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With the increasing prevalence of drones in low-altitude airspace, the radar detection of weak targets with a 
low signal-to-noise ratio (SNR) still poses a crucial challenge. Traditional constant false alarm rate (CFAR) 
methods encounter issues of high false alarms and low accuracy when the SNR is below-15dB. This paper 
puts forward a two-stage deep neural network to improve weak target detection by emulating human visual 
perception. In the first stage (coarse detection), potential targets are rapidly localized through grid-based 
regression. In the second stage (fine detection), depth-wise separable convolution (DSC) and residual con-
nections are utilized for accurate classification. Experimental results show that, at an SNR of -20dB, the 
detection rate of the proposed method is 20% higher than that of CFAR methods, and the inference speed is 
3.66 times faster than that of single-stage networks. Ablation studies confirm the efficiency improvements 
brought by the coarse detection network. This approach offers a robust solution for real-time drone surveil-
lance in complex and cluttered environments.
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1. Introduction
Radar, an acronym for "radio detection and ranging," 
is currently the most extensively applied detection 
method for air target surveillance [26-27]. Given its 
all-weather operation ability, long-range coverage, 
and sensitivity to small radar cross-sections (RCS), 
radar remains the primary means for drone detection. 
Distinct from optical sensors, radar functions effec-
tively in fog, rain, and darkness, rendering it essential 
for continuous low-altitude surveillance. Generally, 
radar detects targets based on the echo amplitude 
of the targets. Thus, setting a reasonable detection 
threshold is crucial to stably detect targets while pre-
venting excessive false alarms that could otherwise 
undermine detection performance [4]. Constant false 
alarm rate (CFAR) detection, a significant approach 
for target detection, has long been a focal point in ra-
dar target detection research [14, 19, 3, 35, 13].
Traditional CFAR detectors, such as cell averaging 
CFAR (CA-CFAR) [38], the smallest of CFAR (SO-
CFAR), and the greatest of CFAR (GO-CFAR) [21], 
estimate noise power from reference cells to deter-
mine amplitude thresholds. Although CA-CFAR fac-
es difficulties in heterogeneous clutter, SO/GO-CFAR 
enhance robustness by choosing min/max reference 
values, yet they demand manual parameter adjust-
ment [22, 11, 10]. Nevertheless, CFAR algorithms 
suffer from several common limitations. First, they 
overly depend on amplitude-only features. Second, 
the CFAR algorithm is highly sensitive to situations 
where the SNR is below -10dB. In such low-SNR con-
ditions, the signal is prone to noise corruption, se-
verely deteriorating the detection performance and 
making accurate weak-target identification arduous. 
Finally, when handling weak targets, the CFAR algo-
rithm fails to effectively exploit phase coherence.
For small drones with low SNR, the radar detection 
effect is far from satisfactory [29]. Owing to their 
small radar cross-section (RCS) and low flight al-
titude, the target signals of typical drones in radar 
echoes are sometimes too feeble to be effectively 
detected. The core challenge lies in the fact that dif-
ferentiating weak drone echoes (SNR<-15dB) from 
clutter necessitates the simultaneous analysis of am-
plitude and phase features, which traditional CFAR 
methods cannot accomplish. Consequently, radar de-
tection of small unmanned aerial vehicles has always 

been a challenging and hot topic [1, 25, 34]. 
With the rapid development of neural networks, de-
tection methods based on deep learning have garnered 
unprecedented attention [6]. Thanks to their capaci-
ty to automatically extract deep-level features from 
data, these methods have been successfully applied 
in diverse fields, such as speech recognition [15, 12, 
17] and image recognition [31], thereby offering nov-
el research perspectives for radar applications. Capi-
talizing on the remarkable recognition and object de-
tection capabilities in images, deep learning has been 
explored in radar target recognition and detection 
[40]. Currently, the application of neural networks 
in radar target detection primarily centers on target 
detection in range-Doppler (RD) spectrum images 
[29, 32, 30, 33, 8] and synthetic aperture radar (SAR) 
images [36, 14, 39, 5]. The main rationale is that neu-
ral-network-based target detection methods are typ-
ically applicable to two dimensional images, and RD 
spectrum images or SAR images share many similar-
ities with them, facilitating their application. Recent 
advances in deep learning for radar detection have 
explored diverse architectural paradigms. Wang et al. 
[28] achieved high accuracy through a CNN-based 
classification approach, but their method is plagued 
by high latency. Transformer-based models like [37] 
demonstrate exceptional feature fusion capabilities 
through self-attention mechanisms, however their 
computational complexity (typically 3.8× higher than 
CNNs) renders them impractical for real-time detec-
tion. Lightweight architectures such as Tiny-YOLO 
[23] and GhostNet [7] address efficiency concerns 
through network pruning and feature map redundan-
cy reduction, yet struggle with low-SNR targets due to 
their limited depth and insufficient phase coherence 
analysis. Traditional CFAR methods lack phase analy-
sis, while deep-learning-based approaches suffer from 
high latency. Our work aims to bridge this gap by di-
rectly processing raw echoes and optimizing compu-
tational efficiency through a two-stage architecture.
To reduce computational complexity, on one hand, we 
propose using echo signals rather than RD spectrum 
images as inputs for deep-learning algorithms. On 
the other hand, we attempt to conduct fine-grained 
sliding window detection only in areas with a high 
probability of target appearance, thus reducing the al-
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gorithm's computational complexity. In this manner, 
a network structure is devised, where initial localiza-
tion is carried out by the coarse detection network, 
and point by point confirmation is performed by the 
fine detection network. As preliminary research, we 
have initially validated the effectiveness of this con-
figuration model on simulated data. However, two 
limitations still exist [20]. Firstly, due to the relatively 
simple structure of the initially constructed model, 
its performance on real data remains to be improved. 
Secondly, the computational load of the model during 
the fine detection phase remains relatively high, with 
its running time being over ten times that of CFAR de-
tection. To address these two limitations, this paper 
focuses on optimization and enhancement.
The main contributions of this work are summarized 
as follows:
1 A two-stage architecture integrating coarse local-

ization and fine classification, which reduces the 
computational load by 73.7%.

2 Integration of DSCResNet for efficient feature ex-
traction, achieving an 85% reduction in parameters.

3 Comprehensive validation on real X - band radar 
data, demonstrating an AUC > 0.82 at - 20dB SNR.

The remainder of the paper is structured as follows. 
Section 2 introduces traditional CFAR detection 
methods. Section 3 then presents the proposed single 
pulse detection method based on deep learning step 
by step. In section 4, the method is tested and com-
pared with traditional detection methods. Finally, 
discussions and conclusions are drawn in section 5.

2. Traditional CFAR Detection
Figure 1 depicts the flowchart of the traditional CFAR 
detection method used for radar target detection.

As seen in Figure 1, after the radar receives the echo 
signals from targets, based on the characteristic of tra-
ditional detection methods relying on the amplitudes 
of echo signals for target detection, the amplitudes of 
echo signals need to be enhanced first. Assuming that 
the radar transmits a linear frequency-modulated 
(LFM) signal with operating frequency f, pulse width 
τ, and frequency modulation slope K, the LFM signal 
can be expressed as

(1)

where A represents the intensity of the reflected sig-
nal, j is the imaginary unit, and rect(·) is the rectangu-
lar signal function.
To effectively highlight the amplitude characteristics 
of the target echo signal, pulse compression process-
ing needs to be performed on the received echo signal. 
According to the principle of matched filtering, for 
the transmitted signal as shown in (1), its matched fil-
ter h(t) can be expressed as

(2)

and the signal after pulse compression can be ex-
pressed as

(3)

where * represents the convolution operation.
Upon completion of the pulse compression process, 
the target echo data is fed into the CFAR detection 
algorithms, as graphically presented in Figure 2. As 
is evident from the figure, the CFAR detection mech-
anism utilizes a sliding window strategy for process-

Figure 1
Schematic workflow of the traditional CFAR detection methodology.
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figure, the CFAR detection mechanism 
utilizes a sliding window strategy for 
processing the input echo signal sequence. In 

each iteration, a specific segment of data 
from the echo signal sequence is extracted, 
and a determination is made as to whether 
the central cell within that segment harbors a 
target. 

The CFAR detection approach categorizes 
the data collected by each sliding window 
into three distinct types. First is the cell under 
test (CUT), which serves to assess whether 
the current detection window encompasses a 
target within the specific cell. Second is the 
guard cell (GC), whose fundamental function 
is to preclude the leakage of target energy 
into neighboring cells. Such leakage could 
otherwise inflate the detection threshold and 
result in missed detections. Third is the 
reference cell (RC), which is assumed to 
contain solely the background noise 
characteristic of the target's environment. 
Through a meticulous statistical analysis of 
the signal strength within these cells, an 
accurate estimate of the current CUT 
detection threshold can be derived. 

 
Figure 2  

Operational framework of CFAR detection 
with sliding window mechanism and 
threshold adaptation process 

Prior to the emergence of deep learning 
techniques, CFAR detection methods have 
long held a pivotal position in the realm of 
radar target detection and have been 
extensively implemented in engineering 

Original Echo Sequence Pulse Compression CFAR Detection Detection Result

x1 … xn T y1 … yn

Σ Σ

CA-CFAR：Z = (X+Y) / 2
SO-CFAR：Z = min(X,Y)
GO-CFAR：Z = max(X,Y)

Z

X Y

α αZ

Guard Cell

Comparer

Detection
Result

Cell Under Test

Reference Cell



579Information Technology and Control 2025/2/54

ing the input echo signal sequence. In each iteration, 
a specific segment of data from the echo signal se-
quence is extracted, and a determination is made as 
to whether the central cell within that segment har-
bors a target.
The CFAR detection approach categorizes the data 
collected by each sliding window into three distinct 
types. First is the cell under test (CUT), which serves 
to assess whether the current detection window en-
compasses a target within the specific cell. Second is 
the guard cell (GC), whose fundamental function is to 
preclude the leakage of target energy into neighboring 
cells. Such leakage could otherwise inflate the detec-
tion threshold and result in missed detections. Third 
is the reference cell (RC), which is assumed to con-
tain solely the background noise characteristic of the 
target's environment. Through a meticulous statisti-
cal analysis of the signal strength within these cells, 
an accurate estimate of the current CUT detection 
threshold can be derived.
Prior to the emergence of deep learning techniques, 
CFAR detection methods have long held a pivotal 
position in the realm of radar target detection and 
have been extensively implemented in engineering 
applications. Nevertheless, CFAR detection meth-
ods have consistently encountered formidable chal-
lenges. One of the key issues lies in the selection of 
the number of reference cells, which significantly 
impacts the detection performance. Additional-
ly, under diverse scenarios, determining the most 
suitable CFAR detection method among multiple 
options remains a complex task. The choice of the 

Figure 2    
Operational framework of CFAR detection with sliding 
window mechanism and threshold adaptation process
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method needs to be carefully tailored to the specific 
characteristics of the radar environment, such as the 
SNR, target distribution, and interference level, fur-
ther complicating the application process.

3. Two-Stage DSCResNet Detection
Figure 3 illustrates the real and imaginary compo-
nents of a target echo sequence with a SNR of 10 dB 
prior to pulse compression. In the traditional CFAR 
detection process, it is evident that target detection 
typically hinges on the signal amplitude. Neverthe-
less, as depicted in Figure 3, even before pulse com-
pression, the real and imaginary parts of the echo sig-
nal are capable of reflecting the phase characteristics 
of the chirp signal. This implies that there are poten-
tial information sources beyond the amplitude, which 
traditional CFAR detection methods may overlook, 
thus providing an opportunity for exploring more 
comprehensive detection strategies.

3.1 Network Structure
Figure 4 depicts the proposed two-stage deep neural 
network target detection process. The first stage net-
work draws on the design concept of the YOLO de-
tection network [2]. It partitions the input data into 
multiple uniform grids. Subsequently, after feature 
extraction using convolutional layers, a regression 
method is utilized to calculate the probability of a tar-

Figure 3  
Time-domain representation of raw radar echo 
components (SNR=10dB) showing preserved phase 
information in real and imaginary parts.
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3.1 Network Structure 
Figure 4 depicts the proposed two-stage 
deep neural network target detection process. 
The first stage network draws on the design 
concept of the YOLO detection network 
Error! Reference source not found.. It 
partitions the input data into multiple 
uniform grids. Subsequently, after feature 
extraction using convolutional layers, a 
regression method is utilized to calculate the 
probability of a target's presence in each grid, 
thereby achieving an initial approximation of 
the target's location. We term this as the 
coarse detection network. 

Based on the results of the coarse detection, 
sequences potentially containing targets are 
intercepted point by point through a sliding 
window method. The intercepted data is 
then fed into a deep convolutional network 
for target detection, which we refer to as the 
fine detection network. The coarse detection 
network mirrors the human visual system's 
rapid global scanning mechanism, while the 
fine detection network emulates the focused 
attention on specific localized regions. This 
hierarchical detection approach effectively 
strikes a balance between detection speed 
and accuracy, offering a more efficient 
solution for target detection tasks in complex 
scenarios. 
3.1.1 Coarse Detection Network 
In image target detection, the YOLO 
algorithm in target detection is not much 
accurate but improves the speed of detection 
Error! Reference source not found.. 
Considering the use of pixel-by-pixel 
detection in the second stage, to enhance the 
overall detection speed of the method, we 
have designed a coarse detection network 
with 7 convolutional layers with max pooling, 
inspired by YOLO’s grid-based regression, 
as shown in Figure 5. 
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get's presence in each grid, thereby achieving an ini-
tial approximation of the target's location. We term 
this as the coarse detection network.
Based on the results of the coarse detection, sequenc-
es potentially containing targets are intercepted 
point by point through a sliding window method. The 
intercepted data is then fed into a deep convolutional 
network for target detection, which we refer to as the 
fine detection network. The coarse detection network 
mirrors the human visual system's rapid global scan-
ning mechanism, while the fine detection network 
emulates the focused attention on specific localized 
regions. This hierarchical detection approach effec-

tively strikes a balance between detection speed and 
accuracy, offering a more efficient solution for target 
detection tasks in complex scenarios.

3.1.1 Coarse Detection Network
In image target detection, the YOLO algorithm in tar-
get detection is not much accurate but improves the 
speed of detection [9]. Considering the use of pix-
el-by-pixel detection in the second stage, to enhance 
the overall detection speed of the method, we have 
designed a coarse detection network with 7 convo-
lutional layers with max pooling, inspired by YOLO’s 
grid-based regression, as shown in Figure 5.

Figure 5 
Detailed layer configuration of the coarse detection network featuring seven convolutional layers with max pooling 
operations for rapid target region proposal.

Figure 4 
Architectural overview of the proposed two-stage detection framework.
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the signal can facilitate the observation of 
target echo characteristics. Thus, we 
decompose an echo signal sequence into its 
real and imaginary components and use 
them jointly as the input to the network. 
When the signal length is 4000, the network 
input can be represented as an image with 
dimensions of 1×4000×2. 

In the first layer, a convolution kernel of size 
1×11×2 is first applied to convolve the input 
data. This operation enables the interaction 
of information from the real and imaginary 
parts, ensuring that subsequent 
convolutional operations can concurrently 
extract features from both components. 
Subsequently, the input data proceeds 
through the remaining layers according to 
the predefined model for feature extraction, 
yielding a feature map of size 1×125×128. The 
output of each convolutional layer is 
activated by the rectified linear unit (ReLU) 
function to enhance the network's non-
linearity, which can be expressed as 

ReLU( ) max(0, )x x . (4) 

For the network's output part, we adopt 2 
fully connected layers as the output head. 
The sigmoid function is employed as the 
activation function, which is expressed as 

1Sigmoid( )
1 exp( )

x
x


 

. (5) 

The first fully connected layer consists of 128 
neurons, which is consistent with the depth 
of the final feature map. The second fully 
connected layer is designed to obtain the 
probability of a target echo signal in each of 
the 10 equal length segments after the input 
echo sequence is partitioned. Consequently, 
it has 10 neurons, with each neuron 
generating a network output value between 
0 and 1. 

The output of the first stage network is 
illustrated in Figure 6. Given that the input 
echo sequence has a length of 4000, each 
neuron output of the final output layer 
represents the probability of a target within 
400 detection units. In this study, we 
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illustrated in Figure 6. Given that the input 
echo sequence has a length of 4000, each 
neuron output of the final output layer 
represents the probability of a target within 
400 detection units. In this study, we 
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From the previous analysis, it is evident that separat-
ing the real and imaginary parts of the signal can fa-
cilitate the observation of target echo characteristics. 
Thus, we decompose an echo signal sequence into its 
real and imaginary components and use them jointly 
as the input to the network. When the signal length is 
4000, the network input can be represented as an im-
age with dimensions of 1×4000×2.
In the first layer, a convolution kernel of size 1×11×2 is 
first applied to convolve the input data. This operation 
enables the interaction of information from the real 
and imaginary parts, ensuring that subsequent convo-
lutional operations can concurrently extract features 
from both components. Subsequently, the input data 
proceeds through the remaining layers according to 
the predefined model for feature extraction, yielding 
a feature map of size 1×125×128. The output of each 
convolutional layer is activated by the rectified lin-
ear unit (ReLU) function to enhance the network's 
non-linearity, which can be expressed as

(4)

For the network's output part, we adopt 2 fully con-
nected layers as the output head. The sigmoid func-
tion is employed as the activation function, which is 
expressed as

(5)

The first fully connected layer consists of 128 neu-
rons, which is consistent with the depth of the final 
feature map. The second fully connected layer is de-
signed to obtain the probability of a target echo signal 
in each of the 10 equal length segments after the input 
echo sequence is partitioned. Consequently, it has 10 
neurons, with each neuron generating a network out-
put value between 0 and 1.
The output of the first stage network is illustrated in 
Figure 6. Given that the input echo sequence has a 
length of 4000, each neuron output of the final output 
layer represents the probability of a target within 400 
detection units. In this study, we generally define that 
if the output value of a neuron exceeds 0.5, it indicates 
that the probability of a target within the 400 detec-
tion units corresponding to that neuron is greater 
than 50%. This approach obviates the need for experi-
mental or speculative threshold determination.

3.1.2 Fine Detection Network
In the fine detection stage, we also employ the approach 
of intercepting local data point by point through slid-
ing windows as the input for target detection. Here, 
the size of the input data is decreased from 1×4000×2 
in the coarse detection network to 1×50×2. Thanks to 
the coarse detection network in the first stage, we have 
obtained the probability of each segment containing 
targets after evenly dividing the input data into 10 seg-
ments. Only the data segments with probabilities great-
er than 0.5 are likely to have targets. Consequently, only 
the data at these qualified positions need to be detected 
point by point, which can remarkably reduce the com-
putational complexity of precise target detection.
Furthermore, to further enhance the running speed 
of the method, in the fine - detection network, we uti-
lize the DSC to substitute conventional convolutional 
operations. DSC can reduce overfitting by minimizing 
redundant parameters, thus contributing to a more 
efficient fine-detection process.
DSC, initially proposed by François Chollet, has been 
subsequently and extensively applied in networks 
such as Xception [16] and MobileNet [18]. As illustrat-
ed in Figure 7, the fundamental concept of DSC lies in 
the decoupling of the spatial and channel dimensions 
of feature maps. By decomposing the convolutional 
operation into two independent convolutions, the net-
work can achieve comparable feature extraction results 
while substantially reducing the number of network 
parameters and enhancing the efficiency of the method.
In the context of single pulse detection, which de-
mands a comprehensive exploration of the detailed 
amplitude and phase features within the echo se-
quence, a challenge arises. As the number of con-
volutional layers increases, the detailed features 
extracted by the network tend to be smoothed out 

Figure 6 
Grid probability mapping visualization demonstrating the 
coarse detection network's output.
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3.1.2 Fine Detection Network 
In the fine detection stage, we also employ 
the approach of intercepting local data point 
by point through sliding windows as the 
input for target detection. Here, the size of 
the input data is decreased from 1×4000×2 in 
the coarse detection network to 1×50×2. 
Thanks to the coarse detection network in the 
first stage, we have obtained the probability 
of each segment containing targets after 
evenly dividing the input data into 10 
segments. Only the data segments with 
probabilities greater than 0.5 are likely to 

have targets. Consequently, only the data at 
these qualified positions need to be detected 
point by point, which can remarkably reduce 
the computational complexity of precise 
target detection. 

Furthermore, to further enhance the running 
speed of the method, in the fine - detection 
network, we utilize the DSC to substitute 
conventional convolutional operations. DSC 
can reduce overfitting by minimizing 
redundant parameters, thus contributing to a 
more efficient fine-detection process. 

Pointwise ConvolutionDepthwise Convolution

=

=

=

=
*

*
*

*

*
*

*
*

=

=

=

=

ę ę ę

Win

Hin

Din DoutDin

Wker
Hker

ę ę

Wout

Hout

Din

 

Figure 7 

DSC decomposition diagram showing spatial-channel separation with pointwise and depthwise 
convolution operations. The symbol * means convolutional operation. 

DSC, initially proposed by François Chollet, 
has been subsequently and extensively 
applied in networks such as Xception Error! 
Reference source not found. and MobileNet 
Error! Reference source not found.. As 
illustrated in Figure 7, the fundamental 
concept of DSC lies in the decoupling of the 
spatial and channel dimensions of feature 
maps. By decomposing the convolutional 

operation into two independent 
convolutions, the network can achieve 
comparable feature extraction results while 
substantially reducing the number of 
network parameters and enhancing the 
efficiency of the method. 

In the context of single pulse detection, 
which demands a comprehensive 
exploration of the detailed amplitude and 
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and lost. To fully leverage the features from different 
layers during the final classification process, we in-
troduce a shortcut path, similar to that in the resid-
ual network [24], after every two DSC layers. These 
components collectively form a DSC residual block 
(DSCResBlock). The structure of a single DSCRes-
Block is presented in Figure 8.
The structure of the fine detection network in the sec-
ond stage is illustrated in Figure 9. The fine detection 
network consists of a total of 5 DSCResBlocks, each 
of which contains depth-wise separable convolutions 
and residual shortcuts. Given that the fine detection 
network shares the same input echo sequence with 
the coarse detection network, yet its input is merely 
a partial signal cropped from the first stage. Conse-
quently, the search range for targets in the fine detec-
tion stage has been substantially reduced. Moreover, 
the echo features of weak and small radar targets do 
not occupy a large size range within the signal; thus, 
there is no necessity for pooling to acquire a larger re-
ceptive field. The DSCResBlock preserves weak tar-
get features via residual connections. These connec-

Figure 7
DSC decomposition diagram showing spatial-channel separation with pointwise and depthwise convolution operations. 
The symbol * means convolutional operation.

 

generally define that if the output value of a 
neuron exceeds 0.5, it indicates that the 
probability of a target within the 400 
detection units corresponding to that neuron 

is greater than 50%. This approach obviates 
the need for experimental or speculative 
threshold determination. 

0.05 0.09 0.82 0.11 0.31

1201-1600
Sampling 

Points

1601-2000
Sampling

Points

2001-2400
Sampling

Points

2401-2800
Sampling

Points

2801-3200
Sampling

Points

Containing Targets

0.71 0.03 0.28 0.95 0.03

401-800
Sampling 

Points

1-400
Sampling

Points

801-1200
Sampling

Points

3201-3600
Sampling

Points

3601-4000
Sampling 

Points  

Figure 6  

Grid probability mapping visualization demonstrating the coarse detection network's output. 
3.1.2 Fine Detection Network 
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evenly dividing the input data into 10 
segments. Only the data segments with 
probabilities greater than 0.5 are likely to 
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features from different layers during the final 
classification process, we introduce a 
shortcut path, similar to that in the residual 
network Error! Reference source not found., 
after every two DSC layers. These 
components collectively form a DSC residual 
block (DSCResBlock). The structure of a 
single DSCResBlock is presented in Figure 8. 

DSC Layer

DSC Layer

+

Input: x

ReLU

ReLU

x

 
Figure 8 

Structural diagram of DSCResBlock 
integrating depthwise separable convolutions 
with residual connections for feature 
preservation. 

The structure of the fine detection network in 
the second stage is illustrated in Figure 9. The 
fine detection network consists of a total of 5 
DSCResBlocks, each of which contains 
depth-wise separable convolutions and 
residual shortcuts. Given that the fine 
detection network shares the same input 
echo sequence with the coarse detection 
network, yet its input is merely a partial 
signal cropped from the first stage. 
Consequently, the search range for targets in 
the fine detection stage has been 
substantially reduced. Moreover, the echo 
features of weak and small radar targets do 
not occupy a large size range within the 
signal; thus, there is no necessity for pooling 
to acquire a larger receptive field. The 
DSCResBlock preserves weak target features 
via residual connections. These connections 
prevent gradient vanishing and ensure stable 
training on noisy data, which is crucial for 
accurate detection of weak and small radar 
targets. 
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Figure 9 

Fine detection network architecture with five cascaded DSCResBlocks and dual fully-connected layers for 
precise target/non-target classification. 

As shown in Figure 9, within the 
DSCResBlock, the input from the previous 
network is convolved to extract deeper 
features. Meanwhile, via the shortcut 

connection, the input information is 
incorporated into the output. The red lines in 
Figure 10 indicate the transmission path of 
hierarchical features from different layers 
within a single DSCResBlock. 
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Figure 10 

Feature propagation pathways within DSCResBlock highlighting multi-level feature integration through 
residual connections. 

The head part of the fine detection network 
is identical to that of the coarse detection 
network, comprising 2 fully connected layers. 
The first layer employs the sigmoid function, 
while the second layer uses the softmax 
function as the activation function, which can 
be expressed as 
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where xi represents the output value of the ith 
neuron, and N denotes the total number of 
neurons in that layer. In this case, N  = 2. 

In summary, the complete structure of the 
two-stage weak target single pulse detection 
neural network is presented in Table 1. 

Table 1  

Comprehensive architectural specifications of the two-stage DSCResNet detection network detailing layer 
names, kernel dimensions, activation functions, and output dimensionalities for both coarse and fine 
detection stages. 

Stage Layer Name Kernel Size Kernel Number Active Function Output Size 

Stage 1 

Convolutional Layer 1×11×2 16 ReLU 1×4000×16 
Max Pooling Layer 1×2 - - 1×2000×16 

Convolutional Layer 1×11×16 16 ReLU 1×2000×16 
Max Pooling Layer 1×2 - - 1×1000×16 

Convolutional Layer 1×11×16 32 ReLU 1×1000×32 
Max Pooling Layer 1×2 - - 1×500×32 

Convolutional Layer 1×1×32 16 ReLU 1×500×16 
Convolutional Layer 1×11×16 64 ReLU 1×500×64 
Max Pooling Layer 1×2 - - 1×250×64 

Convolutional Layer 1×1×64 32 ReLU 1×250×32 
Convolutional Layer 1×11×32 128 ReLU 1×250×128 
Max Pooling Layer 1×2 - - 1×125×128 

Fully Connected Layer - 128 Sigmoid 1×128 
Fully Connected Layer - 10 Sigmoid 1×10 

Stage 2 

DSC Layer 1×7×2 16 ReLU 1×50×16 
DSC Layer 1×7×16 32 ReLU 1×50×32 
DSC Layer 1×7×32 16 ReLU 1×50×16 
DSC Layer 1×7×16 32 ReLU 1×50×32 
DSC Layer 1×7×32 16 ReLU 1×50×16 

Fully Connected Layer - 10 Sigmoid 1×10 
Fully Connected Layer - 2 Softmax 1×2 
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tions prevent gradient vanishing and ensure stable 
training on noisy data, which is crucial for accurate 
detection of weak and small radar targets.
As shown in Figure 9, within the DSCResBlock, the 
input from the previous network is convolved to ex-

tract deeper features. Meanwhile, via the shortcut 
connection, the input information is incorporated 
into the output. The red lines in Figure 10 indicate the 
transmission path of hierarchical features from dif-
ferent layers within a single DSCResBlock.

Figure 9
Fine detection network architecture with five cascaded DSCResBlocks and dual fully-connected layers for precise target/
non-target classification.
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Figure 10
Feature propagation pathways within DSCResBlock highlighting multi-level feature integration through residual 
connections.
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The head part of the fine detection network is identi-
cal to that of the coarse detection network, compris-
ing 2 fully connected layers. The first layer employs 
the sigmoid function, while the second layer uses the 
softmax function as the activation function, which 
can be expressed as

(6)

where xi represents the output value of the ith neuron, 
and N denotes the total number of neurons in that lay-
er. In this case, N  = 2.
In summary, the complete structure of the two-stage 

weak target single pulse detection neural network is 
presented in Table 1.

3.2 Loss Function
Since the final output layer of the network employs 
the softmax function for classification and consists of 
two neurons, the output of one neuron represents the 
probability that the current input contains a target. 
Conversely, the output of the other neuron represents 
the probability that the input does not contain a tar-
get. From the mathematical expression of the softmax 
function, it is evident that these two probabilities are 
complementary, and their sum is always equal to 1.
In the context of the loss function, choosing the com-
monly used mean squared error (MSE) as the loss 

Stage Layer Name Kernel Size Kernel Number Active Function Output Size

Stage 1

Convolutional Layer 1×11×2 16 ReLU 1×4000×16

Max Pooling Layer 1×2 - - 1×2000×16

Convolutional Layer 1×11×16 16 ReLU 1×2000×16

Max Pooling Layer 1×2 - - 1×1000×16

Convolutional Layer 1×11×16 32 ReLU 1×1000×32

Max Pooling Layer 1×2 - - 1×500×32

Convolutional Layer 1×1×32 16 ReLU 1×500×16

Convolutional Layer 1×11×16 64 ReLU 1×500×64

Max Pooling Layer 1×2 - - 1×250×64

Convolutional Layer 1×1×64 32 ReLU 1×250×32

Convolutional Layer 1×11×32 128 ReLU 1×250×128

Max Pooling Layer 1×2 - - 1×125×128

Fully Connected Layer - 128 Sigmoid 1×128

Fully Connected Layer - 10 Sigmoid 1×10

Stage 2

DSC Layer 1×7×2 16 ReLU 1×50×16

DSC Layer 1×7×16 32 ReLU 1×50×32

DSC Layer 1×7×32 16 ReLU 1×50×16

DSC Layer 1×7×16 32 ReLU 1×50×32

DSC Layer 1×7×32 16 ReLU 1×50×16

Fully Connected Layer - 10 Sigmoid 1×10

Fully Connected Layer - 2 Softmax 1×2

Table 1 
Comprehensive architectural specifications of the two-stage DSCResNet detection network detailing layer names, kernel 
dimensions, activation functions, and output dimensionalities for both coarse and fine detection stages.
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metric can effectively facilitate the error propagation 
within the network. Notably, for the purpose of cal-
culation, it suffices to select the output of the neuron 
representing the probability of target presence. This 
approach simplifies the computational process while 
maintaining the integrity of the network's learning 
mechanism for accurate target classification.
During the training of the network, let Tk represent the 
target detection result of the kth input echo sequence 
segment of the second stage network. If the start of 
the input segment coincides with the start of the tar-
get echo, the ground truth is marked as 1, and in other 
cases, the ground truth is marked as 0. Then, when 
the output of the neuron representing the "presence 
probability of targets" in the output layer is o1k for the 
kth input segment, the MSE loss is expressed as

(7)

where S is the set of input segments which containing 
total of K segments.

3.3 Training Parameters
In contrast to the conventional stochastic gradient de-
scent method, the momentum-based method (SGDM) 
demonstrates a superior ability to prevent the network 
from getting trapped in local optima during the train-
ing process, thus avoiding the situation where further 
convergence is hindered. For this reason, SGDM is ad-
opted for neural network training in this paper.
The training parameters of the network are presented 
in Table 2.

As presented in the table, for the momentum pa-
rameter, the conventional empirical value of 0.9 was 
consistently utilized. The initial learning rate was 
set at a relatively small value of 0.05 to ensure the 
convergence of the training process. The maximum 
number of training epochs was set to 100. After 50 
epochs of training, the learning rate was reduced by 
half. This parameter setting allows the network to 
iterate and optimize rapidly at the start of training 
and eventually converge to the optimal solution with 
more refined step sizes.

4. Experiments
4.1 Experimental Data
This chapter presents experiments conducted us-
ing both simulated and real data of weak and small 
targets under various conditions. The real data was 
collected from an X-band drone detection radar. A 
LFM signal was employed, with a pulse width of 1 μs, 
a bandwidth of 20 MHz, and a pulse repetition fre-
quency of 8 kHz. The X-band radar was installed on a 
15-meter tower in an urban area. The drone utilized 
was a DJI Phantom 4, which flew at altitudes ranging 
from 10 to 50 meters, performing hover and linear 
flight trajectories. The echo sequence was sampled 
at a high data rate of 25 MHz, yielding an adjacent 
range cell spacing of approximately 6 meters. After 
manual data cleaning and sorting, a total of 3000 
real echo sequences were selected for testing. For 
each echo sequence, only about 300 valid data points 
were retained starting from the detection gate.
To reliably validate the method's performance and 
mitigate the influence of different signal parameters, 
the simulated data used for network training and ex-
perimentation adopted the same pulse width, signal 
bandwidth, and pulse repetition frequency as the real 
data. The detailed information is presented in Table 3.
The simulated echo sequence targets for testing have 
SNRs ranging from -20dB to 0dB. For each SNR val-
ue, 20,000 data samples are generated, with target 
positions randomly assigned. The data set employed 
for network training consists of 10,000 echo sequenc-
es, all having a constant SNR of 0dB. This choice is to 
ensure the network learns robust features of target 
echoes under minimal noise interference. To mitigate 
domain mismatch, we augmented training data with 

Parameter Name Value

Learning Method SGDM

Momentum Parameter 0.9

Initial Learning Rate 0.05

Learning Rate Drop Factor 0.5

Learning Rate Drop Period 50

Maximum Epoch 100

Batch Size 10

Table 2 
Training hyperparameter configuration for neural network 
optimization including SGDM settings, learning rate 
scheduling, and batch specifications.
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additive white Gaussian noise spanning -10 dB to 0 
dB during fine-tuning. The two-stage networks are 
trained separately using data that match their respec-
tive input sizes.

4.2 Evaluation Metrics
To precisely assess the detection performance of di-
verse target detection methods, it is essential to first 
elucidate the evaluation metrics for method perfor-
mance. In binary classification problems like target 
detection, the receiver operating characteristic (ROC) 
curve is extensively utilized to evaluate the perfor-
mance of methods. For target – detection methods, 
on the ROC curve, the false positive rate (FPR) on the 
horizontal axis represents the proportion of falsely de-
tected targets among all non - target detection points. 
Meanwhile, the true positive rate (TPR) on the verti-
cal axis denotes the ratio of correctly detected targets 
to the total number of targets. This ROC-based eval-
uation framework provides a comprehensive and in-
tuitive way to compare the performance of different 
target detection algorithms, enabling researchers to 
better understand the trade-off between the correct 
detection of targets and the occurrence of false alarms.
Suppose that there are total of NA targets to be detect-
ed in the set A = {a1, a2, 

...
 , aNA

}, and total of NB targets 
detected by the method in the set B = {b1, b2, 

...
 , bNB

}, 
the expressions for these two metrics are as

(8)

Parameter Name Value

Carrier Frequence 10 GHz

Pulse Width 1 μs

Pulse Repetition Frequence 8 kHz

Bandwidth 20 MHz

Sampling Rate 25 MHz

Range Resolution  6 m

SNR for Testing Data From -20dB to 0dB

SNR for Training Data 0dB

Table 3 
Simulation parameters for radar echo generation matching 
real X-band system characteristics.

(9)

where Dis(·) is the function that computes the Euclid-
ean distance between two elements, NALL is the total 
point number of echo sequences.
The range resolution of radar detection signals can be 
expressed as

(10)

where c is the speed of light of 3 × 108 m/s, B is the band-
width of the signal and DT is the distance threshold used 
to determine whether the detected target is correct.
According to this equation, when the bandwidth used for 
both real and simulated data is 20 MHz, the range res-
olution of the echo can be calculated as 7.5 meters. The 
interval between adjacent distance sampling points is 6 
meters for the sampling rate of 25MHz. Therefore, the 
difference between the detected target position and the 
true target position are not supposed to exceed 1 point. 
Therefore, when calculating TPR  and FPR, the distance 
threshold DT in (8) and (9) is set to 1.
The area under the curve (AUC) of the ROC curve offers 
a single-valued metric that encapsulates the overall per-
formance of a classifier across all possible thresholds. 
The value of AUC spans from 0 to 1. A perfect classifi-
er exhibits an AUC of 1. This implies that for each false 
positive, there is a corresponding true positive. As the 
threshold is adjusted, the TPR escalates significantly 
faster than the FPR. Conversely, a random classifier has 
an AUC of 0.5, signifying that the TPR and FPR increase 
at an identical rate as the threshold varies.
The advantage of using AUC as a metric in target detec-
tion is that it is threshold-independent. AUC takes into 
account all possible thresholds, providing a more com-
prehensive and fair comparison between different ob-
ject detection algorithms. It gives a better understand-
ing of how well the algorithm can distinguish between 
positive and negative samples, regardless of the specific 
threshold used for making the classification decision.

4.3 Experiments on Simulated Data
Prior to presenting the experimental results, it is im-
portant to note that all experiments in this paper were 
implemented using Matlab software. They were con-
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ducted not only on simulated data in this section but 
also on real data in subsequent experiments, all under 
the same computer configuration (Intel® Core™ i7-
4790CPU@3.6GHz).
Under different SNR conditions, the detection thresh-

olds of each method were adjusted to plot the ROC 
curves, as depicted in Figure 11. The corresponding 
AUC values, obtained by integrating these curves, are 
presented in Table 4. Evidently, when the SNR of the 
target echo is -20 dB, the ROC curves of the CFAR 
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methods can accurately detect the target, 
with AUC values above 0.93. We also 
compared the proposed method with one 
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the method proposed consistently 
outperforms others in terms of detection 
performance at low SNRs when using only 
single pulse echo signals. 
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Figure 11 Comparative ROC curves of the proposed method and CFAR detection methods on the simulated data: (a) 
ROC curves for signals with SNR of -20dB; (b) ROC curve for signals with SNR of -15dB; (c) ROC curves for signals 
with SNR of -10dB; (d) ROC curves for signals with SNR of -5dB; (e) ROC curves for signals with SNR of 0dB. 

Table 4 

Quantitative AUC comparison across SNR levels (-20dB to 0dB) demonstrating performance superiority of 
proposed method over CFAR baselines and prior neural approaches. 

 AUC 
SNR -20dB -15dB -10dB -5dB 0dB 

CA-CFAR [13] 0.5340 0.5916 0.7449 0.9448 0.9870 
SO-CFAR [21] 0.5331 0.5898 0.7394 0.9332 0.9759 

GO-CFAR [21] 0.5333 0.5906 0.7427 0.9438 0.9986 

Wang et al. [28] 0.7734 0.7958 0.8491 0.9447 0.9872 

The Proposed Method 0.8256 0.8366 0.8710 0.9446 0.9897 

4.4 Experiments on Real Data 
For real data, we compare the ROC curves in 
Figure 12 and calculate the AUC values in 
Table 5 on the entire real dataset. 
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Figure 11 
Comparative ROC curves of the proposed method and CFAR detection methods on the simulated data: (a) ROC curves for 
signals with SNR of -20dB; (b) ROC curve for signals with SNR of -15dB; (c) ROC curves for signals with SNR of -10dB; 
(d) ROC curves for signals with SNR of -5dB; (e) ROC curves for signals with SNR of 0dB.

AUC

SNR -20dB -15dB -10dB -5dB 0dB

CA-CFAR [13] 0.5340 0.5916 0.7449 0.9448 0.9870

SO-CFAR [21] 0.5331 0.5898 0.7394 0.9332 0.9759

GO-CFAR [21] 0.5333 0.5906 0.7427 0.9438 0.9986

Wang et al. [28] 0.7734 0.7958 0.8491 0.9447 0.9872

The Proposed Method 0.8256 0.8366 0.8710 0.9446 0.9897

Table 4
Quantitative AUC comparison across SNR levels (-20dB to 0dB) demonstrating performance superiority of proposed 
method over CFAR baselines and prior neural approaches.
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methods are nearly straight lines with a 45-degree 
slope, and the AUC values are merely around 0.53, 
essentially losing their target detection capabilities. 
In contrast, the AUC value of the proposed method 
can be maintained above 0.8. As the SNR of the target 
echo increases, the AUC values of both the proposed 
method and the CFAR detection methods gradually 
improve. Even when the SNR reaches -10 dB, the AUC 
value of the proposed method is still significantly su-
perior to that of the CFAR detection methods. When 
the SNR is sufficiently high (above -5dB), all detection 
methods can accurately detect the target, with AUC 
values above 0.93. We also compared the proposed 
method with one existing state-of-the-art neural net-
work methods [28]. The results clearly show that the 
method proposed consistently outperforms others in 
terms of detection performance at low SNRs when 
using only single pulse echo signals.

4.4 Experiments on Real Data
For real data, we compare the ROC curves in Figure 
12 and calculate the AUC values in Table 5 on the en-
tire real dataset.
As can be seen from Figure 12 and Table 5, the pro-
posed method can achieve higher TPR under all FPR 
conditions, so that the AUC is around 30% lager than 
CFAR detection methods which reaches 0.8317. 

Figure 12
ROC curves of the proposed method and CFAR variants on 
real data. The proposed method achieves an AUC of 0.8317, 
outperforming CA-CFAR (AUC=0.5704) and Wang et al. 
(AUC=0.7918).
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architecture versus single-stage implementation at 
-20dB SNR.
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4.5 Ablation Experiments 
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method without the first stage coarse 
detection network, respectively. As can be 
observed from the figure, the AUC value is 
smaller for the method without the coarse 
detection network compared to the proposed 
method. This is because, in the proposed 
method, the first-stage coarse detection 
delineates the approximate area where the 
target exists under relatively relaxed 
conditions. This allows the avoidance of 

detecting areas that are unlikely to contain 
the target in the second-stage fine detection. 
Consequently, under the same TPR 
conditions in the second-stage fine detection, 
when the false alarm probability is identical, 
the proposed method can achieve a 
reduction in the FPR.  
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Table 5 

Comparison of AUCs of different detection methods on the real data. 
 AUC 

CA-CFAR [13] 0.5704 
SO-CFAR [21] 0.5686 
GO-CFAR [21] 0.5699 
Wang et al. [28] 0.7918 

The Proposed Method 0.8317 

Table 6 presents the average time 
consumption for 1000 detections on echoes 
containing a single detection target, using the 
proposed method and the method without 
the first-stage. Additionally, the table lists the 
average single detection time of the CA-
CFAR detection method for comparison. As 
can be seen from the results in Table 6, deep-
learning-based methods consume 
substantially more time than the CA-CFAR 
method. 

Notably, the proposed method, by 
incorporating a fast-running coarse detection 
network, reduces the data range required for 
fine detection, thereby significantly 
enhancing the algorithm's computational 
speed. The underlying principle is that the 
coarse detection stage shrinks the search 
space by 90%, enabling the fine detection 
network to process merely 10% of the 
original data volume. This hierarchical data 
pruning leads to a 73.7% reduction in 
inference time. 

Table 6 

Computational efficiency analysis comparing inference times between full two-stage system, single-stage 
variant, and traditional CFAR implementation. 

 Average Time Consumption 
The Proposed Method 7.86ms 

Method without the First Stage 28.8ms 
Wang et al. [28] 31.17ms 
CA-CFAR [13] 1.23ms 

4.5 Ablation Experiments
Figure 13 presents the ROC curves for simulated echo 
signals with an SNR of -20dB, obtained using the pro-
posed method and the method without the first stage 
coarse detection network, respectively. As can be ob-
served from the figure, the AUC value is smaller for the 
method without the coarse detection network compared 
to the proposed method. This is because, in the proposed 
method, the first-stage coarse detection delineates the 
approximate area where the target exists under rela-
tively relaxed conditions. This allows the avoidance of 
detecting areas that are unlikely to contain the target 
in the second-stage fine detection. Consequently, under 
the same TPR conditions in the second-stage fine detec-
tion, when the false alarm probability is identical, the 
proposed method can achieve a reduction in the FPR. 

AUC

CA-CFAR [13] 0.5704

SO-CFAR [21] 0.5686

GO-CFAR [21] 0.5699

Wang et al. [28] 0.7918

The Proposed Method 0.8317

Table 5
Comparison of AUCs of different detection methods on the 
real data.
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Table 6 presents the average time consumption for 
1000 detections on echoes containing a single de-
tection target, using the proposed method and the 
method without the first-stage. Additionally, the 
table lists the average single detection time of the 
CA-CFAR detection method for comparison. As can 
be seen from the results in Table 6, deep-learning-
based methods consume substantially more time 
than the CA-CFAR method.
Notably, the proposed method, by incorporating a 
fast-running coarse detection network, reduces the 
data range required for fine detection, thereby sig-
nificantly enhancing the algorithm's computation-
al speed. The underlying principle is that the coarse 
detection stage shrinks the search space by 90%, en-
abling the fine detection network to process merely 
10% of the original data volume. This hierarchical data 
pruning leads to a 73.7% reduction in inference time.

4.6 Discussion
The experimental results on both simulated and real 
data demonstrate that the method proposed in this 
paper consistently showcases excellent target de-
tection performance in low SNR echoes. It signifi-
cantly outperforms traditional CA-CFAR detection 
algorithms. Additionally, ablation experiments fully 
illustrate the crucial role of the coarse detection net-
work within the two-stage detection network of our 
proposed method. By employing the coarse detection 
network, not only is the overall efficiency of the algo-
rithm enhanced, but the ROC curve also indicates a 
marginal improvement in the algorithm's target de-
tection performance.
Nevertheless, since the algorithm in this study is neu-
ral-network-based, it has stringent requirements re-

Average Time  
Consumption

The Proposed Method 7.86ms

Method without the First Stage 28.8ms

Wang et al. [28] 31.17ms

CA-CFAR [13] 1.23ms

Table 6
Computational efficiency analysis comparing inference 
times between full two-stage system, single-stage variant, 
and traditional CFAR implementation.

garding the format and length of the input data. When 
the pulse width or bandwidth of the radar signal var-
ies, which causes a change in the length of the echo 
sequence, the network must be retrained to achieve 
optimal detection performance.

5. Conclusion
The proposed two-stage DSCResNet framework 
represents a substantial advancement in radar weak 
target detection, especially for low altitude drones 
operating in cluttered environments. Theoretically, 
this research demonstrates the feasibility of integrat-
ing a coarse-to-fine hierarchical processing approach 
with raw radar signal analysis, thereby circumvent-
ing the limitations of traditional methods that rely 
on preprocessing. By harnessing DSC and residual 
connections, the method effectively strikes a balance 
between computational efficiency and feature preser-
vation, filling a crucial void in deep-learning applica-
tions for radar systems.
In practical terms, the framework attains a 20% im-
provement in the detection rate at -20dB SNR com-
pared to the CA-CFAR method. Moreover, it reduces the 
inference time by a factor of 3.66 relative to single-stage 
networks, enabling real time deployment in scenarios 
such as urban surveillance and border security.
The main contributions of this paper are three-fold:
1 Novel architecture: A two-stage design emulating 

human visual perception. The coarse detection 
stage, inspired by YOLO's grid regression, rapid-
ly localizes targets, while the fine detection stage 
refines the classification. This design reduces the 
computational load by 73.7%.

2 Phase-aware feature extraction: The DSCResNet 
preserves both amplitude and phase coherence 
in weak targets. It achieves an AUC of 0.826 at 
-20dB SNR, representing a 54.7% improvement 
over CA-CFAR.

3 Real data validation: Robust performance on 
X-band radar data (AUC=0.8317) under diverse 
clutter conditions validates the operational viabil-
ity of the proposed method.

In view of the limitations of the method proposed 
in this article, which necessitates the use of fixed-
size data and targeted training for different signal 
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waveforms, future research will focus on developing 
dynamic input size adjustment algorithms to adapt 
to variable pulse widths. Simultaneously, edge opti-
mization is required for the algorithm to deploy the 
quantized DSCResNet on FPGA platforms, thereby 
achieving sub-millisecond latency.

In summary, this work bridges the gap between deep 
learning efficiency and radar signal specificity, pre-
senting a scalable solution for next generation sur-
veillance systems. By addressing both theoretical and 
practical challenges, it paves the way for future inno-
vations in adaptive, multi-sensor target detection.
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