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The evaluation of regional pulmonary ventilation function is of significant clinical value, particularly in
the initial diagnosis of pulmonary disorders, staging assessment, and personalized treatment planning.
This study proposes a multi-scale VMamba attention registration network (MS-VMANet) to predict
4DCT pulmonary ventilation changes using unsupervised learning registration. MS-VMANet primarily
integrates the efficient visual mamba attention, which captures long-range feature information globally,
and the multi-head dilated regional attention improves deformation field prediction via aggregating multi-
scale contextual features through dilated convolutions and attention mechanisms. Then, the deformation
fields were calculated using the Jacobian determinant to generate images that reflect lung ventilation dis-
tribution to assess regional lung ventilation function. According to the experimental findings, the MS-
VMANet performs better in terms of registration accuracy and performance, providing a reliable technical
means for assessing regional pulmonary ventilation function.
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1. Introduction

Lung cancer is currently one of the malignant tu-
mors with the highest incidence and mortality rates
worldwide, seriously affecting human health and
survival [4]. Radiotherapy has become an important
means of treating lung cancer. However, radiothera-
py may cause the normal tissues of the human body
to be affected by toxic complications, triggering Ra-
diation-induced Lung Injury (RILI) [2], which has
a significant impact on patients’ lives during or af-
ter radiotherapy. The research by Vinogradskiy et
al. [44] indicates that during radiotherapy, the risk
of RILI can be reduced by selectively avoiding the
hyperventilated areas of the lungs. Therefore, accu-
rately assessing pulmonary ventilation function has
become a key link in the diagnosis and management
of pulmonary disorders. Pulmonary ventilation
assessment can comprehensively reflect the lung
function status of the patient, which helps reduce
the side effects related to radiotherapy and improve
the therapeutic effect.

Traditional imaging techniques like MRI, PET, and
SPECT can be utilized to measure regional lung
ventilation [1]. However, all these methods have in-
evitable limitations: Firstly, radioactive substances
need to be inhaled or injected as tracers, which pos-
es a potential risk of radiation exposure. Secondly,
these imaging technologies usually rely on complex
equipment and operation procedures and are costly,
which limits their application in medical diagnosis
and treatment.

With the development of 4DCT [15], using image
registration technology to evaluate the regional ven-
tilation function of 4DCT images has emerged as
a key method within medical image analysis. This
method performs deformable registration on 4DCT
scans of the lungs at various breathing stages to
obtain a deformable field that describes the spatial
transformation relationship of lung pixels. Then, the
distribution map of the ventilation function of each
area of the lungs is obtained by calculating the Jaco-
bian determinant of the deformation field. There-
fore, precise lung image registration plays a critical
role in evaluating pulmonary ventilation function.

Traditional lung image registration methods usual-

ly regard registration as a process of optimizing the
objective function. By solving the optimal solution
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of spatial geometric transformation, the two images
can achieve the best matching in space. Commonly
used traditional registration methods such as cubic
B-spline [29], elastomer models [3], and diffusion
models [42], although they have high registration
accuracy, have limited their promotion in real ap-
plications because of the significant computational
cost and reliance on manual parameter adjustment.
The rapid evolution of deep learning technology has
brought new breakthroughs to image registration.
Neural network models such as VoxelMorph [4],
VoxelMorph++ [19], FCN [12], DenseNet [22], and
GraphRegNet [16] perform well in the task of lung
image registration. However, since these models rely
on the estimation of a single deformation field, they
are unable to effectively handle large-scale defor-
mations, resulting in a decrease in the registration
accuracy of the models. To solve these problems,
researchers have begun to adopt multi-stage and
multi-scale registration models in Lung image regis-
tration, such as RCN [47], RNN [18], LapIPNet [32],
DualPRNet [25], mIVIRNET [21], Lung-CRNet [31],
PRNet [45], and DefTransNet [33], etc. Although
these methods have remarkable effects, they have
deficiencies in capturing long-distance spatial de-
pendencies in images, resulting in a decrease in their
accuracy when dealing with complex deformations.

Therefore, Transformer is increasingly used in im-
age registration, like TransMorph [6] and Trans-
Match [7]. In lung image registration, respiratory
motion induces substantial anatomical variations in
CT images acquired during various breathing stages.
Transformer-based methods are highly effective at
capturing long-range dependencies. However, they
may struggle to effectively extract global contextu-
al information when handling complex lung defor-
mations. Meanwhile, the Transformer usually has a
high computational cost, posing additional challeng-
es for real-time applications.

To handle these limitations, this study presents a
novel multi-scale VMamba attention registration
network (MS-VMANet) for the accurate assessment
of regional lung ventilation. MS-VMANet introduc-
es multi-scale feature extraction and hierarchical
deformation field optimization strategies, effective-
ly fusing global context information and local detail
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features, improving the precision of lung registra-
tion, and thereby enhancing the accuracy of regional
lung ventilation function assessment. The main con-
tributions of this study are summarized as follows:

1 We propose an efficient visual mamba attention
(EVMA) module for image feature extraction.
EVMA can capture long-distance spatial relation-
ships and global information while reducing the
complexity of the model.

2 We propose a multi-head dilated regional attention
(MH-DRA) module. MH-DRA can exponentially
increase the receptive field and enhance the cap-
ture of long-range dependencies, thereby improv-
ing the precision of deformation field estimation.

3 We conducted experiments on a publicly available
4DCT dataset of the lungs. According to the ex-
perimental data, the MS-VMANet has the highest
registration accuracy. Meanwhile, by using the ob-
tained deformation field with higher accuracy, its
Jacobian determinant is further calculated to gen-
erate a high-precision pulmonary ventilation func-
tion map, thereby achieving a more precise evalua-
tion of regional pulmonary function.

2. Related Work

2.1. Calculation of Image Registration-Based
Lung Ventilation Imaging

Regional lung ventilation assessment based on im-
age registration is a rapidly developing technique
in radiation oncology, with broad application pros-
pects. Currently, the computation of pulmonary
ventilation images primarily relies on two main
approaches: the Jacobian approach [37, 9] and the
Hounsfield Unit (HU) approach [15, 26, 30]. The
method based on the Jacobian to obtain the pul-
monary ventilation image involves computing the
Jacobian determinant of the deformation field via
deformable image registration (DIR), without par-
ticularly considering the values of the initial CT
image. The method based on HU relies on the re-
constructed images of various breathing stages and
is founded on the linear combination model of lung
tissue represented as air and "tissue” components,
which infers the changes in lung respiration vol-
ume by comparing HU values.
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Studies on evaluating pulmonary ventilation func-
tion using these two methods have been widely car-
ried out. Reinhardt et al. [37] used the Jacobian de-
terminant of the deformation field obtained through
registration for the purpose of measuring regional
lung ventilation changes. Ding et al. [9] presented an
approach to calculating the ventilation changes in
the lung regions. This method matches the maximum
expiratory phase of the 4DCT image to the maximum
inspiratory phase through the Jacobian determinant,
thereby obtaining the ventilation conditions of the
lungs in the two stages. Guerrero et al. [15] obtained
the ventilation of the lungs by quantifying the chang-
es in voxel density at the two endpoints of the respira-
tory cycle and using the changes in HU. Kipritidis et
al. [26] presented a method for calculating pulmonary
ventilation volume by directly scaling the HU value.
Experiments show that the resulting ventilation im-
ages have significant potential for evaluating the air
volume changes in lung regions. Li et al. [30] present-
ed a novel approach to calculating lung ventilation
by proportionally combining the recorded HU values
with the locally scaled Jacobian determinant, there-
by improving the registration accuracy and making it
more suitable for describing lung deformation.

2.2. Lung Image Registration Based on Deep
Learning

At present, lung CT registration techniques utilizing
deep learning can be classified as supervised regis-
tration methods as well as unsupervised registration
methods. Supervised registration approaches need
genuine deformation fields as labeled data in the
training process. In contrast, unsupervised registra-
tion methods rely only on image data for training and
do not require additional annotation information.
Teng et al. [41] utilized a supervised convolutional
network for registering adjacent breathing phases,
thereby obtaining the corresponding deformation
field. Foote et al. [13] designed a patient-specific
motor domain method combined with deep convolu-
tional neural networks for accomplishing 2D-3D de-
formable lung registration. However, the acquisition
of deformation fields by these supervised registra-
tion methods is usually costly, and at the same time,
the quality of the deformation field greatly affects
the registration accuracy. Thus, the research focus
of image registration has shifted to the unsupervised
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registration approach that does not rely on the actu-
al deformation field.

The unsupervised registration method updates net-
work parameters by optimizing the dissimilarity
of fixed and warped images after spatial transfor-
mation. Firstly, by inputting the fixed image X, and
the moving image X,, into the deformable image
registration network, the corresponding deforma-
tion field ¢ is obtained. Then, ¢ warps X, via Spatial
Transformer Networks (STN) [24] to achieve the
deformation processing of the image and thereby
obtain the warped image X,. Finally, the network
parameters are iteratively updated by calculating
the similarity measure between X, and X,. The de-
formable registration network is deemed optimized
when the similarity reaches its maximum. The de-
tailed implementation process is illustrated in Fig-
ure 1, where L, (X, ° ¢, X)) and L_,,,,($) represent
the registration loss functions.

Figure 1
Image registration framework based on unsupervised
learning method.
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3. Methodology

3.1. Overview of the MS-VMANet
Architecture

We present a multi-scale VMamba attention regis-
tration network (MS-VMANet), which consists of
two primary components: an efficient visual mam-
ba attention (EVMA) encoder for feature extraction
and a multi-head dilated regional attention (IMH-
DRA) decoder for deformation field generation, as
illustrated in Figure 2. Table 1 summarizes the key
notations employed throughout this paper.
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A five-level shared-weight pyramidal network com-
posed of EVMA modules, with channel numbers of
16, 32, 64, 128, and 256, serves as the encoder. Given
the fixed images X; € R and the moving images
X, €ER" the EVMA encoder takes them as inputs
and extracts features to generate a series of corre-
sponding image features: F,, F,, F;, F,, and F, for the
fixed image, and M,, M,, M,, M,, and M; for the mov-
ing image. This process can be expressed as:

F = fEiVMA (F;‘—l ), (€]
M, sziVMA(Mi—l)' ®
where i€ {1,2,3,4,5}, and F, and M, represent the ex-

tracted features of fixed and moving images in the
i-th layer of the EVMA module, respectively.

During the decoder stage, the deformation field ¢ is
initially generated by feeding F, and M; into the MH-
DRA module, as follows:

¢5 :fMH-DRA(Fs’Ms)' 3

Subsequently, ¢ is used to warp M, via the STN,
resulting in the warped feature M’,, as described
below:

M, =STN(M,, ). @
The deformation field ¢, is then created by passing

F,and M’, into the MH-DRA module, as illustrated
below:

@, = frnora (FL:M;) ®)

This process is repeated iteratively, repeated for
i=3,2,1, as follows:

¢i:fMH-DRA(F;5M;), Q)
M, =STN(M,,$.,). @

Finally, the STN is used to apply ¢, to X, yielding X,
as expressed below:

X, =8TN(X,,9). ®)
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3.2. Efficient Visual Mamba Attention Module

The EVMA module consists of Visual Mamba
(VMamba) [48] and a dual-stream spatial-channel at-
tention block (DS-SCAB) [38], as illustrated in Figure
3. The EVMA module enhances the capture of distant
spatial relationships without introducing additional
parameters or computational overhead, while concur-
rently emphasizing spatial locations and channel fea-
tures within the feature maps. This capability allows
the traditional VMamba to extract global contextual
information, which improves the deformation field
estimate and lung image registration task accuracy.

Specifically, the input feature G R is processed
through two parallel branches. In the first branch,
a linear layer, deep convolution, SiLLU function, 2D
selective scanning mechanism (2D-SSM), and nor-
malization layer are applied, as described below:

G, = LNorm(2D-SSM(SiLU (DWConv(Linear(G)))))- (9)

In the second branch, the DS-SCAB is utilized to
extract channel and spatial feature information, fol-
lowed by the SiLU activation function. Specifically,
the input feature G € R™"4is processed through two
shared-weight attention modules to extract channel

Figure 2
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and spatial features. These features are then fused
using two convolutional layers (3x3x3 Conv and
1x1x1 Conv) to produce the output feature, which is
passed through the SiLU activation function to gen-
erate the ultimate output G,:

Gc = CA(Qshared K red s I/L‘hannel)
0K (10)

_ V shared ~ ™ shared ) ’

channel

«Soft max(

Gs = SA(Qshured > Ksharezl > I/spal[ul)

Ko an
=V paiia *SOf max(%)
G, =SiLU(Conv,, ,(Conv, , ,(G. +G,))) )

where CA and SA represent the channel attention
and spatial attention mechanisms, respectively,
while G, and G, are the corresponding attention
maps. Qu.ea = WG, Kod = WEG, and V.. = WYG
represent the shared query, key, and value vectors,
with W, WX, and WV being their respective projec-
tion weights. V..., = WYG and V, = WVG represent
the channel value layers and space value layers, re-
spectively, each with a vector size of d.

Proposed MS-VMANet architecture. (X,, X,,, and X, represent the fixed image, the moving image, and the warped image,
respectively. F,, F,, F5, F,, F|, and Mg, M, M, M,, M, represent the features extracted from the fixed images and the moving
images at each level, respectively. M’,, M’,, M’,, and M’ denote the warped moving image features at each level. ¢s, ¢, d5, 0., d,

are the deformation fields obtained at each level.).
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Then, the outputs from the two branches are com-
bined using the Hadamard product to generate the
final output G_ , as illustrated below:

out?

G,, = Linear(G, ©G,). 13

3.3. Multi-Head Dilated Regional Attention
Module

Generating an accurate deformation field is es-
sential for lung image registration. It is essential

Table 1
Notations and their definitions.
Notation Definition
X, The fixed image
X, The moving image
X, The warped image
O; The deformation field in the i-th layer
Ly, The spatial regularization term of ¢
Lroom The similarity measurement term of ¢
h The height of the input feature
W The width of the input feature
d The depth of the input feature
c The number of channels of the input feature
F, The features of X;in the i-th layer
M, The features of X in the i-th layer
M The processed features of X in the i-th layer
G The input feature of EVMA
G, The channel attention map of EVMA
G, The spatial attention map of EVMA
Q The query vector
K The key vector
A% The value vector
We The projection weight matrix of Q
WK The projection weight matrix of K
WY The projection weight matrix of V
V. The channel attention value vector

channel
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for ensuring precise alignment associated with
fixed and moving images. Thus, we employ the
multi-head dilated regional attention module
(MH-DRA) [17], as illustrated in Figure 4. The
MH-DRA module expands the regional attention
mechanism of neighborhood attention to sparse
global attention with reduced restrictions. This
approach captures a broader global context while
significantly expanding the receptive field, there-
by enabling more precise generation of the defor-
mation field.

Notation Definition
Vipatial The spatial attention value vector
m Number of attention heads in the MH-DRA
) The dilation factor of the MH-DRA
g(x) The kxkxk neighborhood of voxel x
B The learnable relative position bias
A The regularization parameter of the loss function
pi The voxel of index i
X, X, with the local average pixel value subtracted
52; X, with the local average pixel value subtracted
U.(A) The estimatedldefo'rmation fleld components in the
X x direction at point A (x,y, z)
U,(A) The estimated'defo'rmation ﬁeld components in the
y direction at point A (x,y, z)
U.(A) The estimat?d de.formatic.)n components in the z
z direction at point A (x,y, z)
u®) Displacements in the direction of x
v(*) Displacements in the direction of y
w(*) Displacements in the direction of z
Sx; The regions of interest of X;
Sxi The regions of interest of X,
e The mean values of X,
Ux,y The mean values of X,
Ox; The standard deviations of X,
Ox,, The standard deviations of X,
cl A constant

c A constant
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Given the inputs fixed image features F € R™4and
moving image features M € R™¥*9, the correspond-
ing query vector Q and key vector K are obtained
through linear projection and layer normalization,
as illustrated below:

QO = LNorm(LProj(F)), (14)
K = LNorm(LProj(M)), (15)

where Q, K € R dm yith h, w, d, and ¢ denoting
the height, width, depth, and number of channels
of the input features, respectively. m represents the
count of attention heads in MH-DRA.

Next, the m-th attention head'’s attention map can be
computed using the formula below:

AM] = Softmax(Q (K ) +B"(x.g° (),  (6)

where 6 denotes the dilation factor, g(x) represents
the kxkxk neighborhood of voxel x, and B € R™k<k<k
represents a learnable relative position bias.

Then, the deformation field is weighted using AM to
generate a series of sub-deformation fields. These
sub-deformation fields, computed from each atten-
tion head, are integrated through a 3D convolution

Figure 3
Schematic diagram of EVMA module structures.
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Figure 4
The structure of the MH-DRA module.
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layer (3x3x3 Conv) to generate the deformation field
¢, for the i-th level, as illustrated below:

@" =AM} -V, an
@, =Conv,_, , (Concat((bil,gbiz,ﬁ, ...... ,qﬁi'"’l,qﬁi’” ). 8

3.4. Loss Lunction

In this experiment, the overall loss function L, is
composed of two components: L, . enforces spatial

Linear

Linear
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regularization on the deformation field produced by
the registration network, ensuring its smoothness.
Meanwhile, L evaluated the similarity among the
fixed and warped images. The definition of L _is as
follows:

sim

L, (X, X,.0)=

¢ 22X () =X, (D)X, ) - X, (P (9)
% 2P (X, ()= X (P (X, ((p) = X, (#(p))

where X;and X, refer to the fixed and moving imag-
es, respectively. ¢ represents the deformation field,
pi represents a voxel with index i, )/(\f denotes the
fixed image with the local average pixel value sub-
tracted, and )/(; denotes the moving image with the
local average pixel value subtracted.

During network training, discontinuous deforma-
tion fields are often generated as a result of optimiz-
ing the image similarity measure. To prevent over-
lapping in the predicted deformation fields, a spatial
smoothness constraint is typically incorporated.
The formula is as follows:

L@ =D |IVop)| | 20)

peQ

where Vo(p) represents the spatial gradient of voxel p.

The formula for the total loss function L, includes
aweighted spatial regularisation term and a similar-
ity measurement term:

Ltotal = Lsim (Xf > Xm > ¢) + A’Lsmoolh (¢) B @D

where A denotes the regularization parameter.

3.5. Jacobian Determinant

The Jacobian determinant evaluates the regional
variance in volume between two images by calcu-
lating the derivatives of the displacement [34]. The
formulais as follows:

LU AU U
ox oy 0z
oU (4 oU (4) oU (4
Jac(d)=| < a; U ay( ) 62( i @22)
oU_(A4) oU_(A4) 1+5UZ(A)
ox oy 0z ‘
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where U, (A), U, (A), and U, (A) respectively repre-
sent the estimated deformation components along
the x, y, and z directions at point A (%, y, z). If Jac =
0, it implies the absence of expansion or contraction
in the lung region. When 0 < Jac < 1, it indicates the
presence of lung region expansion. If Jac < 0, it signi-
fies lung region shrinkage [40].

4. Experiments

4.1. Dataset

As shown in Table 2, all experiments were conduct-
ed using three publicly available lung 4DCT data-
sets: (1) the 4D-Lung dataset [42]; (2) the CREATIS
dataset [43]; (8) the DIRLAB dataset [5]. Each scan
contains 10 images corresponding to the 10 phases
of the respiratory cycle. Among these, landmarks at
the maximum inspiratory and maximum expiratory
phases have been manually identified in the CRE-
ATIS and DIRLAB datasets, which can be used to
evaluate registration performance.

Table 2

Detailed information on the 4D-Lung, CREATIS, and
DIRLAB datasets.

Dataset 4D-Lung CREATIS DIRLAB
Patients 20 6 10
Modality 4DCT 4DCT 4DCT
Format dicom dicom img
Landmarks - 100 300
Function Train Train Test

The training phase utilized the 4D-Lung dataset,
which included 18 scans selected at random for
training and 2 for validation, as well as the CRE-
ATIS dataset, consisting of 4 scans chosen at ran-
dom for training and 2 for validation. During the
training process, a leave-one-out cross-validation
method was adopted, and the end-inhalation and
end-exhalation images from the DIRLAB dataset
were used for testing.

Since the tissue structure in the original lung im-
ages is not clear enough, it is necessary to enhance
the brightness and contrast and normalize the image
intensity to the range of [0,1] to improve the image
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quality. Then, a clustering algorithm is applied to
eliminate bed plates and background noise in the
image to the clarity of the lung region. Finally, all
4DCT lung images were cropped to 192 x 192 x 192
and resampled to a consistent voxel size of 1 mm x 1
mm x 1 mm.

4.2. Implementation Details

All experiments were performed on an NVIDIA Ge-
Force RTX 4090 utilizing the PyTorch deep learning
framework [34]. During training, the attention heads
of MH-DRA were set to 8, 4, 2, 1, and 1, respectively.
The expansion coefficient 6 was defined as 4, while
the regularization parameter A for the total loss was
fixed at 0.1. In the experiment, the ADAM optimiz-
er was used, and the learning rate was set to 0.0001.
Each training session is set to 500 times, with a
batch size of 1.

4 3. Evaluation Metrics

In this study, Target Registration Error (TRE) [35],
Dice Similarity Coefficient(DSC) [46], and Struc-
ture Similarity Index Measure(SSIM) [10] measures
were employed as quantitative metrics to assess reg-
istration performance rigorously.

4.3.1. Target Registration Error

TRE is the Euclidean distance between the land-
mark in the moving image and its matching position
in the fixed image. A smaller value of TRE signifies
greater registration accuracy of the algorithm. The
specific mathematical expression is as follows:

TRE = (v +u(x)=x )" + (y+(y) =y )’ + (z+ W) =), @5)

where (%, y, z) denotes the landmark in the fixed
image’s landmark, and (%', y’, z’) denotes the corre-
sponding landmark in the warped image. u(x), v(x),
and w(x) represent the displacements along the x, y,
and z directions, respectively, following the predic-
tion of the deformation field.

4.3.2. Dice Similarity Coefficient

DSC is employed to assess how similar two images
are to each other. Its value spans from O to 1, where
0 denotes complete misalignment of the two imag-
es, and 1 indicates perfect alignment. The specific
mathematical expression is as follows:
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215, NS, |

Dice=——F———"—,
| Sy, |+1Sx, |

(€2

where Sy and Sy denote the regions of interest of the
two images, respectively.

4.3.3. Structure Similarity Index Measure

SSIM measures the structural similarity of two im-
ages. The SSIM value varies between O and 1, where
values approaching 1 signify greater similarity. The
formula is given as follows:

(211)(, My, +C|)(2Ux, Oy, +Cz)

(Y, +HE +e)(y, +iy +c,)

SSIM (X, X,) = (25)

where X;and X, represent the fixed and warped im-
ages, respectively. b, and iy, represent the respec-
tive mean values of X;and X, ¢ X, and oy, denote the
standard deviations of X, and X,. ¢, and c, are con-
stants.

4.4, Comparative Experiments Analysis

To prove the efficiency of MS-VMANet for lung reg-
istration, the MS-VMANet algorithm was compared
with other unsupervised learning registration meth-
ods, including VoxelMorph [4], LungRegNet [14],
ProgNet [11], and HPRN [23]. The primary experi-
mental findings are given in Tables 3-4.

Table 3 shows the TRE values for different algo-
rithms, while Figure 5 shows the bar chart of TRE.
As shown in Table 3 and Figure 5, MS-VMANet sig-
nificantly reduces registration errors across the 10
cases in the DIRLAB dataset, with an average TRE
value approximately 7 percentage points lower than
before registration. Furthermore, compared to other
methods, MS-VMANet achieves an average target
registration error of around 1.78mm on the DIRLAB
dataset, outperforming existing registration mod-
els and effectively improving the accuracy of lung
image registration. However, in instances involving
substantial deformations, like Case 7 and Case 8,
the registration performance of MS-VMANet is less
effective compared to LungRegNet. We speculate
that this discrepancy may arise from the MH-DRA
module’s use of a fixed dilation factor when predict-
ing the deformation field, which may not adequate-
ly accommodate the non-uniform nature of lung
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deformations, leading to insufficient deformation
information extraction in certain lung regions. Ad-
ditionally, before predicting the deformation field,
LungRegNet incorporates lung vessel-enhanced im-
ages, introducing anatomical structural constraints
that improve registration accuracy in vascular re-
gions. Nevertheless, compared to VoxelMorph, Prog-
Net, and HPRN none of which integrate additional
anatomical information MS-VMANet achieves the
lowest TRE value and delivers the best registration
performance in this study.

Figure 5
Bar chart of TRE values for various registration algorithms.

16 + I initial

[ VoxelMorph
:l LungRegNet
14 + [ ProgNet
[ HPRN
[ MS-VMANet
12+
10+
=
£ 8
6+
4+
] h] H’l ”l
0 T T T T T T T T T T
Casel Case2 Case3 Case4 Case5 Case6 Case7 Case8 Case9 Casel0
Table 3
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Table 4 presents the DSC and SSIM values for each
method. Table 4 shows that MS-VMANet demon-
strates significantly superior DSC and SSIM values
onthe DIRLAB dataset compared to other unsuper-
vised learning methods. MS-VMANet exhibits high
average values for DSC (0.904) and SSIM (0.873)
in all test cases. Additionally, as shown in Figure 6,
the boxplot for the MS-VMANet method is the nar-
rowest, indicating that this method exhibits high-
er stability and robustness. Furthermore, based on

Figure 6
Box plot of DSC and SSIM values for various registration

algorithms.
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A comparison of the registration performance of MS-VMANet with alternative unsupervised learning approaches
based on TRE (mm) on the DIRLAB datasets. (Lower TRE values indicate better registration performance.)

Dataset Initial VoxelMorph LungRegNet ProNet HPRN MS-VMANet
Casel 3.89(2.78) 1.92(0.80) 247(0.83) 1.85(0.79) 146(0.71) 1.23(0.86)
Case2 4.34(3.90) 1.87(0.77) 515(3.75) 2.32(0.85) 1.59(0.76) 1.37(0.93)
Case3 6.94(4.05) 2.35(1.02) 1.64(0.79) 177(0.97) 2.49(0.61) 1.28(0.71)
Case4 9.83(4.85) 2.64(1.85) 341(4.36) 2.20(1.18) 170(0.68) 1.63(1.19)
Caseb 7.84(5.50) 2.85(2.13) 2.45(0.85) 2.28(1.57) 178(1.91) 1.48(0.65)
Case6 10.89(6.96) 348(2.75) 2.87(2.58) 3.17(1.82) 2.02(1.41) 1.92(0.84)
Case? 11.03(742) 5.15(4.20) 1.14(0.20) 2.82(1.72) 2.88(2.71) 2.51(1.78)
Case8 14.99(9.00) 2.26(1.56) 0.92(0.47) 410(3.18) 3.96(2.89) 2.64(1.39)
Case9 7.92(3.97) 2.39(2.36) 2.83(0.71) 2.70(1.46) 2.11(1.13) 1.79(0.72)
Casel0 7.30(6.34) 2.52(243) 2.37(0.99) 2.36(1.62) 2.03(1.44) 1.91(0.98)

Mean and Std 846(548) 2.74(1.99) 2.53(1.55) 2.56(1.52) 2.20(143) 1.78(1.01)
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A comparison of the registration performance of MS-VMANet with alternative unsupervised learning approaches
based on DSC and SSIM on the DIRLAB datasets. (Higher values indicate better registration performance.)

Initial VoxelMorph LungRegNet ProNet HPRN MS-VMANet
Dataset DsC SSIM DSC SSIM DSC SSIM DSC SSIM DSC SSIM DSC SSIM
Casel | 0.846 | 0652 | 0.880 | 0.782 0.865 0.745 0.891 0.745 0.926 0769 | 0.931 @ 0.886
Case2 | 0834 & 0646 | 0.887 0.797 0.817 0.736 0.879 0.774 | 0.906 0.758 | 0.918 & 0.875
Case3 | 0.817 0.7111 0.873 0768 | 0.894 0.701 0.890 0.743 0.869 0.745 | 0.897 & 0.881
Case4 | 0781 0.625 0.862 0.741 0.857 | 0704 | 0872 | 0770 0.893 0.750 | 0.924 | 0.866
Case5 | 0.796 0.707 | 0.855 0.736 0.869 0.715 0.881 0.735 0.889 0.747 | 0.906 @ 0.871
Case6 | 0.758 0684 | 0847 | 0.733 0854 | 0709 | 0.849 0.741 0.887 | 0764 | 0.893 | 0.868
Case7 | 0.733 0.698 0.815 0704 | 0934 @ 0.891 | 0.857 0.739 0.850 0.761 0.898 | 0.864
Case8 | 0.712 0.665 0.883 0737 | 0.951 | 0.897 | 0.837 0.748 | 0.842 0.731 0.886 | 0.867
Case9 | 0.785 0.683 0.871 0.723 0.848 0.739 0.852 0.784 | 0.883 0793 | 0.893 @ 0.892
CaselO | 0.792 0672 | 0.866 0.745 0.877 0.691 0.872 0.772 0.881 0.735 | 0.902 0.869
Mean | 0.785 0674 | 0.863 0.746 0.876 0.752 0.868 0.751 0.882 0.755 | 0.904 @ 0.873
Figure 7

Registration results of the MS-VMANet method on the DIRLAB dataset. (a) Moving image; (b) Fixed image;
(¢) Warped image; (d) Deformation mesh; (e) Difference image before registration; (f) Difference image after registration.
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the median values, the DSC and SSIM values of the
proposed MS-VMANet method are the highest, fur-
ther demonstrating its superiority in lung registra-
tion precision.

As shown in Figure 7, significant morphological
and volumetric differences are observed when
comparing the moving and fixed images. MS-
VMANet effectively matches the moving image
to the fixed image, minimizing intensity discrep-
ancies among the warped and fixed images while
maintaining local texture details in the fixed im-
age. Figure 8 contrasts MS-VMANet with the
warped images of the other four unsupervised
learning-based methods: VoxelMorph, LungReg-
Net, ProgNet, and HPRN, to more clearly illus-
trate the MS-VMANet method’s efficacy in lung
image registration.

As shown in Figure 8, the MS-VMANet method ef-
fectively performs spatial transformations on the

Figure 8
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moving image’s external contours and internal tis-
sue textures to address differences with the fixed
image, producing a registration result that closely
matches the internal structures and texture features
of the fixed image. In contrast, the VoxelMorph, Lun-
gRegNet, ProgNet, and HPRN methods exhibit lim-
itations in handling local registration issues, failing
to accurately register and deform the moving image
to match the internal structures and texture features
of the fixed image.

4.5. Ablation Experiment Analysis

Aimed at evaluating the EVMA and MH-DRA’s
influence on model performance, we substituted
them with 3D convolutional blocks that included
3x3x3 convolutions, BatchNorm, and ReLU func-
tions. Tables 5-6 present the ablation study re-
sults for various registration approaches on the
DIRLAB dataset.

The comparison of registration performance between the MS-VMANet method and other methods on the DIRLAB dataset.
(a) Moving image; (b) Fixed image; (¢)Warped images obtained by the VoxelMorph method; (d)Warped images obtained

by the LungRegNet method; (e)Warped images obtained by the ProgNet method; (f)Warped images obtained by the HPRN
method; (g)Warped images obtained by the MS-VMANet method.

&
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TRE performances of ablation studies on the DIRLAB dataset.

Dataset
Casel
Case2
Case3
Case4
Caseb
Case6
Case7
Case8
Case9

CaselO

Mean and Std

Table 6

Initial
3.89(2.78)
4.34(3.90)
6.94(4.05)
9.83(4.85)
7.84(5.50)
10.89(6.96)
11.03(742)
14.99(9.00)
7.92(3.97)
7.30(6.34)
846(548)

MS-VMANet(without EVMA)

1.82(0.94)
2.03(1.56)
1.97(1.74)
2.23(1.62)
2.56(1.05)
2.91(1.17)
3.35(2.02)
2.28(1.79)
2.14(1.19)
241(1.58)
2.37(1.52)
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MS-VMANet(without MH-DRA)

DSC and SSIM performances of ablation studies on the DIRLAB dataset.

Dataset

Casel
Case2
Case3
Case4
Caseb
Case6
Case7
Case8
Case9
CaselO

Mean

As displayed in Table 5 and Figure 9, eliminating
either the EVMA or MH-DRA module leads to ano-
table rise in TRE values, consequently reducing the
accuracy of the image alignment.

Additionally, as indicated in Table 6 and Figure 10,

Initial

DsC SSIM
0.846 0.652
0.834 0.646
0.817 0.711
0.781 0.625
0.796 0.707
0.758 0.684
0.733 0.698
0712 0.665
0.785 0.683
0.792 0.672
0.785 0.674

MS-VMANet
(without EVMA)
DSC SSIM
0.886 0.842
0.905 0.853
0.892 0.837
0.874 0.797
0.868 0.821
0.852 0.834
0.885 0.866
0.873 0.838
0.912 0.809
0.887 0.855
0.883 0.835

2.36(1.51)
2.11(1.37)
1.89(0.95)
246(1.06)
2.24(1.33)
2.86(1.48)
3.16(1.94)
275(1.21)
2.37(1.82)
2.23(1.69)
244(144)
MS-VMANet
(without MH-DRA)
DSC SSIM
0.891 0.812
0.883 0.806
0.875 0.785
0.862 0.792
0.871 0.768
0.848 0.761
0.839 0.774
0.825 0.852
0.861 0.781
0.864 0.776
0.861 0.79

MS-VMANet
1.23(0.86)
1.37(0.93)
1.28(0.71)
1.63(1.19)
1.48(0.65)
1.92(0.84)
2.51(1.78)
2.64(1.39)
1.79(0.72)
1.91(0.98)
1.78(1.01)

MS-VMANet

DSC SSIM
0.931 0.886
0.918 0.875
0.897 0.881
0.924 0.866
0.906 0.871
0.893 0.868
0.898 0.864
0.886 0.867
0.893 0.892
0.902 0.869
0.904 0.873

compared to the MS-VMANet without the EVMA or
MH-DRA modules, incorporating these modules yields
higher DSC and SSIM values, further demonstrating the
critical role of the EVMA and MH-DRA modules in en-
hancing the performance of the MS-VMANet model.
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Figure 9
Bar chart of the TRE values for the ablation experiment.
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4.6. Complexity Analysis

The time and space complexity of the five methods,
including MS-VMANet, were evaluated to com-
prehensively analyze their computational cost, as
shown in Table 7. Here, n=hxwxd denotes the input
feature volume’s voxel count, and ¢ denotes the di-
mensionality of feature channels.

Table 7

Comparison of the performance parameters of networks
for registration.

Methods Params FLOPs Time Complexity
Voxelmorph 6.3M 84.8G O(nc)
LungRegNet 14.6M 157.3G O(ne?)

ProgNet 5.8M 734G O(nlog*n)

HPRN 76M 917G O(ncloge)
MS-VMANet 2.1M 56.5G O(nlogn)

As presented in Table 7, MS-VMANet demonstrates
aconsiderably reduced computational expense com-
pared to other methods. With only 2.1M parameters
and 56.5G FLOPs, MS-VMANet demonstrates su-
perior memory usage and computation efficiency.
Moreover, the time complexity of MS-VMANet is
O(nlogn), which is significantly more scalable com-
pared to other networks such as LungRegNet with
O(nc?) and ProgNet with O(nlog2n). This reduced
complexity makes MS-VMANet highly suitable for
practical deformable image registration tasks.
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Figure 10
Box plot of DSC and SSIM values for the ablation experiment.
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4.7. Regional Pulmonary Ventilation
Function Analysis

Based on the registration results mentioned above,
the effectiveness and accuracy of the MS-VMANet
method are validated, demonstrating its significant
improvement in registration accuracy while main-
taining stability. We further compute the deforma-
tion fields of the DIRLAB dataset using the Jacobian
determinant to generate regional lung ventilation
function images. These images are then converted
into pseudo-color representations to visualize and
assess the patient’s lung ventilation function.

Figure 11 presents the pulmonary ventilation dis-
tribution across five consecutive slices in the axial,
sagittal, and coronal planes of the DIRLAB dataset.
A deeper red color indicates a greater degree of lung
voxel expansion, signifying stronger lung ventilation
function, whereas a darker blue color represents in-
creased lung voxel contraction, suggesting a corre-
sponding reduction in ventilation function.

Asillustrated in Figure 11, the peripheral areas of the
lung appear in blue or red, signifying a robust venti-
lation function in these regions. The central regions
of the lung predominantly display green, indicating
that these areas neither expand nor contract, which
suggests weak or potentially absent ventilation in
certain localized regions. Furthermore, pulmonary
ventilation is unevenly distributed, with variations
observed across different layers. However, a degree
of correlation and continuity in ventilation is main-
tained between consecutive and adjacent layers.
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Figure 11
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Regional pulmonary ventilation distribution images across five consecutive lung slices in the axial, coronal, and sagittal planes
were obtained using MS-VMANet. (a) Lung CT image in the axial plane; (b) Regional pulmonary ventilation distribution image
in axial slices; (¢) Lung CT image in the coronal plane; (d) Regional pulmonary ventilation distribution image in coronal slices;
(e) Lung CT image in the sagittal plane; (f) Regional pulmonary ventilation distribution image in sagittal slices.

Overall, the right lung performs better at ventilation
than the left lung, as the right lung exhibits a higher
prevalence of blue and red areas. Consequently, in
the context of image-guided lung radiation therapy,
regions with high ventilation (depicted by the red
and blue areas) can be selectively preserved, and the
irradiation dose to these areas can be reduced, there-
by minimizing potential damage to healthy lung tis-
sue and enhancing therapeutic efficacy.

5. Discussion

Based on deformable image registration, we present-
ed the MS-VMANet approach in this study for eval-
uating lung ventilation function. While the experi-
mental results validate the efficacy of MS-VMANet, it

is essential to recognize the limitations and possible
avenues for improvement in the proposed method.

1 Registration of Large Deformations

For lung CT images with significant deformations,
although MS-VMANet can effectively handle these
cases, its performance still lags behind that of Lun-
gRegNet. This can be attributed to two main factors:
First, MS-VMANet employs a fixed dilation factor
as proposed in [17] when generating the deforma-
tion field, restricting the model’s capacity to adjust
to the non-uniformity of lung deformations, thereby
reducing the accuracy of the deformation field esti-
mation. Second, LungRegNet incorporates enhanced
lung vessel images as anatomical constraints during
the registration process, which improves the align-
ment precision of the lung vascular regions to some
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extent. This approach provides an important insight
for future research: integrating anatomical informa-
tion about the lung, such as blood vessels and airways,
can significantly improve registration accuracy and
robustness, particularly when dealing with complex
deformations and local anatomical features.

2 Model Generalization

In this study, MS-VMANet is primarily applied to the
registration of lung 4DCT images. However, its archi-
tecture exhibits a certain degree of generalizability
and, in theory, can be extended to image registration
tasks for other anatomical regions, such as the brain,
liver, and knee. Since different anatomical regions
involve distinct regions of interest (ROIs) during the
registration process, the model’s performance may be
significantly influenced by variations in data charac-
teristics and deformation patterns. Future research
could integrate a multi-task learning framework to
allow the model to dynamically acquire deformation
features from various anatomical regions. Addition-
ally, incorporating adjustable deformation field con-
straints, such as those informed by anatomical prior
knowledge, could improve the model’s flexibility and
resilience in handling diverse registration tasks.

3 Lack of Multimodal Data and Clinical Validation

This study primarily utilizes 4DCT images of lung
cancer patients; however, it does not incorporate
other imaging modalities, such as PET or MRI. In-
tegrating multimodal data can provide more com-
prehensive physiological and anatomical informa-
tion, thereby improving registration accuracy and
enhancing the model’s robustness when handling
complex cases. Future research should explore the
integration of multimodal datasets, like the VAM-
PIRE dataset [27], the Learn2Reg dataset [20], and
the ChestX-ray8 dataset [39], to further enhance the
robustness and generalization of registration meth-
ods. Moreover, although the regional ventilation
maps obtained in this study are generated based on
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