estimation

2.1. Instance-Level Object Pose Estimation

Instance-level object pose estimation methods are
trained on known objects [22] and can be primarily
categorized into three types: correspondence-based
methods, template-based methods, and direct re-
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gression-based methods. Correspondence-based
methods can be further divided into 2D-3D corre-
spondence and 3D-3D correspondence. The 2D-3D
correspondence methods [30], [2] define keypoints
between RGB images and CAD models of objects,
train models to predict 2D keypoints, and solve the
object pose using perspective algorithms. The 3D-3D
correspondence methods [13], [42] directly define
keypoints on CAD models and use observed point
clouds to predict predefined 3D key-points, followed
by applying least-squares algorithms to solve the
object pose. However, most correspondence-based
methods heavily rely on rich texture information,
and their performance may degrade when applied
to textureless objects. Template-based methods pri-
marily rely on point cloud registration [5], [14]. Here,
the template is a CAD model of the object in a canon-
ical pose, and the goal of these methods is to find the
optimal relative pose that aligns the observed point
cloud with the template. Additionally, there are
RGB-based template methods [32], [18], which re-
quire collecting and annotating images of the object
from different viewpoints during the training phase
to create templates. Subsequently, these methods
train a template matching model to find the tem-
plate that best matches the observed image and use
the template’s pose as the actual pose of the object.
Overall, template-based methods can be effective-
ly applied to textureless objects, but the template
matching process is often computationally intensive
and time-consuming. With the rapid development of
deep learning techniques, direct regression-based
methods [37], [12], [38], [25], [26] have gained in-
creasing attention in recent years. These methods
use the ground truth object pose as supervi-sion sig-
nals to train models for end-to-end pose regression.
DenseFusion [37] fuses RGB and depth fea-tures
and proposes a pixel-wise dense fusion network for
pose regression. FFB6D [12] further designs a bidi-
rectional feature fusion network to fully integrate
RGB and depth features. GDR-Net [38] introduces
a geometry-guided network for end-to-end monoc-
ular object pose regression. HFF6D [25] designs a
hierarchical feature fusion framework suitable for
object pose tracking in dynamic scenes. Although
instance-level methods exhibit excellent accuracy,
they are limited to fixed instances and are only ap-
plicable to specific objects seen during training.
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2.2. Category-Level Object Pose Estimation

In recent years, category-level methods have gar-
nered significant attention in the field of object pose
estimation, primarily due to their ability to general-
izetounseenobjects within the same category, there-
by enhancing their practical applicability. NOCS
[39] introduced the Normalized Object Coordinate
Space, providing a standardized representation for
objects within the same category and utilizing the
Umeyama algorithm to recover object poses. SPD
[33] proposed a shape prior deformation mechanism
to address the challenge of sig-nificant intra-class
shape variations. Given the notable performance ad-
vantages of SPD, subsequent research has proposed
more shape prior-based methods. For instance, CR-
Net [40] designed a recurrent framework to enhance
pose estimation capabilities through iterative re-
sidual optimization, achieving a coarse-to-fine pose
estimation process. SGPA [3] dynamically adjusts
shape priors by computing structural similarity be-
tween shape priors and observed instances, there-
by adapting to different object instances. 6D-ViT
[52] incorporated Transformer architectures, in-
troducing Pixelformer and Pointformer networks
to extract more refined object features. STG6D [28]
further fused feature differences between shape
priors and observed objects, enabling more precise
shape deformation. RBP-Pose [45] proposed a ge-
ometry-guided residual object bounding box pro-
jection network to address the issue of insufficient
pose-sensitive feature extraction. CATRE [27] re-
fined poses by aligning observed point clouds with
shape priors, which can be used to further optimize
pose estimation results from the aforementioned
methods. GeoReF [47] built upon CATRE [27] by
introducing hybrid scope layers and learnable affine
transformations to handle geometric variations. De-
spite the significant progress made by these shape
prior-based methods in pose estimation, they still
exhibit certain limitations. First, the process of con-
structing CAD model libraries is cumbersome and
time-consuming, particularly when dealing with
geometrically complex prior point clouds, leading to
suboptimal results. Additionally, these methods may
fail to produce accurate results when object surface
textures change. Meanwhile, some prior-free meth-
ods have also gained attention. DualPoseNet [20]
introduced a dual pose encoder, employing two par-
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allel decoding paths for pose regression to enhance
pose consistency learning. FS-Net [4] proposed a
shape-based 3D graph convolution network to sep-
arately regress translation, rotation, and scale infor-
mation. GPV-Pose [6] adopted a geometry-guided
point-wise voting approach to strengthen the learn-
ing of category-level pose-sensitive features. HS-
Pose [48] proposed a hybrid scope feature extraction
network to address the limitations of 3D graph con-
volution networks in terms of size and displacement
invariance. IST-Net [24] explored the necessity of
shape priors in category-level pose estimation and
proposed a prior-free method based on latent space
transformation. VI-Net [21] improved estimation
accuracy by decoupling rotation into viewpoint and
inplane rotation, addressing the instability in rota-
tion estimation. Diff9D, on the other hand, elimi-
nates the need for any 3D shape priors during train-
ing or inference by employing a denoising diffusion
implicit model (DDIM) to enhance pose estimation
accuracy, although its precision remains lower com-
pared to methods utilizing prior point clouds.

2.3. Transformer-Based Object Pose
Estimation

In recent years, attention-based methods have been
widely applied to object pose estimation. GPT-
COPE [50] leverages a graph-guided point attention
mechanism to extract geometric features of point
clouds from local to global levels. CD-Pose [51] em-
ploys a geometry consistency and geometry differ-
ence learning framework, combining self-attention
mechanisms with depth images to achieve catego-
ry-level 6D pose estimation. Although depth images
provide rich geometric information, relying solely
on them may overlook important visual information
in RGB images.

Lin et al. proposed AG-Pose [22], which includes
two key designs: first, an instance-adaptive keypoint
detection mechanism utilizes four attention mod-
ules to adaptively detect a set of sparse keypoints
representing the geometric structures of different
instances; second, a geometry-aware feature aggre-
gation module effectively integrates local and global
geometric information into keypoint features. These
two modules work collaboratively to establish robust
keypoint-level correspondences for unseen instanc-
es, thereby enhancing the model’s generalization
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capability. Despite the performance improvements
achieved by these attention-based and Transform-
er methods, they suffer from high computational
complexity, large parameter counts, and the need for
further exploration of multi-modal feature fusion.
Currently, only a few studies [44] have focused on
the application of multimodal feature fusion in cate-
gory-level 6D pose estimation.

Our work is based on multimodal feature fusion for
category-level object pose estimation. Specifically,
we adopt the shape prior deformation step intro-
duced in [50], [51] to reconstruct the Normalized
Object Coordinate Space (NOCS) representation.
However, unlike [50], [51], we do not rely on attention
mechanisms or Transformer architectures. Instead,
we enhance the model’s robustness and the reliabili-
ty of shape priors through lightweight multi-feature
fusion, thereby improving the model’s generaliza-
tion ability across different instances of the same
category. Experimental results demonstrate that the
proposed method significantly outperforms exist-
ing attention-based or Transformer-based methods,
particularly on the NOCS-REAL dataset, where a
notable improvement in accuracy is achieved.

2.4. Lightweight-Based Object Pose
Estimation

Zhang et al. [46] proposed a lightweight network for
pose estimation. This method employs a two-stage
refinement training strategy: first, an efficient skel-
eton detection network is used to obtain an initial
pose estimation, and then a refinement module is
applied in the second stage to further optimize key-
point detection results. This approach significantly
improves keypoint detection accuracy while reduc-
ing computational complexity. Yang et al. [44], on the
other hand, enhanced the accuracy of category-level
6D object pose estimation by eliminating RGB fea-
tures, optimizing geometric information extraction,
and designing a lightweight feature fusion encoder.
Additionally, this method reduces the number of
model parameters while increasing inference speed
to 32 fps, making it more suitable for resource-con-
strained devices and real-time applications. How-
ever, this network fails to effectively capture the
feature differences between the prior point cloud
and the current point cloud, resulting in lower pose
estimation accuracy. To address this limitation, we
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introduce a Prior Adaptation module into the light-
weight network and incorporate a point cloud fea-
ture subtraction operation to explicitly highlight the
feature differences between the two. This enhanc-
es the model’s sensitivity to point cloud variations,
thereby improving the stability and accuracy of pose
estimation.

2.5. Loss Function-Based Object Pose
Estimation

In 6D pose estimation, geometric loss functions
play a crucial role. Traditional loss functions, such
as Cham-fer Distance (CD) and Earth Mover’s Dis-
tance (EMD), offer certain advantages in handling
geometric errors but also exhibit limitations. To
improve the accuracy and stability of models, many
studies have introduced more complex loss terms to
optimize point cloud alignment and deformation.
Chamfer Distance (CD) is the most commonly used
point cloud alignment loss function, which calcu-
lates the distance between each point in one point
cloud to its nearest point in another. It is widely
used in point cloud matching and reconstruction
tasks. However, since CD only considers the dis-
tance between nearest points, it may fail to fully
capture the global geometric structure and details of
point clouds, particularly under incomplete or miss-
ing point cloud conditions. Earth Mover’s Distance
(EMD) measures the overall structural differences
between point clouds, providing a better represen-
tation of geometric shapes and distributions. How-
ever, its computational cost is high, making it less
efficient for real-time applications, especially when
dealing with large-scale point clouds. ICP Loss, a
classic point cloud alignment algorithm, computes
rigid transformations by minimizing the Euclid-
ean distance between point clouds. However, ICP
is primarily suitable for rigid transformations and
performs poorly in handling occlusions or missing
points, with limited capability in optimizing defor-
mations. Quaternion Loss is mainly used for rotation
optimization, effectively avoiding the singularity is-
sues associated with Euler angles. How-ever, itis not
the optimal choice for pose estimation tasks, partic-
ularly in terms of point cloud spatial alignment and
deformation.

Although the design of loss functions is not the in-
novation of this study, we have combined existing
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geometric loss functions to develop an efficient op-
timization strategy for addressing geometric errors,
deformation smoothness, and global consistency
in 6D pose estimation tasks. In our MSPF-LMFF
(Multi-Scale Prior Point Cloud Fusion and Light-
weight Multi-Feature Fu-sion) framework, the fol-
lowing loss functions are employed: Chamfer Loss:
Used to optimize the deformation matrix by calculat-
ing the Chamfer distance between the reconstructed
3D point cloud model and the ground truth 3D point
cloud model, ensuring geometric alignment between
point clouds and further improving the accuracy of
the deformation matrix.Laplace Loss: Ensures the
smoothness of point cloud deformation. Drawing on
the method from [38], we introduce Laplace Loss to
constrain the differences between the original prior
point cloud and the fused point cloud, preventing
excessive deformation and ensuring physical con-
sistency. Smooth Loss (L1 Loss): Used to optimize
the correspondence matrix by calculating the error
between predicted coordinates and ground truth co-
ordinates, ensuring accurate estimation of pose and
spatial transformations while reducing error accu-
mulation. Regularization Terms: Penalize excessive
deformation caused by the deformation field D and
enforce sparsity in the correspondence matrix. We
introduce two regularization terms to ensure the ra-
tionality of the deformation process and avoid over-
fitting. By combining these loss terms, we effectively
address geometric errors, deformation smoothness,
and global consistency, enhancing the accuracy
and stability of the model in 6D pose estimation.
Although the design of loss functions is not our in-
novation, the careful selection and combination of
these loss functions enable us to develop an efficient
and stable optimization strategy tailored to the task
requirements.

3. Method

3.1. Overview

To address the limitations of existing category-level
object pose estimation methods in real-world sce-
narios, this paper proposes the MSPF-LMFF net-
work. The core feature of this network is its ability
to significantly enhance the feature representation
of point clouds through a multi-scale feature fu-
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sion module, enabling more precise alignment with
the geometric information of target object point
clouds. Additionally, a lightweight multi-feature fu-
sion module is introduced to optimize the interac-
tion process between fused and target point clouds,
thereby improving the network’s ability to perceive
and predict object poses with higher accuracy. The
overall framework of MSPF-LMFF is illustrated
in Figure 1, comprising five main compo-nents: (a)
target segmentation module, (b) multi-scale prior
point cloud feature fusion module, (c) light-weight
multi-feature fusion module, (d) NOCS coordinate
space reconstruction module, and (e) point cloud
registration module.

Figure 1
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The input to the MSPF-LMFF network includes an
RGB image /€ R"*"*3 a depth image D € R and a
known 3D model (point cloud) P€ R""? of the object
category. First, the RGB image and its correspond-
ing depth image are fed into the target segmenta-
tion module to crop the images to include only the
target object I, € R and D, € R as shown in
Figure 1(a). The cropped RGB image I, € R?" and
the 3D model P, € RY* of the known category are
then passed into the multi-scale prior point cloud
feature fusion module, which generates a fused
point cloud P,€ R"*3 by integrating multi-scale tex-
ture features with prior point cloud features, as de-
picted in Figure 1(b).

The Architecture of MSPF-LMFF. The overall workflow of our framework is as follows. The network consists of five main
modules: (a) Object Detection and Segmentation: First, we use Mask R-CNN to detect the object and crop the RGB image, while
simultaneously cropping the corresponding depth map to generate the target object’s point cloud.(b) Multi-Scale Prior Point
Cloud Fusion Module: Next, the point cloud is enriched with features through the multi-scale prior point cloud fusion module
to enhance its adaptability to the target object.(c) Feature Extraction and Fusion: Subsequently, fea-tures from the fused point
cloud, the target object point cloud, and the cropped RGB image are extracted. These features are input into the lightweight
multi-feature fusion module to generate the fused features GR, Gd, and Ge.(d) NOCS Coordi-nate Space Reconstruction:

These three features are then fed into the NOCS coordinate space reconstruction module to gen-erate the target object’'s NOCS

representation.(e) Point Cloud Registration: Finally, the Umeyama algorithm [36] is used for point cloud registration, calculating

the target object’s 6D pose and 3D dimensions.

(b)Multi-scale prior point
cloud feature fusion module
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Next, the fused point cloud P, € RV, along with the
RGB,€R""3 and depth images D, € R, is in-put
into the lightweight multi-feature fusion module to
produce enhanced features G, € R¥*“*! G, € R¥*“*! G,
€ RB*C1 ag illustrated in Figure 1(c). These features
are then provided to the NOCS coordinate space re-
construction module, which reconstructs the NOCS
coordinate space of the target object to generate a
normalized model of the object, as shown in Figure
1(d). Finally, the reconstructed NOCS coordinate
space is input into the point cloud registration mod-
ule, where the Umeyama algorithm is used to com-
pute the 6D pose of the target object, as detailed in
Figure 1(e).

3.2. RGB-D image Segmentation Module

The objective of this section is to segment regions
con-taining only the target object from the RGB
image and its corresponding depth image, as illus-
trated in Figure 1(a). Specifically, the RGB image
TE€ RS and depth image D € R*"*! are input into a
Mask R-CNN [9] network, which crops the image
and depth map to re-tain only the regions contain-
ing the target object I, € R%"v3 and D, € R# !, Let
H and W de-note the width and height of the input
image, and H,, W, denote the width and height of the
cropped image /. The process can be represented by
the following equations:

1, = Mask— RCNN (1) ®
D, = Mask—RCNN (D) ©)

3.3. Multi-scale Point Cloud Fusion Module

The objective of this section is to enhance the fea-
ture representation of point clouds by integrating
multi-scale prior point cloud features with image
texture features, thereby improving the complete-
ness of geometric information. Through multi-scale
feature fusion, prior point clouds are able to com-
prehensively capture both local details and global
structural characteristics of the target object, avoid-
ing potential information loss caused by single-scale
fusion. Specifically, we construct a global shape rep-
resentation from a point cloud consisting of 1024
points, aiming for the global shape to capture shared
geometric features of objects within the same cate-
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gory. This global shape serves as prior information
for category-level 6D object pose es-timation. Pre-
vious studies utilized PointNet-based en-coders,
which effectively extract prior features for ob-jects
with simple geometric structures (e.g., bottes).
However, these encoders demonstrate insufficient
pre-cision in extracting prior features for objects
with complex geometric structures (e.g., cameras).
To ad-dress this limitation, we employ the GSENet
[28] net-work, which enhances the model’s feature
extraction capability. GSENet effectively captures
3D points along the edges of cameras while preserv-
ing key point information, thereby improving the
extraction of prior features for objects with complex
geometries.

The architecture of the proposed multi-scale prior
point cloud module is shown in Figure 1(b). The in-
put to this module consists of the cropped RGB im-
age [,€ R "3 and the known 3D model (point cloud)
P € R¥3 of the object category. First, the known 3D
model P€ RY3 is fed into GSENet to extract the pri-
or point cloud P, € RV”3, The loss is then calculated
using the Chamfer Distance, as described by the fol-
lowing equation:

Dy (MME)= Y minfx—y;

xeM] yeM§

+ 2 minflx—y],

i
yeM? xeM,

(6)

Here, M and Mg represent the 3D model (point
cloud) of instance i in category ¢ and the corre-
sponding 3D global shape (point cloud) extracted by
GSENet, respectively. The first term of the Chamfer
Distance represents the sum of the minimum dis-
tances from each point in M/ to M #, while the second
term represents the sum of the minimum distances
from each point in M £ to M/. A smaller Chamfer Dis-
tance indicates better alignment between the prior
shape and the instance point cloud.

However, existing methods, after extracting prior
shapes, only consider single-scale and single-fea-
ture extraction for prior point clouds, failing to fully
utilize the fusion of multi-scale image texture fea-
tures and prior point cloud features. This limitation
leads to significant discrepancies between the prior
point cloud and the surface texture of the object, as
well as between the prior point cloud and the target
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object point cloud. To address this issue, this paper
employs ResNet-18 [10] and PointFeatureNet to
extract multi-scale image features and prior point
cloud features. Specifically, for the target object im-
age, ResNet-18 is used to extract four different scales
of image features X(i=1,2,3,4), as expressed by the
following equation:

X,.:ResNet—18(10) i=1,2,3,4. @

Here, I, represents the cropped RGB image of the tar-
get object, and X, denotes the feature map extracted
from the i-th layer of ResNet-18. Each feature map
X, corresponds to a different scale of information,
capturing more detailed texture features. This pro-
vides rich feature support for the subsequent multi-
scale feature fusion operations.

The architecture of the proposed multi-scale prior
point cloud module is shown in Figure 2. Specifical-
ly, for the prior point cloud P,€ R®*N”3, the coordinate
distance between each central point and the remain-
ing points is first calculated. This operation gener-
ates a distance matrix D € RV, where D,; = d(p,p,)
represents the distance between the i-th central
point and the j-th point. Based on the distance ma-
trix D the K-nearest points are selected for each cen-
tral point P, using the K-nearest neighbors (KNN)
algorithm, as de-scribed by the following equation:

a(p”p")= " = o, 7. P e P

N (3) = argtop —ka (")

N, (xfB)) = {xsf),x;(g),...,xﬁf)}

d(x.(B),xff) ) < d(x,.(B),xg) ) <. < d(xfB),xﬁB))

i

Here, d ( p,.(B), pﬁB) Z‘represents the distance between

the point p, and the point p, | denotes the Euclid-
ean norm, pl.(B) is the central point of the B-th point
cloud, and pﬁ.B) refers to the coordinates of the re-
maining points in the B-th point cloud. N, (x[(B))
represents the set of K-nearest neighbors of the i-th
point in the point cloud.

At the same time, a directed graph G=(V, E) is con-
structed, where V' = {1,..N.} represents the set of
vertices and E cV xV represents the set of edges.
The graph G is constructed using the K-Nearest
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Neighbor (KNN) algorithm. This graph includes
self-loops, meaning that each node also points to
itself. By defining the local neighborhood for each
point through the KNN algorithm, the spatial rela-
tionships within the point cloud data are explicitly
established. This enables the network to capture the
geometric structure in-formation between points
and their neighboring points.

Next, for each point, its 3D coordinates are concat-
enated with the relative coordinates of its k-nearest
neigh-bors, ultimately forming point cloud features
Fy, €3Nk enriched with local geometric informa-
tion. In this way, the extracted features not only cap-
ture the geometric relationships between each point
and its neighborhood but also provide abundant lo-
cal structural information. This process enables the
network to effectively capture the local geometric
features and global shape information of the pri-
or point cloud, providing a stronger foundation for
feature input into subsequent modules. The process
can be described by the following equation:

F, =KG(R). ©

Here, d(p, p;) represents the distance between point
p; and point p B = 16 denotes the batch size of the
point clouds during training, C = 6 refers to the
number of feature channels, N, = 1024 4 represents
the number of points in each point cloud, and &k =
20 in-dicates the number of neighboring points for
each point.

After obtaining the features Fy, € ¥ they are
fed into a convolutional module. First, Fi, € ¥ ig
passed through a 1x1 convolution kernel to generate
the convolved features e, ;, € #*“"V* The convolved
features are then de-fined through the following

nonlinear activation function:

Cijm = hy (xi"xj)

™

= ReLU(Hm -(x,. —x/.)+ 5 ~x[) _
Here, h,-"x*—""is anonlinear function with learn-
able parameters 6, where 6, and ¢, are learnable
weight parameters.

X, - x; captures local spatial information (the rela-
tive positions of neighboring points with respect
to the central point), while x, captures global shape
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Figure 2
The Architecture of PointFeatureNet.
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Figure 3
The relationship between the center point and its neighboring
points before the convolution operation.
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information (the coordinates of the central point).
LeakyReLU is the activation function, introduced to
incorporate nonlinearity. This nonlinear function
effectively combines local features and global fea-
tures by extracting the relative geometric informa-
tion x; - x; of neighboring points with respect to the
central point and the global shape information x,.

The convolution process is illustrated in Figure 3,
which shows the changes in the relationship be-
tween the central point and its neighboring points
before and after the convolution operation. Before
the convolution, as shown in Figure 4(a), the relative
coordinate iformation of the neighborhood points
is modeled through the adjacency relations con-
structed by the KNN graph. After the convolution,

2025/4/54

as shown in Figure 4(b), the central point’s features
are made more expressive through nonlinear trans-
formations and aggregation operations. Finally, the
convolved features can be expressed as:

e

;i = Conv(FK1 ) . (8)
The features e, € 2" conv are then passed
through a normalization layer for normalization.
This layer normalizes the features within each
batch, thereby reducing numerical fluctuations
during gradient updates. The resulting normalized
features e;;,” € #**¥** are obtained as follows:

L]

e, .. = Batch Norm(e,.’ /.m) . ©

Subsequently, the normalized features are passed
through an activation function (LeakyReLU) to en-
hance the feature representation capability of the
net-work, resulting in the activated features ¢; ,/,,IL €
~BxCoNrk ywhich are expressed as follows:

¢, =LeakyReLU(c,,"). (10)

Finally, max pooling is applied to aggregate the
neighborhood features X;, =max; .z This oper-
ation extracts the most salient features within the
neighborhood, enhancing the network’s ability to
perceive geometric information while reducing re-
dundant information. This process generates point
cloud features with enhanced local geometric and
global shape characteristics, providing richer fea-
ture representations for subsequent modules. The
process is expressed as follows:

max(elwl 2€) 150 +5€ )

; max(e ,,e,,,...,¢.,
O =maxe, , =
1= [ - .

i,jm

(1n
m.ax(ewI 2€5050 €, )

Here, the max pooling operation max( ) is used to
select the maximum value for each feature dimen-
sion within the neighborhood. Specifically, the max
pooling operation selects the maximum value from
the features of 20 neighbors for each feature dimen-
sion, effectively filtering out the strongest responses
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in the local region. For each central point, the result
of the max pooling operation can be regarded as ex-
tracting the most geometrically significant features
from its neighborhood. After max pooling, the mod-
ule does not retain all the features of the neighbors
but instead selects the most representative features
within the neighborhood. These retained features
capture the most critical geometric information of
the point in the local space, effectively representing
the structural relationship between the central point
and its neighborhood. Ultimately, the combination
of the central point’s features with the most signif-
icant features from its neighborhood constitutes a
compact and representative feature representation.
This approach avoids the interference of redundant
information during subsequent processing, enabling
the model to focus on the key geometric features of
the point cloud. Meanwhile, max pooling preserves
the “most significant” feature information from the
central point and its neighborhood, optimizing the
data structure and improving the model’s computa-
tional efficiency and robustness in feature represen-
tation. The resulting feature 0, e *“*" is obtained,
and similar operations are applied to extract corre-
sponding features O,, O,, O,.

Next, the image features and the prior point cloud
features are fused at the corresponding scales by
performing elementwise addition. This integration
combines the coordinate information of the point
cloud with the texture information of the image, re-
sulting in a new feature representation. This fusion
method effectively combines the data from both mo-
dalities, enabling the model to simultaneously lever-
age the texture information from the image and the
geometric information from the point cloud. This
enhances the model’s ability to comprehensively
understand the scene and objects. The element-wise
addition is illustrated in Figure 5. The fusion pro-
cess is expressed as follows:

Z,=X,+0, i=1273,4. 12)
Here, Z, represents the fused features at the i-th lay-
er, while X; and O, denote the image features and point
cloud features at the corresponding scale, respec-tive-
ly. Through this approach, the network is able to si-
multaneously capture multiscale texture information
and geometric information of the target object.
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Figure 5
The process of element-wise addition.
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Next, the fused features are concatenated, as ex-
pressed in the following equation:

F =concat(Z,,2,,2,,Z,) . (3)

Here, Z,, Z,, Z; and Z, represent the fused features at
different scales, and concat denotes the concatena-
tion operation.Subsequently, a multi-layer percep-
tron (MLP) is applied to process the concatenated
features F, further enriching the point cloud infor-
mation. The process is expressed as follows:

P, =MLP(F). (14)

Here, F represents the concatenated features, MLP
denotes the multi-layer perceptron, and P, e " is
the fused point cloud. This approach enables the fused
point cloud to better adapt to the geometric shape of
the target object, thereby improving the accuracy and
generalization capability of pose estimation.

2.2. Lightweight Multi-feature Fusion Module

This process is illustrated in Figure 1(c). First, we
use a multi-layer perceptron (MLP) and PointNet++
[31] to extract features from the image and the tar-

get object point cloud features. After this stage, the
features of the image Frgb S Nc’ngN”, the target object
point cloud E; € NC”XN”, and the fused point cloud
F e "€V are obtained, where C,o» C, Cypdenote the
respective channel dimensions of these features.



Information Technology and Control

F

o’

Next, the features F' b F, are input into the prior
adaptation module, which is inspired by the meth-
od proposed in [44]. This module fuses these fea-
tures to obtain the geometric features of the fused
point cloud F, € "N Here, C, represents the chan-
nel dimension of the fused point cloud after passing
through the prior adaptation module, and C,, de-
notes the channel dimension after being processed

by the multi-layer perceptron (MLP).

Subsequently, F, is fed into a multi-layer perceptron
(MLP) to obtain the features F,,.

F,, =MLP(F,). (15)

Next, F,, and F, are concatenated to obtain the
geometric features of the target object point cloud
~C, gy XN, ~Cop XN, . .
F,,€ ™ " Subsequently F, € ™ "isfedinto
a multi-layer perceptron (MLP) to produce the fea-
~Clrop.oy XN,
tures £, ,,, € “"", where C,

channel dimension of the concatenated features F,,,

b0y TEPTESENES the

and F,,and C,, ,,, represents the channel dimension
of the target object point cloud features after being
processed by the MLP.

Fu,= Concat(Frgb,Fo) 16)
oy =MLP(F,.,). w

Next, F, F,, F, are concatenated to obtain the
~Cy XN, ., .

fused point cloud feature FfJ e " integrating the

geometric information of the target object into the

shape-fused point cloud. Simultaneously F,, F,,,

F,, are concatenated to produce the current point
cloudfeature F; , € " Cre XNT, thereby incorporating the
geometric features of the fused point cloud into the
target object point cloud. This feature fusion not only
enhances the robustness of the fused point cloud but
also improves the model’s generalization capability
when handling different instances within the same
category. Here, C,, represents the channel dimension
of the fused point cloud feature after concatenation,
and C,, represents the channel dimension of the tar-
get object point cloud feature after concatenation.

F, = Concat(E,EM E o ) 18)
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£y . = Concat (F:z’F(»gh,g)M o ) . (19)
Subsequently, the difference feature F, is obtained
by subtracting F;, from F, where C, represents the
channel dimension of the difference feature. The
subtraction operation captures the differences be-
tween the fused point cloud and the target object
point cloud, enabling the network to better under-
stand their distinct features, thereby optimizing
subsequent point cloud reconstruction and pose es-
timation.

Fy=F, - F. 0)

Finally, F, F, F,, are individually fed into a
multi-layer perceptron (MLP), an average pooling
layer (Pool), and another MLP, respectively, to ob-
tain the features G, “*", G, e “*", G, ¢ “*". Here,
Cy,C,,C.represent the channel dimensions of the
fused point cloud feature, the difference feature, and
the target object point cloud feature, respectively.
These three features serve as inputs to the subse-
quent network for reconstructing the NOCS shape
of unknown objects within the same category.

Gy = MLP(Pool (F, , )) e
G, = MLP(Pool (F, ) (22)
G, = MLP(Pool (F,)) . (23)

3.4.NOCS Coordinate Space Reconstruction
Module

This process is illustrated in Figure 1(d). We use a
multi-layer perceptron (MLP) to transform the fea-
tures F,;, and F}, into the corresponding features G,
and G, respectively. Additionally, the feature F), is
converted into the corresponding feature G,through
average pooling. Subsequently, the three features
G, G.and G, are concatenated with the fused point
cloud feature F,, and the deformation matrix D, e "
is computed using a multi-layer perceptron.

D, = MLP(Concat (Ff’r ,

G..G,,G, )) _ 24)
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Subsequently, the features G;, G.and G, are concat-
enated with the target object point cloud feature F’ s
to regress the mapping matrix D e YN This pro-
cess can be expressed as follows:

M, :Softmax(MLP((Concat(Fﬁ,G G,,G )))) (25)

Finally, the NOCS shape of the unknown object
within the category is reconstructed as follows:

T'=P,+D, (26)
C,=M,xT. @7)
Here, “+” and “x” denote matrix addition and ma-

trix multiplication, respectively P, represents the
points in the fused point cloud, with a dimension
of N x3x3, where N, is the number of points in the
point cloud. The deformation matrix D, is used to
deform the fused point cloud. The transformation
relationship between the deformed shape and the
target object’s NOCS shape C e o3 ig described by
the mapping matrix M, e ™ XN

3.5. Point Cloud Registration Module

This process is illustrated in Figure 1(e). After ob-
taining the current NOCS shape C, the 6D pose of an
unknown object within the category can be estimat-
ed through point cloud registration. The core objec-
tive of point cloud registration is to model the geo-
metric relationship between the target object point
cloud and Cp, thereby deriving the rotation matrix
R € SO(3), translation vector ¢ €3, and scaling factor
s €. We adopt the Umeyama algorithm, which aligns
point clouds by minimizing the mean squared error
between the target object point cloud P, and C,. The
process is formulated as follows:

MSE =— Z”SRP +t—-C "2 . (28)

,11

Here, Nr represents the number of points in the point
cloud, P, is the coordinate of the i-th point in the
target obJect point cloud, and C,, is the coordinate
of the i-th point in the reconstructed point cloud
ReSO(3) denotes the rotational relationship between

the reconstructed point cloud and the target object
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point cloud, ¢ €~ represents the translation vector
from the reconstructed point cloud to the target ob-
ject point cloud, and s €~ is the scaling factor used to
adjust the scale of the point cloud. | | indicates the
squared Euclidean distance between two points.

First, the centroids of the target object point cloud
and the reconstructed point cloud are calculated.
The calculation is expressed as follows:

Hp :—21’ ; (29)

P . (30)

Here, 115, represents the centroid coordinates of the
target object point cloud, i, represents the centroid
coordinates of the reconstructed point cloud, P, de-
notes the coordinates of the i-th point in the target
object point cloud, and C,; denotes the coordinates
of the i—th point in the reconstructed point cloud.

Next, the point clouds are centralized by subtracting
their respective centroids. The process is expressed
as follows:

ﬁo,i = Pa,i —Hp (BD
Cp,i = Cp,i _ﬂcp . (32)

Here, P, represents the i-th point of the decentral-
ized target object point cloud, and C;,), represents the
i—th point of the decentralized reconstructed point

cloud.

After decentralizing the point clouds, the covariance
matrix is computed. The calculation is expressed as
follows:

= V > P, P.C (33)

Here, 2. represents the covariance matrix, which
is used to express the correlation between the tar-
get object point cloud and the reconstructed point
cloud. ()T denotes the matrix transpose operation.

Next, a Singular Value Decomposition (SVD) is per-
formed on the covariance matrix. The formula is ex-
pressed as follows:
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Y =USV". (34)

Here, U and V represent orthogonal matrices, and S
represents a diagonal matrix, with the values on its
diagonal being the singular values.

Finally, the rotation matrix R, scaling factor s, and
translation vector t are computed. The formula is
expressed as follows:

R=VU" (35)

_ Tr(S)
B 2 (36)

N

A

>IP

0,i

t= :uC/, —SR,UPU. @37

Using the above formulas, the optimal alignment
parameters (R,t,5) between the observed point cloud
and the target point cloud are obtained, thereby
achieving the estimation of the 6D pose of the un-
known object.

3.6. Loss Function

To ensure the smoothness of point cloud deforma-
tion, we draw upon the method proposed in [7] and
apply the Laplacian loss to constrain excessive de-
formations. Specifically, the Laplacian loss is used to
regulate the differences between the original prior
point cloud and the fused point cloud.

Our MSPF-LMFF produces two intermediate out-
puts: the deformation field D, and the correspond-
ing matrix 4 which are used to calculate the final 6D
pose and 3D dimensions. To optimize MSPF-LMFTF,
we adopt the same training strategy as described in
[28]. First, we optimize the deformation matrix D,
by calculating the Chamfer Distance between the re-
constructed 3D point cloud model PR and the ground
truth 3D point cloud model P,. The formula is ex-
pressed as follows:

L,= Z min

piek, i<l

.=,
. (38)
+ 2 min|p—p,
pieb, IS
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Next, to ensure the smoothness of point cloud de-
formation, we refer to the method proposed in [26]
and apply the Laplacian loss to constrain excessive
deformation. Specifically, the Laplacian loss is used
toregulate the differences between the original prior
point cloud P, and the fused point cloud P,.

Llaplac[an = Z||ch (Pr ) _ch (PR )" . (39)
NU

Here, L, represents the Laplacian operator, while P,

and P, denote the original prior point cloud and the

fused point cloud, respectively

Next, to optimize the correspondence matrix 4, we
introduce a smooth loss L, to constrain the error be-
tween the predicted coordinates NOCS M and the
ground truth NOCS coordinates M. This loss func-
tion calculates the average loss over all coordinates,
expressed as follows:

Lo, (mm,)= 5(m—mg,)2’ if|m—mg,|so.1 -
|m_mgt|_0-05, otherwise

LW,_(M,M):NLzzm (m,m,,). o

N A
meM

Here, m,, represents the ground truth NOCS values
from M, and m denotes the predicted NOCS values.
Therefore, the correspondence loss is calculated as
the average matching loss over all NOCS values.

To penalize large deformations caused by the defor-
mation field D, and to constrain the sparsity of the
correspondence matrix 4, we impose two regular-
ization terms on each row d, of the deformation field
D, and each row 4, of the correspondence matrix 4,
respectively, as follows:

1
Lentropy = 72 _A[ log Ai (42)

o

1
Loy :FdZD: ||d,.||2 . (43)

Finally, the overall loss function is the weighted sum
of the five individual loss functions, where 4,, 4,, 4;,
A4 A5 are the regularization coefficients.
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Llaplacian = NZ"ch (Pr ) _ch (PR )" . (39)

4. Experiment

In this section, we conducted extensive experiments
on the NOCS-REAL [39] and NOCS-CAMERA [39]
da-tasets to evaluate the performance of MSPF-
LMFF and compare it with state-of-the-art methods.
Additionally, we assessed the generalization capabil-
ity of our MSPF-LMFF on the Wild6D [8] dataset,
which provides more challenging real-world scenar-
ios compared to the NOCS datasets. To further vali-
date the advantages of MSPF-LMFF, we performed
comprehensive ablation studies and provided visual-
izations of the pose estimation results, qualitatively
demonstrating the effectiveness of our approach.

4.1.Dataset

Our experiments are rigorously conducted based
on the following three benchmark datasets:
NOCS-CAMERA, NOCS-REAL, and WILDG6D. The
NOCS-CAMERA dataset consists of 300,000 care-
fully designed images, generated using advanced
rendering techniques to simulate objects in re-
al-world scenes, ensuring data richness and diversi-
ty. By leveraging virtual rendering, NOCS-CAMERA
provides a highly controllable image environment,
which facilitates the training and evaluation of ob-
ject pose estimation algorithms.

In contrast, the NOCS-REAL dataset contains 4,300
images captured by real cameras, with 2,750 imag-
es collected from six different real-world scenes.
These images reflect the authentic appearance of
objects and include complex lighting conditions and
background information, making this dataset an
ideal choice for evaluating algorithm performance
in real-world environments. The complexity of the
NOCS-REAL dataset poses greater challenges for
pose estimation and provides a more rigorous testing
environment for practical application scenarios.

Both datasets cover six common categories of every-
day objects: bottles, bowls, cameras, cans, laptops,
and mugs. These object categories provide a com-
prehensive testing benchmark for object pose esti-
mation algorithms.
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The WILDG6D dataset consists of images captured
from real everyday scenes rather than being gener-
ated in controlled laboratory environments. This
results in a greater diversity of objects and higher
scene complexity, significantly increasing the diffi-
culty of object pose estimation. Objects in the data-
set are captured from multiple view-points, covering
a wide range of angles and lighting conditions, fur-
ther enhancing the requirements for testing the gen-
eralization capability of the algorithms.

4.2. Preprocessing

We load images, depth maps, masks, coordinate
maps, and annotation information from the speci-
fied data directories. The data sources include a syn-
thetic dataset (NOCS-CAMERA) and a real-world
dataset (NOCS-REAL). After loading, the image and
depth map data undergo preprocessing to ensure
data quality and consistency. Simultaneously, point
cloud data is sampled to ensure that each sample
contains a fixed number of points.

In training mode, data augmentation is applied by
introducing color jittering to the images and ran-
dom translation and jittering to the point cloud data.
These augmentation operations help increase data
diversity, thereby enhancing the model’s robustness,
particularly when dealing with varying viewing an-
gles, lighting conditions, and partial occlusions. Sub-
sequently, the system loads predefined 3D models and
category-averaged shapes, which will be used for sub-
sequent pose estimation tasks. For symmetric objects
(e.g., cups, bowls, etc.), we apply pose normalization
by rotating these objects to a canonical pose, effec-
tively reducing ambiguity in pose estimation. This ap-
proach enables the model to handle pose estimation
for symmetric objects more accurately.

Finally, the preprocessing pipeline returns pro-
cessed point cloud data, images, selected indices,
category labels, 3D models, shape priors, transfor-
mation matrices, and normalized object coordinates
(NOCS). These data provide a unified input format
for the 3D object pose estimation task, facilitating
subsequent model training and inference.

For point cloud sampling from .obj model files, all
sampled model points undergo standardization to en-
sure they reside within a unified coordinate range and
are centered at the origin. Additionally, models of dif-
ferent categories (e.g., cups, bottles, etc.) are realigned
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and normalized to ensure consistency and compara-
bility across categories. The entire dataset is divided
into training (train) and validation (val) subsets, with
point cloud data in each subset organized and stored
according to category labels. This data processing
pipeline supports the use of the Farthest Point Sam-
pling (FPS) method to control the number of sampled
points, ensuring sample representativeness and uni-
form distribution. All processed point cloud data and
their corresponding labels are saved in HDF5 format,
which not only facilitates large-scale data storage but
also improves data reading efficiency.

4.3. Evaluation Metrics

We use two criteria to evaluate the performance of
MSPF-LMFF and compare it with state-of-the-art
methods. First, we report the mean Average Preci-
sion (mAP) of the 3D Intersection over Union (IoU)
at different thresholds to jointly assess the accuracy
of rotation, translation, and size estimation. Second,
we use the n°m cm metric to directly compare the er-
rors in rotation and translation. These two metrics
are applied to the NOCS-REAL, NOCS-CAMERA,
and Wild6D datasets.

IoU,_: We use the 3D Intersection over Union (IoU)
and centimeter-level accuracy (n°m cm) to quanti-
tatively evaluate the performance of MSPF-LMFF.
Specifically, a predicted pose is considered accurate
only when the IoU value between the predicted 3D
bounding box and the ground truth bounding box
exceeds a predefined threshold. We adopt IoU,, and
IoU,; as evaluation standards, where the predicted
pose is deemed accurate if the IoU value reaches or
exceeds 50% and 75%, respectively.

n°m cm: This metric is used to evaluate the model’s
performance based on rotation and translation errors
of the pose. A prediction is considered successful if the
difference between the predicted and ground-truth ro-
tations is less than »’, and the difference between the
predicted and ground-truth translations is less than
m centimeters. In this paper, we use n°m cm, 5°5cm,
10°2cm, 10°5¢cm, and 10°10cm as evaluation metrics.

4.4. Implementation Details

In our experiments, we used instance segmentation
masks generated by Mask R-CNN [51] to extract N, =
1024 points fromthe depthimage, formingthe current
point cloud. The unfused prior point cloud was ob-
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tained by extracting N, = 1024 points from the GSEN-
et network. In Section 3.2, the feature dimensions of
the RGB image were X|[16,64,1024], X,[16,128,1024],
X;[16,256,1024], X,[16,512,1024]; while the dimen-
sions of the prior point cloud were O,[16,64,1024],
0,[16,128,1024], 0,[16,256,1024], 0O,[16,512,1024].
In Section 3.3, the dimensions of F, F,,,, and F, were

all [16,64,1024]; the dimensions of F, and F,,,, were
[16128,1024]; the dimensions of F,,, and F,,, ,, were
[16,128,1024]; and the dimensions of F),, F},, and F,
were [16,320,1024]; The dimensions of G, G, and G,
were [16,128,1], [16,320,1], and [16,128,1], respective-
ly. In Section 3.4, the dimensions of F, and F,, were
both [16,896,1024]. The regularization coefficients

{41 A9 A3, Ay» A5} Were set to {5.0,1.0,1.0,0.01,0.0001}.

4.5. Performance on NOCS-REAL Dataset

We used the Adam optimizer [16] to train the net-
work, with the learning rate set to 1e-3, and trained
for up to 100 epochs. The learning rate was decayed
by factors of 0.6, 0.3, 0.1, and 0.01 at every 20th ep-
och. All experiments were conducted on a comput-
er equipped with an NVIDIA GeForce RTX 4090
GPU, with a batch size of 16. The NOCS-REAL
dataset presents greater challenges compared to
the NOCS-CAMERA dataset due to its real-world
complexity and limited training data. This dataset
contains only 18 object instances (3 per category)
and uses 4,300 images for training. Since the limited
data in NOCS-REAL is insufficient to fully support
network training, we utilized the synthetic dataset
NOCS-CAMERA (which includes 275K training
images) to assist training. During training, we ran-
domly selected images from NOCS-CAMERA and
NOCS-REAL with a 1:3 ratio for joint training. Ta-
ble 1 presents the performance of our MSPF-LMFF
method compared to 13 state-of-the-art methods
on the NOCS-REAL dataset [5]. The experimental
results show that our method surpasses existing
methods on multiple metrics. For instance, on the
IoU75, 5°2cm, 5°5cm, 10°2cm, and 10°5cm evalua-
tion metrics, our method achieved average accura-
cies of 69.1%, 52%, 60.5%, 70.2%, and 81.5%, respec-
tively. These results exceed those of CD-POSE [37]
by 0.5%, 12.2%, 15.6%, 8.4%, and 9.9%, respectively.
On the IoU50 metric, our MSPF-LMFF achieved an
average accuracy of 88.9%, outperforming CD-POSE
by 7.9%. Figure 6 shows some qualitative results on
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the NOCS-REAL dataset. Both the quantitative and  scenarios. Figure 7 illustrates the 6D object poses
qualitative analyses demonstrate that our method estimated by MSPF-LMFF under complex occlu-
exhibits high accuracy and robustness in real world sion conditions.

Table 1

The quantitative results of our method and the state-of-the-art (SOTA) methods on the NOCS-REAL dataset are
presented, evaluated using IoU and n°m c¢m metrics.

NOCS-REAL
Method Data Prior
3D, 3D, 5°2cm 5°5cm 10°2cm | 10°5cm | 10°10cm
NOCS[CVPR'19] RGB-D x 78.0 30.1 7.2 10.0 13.8 25.2 -
SPD[ECCV'20] RGB-D l 773 53.2 193 214 432 54.1 -
DPN[ICCV'21] RGB-D x 79.8 62.2 29.3 35.9 50.0 66.8 -
SS-Conv [NeurlIPS'21] RGB-D x 79.8 65.6 36.6 434 52.6 63.5 -
CR-Net [IROS'21] RGB-D V 79.3 55.9 278 34.3 472 60.8 -
SGPA[ICCV'21] RGB-D l 80.1 61.9 35.9 396 61.3 707 -
CenterSnap [ICRA'22] RGB-D x 80.2 - - 291 - 64.3 -
SD-Pose [WACV'23] RGB-D x 83.2 67.0 34.2 394 53.0 64.6 -
DiffoD ['24] RGB-D x 7648 38.16 25.52 3046 3248 40.94 -
SAR-Net [CVPR'22] D x 79.3 624 31.6 423 50.3 68.3 -
GPV-Pose [CVPR'22] D x 83.0 644 32.0 42.9 - 73.3 -
GPT-Cope ['24] D x 82.0 704 45.9 53.8 63.1 77 79.8
CD-Pose ['24] D l 81.0 68.6 39.8 44.9 61.8 71.6 -
Our RGB-D l 88.9 69.1 52.0 60.5 70.2 81.5 82.2

Figure 6

Figure 6 presents a comparison of the 6D object poses estimated by MSPF-LMFF and the GPT-COPE method, along with the
NOCS coordinate space generated by our approach. All images are sourced from the NOCS-REAL dataset. The predict-ed poses
are indicated by red lines, while the ground truth poses are represented by green lines.

GPT-COPE

OUR

OUR NOCS
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Figure 7
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Figure 7 shows the 6D object poses estimated by MSPF-LMFF under complex occlusion conditions. All images are from the
NOCS-REAL dataset. The predicted poses are indicated by red lines, while the ground truth poses are represented by green lines.

4.6. Performance on NOCS-CAMERA Da-taset

Table 2 presents the performance of our MSPF-
LMFF method compared to 9 state-of-the-art meth-
odsonthe NOCS-CAMERA dataset[5]NOCS-CAM-
ERA is a synthetic dataset with a large number of
training images (~275K), resulting in higher testing
accuracy compared to NOCS-REAL. Following the
approach in [28], we conducted both training and
testing on the NOCS-CAMERA dataset. Our MSPF-
LMFF achieved accuracy rates of 92.4%, 84.9%,
70.8%, 73.8%, 83.2%, 88.8%, and 89.9% on the evalu-

Table 2

ation metrics IoU50, IoU75, 5°2cm, 5°5cm, 10°2cm,
10°5cm, and 10°10cm, respectively. However, it is
important to emphasize that MSPF-LMFF does not
rely on attention mechanisms; instead, it utilizes a
lightweight multi-feature fusion approach. In con-
trast, CD-POSE and GPT-COPE both incorporate
attention mechanisms, which significantly increase
computational overhead and inference time.

Overall, the comparative results on the NOCS-RE-
AL and NOCS-CAMERA datasets demonstrate the
superiority of our approach. Figure 8 shows some

The quantitative results of our method and the state-of-the-art (SOTA) methods on the NOCS-CAMERA dataset are

presented, evaluated using IoU and n°m cm metrics.

Method TIB;I;;ng prior -
NOCS[CVPR'19] RGB-D x 83.9
SPD[ECCV'20] RGB-D v 93.2
SGPA[ICCV'21] RGB-D \/ 93.2
CterSnap [ICRA’22] RGB-D x 92.5
SD-Pose [WACV'23] RGB-D x 93.5
DiffoD ['25] RGB-D x 79.8
SAR-Net [CVPR'22] D x 86.8
GPT-COPE ['24] D x 92.5
GPV-Pose ['22] D x 92.9
CD-Pose ['24] D 82.2
Our RGB-D 924

NOCS-CAMERA

3D, 5°2cm 5°5cm 10°2cm =~ 10°5¢m | 10°10cm
69.5 32.3 40.9 48.2 64.6 -
83.1 54.3 59.0 73.3 81.5 -
881 707 74.5 82.7 884 -

- - 66.2 - 81.3 -
884 64.9 69.1 80.5 86.6 -
55.8 50.5 571 721 81.5 -
79.0 66.7 70.9 75.3 80.3 -
86.9 704 76.5 81.3 88.7 89.9
86.6 674 76.2 - 874 -
877 68.6 73.0 81.6 87.3 -
84.9 70.8 73.8 83.2 88.8 89.9
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Figure 8
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The 6D object poses estimated by MSPF-LMFF. All images are sourced from the NOCS-CAMERA dataset. The predicted
poses are represented by red lines, while the ground truth poses are represented by green lines.

qualitative results on the NOCS-CAMERA dataset.
The experimental results indicate that our method
not only achieves high accuracy on the synthetic
dataset but also improves inference speed, without
relying on complex attention mechanisms.

4.7. Performance on wild6d Dataset

To further validate the generalization capability of
the MSPF-LMFF model, we directly evaluated the
model, originally trained on the NOCS-REAL data-
set, on the test set of the Wild6D dataset without any
additional finetuning. We compared its performance
with five state-of-the-art methods (SPD[33], CR-Net
[40], SGPA [3], GPV-Pose [6], and GPT-COPE [50]).
The test results are presented in Table 3. Specifical-
ly, MSPF-LMFF achieved an mAP of 68.5% under
I0U50, outperforming SGPA by 4.9% and GPT-

Figure 9

COPE by 2.4%. Additionally, MSPF-LMFF achieved
mAPs of 19.3%, 24.2%, and 37.8% under the metrics
of 5°2cm, 5°5cm, and 10°5¢cm, respectively, surpass-
ing SGPA but falling slightly behind GPT-COPE.
To provide a more intuitive demonstration of our
model’s performance. As demonstrated in Figure 9,
MSPF-LMFF achieves faster inference speeds than
attention-based methods, making it more applicable
for real-world deployment. To provide a more intui-
tive demonstration of the model’s performance, we
present visual comparisons with SGPA in Figure 9,
where MSPF-LMFF generates high-quality 6D ob-
ject pose estimations even in challenging real-world
conditions. The visualization results highlight
MSPF-LMFF’s superior ability to handle occlusions,
clutter, and shape variations compared to SGPA. Ad-
ditional Comparisons with SGPA in Figure 9: Our vi-

The visualization results on the Wild6D dataset are shown in (a) and (b), which display the results of SGPA and the pro-
posed MSPF-LMFTF, respectively. Green and red represent the ground truth and predicted results, respectively. It can be

observed that MSPF-LMFF outperforms SGPA.
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Table 3
Comparison of our MSPF-LMFF with state-of-the-art methods on the WILD 6D dataset.
WildéD
Method prior
3D, 5°2cm 5°5cm 10°5¢cm
SPD[ECCV'20] \ 325 2.6 3.5 13.9
CR-Net [IRS°21] V 495 16.1 19.2 364
SGPA[ICCV'21] v 63.6 26.2 29.2 39.5
GPV-Pose [CVPR'22] X 67.8 14.1 21.5 411
GPT-COPE ['24] J 66.1 298 356 423
Our \ 68.5 193 24.2 37.8

Figure 10

A quantitative comparison of our model with SGPA [3] and
GPT-COPE onthe NOCS-REAL dataset [39] is presented.
The mAP (%) is shown for different thresholds of 3D IoU,
rotation, and translation errors.
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sualization results show that MSPF-LMFF provides
more stable pose predictions, even for objects with
complex structures. Unlike SGPA, which struggles

with partially occluded objects, MSPF-LMFF lever-
ages prior information more effectively, resulting in
fewer pose estimation errors. The superior align-
ment of predicted poses with ground truth further
confirms that our method achieves more accurate
and consistent predictions across various object
categories. These enhancements and analyses have
been incorporated into the revised manuscript, and
we sincerely appreciate your insightful suggestions,
which have helped us further refine the discussion
on generalization capability.

4.8. Comparison of Objects with Different
Structures

To further analyze the performance of the MSPF-
LMFF model when handling objects with different
structures, Figure 8 presents a detailed per-cate-
gory comparison of MSPF-LMFF with the corre-
spondence-based methods SGPA and GPT-COPE
in terms of 3D IoU, rotation accuracy, and transla-
tion accuracy. The results show that MSPF-LMFF
outperforms SGPA and GPT-COPE in terms of av-
erage accuracy for certain metrics and categories,
particularly in 3D IoU estimation. Notably, our
method demonstrates excellent performance when
processing bottle and can instances (represented in
blue and pink in the Figure 8, respectively). These
instances correspond to relatively simple object
categories, where existing methods typically per-
form well. While MSPF-LMFTF achieves comparable
performance to SGPA and GPT-COPE when han-
dling complex geometric objects such as cameras, it
significantly outperforms both methods on simpler
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object categories. This result strongly demonstrates
the advantages of our model across different ob-
ject structures, especially its superior performance
when processing simple object categories.

4.9. Ablation Study

To evaluate the effectiveness of the individual com-
ponents proposed in MSPF-LMFF, we conducted
detailed ablation experiments on the NOCS-REAL
and NOCS-CAMERA datasets [39]. Starting from
a baseline model, we incrementally added the pro-
posed components, including the MSPF block for
enriching point cloud feature information and the
LMFF block for feature fusion. The baseline mod-
el does not include any multi-scale feature fusion
module or lightweight multi-feature fusion module.
The experimental results are shown in Tables 4 and
5. Compared to the baseline model, the mean aver-
age precision (mAP) significantly improved after
incorporating the multi-scale feature fusion mod-
ule, indicating that this module effectively extracts
multi-scale point cloud features and helps the model
better capture texture information. Subsequently,
the mAP further increased after adding the light-
weight multi-feature fusion module, although the
improvement was relatively modest due to the dif-
ferences between the fused point cloud and the tar-
get point cloud. Finally, when both modules were ap-
plied together, the model achieved the highest mAP,
demonstrating the best evaluation performance.

a Baseline

Our baseline model is a modified version of T-S
[28], where the hidden dimensions in the feature
extraction layers are adjusted to accommodate the
modified feature dimensions. The training strategy
of the baseline model is consistent with that of our
MSPF-LMFF. The results in Table 4 show that the

Table 4
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baseline model performs poorly in the 6D pose es-
timation task, serving as a comparative benchmark
for the evaluation of subsequent components.

b Effect of MSPF

To evaluate the impact of the MSPF module on mod-
el performance, we incorporated PointFeatureNet
and ResNet-18 into the baseline model and adjust-
ed the feature dimensions in the MLP layers. The
results in Tables 4-5 demonstrate that adding the
MSPF module significantly improves model per-
formance. On the NOCS-CAMERA dataset: IoU50
increased by 32.7%, IoU75 increased by 47%, 5°2cm
increased by 59.6%, 5°5cm increased by 61%, 10°2cm
increased by 69.5%, 10°5cm increased by 68.4%, and
10°10cm in-creased by 68.4%. On the NOCS-REAL
dataset:IoU50 increased by 2.7%,IoU75 increased by
1.7%, 5°2cm in-creased by 1.2%, 5°5cm increased by
0.7%, 10°2cm in-creased by 1.1%, 10°5cm increased
by 2%, and 10°10cm increased by 0.7%. These results
strongly demonstrate the effectiveness of the MSPF
module in enhancing the model’s ability to capture
texture features.

¢ Effect of LMFF

To assess the efficacy of the LMFF module, we
incorporated it into the baseline model and fine-
tuned the dimensions of the MLP hidden layers to
align with the feature fusion requirements. The
integration of the LMFF module led to a notable
enhancement in the model’s performance, with
particularly substantial improvements observed
on the NOCS-CAMERA dataset. Specifically, the
module yielded increases of 32.3% in IoU50, 42.0%
in IoU75, 57.1% in 5°2cm, 57.4% in 5°5cm, 67.1% in
10°2cm, 63.7% in 10°5¢m, and 67.7% in 10°10cm. On
the NOCS-REAL dataset, the improvements were
0.4% in IoU50, 0.6% in IoU75, 0.9% in 5°2cm, 0.5%
in 5°5cm, 1.2% in 10°2cm, 1.1% in 10°5cm, and 0.4%

Ablation Study of Different Modules on NOCS-REAL Evaluated Using IoU and n°®m cm Metrics.

Method MSPF LMFF
3Dy, 3D,
1 - - 7ary 58.9
2 — N 751 59.5
3 N — 76.0 60.6
4 Y \ 88.9 69.1

NOCS-REAL
5°2cm 5°6cm 10°2cm 10°5¢cm 10°10cm
45.9 491 66.3 731 76.5
46.8 496 67.5 74.2 76.9
471 49.8 674 751 772
52.0 60.5 70.2 815 82.2
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Ablation Study of Different Modules on NOCS-REAL Evaluated Using IoU and n°®m cm Metrics.

Method MSPF LMFF
3D,, 3D,
1 — — 59.6 375
2 — \ 91.9 795
3 — 92.3 845
4 S 924 84.9

in 10°10cm. These findings underscore the LMFF
module’s significant contribution to the enhance-
ment of point cloud feature fusion. The data pre-
sented in Tables 4-5 further corroborate that the
inclusion of the LMFF module markedly boosts the
model’s performance.

d Effect of PFN (PointFeatureNet)

To evaluate the effectiveness of the PointFeatureN-
et module, we decomposed the four-layer Point-
FeatureNet and ResNet-18 modules into 1, 2, 3, and

NOCS-CAMERA

5°2cm 5°6cm 10°2cm 10°5¢cm 10°10cm
51 7.3 12.6 194 20.2
62.2 64.7 79.7 83.1 87.9
64.7 68.3 82.1 87.8 88.6
70.8 73.8 83.2 88.8 89.9

5 layers, respectively, and compared their perfor-
mance. The results in Tables 6-7 show that in the
NOCS-REAL dataset, the performance of the 1-lay-
er, 2-layer, 3-layer, and 5-layer configurations was
inferior to that of the 4-layer configuration. There-
fore, we selected the 4-layer configuration as the fi-
nal validation layer. In the NOCS-CAMERA dataset,
the experimental results for the 1-layer and 2-layer
configurations were lower than those of the 4-lay-
er configuration. For the 3-layer configuration, the

Table 6
Ablation Study of Different Layers in the PointFeatureNet Module on NOCS-REAL, Represented by IoU and n°m cm.
NOCS-REAL
Method PFN RESNet
3D, 3D, 5°2cm 5°5cm 10°2cm 10°5¢m | 10°10cm

1 PFN1+ResNetl 75.1 59.6 46.8 51.3 67.9 75.2 775
2 PFN2+ResNet2 76.9 63.1 492 56.5 68.2 76.8 781
3 PFN3+ResNet3 80.6 65.5 50.6 58.9 69.5 78.1 81.5
4 PFN4+ResNet4 88.9 69.1 52.0 60.5 70.2 815 82.2
5 PFN5+ResNet5 791 62.8 432 49.9 63.1 757 80.1

Table 7

Ablation Study of Different Layers in the PointFeatureNet Module on NOCS-CAMERA, Represented by IoU and n°m cm.

NOCS-CAMERA

Method PFN RESNet
3Dy, 3D, 5°2cm 5°5cm 10°2cm 10°5¢cm 10°10cm
1 PEFN1+ResNetl 62.3 397 8.6 10.1 15.3 24.2 26.9
2 PEFN2+ResNet2 754 46.6 35.5 46.6 541 59.3 62.7
3 PEFN3+ResNet3 89.2 875 62.1 674 75.9 85.2 87.6
4 PFN4+ResNet4 924 84.9 70.8 73.8 83.2 88.8 89.9
5 PEN5+ResNet5 92.5 85.6 69.2 76.8 81.3 84.6 86.1
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3D75 metric was 2.9% higher than that of the 4-lay-
er configuration, while the remaining metrics were
lower. In the 5-layer configuration, the 3D75 met-
ric was 0.7% higher, and the 5°5¢m metric was 3.0%
higher than those of the 4-layer configuration. Con-
sequently, we ultimately selected the 4-layer config-
uration as the final validation layer.

e Effect of Training Strategy

To validate the effectiveness of different training
strategies, we conducted experiments without us-

Table 8
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ing prior point clouds, training the model solely on
depthmapsandimagesonthe NOCS-REAL dataset.
The results in Tables 8 and 9 demonstrate that the
use of prior point clouds significantly improves the
accuracy of pose estimation. On the NOCS-REAL
dataset, using prior point clouds increased IoU50
by 6.4%, 1o0U75 by 7.8%, 5°2cm by 2.3%, 5°5cm by
8.1%,10°2cm by 2.9%, 10°5cm by 5.8%, and 10°10cm
by 0.6%. On the NOCS-CAMERA dataset, improve-
ments were observed in 5°2cm by 5.2%, 10°2cm by
1.5%, 10°5c¢m by 0.3%, and 10°10cm by 3.8%.

Ablation Study of Prior Point Clouds on the NOCS-REAL Dataset, Represented by IoU and n°m cm.

Method Prior point
3D,, 3D,
1 — 82.5 61.3
2 \ 88.9 69.1
Table 9

5°2cm

497

52.0

Ablation Study of Prior Point Clouds on the NOCS-CAMERA Dataset, Represented by IoU and n°m cm.

Method Prior point
3D;, 3D,
1 — 92.5 86.5
2 \ 924 84.9

f Effect of Parameters

To investigate the impact of learning rate, maximum
training epochs (Max Epoch), and batch size on
model performance, we set different learning rates
(0.001, 0.0001, and 0.00001). In the experiments, we
fixed the maximum training epochs and batch size
and observed the model’s performance under differ-
ent learning rates. According to the experimental re-
sults in Table 10, alearning rate of 0.0001 yielded the
best performance in terms of convergence speed and
final accuracy, achieving a better balance between
training stability and performance improvement
compared to other learning rate settings.

To evaluate the effect of maximum training epochs,
we set different numbers of epochs (4, 8,12, and 16).
In the experiments, we fixed the learning rate and
batch size and observed the performance under dif-

5°2cm

65.6

70.8

NOCS-REAL

5°5cm 10°2cm 10°5¢cm 10°10cm
524 67.3 757 816
60.5 70.2 81.5 82.2

NOCS-CAMERA

5°5cm 10°2cm 10°5¢cm 10°10cm
79.2 817 88.5 854
73.8 83.2 88.8 89.9

ferent maximum training epochs. As shown in Table
11, the model achieved the best performance with
a maximum of 16 epochs, exhibiting faster conver-
gence and reaching the highest accuracy.

To assess the influence of batch size, we tested dif-
ferent batch sizes (8, 16, 32, and 64). In the exper-
iments, we fixed the learning rate and maximum
training epochs and compared the model’s perfor-
mance under different batch sizes. According to
the results in Table 12, a batch size of 16 provided
the best performance, enabling faster convergence
during training and achieving an optimal balance in
final accuracy.

In summary, the model achieved the best perfor-
mance across all metrics with a learning rate of
0.0001, a maximum of 16 training epochs, and a
batch size of 16.
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Ablation Study of Different Learning Rates on the NOCS-REAL Dataset.

Learning Rate
3D, 3D, 5°2cm
0.001 65.2 644 443
0.0001 88.9 69.1 52.0
0.00001 74.9 59.6 48.9
Table 11

Ablation Study of Different Max Epochs on the NOCS-REAL Dataset.

Max Epoch
3D, S0} 5°2cm
4 60.7 53.1 431
8 737 60.7 50.2
12 74.9 59.6 48.9
16 88.9 69.1 52.0
Table 12

Ablation Study of Different Batch Sizes on the NOCS-REAL Dataset.

Batch size
3D,, 3D, 5°2cm
8 66.8 54.6 42.6
16 88.9 69.1 52.0
32 84.5 62.3 52.9
64 79.6 68.5 49.8
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NOCS-REAL
5°6cm 10°2cm 10°5¢cm 10°10cm
46.9 654 73.5 71.8
60.5 70.2 81.5 82.2
514 69.5 76.8 79.2
NOCS-REAL
5°6cm 10°2cm 10°5¢cm 10°10cm
45.5 64.3 72.8 754
53.2 70.3 77.8 79.2
514 70.2 76.8 79.6
60.5 70.2 815 82.2
NOCS-REAL
5°5cm 10°2cm 10°5¢cm 10°10cm
46.2 66.6 75.5 78.2
60.5 70.2 815 82.2
61.2 69.1 78.2 814
55.1 69.5 79.2 80.5

4.10. Runtime Analysis and Parameters

On a system equipped with an NVIDIA GeForce
RTX 4090 GPU, our MSPF-LMFF model achieved
an average processing speed of 20 frames per sec-
ond (FPS) on the NOCS-REAL [39] dataset and
23 FPS on the NOCS-CAMERA [39] dataset. To
ensure the fairness and comprehensiveness of the
evaluation, we compared the runtime of MSPF-
LMFF with three correspondence-based methods
(CR-Net [40], SGPA [3], and CD-POSE [51]) on the
same machine. We observed that models using at-
tention mechanisms or transformer architectures
required 11 hours for a full training cycle, while

the MSPF-LMFF model completed training in just
2 hours, significantly reducing training time. As
shown in Table 6, our method demonstrated supe-
rior inference speed compared to these methods.
Notably, CD-POSE exhibited significantly slower
runtime on the NOCS-REAL dataset due to its use
of attention mechanisms. Additional-ly, CD-POSE
experiments were conducted on a less powerful
NVIDIA GeForce RTX 2080Ti GPU. DiffoD [23]
also showed slower runtime on both the NOCS-RE-
AL and NOCS-CAMERA datasets, primarily due to
its reliance on attention mechanisms, which in-
creased computational complexity and impacted
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inference speed. Our MSPF-LMFF, running on the
more powerful NVIDIA GeForce RTX 4090 GPU
and without using attention mechanisms, demon-
strated a clear advantage in speed.

Furthermore, our MSPF-LMFF model also ex-
hibited advantages in terms of parameter count.
Specifically, MSPF-LMFF has 81.5M parameters,
which is fewer than SGPA (89.0M) and CD-POSE

Table 13
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(87.3M), and comparable to CR-Net (81.7M), while
delivering superior performance. This indicates
that our model not only excels in speed but also
achieves better efficiency and resource utilization.
In summary, MSPF-LMFF optimizes the model ar-
chitecture to balance speed and parameter count,
outperforming existing methods across various ex-
perimental settings.

Comparison of Inference Time and Parameter Counts for Different Correspondence-Based Methods on the NOCS-

REAL and NOCS-CAMERA Datasets [14].

Method Training Data
CR-Net ['21] RGB-D
SGPA[ICCV'21] RGB-D
CD-Pose ['24] D
DiffoD ['25] RGB-D
Our RGB-D

4.11. Lightweight Network Comparison

To comprehensively compare the effectiveness of
lightweight networks in category-level 6D pose es-ti-
mation, we conducted a detailed comparative anal-ysis
of the latest lightweight networks, as shown in Tables
14 and 15. Among them, the LFF [44] model uses only
depth maps as input, which gives it an advantage in in-
ference speed and parameter count, resulting in low-
er computational costs and shorter inference times.
However, despite its computational efficiency, LFF ex-
hibits significantly lower accuracy on the NOCS-RE-
AL dataset compared to our method. In contrast, our
method combines RGB images and depth maps as in-
puts to fully leverage image texture features and geo-

Table 15

SPEED(FPS)
Parameters
NOCS-REAL NOCS-CAMERA

14.0 15.0 81.7M
14.0 170 89.0M

70 - 87.3M
17.2 17.2 -
20.0 23.0 81.5M

metric depth information, thereby enhancing the mod-
el’s expressive power and pose estimation accuracy.
Although this fusion strategy increases inference time
and parameter count, it achieves a significant improve-
ment in accuracy, making our method superior to LFF
in terms of overall performance.

Table 14
Comparison of Inference Time for Different Lightweight
Methods on the NOCS-REAL Dataset.

Method Input SPEED(FPS) Parameters
LFF['23] D 32.0 35.2
Our RGB-D 20.0 81.5M

Quantitative Results of Our Method and State-of-the-Art Lightweight Methods on NOCS-REAL, Represented by IoU

and n°m cm.

Training WICIEES a0l
Method Dat prior
aa 3D, 3D, 5°2cm 5°6cm 10°2cm 10°65¢m | 10°10cm
LFF['23] D V 82.5 70.9 36.6 445 61.9 76.9 -
Our RGB-D Y 88.9 69.1 52.0 60.5 70.2 815 82.2
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5. Conclusion

In this study, we propose the MSPF-LMFF model,
which effectively addresses issues such as high com-
putational complexity and large model size in ex-
isting 6D object pose estimation methods. Through
multi-scale prior point cloud fusion and lightweight
multi-feature fusion strategies, MSPF-LMFF not
only achieves high accuracy and robustness but also
significantly reduces training time and inference la-
tency. Experimental results demonstrate that the pro-
posed method outperforms state-of-the-art methods
on multiple datasets. Although significant progress
hasbeen made, there are still many potential research
directions worthy of further exploration.

First, multimodal learning, as a cutting-edge tech-
nology in the field of computer vision, has shown
great potential in various application areas. In the
future, we plan to further integrate data from differ-
ent modalities, such as visual, depth, and LiDAR, le-
veraging these multidimensional information sourc-
es to enhance the performance of the MSPF-LMFF
model. For instance, in fields such as electricity
price prediction [11] and trajectory prediction [29],
multimodal fusion has proven to effectively improve
prediction accuracy and model generalization capa-
bilities. Additionally, the application of multimodal
technologies in power markets and intelligent trans-
portation systems [15] provides important insights
for further optimizing the MSPF-LMFF model.

Furthermore, future research will explore integrating
the MSPF-LMFF model with multimodal learning
frameworks, particularly in handling complex envi-
ronments and dynamic changes (e.g., joint learning of
visual and depth information). By fusing point cloud
and image data and leveraging multimodal informa-
tion, the model’s robustness and adaptability in un-
certain scenarios can be further enhanced, providing
more effective solutions for practical applications
such as autonomous driving [17] and robotic grasping
[34]. Additionally, we consider incorporating self-su-
pervised learning methods into the MSPF-LMFF
model to utilize unlabeled data for further improving
the model’s generalization capabilities. Combining
advanced technologies such as graph neural net-
works (GNNs) can also enable efficient processing of
large-scale point cloud data in large-scale scenarios,
demonstrating significant application potential.
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Appendix A.

Nomenclature:
I Cropped red, green, blue (RGB)image.
E Features extracted from the scene point cloud.
s | Features extracted from the RGB image
Prior point cloud
P, | Fusion point cloud
X Image features at the ith scale
0, Prior Point cloud features at the ith scale
F, Features extracted from the prior point cloud
F, Features generated by Prior adaptation

Features generated by F,, and F,

rgh

F,, | F, Features generated by MLP

Flopom | Fo Features generated by MLP
7 Features generated by F,, Fy and F_, ,,,, concat-
r | enation
F, Features generated by Fo, FtM and F, ), con-

catenation

F, | Features generated by F,, and F,, subtraction
Gy | F; Features generated by pool

G, F, Features generated by pool

G F,.Features generated by pool

Features generated by G, G, G,and F,, and
concatenation

Features generated by Gy, G,, G, and F;, and
concatenation

Features formed by concatenating a prior point
F cloud features and image features and then
stitching them together

N, Number of Scene Point Clouds
Number of a prior point clouds before deforma-
tion

Ny | Number of deformed a fusion point clouds
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