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The evaluation of regional pulmonary ventilation function is of significant clinical value, particularly in 
the initial diagnosis of pulmonary disorders, staging assessment, and personalized treatment planning. 
This study proposes a multi-scale VMamba attention registration network (MS-VMANet) to predict 
4DCT pulmonary ventilation changes using unsupervised learning registration. MS-VMANet primarily 
integrates the efficient visual mamba attention, which captures long-range feature information globally, 
and the multi-head dilated regional attention improves deformation field prediction via aggregating multi-
scale contextual features through dilated convolutions and attention mechanisms. Then, the deformation 
fields were calculated using the Jacobian determinant to generate images that reflect lung ventilation dis-
tribution to assess regional lung ventilation function. According to the experimental findings, the MS-
VMANet performs better in terms of registration accuracy and performance, providing a reliable technical 
means for assessing regional pulmonary ventilation function.
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1. Introduction
Lung cancer is currently one of the malignant tu-
mors with the highest incidence and mortality rates 
worldwide, seriously affecting human health and 
survival [4]. Radiotherapy has become an important 
means of treating lung cancer. However, radiothera-
py may cause the normal tissues of the human body 
to be affected by toxic complications, triggering Ra-
diation-induced Lung Injury (RILI) [2], which has 
a significant impact on patients' lives during or af-
ter radiotherapy. The research by Vinogradskiy et 
al. [44] indicates that during radiotherapy, the risk 
of RILI can be reduced by selectively avoiding the 
hyperventilated areas of the lungs. Therefore, accu-
rately assessing pulmonary ventilation function has 
become a key link in the diagnosis and management 
of pulmonary disorders. Pulmonary ventilation 
assessment can comprehensively reflect the lung 
function status of the patient, which helps reduce 
the side effects related to radiotherapy and improve 
the therapeutic effect.
Traditional imaging techniques like MRI, PET, and 
SPECT can be utilized to measure regional lung 
ventilation [1]. However, all these methods have in-
evitable limitations: Firstly, radioactive substances 
need to be inhaled or injected as tracers, which pos-
es a potential risk of radiation exposure. Secondly, 
these imaging technologies usually rely on complex 
equipment and operation procedures and are costly, 
which limits their application in medical diagnosis 
and treatment.
With the development of 4DCT [15], using image 
registration technology to evaluate the regional ven-
tilation function of 4DCT images has emerged as 
a key method within medical image analysis. This 
method performs deformable registration on 4DCT 
scans of the lungs at various breathing stages to 
obtain a deformable field that describes the spatial 
transformation relationship of lung pixels. Then, the 
distribution map of the ventilation function of each 
area of the lungs is obtained by calculating the Jaco-
bian determinant of the deformation field. There-
fore, precise lung image registration plays a critical 
role in evaluating pulmonary ventilation function.
Traditional lung image registration methods usual-
ly regard registration as a process of optimizing the 
objective function. By solving the optimal solution 

of spatial geometric transformation, the two images 
can achieve the best matching in space. Commonly 
used traditional registration methods such as cubic 
B-spline [29], elastomer models [3], and diffusion 
models [42], although they have high registration 
accuracy, have limited their promotion in real ap-
plications because of the significant computational 
cost and reliance on manual parameter adjustment. 
The rapid evolution of deep learning technology has 
brought new breakthroughs to image registration. 
Neural network models such as VoxelMorph [4], 
VoxelMorph++ [19], FCN [12], DenseNet [22], and 
GraphRegNet [16] perform well in the task of lung 
image registration. However, since these models rely 
on the estimation of a single deformation field, they 
are unable to effectively handle large-scale defor-
mations, resulting in a decrease in the registration 
accuracy of the models. To solve these problems, 
researchers have begun to adopt multi-stage and 
multi-scale registration models in Lung image regis-
tration, such as RCN [47], RNN [18], LapIPNet [32], 
DualPRNet [25], mlVIRNET [21], Lung-CRNet [31], 
PRNet [45], and DefTransNet [33], etc. Although 
these methods have remarkable effects, they have 
deficiencies in capturing long-distance spatial de-
pendencies in images, resulting in a decrease in their 
accuracy when dealing with complex deformations.
Therefore, Transformer is increasingly used in im-
age registration, like TransMorph [6] and Trans-
Match [7]. In lung image registration, respiratory 
motion induces substantial anatomical variations in 
CT images acquired during various breathing stages. 
Transformer-based methods are highly effective at 
capturing long-range dependencies. However, they 
may struggle to effectively extract global contextu-
al information when handling complex lung defor-
mations. Meanwhile, the Transformer usually has a 
high computational cost, posing additional challeng-
es for real-time applications.
To handle these limitations, this study presents a 
novel multi-scale VMamba attention registration 
network (MS-VMANet) for the accurate assessment 
of regional lung ventilation. MS-VMANet introduc-
es multi-scale feature extraction and hierarchical 
deformation field optimization strategies, effective-
ly fusing global context information and local detail 
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features, improving the precision of lung registra-
tion, and thereby enhancing the accuracy of regional 
lung ventilation function assessment. The main con-
tributions of this study are summarized as follows:
1	 We propose an efficient visual mamba attention 

(EVMA) module for image feature extraction. 
EVMA can capture long-distance spatial relation-
ships and global information while reducing the 
complexity of the model.

2	 We propose a multi-head dilated regional attention 
(MH-DRA) module. MH-DRA can exponentially 
increase the receptive field and enhance the cap-
ture of long-range dependencies, thereby improv-
ing the precision of deformation field estimation.

3	 We conducted experiments on a publicly available 
4DCT dataset of the lungs. According to the ex-
perimental data, the MS-VMANet has the highest 
registration accuracy. Meanwhile, by using the ob-
tained deformation field with higher accuracy, its 
Jacobian determinant is further calculated to gen-
erate a high-precision pulmonary ventilation func-
tion map, thereby achieving a more precise evalua-
tion of regional pulmonary function.

 

2. Related Work
2.1. Calculation of Image Registration-Based 
Lung Ventilation Imaging
Regional lung ventilation assessment based on im-
age registration is a rapidly developing technique 
in radiation oncology, with broad application pros-
pects. Currently, the computation of pulmonary 
ventilation images primarily relies on two main 
approaches: the Jacobian approach [37, 9] and the 
Hounsfield Unit (HU) approach [15, 26, 30]. The 
method based on the Jacobian to obtain the pul-
monary ventilation image involves computing the 
Jacobian determinant of the deformation field via 
deformable image registration (DIR), without par-
ticularly considering the values of the initial CT 
image. The method based on HU relies on the re-
constructed images of various breathing stages and 
is founded on the linear combination model of lung 
tissue represented as air and "tissue" components, 
which infers the changes in lung respiration vol-
ume by comparing HU values.

Studies on evaluating pulmonary ventilation func-
tion using these two methods have been widely car-
ried out. Reinhardt et al. [37] used the Jacobian de-
terminant of the deformation field obtained through 
registration for the purpose of measuring regional 
lung ventilation changes. Ding et al. [9] presented an 
approach to calculating the ventilation changes in 
the lung regions. This method matches the maximum 
expiratory phase of the 4DCT image to the maximum 
inspiratory phase through the Jacobian determinant, 
thereby obtaining the ventilation conditions of the 
lungs in the two stages. Guerrero et al. [15] obtained 
the ventilation of the lungs by quantifying the chang-
es in voxel density at the two endpoints of the respira-
tory cycle and using the changes in HU. Kipritidis et 
al. [26] presented a method for calculating pulmonary 
ventilation volume by directly scaling the HU value. 
Experiments show that the resulting ventilation im-
ages have significant potential for evaluating the air 
volume changes in lung regions. Li et al. [30] present-
ed a novel approach to calculating lung ventilation 
by proportionally combining the recorded HU values 
with the locally scaled Jacobian determinant, there-
by improving the registration accuracy and making it 
more suitable for describing lung deformation.

2.2. Lung Image Registration Based on Deep 
Learning
At present, lung CT registration techniques utilizing 
deep learning can be classified as supervised regis-
tration methods as well as unsupervised registration 
methods. Supervised registration approaches need 
genuine deformation fields as labeled data in the 
training process. In contrast, unsupervised registra-
tion methods rely only on image data for training and 
do not require additional annotation information. 
Teng et al. [41] utilized a supervised convolutional 
network for registering adjacent breathing phases, 
thereby obtaining the corresponding deformation 
field. Foote et al. [13] designed a patient-specific 
motor domain method combined with deep convolu-
tional neural networks for accomplishing 2D-3D de-
formable lung registration. However, the acquisition 
of deformation fields by these supervised registra-
tion methods is usually costly, and at the same time, 
the quality of the deformation field greatly affects 
the registration accuracy. Thus, the research focus 
of image registration has shifted to the unsupervised 
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registration approach that does not rely on the actu-
al deformation field.
The unsupervised registration method updates net-
work parameters by optimizing the dissimilarity 
of fixed and warped images after spatial transfor-
mation. Firstly, by inputting the fixed image Xf and 
the moving image Xm into the deformable image 
registration network, the corresponding deforma-
tion field ϕ is obtained. Then, ϕ warps Xm via Spatial 
Transformer Networks (STN) [24] to achieve the 
deformation processing of the image and thereby 
obtain the warped image Xw. Finally, the network 
parameters are iteratively updated by calculating 
the similarity measure between Xf and Xw. The de-
formable registration network is deemed optimized 
when the similarity reaches its maximum. The de-
tailed implementation process is illustrated in Fig-
ure 1, where Lsim (Xm ◦ ϕ, Xf) and Lsmooth(ϕ) represent 
the registration loss functions.

3. Methodology
3.1. Overview of the MS-VMANet 
Architecture
We present a multi-scale VMamba attention regis-
tration network (MS-VMANet), which consists of 
two primary components: an efficient visual mam-
ba attention (EVMA) encoder for feature extraction 
and a multi-head dilated regional attention (MH-
DRA) decoder for deformation field generation, as 
illustrated in Figure 2. Table 1 summarizes the key 
notations employed throughout this paper.

Figure 1 
Image registration framework based on unsupervised 
learning method.
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Module 
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1 (2D-SSM( ( ( ( ))))).G LNorm SiLU DWConv Linear G  
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through two parallel branches. In the first branch, 
a linear layer, deep convolution, SiLU function, 2D 
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Image registration framework based on unsupervised 
learning method. 
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where CA and SA represent the channel 
attention and spatial attention mechanisms, 
respectively, while Gc and Gs are the 
corresponding attention maps. Qshared = WQG, 
Kshared = WKG, and Vshared = WVG represent the 
shared query, key, and value vectors, with WQ, 
WK, and WV being their respective projection 
weights. Vchannel = WVG and Vspatial = WVG 

represent the channel value layers and space 
value layers, respectively, each with a vector size 
of d. 

Then, the outputs from the two branches are 
combined using the Hadamard product to 
generate the final output Gout, as illustrated 
below: 

1 2( )outG Linear G G .               (13) 

3.3. Multi-Head Dilated Regional 
Attention Module 
Generating an accurate deformation field is 
essential for lung image registration. It is 
essential for ensuring precise alignment 
associated with fixed and moving images. Thus, 
we employ the multi-head dilated regional 
attention module (MH-DRA) [17], as illustrated 
in Figure 4. The MH-DRA module expands the 
regional attention mechanism of neighborhood 
attention to sparse global attention with reduced 
restrictions. This approach captures a broader 
global context while significantly expanding the 
receptive field, thereby enabling more precise 
generation of the deformation field.  

Given the inputs fixed image features F  Rh×w×d 
and moving image features M  Rh×w×d, the 
corresponding query vector Q and key vector K 
are obtained through linear projection and layer  
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3.3. Multi-Head Dilated Regional Attention 
Module
Generating an accurate deformation field is es-
sential for lung image registration. It is essential 

for ensuring precise alignment associated with 
fixed and moving images. Thus, we employ the 
multi-head dilated regional attention module 
(MH-DRA) [17], as illustrated in Figure 4. The 
MH-DRA module expands the regional attention 
mechanism of neighborhood attention to sparse 
global attention with reduced restrictions. This 
approach captures a broader global context while 
significantly expanding the receptive field, there-
by enabling more precise generation of the defor-
mation field. 

Notation Definition Notation Definition

Xf The fixed image Vspatial The spatial attention value vector

Xm The moving image m Number of attention heads in the MH-DRA

Xw The warped image  δ The dilation factor of the MH-DRA

ϕi The deformation field in the i-th layer g(x) The k×k×k neighborhood of voxel x

Lsim (*) The spatial regularization term of ϕ B The learnable relative position bias

Lsmooth (*) The similarity measurement term of ϕ λ The regularization parameter of the loss function

h The height of the input feature pi The voxel of index i

w The width of the input feature
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Figure 4  

The structure of the MH-DRA module. 

 

3.4. Loss Lunction 
In this experiment, the overall loss function Ltotal 
is composed of two components: Lsmooth enforces 
spatial regularization on the deformation field 
produced by the registration network, ensuring 
its smoothness. Meanwhile, Lsim evaluated the 
similarity among the fixed and warped images. 
The definition of Lsim is as follows: 
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i f i f m i m

sim f m
p i f i f m i m
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L X X

p X p X p X p X p
 (19) 

where Xf and Xm refer to the fixed and moving 
images, respectively.  represents the 
deformation field, pi represents a voxel with 
index i, fX  denotes the fixed image with the 
local average pixel value subtracted, and mX  
denotes the moving image with the local average 
pixel value subtracted.  

During network training, discontinuous 
deformation fields are often generated as a result 
of optimizing the image similarity measure. To 

prevent overlapping in the predicted 
deformation fields, a spatial smoothness 
constraint is typically incorporated. The formula 
is as follows: 

2( ) ( ) ,smooth
p

L p                  (20) 

where (p) represents the spatial gradient of 
voxel p.  

The formula for the total loss function Ltotal 
includes a weighted spatial regularisation term 
and a similarity measurement term: 

total ( , , ) ( ),sim f m smoothL L X X L   (21) 

arization parameter. 

3.5. Jacobian Determinant 
The Jacobian determinant evaluates the regional 
variance in volume between two images by 
calculating the derivatives of the displacement 
[Error! Reference source not found.]. The 
formula is as follows: 
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where Ux (A), Uy (A), and Uz (A) respectively 
represent the estimated deformation 
components along the x, y, and z directions at 
point A (x, y, z). If Jac = 0, it implies the absence 
of expansion or contraction in the lung region. 
When 0 < Jac < 1, it indicates the presence of lung 
region expansion. If Jac < 0, it signifies lung 
region shrinkage [40]. 
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3.4. Loss Lunction 
In this experiment, the overall loss function Ltotal 
is composed of two components: Lsmooth enforces 
spatial regularization on the deformation field 
produced by the registration network, ensuring 
its smoothness. Meanwhile, Lsim evaluated the 
similarity among the fixed and warped images. 
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where Xf and Xm refer to the fixed and moving 
images, respectively.  represents the 
deformation field, pi represents a voxel with 
index i, fX  denotes the fixed image with the 
local average pixel value subtracted, and mX  
denotes the moving image with the local average 
pixel value subtracted.  
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of optimizing the image similarity measure. To 

prevent overlapping in the predicted 
deformation fields, a spatial smoothness 
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is as follows: 
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where (p) represents the spatial gradient of 
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arization parameter. 
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where Ux (A), Uy (A), and Uz (A) respectively 
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components along the x, y, and z directions at 
point A (x, y, z). If Jac = 0, it implies the absence 
of expansion or contraction in the lung region. 
When 0 < Jac < 1, it indicates the presence of lung 
region expansion. If Jac < 0, it signifies lung 
region shrinkage [40]. 

  
4. Experiments 

Given the inputs fixed image features F 

 
 

 

 
   
 set ,1 ,2 ,2 ,3E { ( , ), ( , ),...}s s s se v v e v v   (1) 

 ,1 ,2 set
,1 ,2

,1 ,2 set

| ( ( , ),E )
( ( , ))

, if ( , )  E
s s

s s
s s

x x Index e v v
I e v v

e v v in
  (2) 
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Learning item embedding on RESR-GNN 
The embedding vectors of each item node are then computed by gated graph neural networks. First, we 
randomly initialize all item nodes to obtain an initial vector representation de R  for each node v V  
d represents the embedding dimension of the item. Model uses GGNN to update nodes' embedding in a 
session sG . The specific process of ,s iv  is as follows: 
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 Rh×w×d, the correspond-
ing query vector Q and key vector K are obtained 
through linear projection and layer normalization, 
as illustrated below:
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where Q, K Rh×w×d×c/m, with h, w, d, and c 
denoting the height, width, depth, and number 
of channels of the input features, respectively. m 
represents the count of attention heads in MH-
DRA. 
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can be computed using the formula below: 
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where 
represents the k×k×k neighborhood of voxel x, 
and B  Rm×k×k×k represents a learnable relative 
position bias. 

Then, the deformation field is weighted using 
AM to generate a series of sub-deformation 
fields. These sub-deformation fields, computed 
from each attention head, are integrated through 
a 3D convolution layer (3×3×3 Conv) to generate 
the deformation field i for the i-th level, as 
illustrated below: 
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The embedding vectors of each item node are then computed by gated graph neural networks. First, we 
randomly initialize all item nodes to obtain an initial vector representation de R  for each node v V  
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Then, the deformation field is weighted using AM to 
generate a series of sub-deformation fields. These 
sub-deformation fields, computed from each atten-
tion head, are integrated through a 3D convolution 
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3.4. Loss Lunction 
In this experiment, the overall loss function Ltotal 
is composed of two components: Lsmooth enforces 
spatial regularization on the deformation field 
produced by the registration network, ensuring 
its smoothness. Meanwhile, Lsim evaluated the 
similarity among the fixed and warped images. 
The definition of Lsim is as follows: 

2

2 2

(( ( ) ( ))( ( ( )) ( ( ))))
( , , ) ,

( ( ) ( )) ( ( ( )) ( ( )))
i f i f m i m

sim f m
p i f i f m i m

p X p X p X p X p
L X X

p X p X p X p X p
 (19) 

where Xf and Xm refer to the fixed and moving 
images, respectively.  represents the 
deformation field, pi represents a voxel with 
index i, fX  denotes the fixed image with the 
local average pixel value subtracted, and mX  
denotes the moving image with the local average 
pixel value subtracted.  

During network training, discontinuous 
deformation fields are often generated as a result 
of optimizing the image similarity measure. To 

prevent overlapping in the predicted 
deformation fields, a spatial smoothness 
constraint is typically incorporated. The formula 
is as follows: 

2( ) ( ) ,smooth
p

L p                  (20) 

where (p) represents the spatial gradient of 
voxel p.  

The formula for the total loss function Ltotal 
includes a weighted spatial regularisation term 
and a similarity measurement term: 

total ( , , ) ( ),sim f m smoothL L X X L   (21) 

arization parameter. 

3.5. Jacobian Determinant 
The Jacobian determinant evaluates the regional 
variance in volume between two images by 
calculating the derivatives of the displacement 
[Error! Reference source not found.]. The 
formula is as follows: 
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where Ux (A), Uy (A), and Uz (A) respectively 
represent the estimated deformation 
components along the x, y, and z directions at 
point A (x, y, z). If Jac = 0, it implies the absence 
of expansion or contraction in the lung region. 
When 0 < Jac < 1, it indicates the presence of lung 
region expansion. If Jac < 0, it signifies lung 
region shrinkage [40]. 
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where Xf and Xm refer to the fixed and moving 
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where Ux (A), Uy (A), and Uz (A) respectively 
represent the estimated deformation 
components along the x, y, and z directions at 
point A (x, y, z). If Jac = 0, it implies the absence 
of expansion or contraction in the lung region. 
When 0 < Jac < 1, it indicates the presence of lung 
region expansion. If Jac < 0, it signifies lung 
region shrinkage [40]. 
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where Xf and Xm refer to the fixed and moving 
images, respectively.  represents the 
deformation field, pi represents a voxel with 
index i, fX  denotes the fixed image with the 
local average pixel value subtracted, and mX  
denotes the moving image with the local average 
pixel value subtracted.  

During network training, discontinuous 
deformation fields are often generated as a result 
of optimizing the image similarity measure. To 

prevent overlapping in the predicted 
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where Ux (A), Uy (A), and Uz (A) respectively 
represent the estimated deformation 
components along the x, y, and z directions at 
point A (x, y, z). If Jac = 0, it implies the absence 
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When 0 < Jac < 1, it indicates the presence of lung 
region expansion. If Jac < 0, it signifies lung 
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regularization on the deformation field produced by 
the registration network, ensuring its smoothness. 
Meanwhile, Lsim evaluated the similarity among the 
fixed and warped images. The definition of Lsim is as 
follows:

 
 

 

 
,m mAM V                                                         (17) 

1 2 3 1
3 3 3 ( ( , , ,......, , )).m m

i i i i i iConv Concat .  (18) 

Figure 4  

The structure of the MH-DRA module. 

 

3.4. Loss Lunction 
In this experiment, the overall loss function Ltotal 
is composed of two components: Lsmooth enforces 
spatial regularization on the deformation field 
produced by the registration network, ensuring 
its smoothness. Meanwhile, Lsim evaluated the 
similarity among the fixed and warped images. 
The definition of Lsim is as follows: 

2

2 2

(( ( ) ( ))( ( ( )) ( ( ))))
( , , ) ,

( ( ) ( )) ( ( ( )) ( ( )))
i f i f m i m

sim f m
p i f i f m i m

p X p X p X p X p
L X X

p X p X p X p X p
 (19) 

where Xf and Xm refer to the fixed and moving 
images, respectively.  represents the 
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where Xf and Xm refer to the fixed and moving 
images, respectively.  represents the 
deformation field, pi represents a voxel with 
index i, fX  denotes the fixed image with the 
local average pixel value subtracted, and mX  
denotes the moving image with the local average 
pixel value subtracted.  

During network training, discontinuous 
deformation fields are often generated as a result 
of optimizing the image similarity measure. To 

prevent overlapping in the predicted 
deformation fields, a spatial smoothness 
constraint is typically incorporated. The formula 
is as follows: 
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where (p) represents the spatial gradient of 
voxel p.  

The formula for the total loss function Ltotal 
includes a weighted spatial regularisation term 
and a similarity measurement term: 
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arization parameter. 
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where Ux (A), Uy (A), and Uz (A) respectively 
represent the estimated deformation 
components along the x, y, and z directions at 
point A (x, y, z). If Jac = 0, it implies the absence 
of expansion or contraction in the lung region. 
When 0 < Jac < 1, it indicates the presence of lung 
region expansion. If Jac < 0, it signifies lung 
region shrinkage [40]. 
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index i, fX  denotes the fixed image with the 
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denotes the moving image with the local average 
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where Ux (A), Uy (A), and Uz (A) respectively 
represent the estimated deformation 
components along the x, y, and z directions at 
point A (x, y, z). If Jac = 0, it implies the absence 
of expansion or contraction in the lung region. 
When 0 < Jac < 1, it indicates the presence of lung 
region expansion. If Jac < 0, it signifies lung 
region shrinkage [40]. 
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 denotes the 
fixed image with the local average pixel value sub-
tracted, and 

  

Xf The fixed image Vspatial The spatial attention value vector 
Xm The moving image m Number of attention heads in the MH-DRA 
Xw The warped image  The dilation factor of the MH-DRA 

i The deformation field in the i-th layer g(x) The k×k×k neighborhood of voxel x 
Lsim (*) The spatial regularization term of  B The learnable relative position bias 

Lsmooth (*) The similarity measurement term of   
The regularization parameter of the loss 
function 

h The height of the input feature pi The voxel of index i 

w The width of the input feature fX  
Xf with the local average pixel value 
subtracted 

d The depth of the input feature mX  
Xm with the local average pixel value 
subtracted 

c The number of channels of the input feature Ux(A) The estimated deformation field components 
in the x direction at point A (x, y, z) 

Fi The features of Xf in the i-th layer Uy(A) 
The estimated deformation field components 
in the y direction at point A (x, y, z) 

Mi The features of Xm in the i-th layer Uz(A) The estimated deformation components in 
the z direction at point A (x, y, z) 

Mi’ 
The processed features of Xm in the i-th 
layer u(*) Displacements in the direction of x 

G The input feature of EVMA  v(*) Displacements in the direction of y 
Gc The channel attention map of EVMA  w(*) Displacements in the direction of z 

Gs The spatial attention map of EVMA  fXS  The regions of interest of Xf 

Q The query vector wXS  The regions of interest of Xw 

K The key vector fX  The mean values of Xf 

V The value vector wX  The mean values of Xw 

WQ The projection weight matrix of Q fX  The standard deviations of Xf 

WK The projection weight matrix of K wX  The standard deviations of Xw 

WV The projection weight matrix of V c1 A constant 
Vchannel The channel attention value vector c2 A constant 

normalization, as illustrated below: 

( Pr ( )),Q LNorm L oj F               (14) 

( Pr ( )),K LNorm L oj M                                              
(15) 

where Q, K Rh×w×d×c/m, with h, w, d, and c 
denoting the height, width, depth, and number 
of channels of the input features, respectively. m 
represents the count of attention heads in MH-
DRA. 

Next, the m-th attention head's attention map 
can be computed using the formula below: 

( )
max( ( ) ( , ( )))m m m T m

x g x
AM Soft Q K B x g x , (16) 

where 
represents the k×k×k neighborhood of voxel x, 
and B  Rm×k×k×k represents a learnable relative 
position bias. 

Then, the deformation field is weighted using 
AM to generate a series of sub-deformation 
fields. These sub-deformation fields, computed 
from each attention head, are integrated through 
a 3D convolution layer (3×3×3 Conv) to generate 
the deformation field i for the i-th level, as 
illustrated below: 

Figure 3 

Schematic diagram of EVMA module structures. 

 denotes the moving image with the 
local average pixel value subtracted. 
During network training, discontinuous deforma-
tion fields are often generated as a result of optimiz-
ing the image similarity measure. To prevent over-
lapping in the predicted deformation fields, a spatial 
smoothness constraint is typically incorporated. 
The formula is as follows:
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3.4. Loss Lunction 
In this experiment, the overall loss function Ltotal 
is composed of two components: Lsmooth enforces 
spatial regularization on the deformation field 
produced by the registration network, ensuring 
its smoothness. Meanwhile, Lsim evaluated the 
similarity among the fixed and warped images. 
The definition of Lsim is as follows: 
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where Xf and Xm refer to the fixed and moving 
images, respectively.  represents the 
deformation field, pi represents a voxel with 
index i, fX  denotes the fixed image with the 
local average pixel value subtracted, and mX  
denotes the moving image with the local average 
pixel value subtracted.  

During network training, discontinuous 
deformation fields are often generated as a result 
of optimizing the image similarity measure. To 

prevent overlapping in the predicted 
deformation fields, a spatial smoothness 
constraint is typically incorporated. The formula 
is as follows: 
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where (p) represents the spatial gradient of 
voxel p.  

The formula for the total loss function Ltotal 
includes a weighted spatial regularisation term 
and a similarity measurement term: 

total ( , , ) ( ),sim f m smoothL L X X L   (21) 

arization parameter. 

3.5. Jacobian Determinant 
The Jacobian determinant evaluates the regional 
variance in volume between two images by 
calculating the derivatives of the displacement 
[Error! Reference source not found.]. The 
formula is as follows: 
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where Ux (A), Uy (A), and Uz (A) respectively 
represent the estimated deformation 
components along the x, y, and z directions at 
point A (x, y, z). If Jac = 0, it implies the absence 
of expansion or contraction in the lung region. 
When 0 < Jac < 1, it indicates the presence of lung 
region expansion. If Jac < 0, it signifies lung 
region shrinkage [40]. 
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where ϕ(p) represents the spatial gradient of voxel p. 
The formula for the total loss function Ltotal includes 
a weighted spatial regularisation term and a similar-
ity measurement term:
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where Xf and Xm refer to the fixed and moving 
images, respectively.  represents the 
deformation field, pi represents a voxel with 
index i, fX  denotes the fixed image with the 
local average pixel value subtracted, and mX  
denotes the moving image with the local average 
pixel value subtracted.  

During network training, discontinuous 
deformation fields are often generated as a result 
of optimizing the image similarity measure. To 
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where Ux (A), Uy (A), and Uz (A) respectively 
represent the estimated deformation 
components along the x, y, and z directions at 
point A (x, y, z). If Jac = 0, it implies the absence 
of expansion or contraction in the lung region. 
When 0 < Jac < 1, it indicates the presence of lung 
region expansion. If Jac < 0, it signifies lung 
region shrinkage [40]. 
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where λ denotes the regularization parameter.

3.5. Jacobian Determinant
The Jacobian determinant evaluates the regional 
variance in volume between two images by calcu-
lating the derivatives of the displacement [34]. The 
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where Xf and Xm refer to the fixed and moving 
images, respectively.  represents the 
deformation field, pi represents a voxel with 
index i, fX  denotes the fixed image with the 
local average pixel value subtracted, and mX  
denotes the moving image with the local average 
pixel value subtracted.  

During network training, discontinuous 
deformation fields are often generated as a result 
of optimizing the image similarity measure. To 

prevent overlapping in the predicted 
deformation fields, a spatial smoothness 
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where Ux (A), Uy (A), and Uz (A) respectively 
represent the estimated deformation 
components along the x, y, and z directions at 
point A (x, y, z). If Jac = 0, it implies the absence 
of expansion or contraction in the lung region. 
When 0 < Jac < 1, it indicates the presence of lung 
region expansion. If Jac < 0, it signifies lung 
region shrinkage [40]. 
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4.1. Dataset
As shown in Table 2, all experiments were conduct-
ed using three publicly available lung 4DCT data-
sets: (1) the 4D-Lung dataset [42]; (2) the CREATIS 
dataset [43]; (3) the DIRLAB dataset [5]. Each scan 
contains 10 images corresponding to the 10 phases 
of the respiratory cycle. Among these, landmarks at 
the maximum inspiratory and maximum expiratory 
phases have been manually identified in the CRE-
ATIS and DIRLAB datasets, which can be used to 
evaluate registration performance.

The training phase utilized the 4D-Lung dataset, 
which included 18 scans selected at random for 
training and 2 for validation, as well as the CRE-
ATIS dataset, consisting of 4 scans chosen at ran-
dom for training and 2 for validation. During the 
training process, a leave-one-out cross-validation 
method was adopted, and the end-inhalation and 
end-exhalation images from the DIRLAB dataset 
were used for testing.
Since the tissue structure in the original lung im-
ages is not clear enough, it is necessary to enhance 
the brightness and contrast and normalize the image 
intensity to the range of [0,1] to improve the image 

Dataset 4D-Lung CREATIS DIRLAB

Patients 20 6 10

Modality 4DCT 4DCT 4DCT

Format .dicom .dicom .img

Landmarks - 100 300

Function Train Train Test

Table 2
Detailed information on the 4D-Lung, CREATIS, and 
DIRLAB datasets.



Information Technology and Control 2025/4/541296

quality. Then, a clustering algorithm is applied to 
eliminate bed plates and background noise in the 
image to the clarity of the lung region. Finally, all 
4DCT lung images were cropped to 192 × 192 × 192 
and resampled to a consistent voxel size of 1 mm × 1 
mm × 1 mm.

4.2. Implementation Details
All experiments were performed on an NVIDIA Ge-
Force RTX 4090 utilizing the PyTorch deep learning 
framework [34]. During training, the attention heads 
of MH-DRA were set to 8, 4, 2, 1, and 1, respectively. 
The expansion coefficient δ was defined as 4, while 
the regularization parameter λ for the total loss was 
fixed at 0.1. In the experiment, the ADAM optimiz-
er was used, and the learning rate was set to 0.0001. 
Each training session is set to 500 times, with a 
batch size of 1.

4.3. Evaluation Metrics
In this study, Target Registration Error (TRE) [35], 
Dice Similarity Coefficient(DSC) [46], and Struc-
ture Similarity Index Measure(SSIM) [10] measures 
were employed as quantitative metrics to assess reg-
istration performance rigorously.

4.3.1. Target Registration Error
TRE is the Euclidean distance between the land-
mark in the moving image and its matching position 
in the fixed image. A smaller value of TRE signifies 
greater registration accuracy of the algorithm. The 
specific mathematical expression is as follows:
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where
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wXS denote the regions of interest 

of the two images, respectively. 

4.3.3. Structure Similarity Index Measure 
SSIM measures the structural similarity of two 
images. The SSIM value varies between 0 and 1, 
where values approaching 1 signify greater 
similarity. The formula is given as follows: 
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where Xf and Xw represent the fixed and warped 
images, respectively.

fX and
wX  represent the 

respective mean values of Xf and Xw, 
fX and

wX denote the standard deviations of Xf and Xw. 
c1 and c2 are constants. 
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where SXf and SXw denote the regions of interest of the 
two images, respectively.

4.3.3. Structure Similarity Index Measure
SSIM measures the structural similarity of two im-
ages. The SSIM value varies between 0 and 1, where 
values approaching 1 signify greater similarity. The 
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where Xf and Xw represent the fixed and warped im-
ages, respectively. μXf and μXw represent the respec-
tive mean values of Xf and Xw, σXf and σXw denote the 
standard deviations of Xf and Xw. c1 and c2 are con-
stants.

4.4. Comparative Experiments Analysis
To prove the efficiency of MS-VMANet for lung reg-
istration, the MS-VMANet algorithm was compared 
with other unsupervised learning registration meth-
ods, including VoxelMorph [4], LungRegNet [14], 
ProgNet [11], and HPRN [23]. The primary experi-
mental findings are given in Tables 3-4. 
Table 3 shows the TRE values for different algo-
rithms, while Figure 5 shows the bar chart of TRE. 
As shown in Table 3 and Figure 5, MS-VMANet sig-
nificantly reduces registration errors across the 10 
cases in the DIRLAB dataset, with an average TRE 
value approximately 7 percentage points lower than 
before registration. Furthermore, compared to other 
methods, MS-VMANet achieves an average target 
registration error of around 1.78mm on the DIRLAB 
dataset, outperforming existing registration mod-
els and effectively improving the accuracy of lung 
image registration. However, in instances involving 
substantial deformations, like Case 7 and Case 8, 
the registration performance of MS-VMANet is less 
effective compared to LungRegNet. We speculate 
that this discrepancy may arise from the MH-DRA 
module’s use of a fixed dilation factor when predict-
ing the deformation field, which may not adequate-
ly accommodate the non-uniform nature of lung 
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deformations, leading to insufficient deformation 
information extraction in certain lung regions. Ad-
ditionally, before predicting the deformation field, 
LungRegNet incorporates lung vessel-enhanced im-
ages, introducing anatomical structural constraints 
that improve registration accuracy in vascular re-
gions. Nevertheless, compared to VoxelMorph, Prog-
Net, and HPRN none of which integrate additional 
anatomical information MS-VMANet achieves the 
lowest TRE value and delivers the best registration 
performance in this study.

Table 4 presents the DSC and SSIM values for each 
method. Table 4 shows that MS-VMANet demon-
strates significantly superior DSC and SSIM values 
on the DIRLAB dataset compared to other unsuper-
vised learning methods. MS-VMANet exhibits high 
average values for DSC (0.904) and SSIM (0.873) 
in all test cases. Additionally, as shown in Figure 6, 
the boxplot for the MS-VMANet method is the nar-
rowest, indicating that this method exhibits high-
er stability and robustness. Furthermore, based on 

Figure 5  
Bar chart of TRE values for various registration algorithms. 
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performance.) 

Dataset Initial VoxelMorph LungRegNet ProNet HPRN MS-VMANet 
Case1 3.89(2.78) 1.92(0.80) 2.47(0.83) 1.85(0.79) 1.46(0.71) 1.23(0.86) 

Dataset Initial VoxelMorph LungRegNet ProNet HPRN MS-VMANet

Case1 3.89(2.78) 1.92(0.80) 2.47(0.83) 1.85(0.79) 1.46(0.71) 1.23(0.86)

Case2 4.34(3.90) 1.87(0.77) 5.15(3.75) 2.32(0.85) 1.59(0.76) 1.37(0.93)

Case3 6.94(4.05) 2.35(1.02) 1.64(0.79) 1.77(0.97) 2.49(0.61) 1.28(0.71)

Case4 9.83(4.85) 2.64(1.85) 3.41(4.36) 2.20(1.18) 1.70(0.68) 1.63(1.19)

Case5 7.84(5.50) 2.85(2.13) 2.45(0.85) 2.28(1.57) 1.78(1.91) 1.48(0.65)

Case6 10.89(6.96) 3.48(2.75) 2.87(2.58) 3.17(1.82) 2.02(1.41) 1.92(0.84)

Case7 11.03(7.42) 5.15(4.20) 1.14(0.20) 2.82(1.72) 2.88(2.71) 2.51(1.78)

Case8 14.99(9.00) 2.26(1.56) 0.92(0.47) 4.10(3.18) 3.96(2.89) 2.64(1.39)

Case9 7.92(3.97) 2.39(2.36) 2.83(0.71) 2.70(1.46) 2.11(1.13) 1.79(0.72)

Case10 7.30(6.34) 2.52(2.43) 2.37(0.99) 2.36(1.62) 2.03(1.44) 1.91(0.98)

Mean and Std 8.46(5.48) 2.74(1.99) 2.53(1.55) 2.56(1.52) 2.20(1.43) 1.78(1.01)

Table 3
A comparison of the registration performance of MS-VMANet with alternative unsupervised learning approaches 
based on TRE (mm) on the DIRLAB datasets. (Lower TRE values indicate better registration performance.)
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Table 4
A comparison of the registration performance of MS-VMANet with alternative unsupervised learning approaches 
based on DSC and SSIM on the DIRLAB datasets. (Higher values indicate better registration performance.)

Dataset
Initial VoxelMorph LungRegNet ProNet HPRN MS-VMANet

DSC SSIM DSC SSIM DSC SSIM DSC SSIM DSC SSIM DSC SSIM

Case1 0.846 0.652 0.880 0.782 0.865 0.745 0.891 0.745 0.926 0.769 0.931 0.886

Case2 0.834 0.646 0.887 0.797 0.817 0.736 0.879 0.774 0.906 0.758 0.918 0.875

Case3 0.817 0.711 0.873 0.768 0.894 0.701 0.890 0.743 0.869 0.745 0.897 0.881

Case4 0.781 0.625 0.862 0.741 0.857 0.704 0.872 0.770 0.893 0.750 0.924 0.866

Case5 0.796 0.707 0.855 0.736 0.869 0.715 0.881 0.735 0.889 0.747 0.906 0.871

Case6 0.758 0.684 0.847 0.733 0.854 0.709 0.849 0.741 0.887 0.764 0.893 0.868

Case7 0.733 0.698 0.815 0.704 0.934 0.891 0.857 0.739 0.850 0.761 0.898 0.864

Case8 0.712 0.665 0.883 0.737 0.951 0.897 0.837 0.748 0.842 0.731 0.886 0.867

Case9 0.785 0.683 0.871 0.723 0.848 0.739 0.852 0.784 0.883 0.793 0.893 0.892

Case10 0.792 0.672 0.866 0.745 0.877 0.691 0.872 0.772 0.881 0.735 0.902 0.869

Mean 0.785 0.674 0.863 0.746 0.876 0.752 0.868 0.751 0.882 0.755 0.904 0.873

Figure 7
Registration results of the MS-VMANet method on the DIRLAB dataset. (a) Moving image; (b) Fixed image;  
(c) Warped image; (d) Deformation mesh; (e) Difference image before registration; (f ) Difference image after registration.
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The comparison of registration performance between the MS-VMANet method and other methods on the DIRLAB 
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by the HPRN method; (g)Warped images obtained by the MS-VMANet method. 

 
 

 

4.5 Ablation Experiment Analysis 
Aimed at evaluating the EVMA and MH-DRA’s 
influence on model performance, we substituted 

them with 3D convolutional blocks that included 
3×3×3 convolutions, BatchNorm, and ReLU 
functions. Tables 5-6 present the ablation study 
results for various registration approaches on the 
DIRLAB dataset. 
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the median values, the DSC and SSIM values of the 
proposed MS-VMANet method are the highest, fur-
ther demonstrating its superiority in lung registra-
tion precision.
As shown in Figure 7, significant morphological 
and volumetric differences are observed when 
comparing the moving and fixed images. MS-
VMANet effectively matches the moving image 
to the fixed image, minimizing intensity discrep-
ancies among the warped and fixed images while 
maintaining local texture details in the fixed im-
age. Figure 8 contrasts MS-VMANet with the 
warped images of the other four unsupervised 
learning-based methods: VoxelMorph, LungReg-
Net, ProgNet, and HPRN, to more clearly illus-
trate the MS-VMANet method's efficacy in lung 
image registration.
As shown in Figure 8, the MS-VMANet method ef-
fectively performs spatial transformations on the 

moving image's external contours and internal tis-
sue textures to address differences with the fixed 
image, producing a registration result that closely 
matches the internal structures and texture features 
of the fixed image. In contrast, the VoxelMorph, Lun-
gRegNet, ProgNet, and HPRN methods exhibit lim-
itations in handling local registration issues, failing 
to accurately register and deform the moving image 
to match the internal structures and texture features 
of the fixed image. 

4.5. Ablation Experiment Analysis

Aimed at evaluating the EVMA and MH-DRA’s 
influence on model performance, we substituted 
them with 3D convolutional blocks that included 
3×3×3 convolutions, BatchNorm, and ReLU func-
tions. Tables 5-6 present the ablation study re-
sults for various registration approaches on the 
DIRLAB dataset.

Figure 8
The comparison of registration performance between the MS-VMANet method and other methods on the DIRLAB dataset. 
(a) Moving image; (b) Fixed image; (c)Warped images obtained by the VoxelMorph method; (d)Warped images obtained 
by the LungRegNet method; (e)Warped images obtained by the ProgNet method; (f )Warped images obtained by the HPRN 
method; (g)Warped images obtained by the MS-VMANet method.
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obtained by the LungRegNet method; (e)Warped images obtained by the ProgNet method; (f)Warped images obtained 
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Dataset Initial MS-VMANet(without EVMA) MS-VMANet(without MH-DRA) MS-VMANet

Case1 3.89(2.78) 1.82(0.94) 2.36(1.51) 1.23(0.86)

Case2 4.34(3.90) 2.03(1.56) 2.11(1.37) 1.37(0.93)

Case3 6.94(4.05) 1.97(1.74) 1.89(0.95) 1.28(0.71)

Case4 9.83(4.85) 2.23(1.62) 2.46(1.06) 1.63(1.19)

Case5 7.84(5.50) 2.56(1.05) 2.24(1.33) 1.48(0.65)

Case6 10.89(6.96) 2.91(1.17) 2.86(1.48) 1.92(0.84)

Case7 11.03(7.42) 3.35(2.02) 3.16(1.94) 2.51(1.78)

Case8 14.99(9.00) 2.28(1.79) 2.75(1.21) 2.64(1.39)

Case9 7.92(3.97) 2.14(1.19) 2.37(1.82) 1.79(0.72)

Case10 7.30(6.34) 2.41(1.58) 2.23(1.69) 1.91(0.98)

Mean and Std 8.46(5.48) 2.37(1.52) 2.44(1.44) 1.78(1.01)

Table 5
TRE performances of ablation studies on the DIRLAB dataset.

Dataset
Initial MS-VMANet

(without EVMA)
MS-VMANet

(without MH-DRA) MS-VMANet

DSC SSIM DSC SSIM DSC SSIM DSC SSIM

Case1 0.846 0.652 0.886 0.842 0.891 0.812 0.931 0.886

Case2 0.834 0.646 0.905 0.853 0.883 0.806 0.918 0.875

Case3 0.817 0.711 0.892 0.837 0.875 0.785 0.897 0.881

Case4 0.781 0.625 0.874 0.797 0.862 0.792 0.924 0.866

Case5 0.796 0.707 0.868 0.821 0.871 0.768 0.906 0.871

Case6 0.758 0.684 0.852 0.834 0.848 0.761 0.893 0.868

Case7 0.733 0.698 0.885 0.866 0.839 0.774 0.898 0.864

Case8 0.712 0.665 0.873 0.838 0.825 0.852 0.886 0.867

Case9 0.785 0.683 0.912 0.809 0.861 0.781 0.893 0.892

Case10 0.792 0.672 0.887 0.855 0.864 0.776 0.902 0.869

Mean 0.785 0.674 0.883 0.835 0.861 0.79 0.904 0.873

Table 6
DSC and SSIM performances of ablation studies on the DIRLAB dataset.

As displayed in Table 5 and Figure 9, eliminating 
either the EVMA or MH-DRA module leads to a no-
table rise in TRE values, consequently reducing the 
accuracy of the image alignment. 
Additionally, as indicated in Table 6 and Figure 10, 

compared to the MS-VMANet without the EVMA or 
MH-DRA modules, incorporating these modules yields 
higher DSC and SSIM values, further demonstrating the 
critical role of the EVMA and MH-DRA modules in en-
hancing the performance of the MS-VMANet model.
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Figure 9  
Bar chart of the TRE values for the ablation experiment.
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10, compared to the MS-VMANet without the 
EVMA or MH-DRA modules, incorporating 
these modules yields higher DSC and SSIM 
values, further demonstrating the critical role of 
the EVMA and MH-DRA modules in enhancing 
the performance of the MS-VMANet model. 

4.6 Complexity Analysis 

The time and space complexity of the five 
methods, including MS-VMANet, were 
evaluated to comprehensively analyze their 
computational cost, as shown in Table 7. Here, 
n=h×w×d denotes the input feature volume's 
voxel count, and c denotes the dimensionality of 
feature channels. 

Table 7 

Comparison of the performance parameters of 
networks for registration. 

 

As presented in Table 7, MS-VMANet 
demonstrates a considerably reduced 
computational expense compared to other 
methods. With only 2.1M parameters and 56.5G 
FLOPs, MS-VMANet demonstrates superior 
memory usage and computation efficiency. 
Moreover, the time complexity of MS-VMANet 
is O(nlogn), which is significantly more scalable 
compared to other networks such as 
LungRegNet with O(nc2) and ProgNet with 
O(nlog2n). This reduced complexity makes MS-
VMANet highly suitable for practical 
deformable image registration tasks. 

4.7 Regional Pulmonary Ventilation 
Function Analysis 
Based on the registration results mentioned 
above, the effectiveness and accuracy of the MS-
VMANet method are validated, demonstrating 
its significant improvement in registration 
accuracy while maintaining stability. We further 
compute the deformation fields of the DIRLAB 
dataset using the Jacobian determinant to 
generate regional lung ventilation function 
images. These images are then converted into 
pseudo-color representations to visualize and 
assess the patient's lung ventilation function.  

Figure 11 presents the pulmonary ventilation 
distribution across five consecutive slices in the 
axial, sagittal, and coronal planes of the DIRLAB 
dataset. A deeper red color indicates a greater 
degree of lung voxel expansion, signifying 
stronger lung ventilation function, whereas a 
darker blue color represents increased lung 
voxel contraction, suggesting a corresponding  
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MS-VMANet(without 
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MS-VMANet(without MH-

DRA) MS-VMANet 
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Methods Params FLOPs Time 
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As presented in Table 7, MS-VMANet 
demonstrates a considerably reduced 
computational expense compared to other 
methods. With only 2.1M parameters and 56.5G 
FLOPs, MS-VMANet demonstrates superior 
memory usage and computation efficiency. 
Moreover, the time complexity of MS-VMANet 
is O(nlogn), which is significantly more scalable 
compared to other networks such as 
LungRegNet with O(nc2) and ProgNet with 
O(nlog2n). This reduced complexity makes MS-
VMANet highly suitable for practical 
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above, the effectiveness and accuracy of the MS-
VMANet method are validated, demonstrating 
its significant improvement in registration 
accuracy while maintaining stability. We further 
compute the deformation fields of the DIRLAB 
dataset using the Jacobian determinant to 
generate regional lung ventilation function 
images. These images are then converted into 
pseudo-color representations to visualize and 
assess the patient's lung ventilation function.  

Figure 11 presents the pulmonary ventilation 
distribution across five consecutive slices in the 
axial, sagittal, and coronal planes of the DIRLAB 
dataset. A deeper red color indicates a greater 
degree of lung voxel expansion, signifying 
stronger lung ventilation function, whereas a 
darker blue color represents increased lung 
voxel contraction, suggesting a corresponding  

Table 5 

TRE performances of ablation studies on the DIRLAB dataset. 

Dataset Initial 
MS-VMANet(without 

EVMA) 
MS-VMANet(without MH-

DRA) MS-VMANet 

Case1 3.89(2.78) 1.82(0.94) 2.36(1.51) 1.23(0.86) 

Methods Params FLOPs Time 
Complexity 

Voxelmorph 6.3M 84.8G O(nc) 
LungRegNet 14.6M 157.3G O(nc²) 

ProgNet 5.8M 73.4G O(nlog²n) 
HPRN 7.6M 91.7G O(nclogc) 

MS-VMANet 2.1M 56.5G O(nlogn) 

4.6. Complexity Analysis
The time and space complexity of the five methods, 
including MS-VMANet, were evaluated to com-
prehensively analyze their computational cost, as 
shown in Table 7. Here, n=h×w×d denotes the input 
feature volume's voxel count, and c denotes the di-
mensionality of feature channels.

4.7. Regional Pulmonary Ventilation 
Function Analysis

Based on the registration results mentioned above, 
the effectiveness and accuracy of the MS-VMANet 
method are validated, demonstrating its significant 
improvement in registration accuracy while main-
taining stability. We further compute the deforma-
tion fields of the DIRLAB dataset using the Jacobian 
determinant to generate regional lung ventilation 
function images. These images are then converted 
into pseudo-color representations to visualize and 
assess the patient's lung ventilation function. 
Figure 11 presents the pulmonary ventilation dis-
tribution across five consecutive slices in the axial, 
sagittal, and coronal planes of the DIRLAB dataset. 
A deeper red color indicates a greater degree of lung 
voxel expansion, signifying stronger lung ventilation 
function, whereas a darker blue color represents in-
creased lung voxel contraction, suggesting a corre-
sponding reduction in ventilation function.
As illustrated in Figure 11, the peripheral areas of the 
lung appear in blue or red, signifying a robust venti-
lation function in these regions. The central regions 
of the lung predominantly display green, indicating 
that these areas neither expand nor contract, which 
suggests weak or potentially absent ventilation in 
certain localized regions. Furthermore, pulmonary 
ventilation is unevenly distributed, with variations 
observed across different layers. However, a degree 
of correlation and continuity in ventilation is main-
tained between consecutive and adjacent layers. 

Methods Params FLOPs Time Complexity

Voxelmorph 6.3M 84.8G O(nc)

LungRegNet 14.6M 157.3G O(nc2)

ProgNet 5.8M 73.4G O(nlog2n)

HPRN 7.6M 91.7G O(nclogc)

MS-VMANet 2.1M 56.5G O(nlogn)

Table 7
Comparison of the performance parameters of networks 
for registration.

As presented in Table 7, MS-VMANet demonstrates 
a considerably reduced computational expense com-
pared to other methods. With only 2.1M parameters 
and 56.5G FLOPs, MS-VMANet demonstrates su-
perior memory usage and computation efficiency. 
Moreover, the time complexity of MS-VMANet is 
O(nlogn), which is significantly more scalable com-
pared to other networks such as LungRegNet with 
O(nc2) and ProgNet with O(nlog2n). This reduced 
complexity makes MS-VMANet highly suitable for 
practical deformable image registration tasks.
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effectively handle these cases, its performance 
still lags behind that of LungRegNet. This can be 
attributed to two main factors: First, MS-
VMANet employs a fixed dilation factor as 
proposed in [17] when generating the 
deformation field, restricting the model’s 
capacity to adjust to the non-uniformity of lung 
deformations, thereby reducing the accuracy of 
the deformation field estimation. Second, 
LungRegNet incorporates enhanced lung vessel 
images as anatomical constraints during the 
registration process, which improves the 
alignment precision of the lung vascular regions 
to some extent. This approach provides an 
important insight for future research: integrating 
anatomical information about the lung, such as 
blood vessels and airways, can significantly 
improve registration accuracy and robustness, 
particularly when dealing with complex 
deformations and local anatomical features. 

(2) Model Generalization 

In this study, MS-VMANet is primarily applied 
to the registration of lung 4DCT images. 
However, its architecture exhibits a certain 
degree of generalizability and, in theory, can be 
extended to image registration tasks for other 
anatomical regions, such as the brain, liver, and 
knee. Since different anatomical regions involve 
distinct regions of interest (ROIs) during the 
registration process, the model’s performance 

may be significantly influenced by variations in 
data characteristics and deformation patterns. 
Future research could integrate a multi-task 
learning framework to allow the model to 
dynamically acquire deformation features from 
various anatomical regions. Additionally, 
incorporating adjustable deformation field 
constraints, such as those informed by 
anatomical prior knowledge, could improve the 
model’s flexibility and resilience in handling 
diverse registration tasks. 

(3) Lack of Multimodal Data and Clinical 
Validation 
This study primarily utilizes 4DCT images of 
lung cancer patients; however, it does not 
incorporate other imaging modalities, such as 
PET or MRI. Integrating multimodal data can 
provide more comprehensive physiological and 
anatomical information, thereby improving 
registration accuracy and enhancing the model's 
robustness when handling complex cases. Future 
research should explore the integration of 
multimodal datasets, like the VAMPIRE dataset 
[27], the Learn2Reg dataset [20], and the ChestX-
ray8 dataset [39], to further enhance the 
robustness and generalization of registration 
methods. Moreover, although the regional 
ventilation maps obtained in this study are 
generated based on 4DCT images of lung cancer 
patients and therefore possess a certain degree of 
validity, their clinical effectiveness and practical 

(a) (b) (c) (d) (e) (f )

Overall, the right lung performs better at ventilation 
than the left lung, as the right lung exhibits a higher 
prevalence of blue and red areas. Consequently, in 
the context of image-guided lung radiation therapy, 
regions with high ventilation (depicted by the red 
and blue areas) can be selectively preserved, and the 
irradiation dose to these areas can be reduced, there-
by minimizing potential damage to healthy lung tis-
sue and enhancing therapeutic efficacy.

 

5. Discussion
Based on deformable image registration, we present-
ed the MS-VMANet approach in this study for eval-
uating lung ventilation function. While the experi-
mental results validate the efficacy of MS-VMANet, it 

is essential to recognize the limitations and possible 
avenues for improvement in the proposed method.
1	 Registration of Large Deformations
For lung CT images with significant deformations, 
although MS-VMANet can effectively handle these 
cases, its performance still lags behind that of Lun-
gRegNet. This can be attributed to two main factors: 
First, MS-VMANet employs a fixed dilation factor 
as proposed in [17] when generating the deforma-
tion field, restricting the model’s capacity to adjust 
to the non-uniformity of lung deformations, thereby 
reducing the accuracy of the deformation field esti-
mation. Second, LungRegNet incorporates enhanced 
lung vessel images as anatomical constraints during 
the registration process, which improves the align-
ment precision of the lung vascular regions to some 

Figure 11
Regional pulmonary ventilation distribution images across five consecutive lung slices in the axial, coronal, and sagittal planes 
were obtained using MS-VMANet. (a) Lung CT image in the axial plane; (b) Regional pulmonary ventilation distribution image 
in axial slices; (c) Lung CT image in the coronal plane; (d) Regional pulmonary ventilation distribution image in coronal slices; 
(e) Lung CT image in the sagittal plane; (f ) Regional pulmonary ventilation distribution image in sagittal slices.
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extent. This approach provides an important insight 
for future research: integrating anatomical informa-
tion about the lung, such as blood vessels and airways, 
can significantly improve registration accuracy and 
robustness, particularly when dealing with complex 
deformations and local anatomical features.
2	 Model Generalization
In this study, MS-VMANet is primarily applied to the 
registration of lung 4DCT images. However, its archi-
tecture exhibits a certain degree of generalizability 
and, in theory, can be extended to image registration 
tasks for other anatomical regions, such as the brain, 
liver, and knee. Since different anatomical regions 
involve distinct regions of interest (ROIs) during the 
registration process, the model’s performance may be 
significantly influenced by variations in data charac-
teristics and deformation patterns. Future research 
could integrate a multi-task learning framework to 
allow the model to dynamically acquire deformation 
features from various anatomical regions. Addition-
ally, incorporating adjustable deformation field con-
straints, such as those informed by anatomical prior 
knowledge, could improve the model’s flexibility and 
resilience in handling diverse registration tasks.
3	 Lack of Multimodal Data and Clinical Validation
This study primarily utilizes 4DCT images of lung 
cancer patients; however, it does not incorporate 
other imaging modalities, such as PET or MRI. In-
tegrating multimodal data can provide more com-
prehensive physiological and anatomical informa-
tion, thereby improving registration accuracy and 
enhancing the model's robustness when handling 
complex cases. Future research should explore the 
integration of multimodal datasets, like the VAM-
PIRE dataset [27], the Learn2Reg dataset [20], and 
the ChestX-ray8 dataset [39], to further enhance the 
robustness and generalization of registration meth-
ods. Moreover, although the regional ventilation 
maps obtained in this study are generated based on 

4DCT images of lung cancer patients and therefore 
possess a certain degree of validity, their clinical ef-
fectiveness and practical significance have not yet 
been clinically validated. Therefore, future work 
should incorporate real ventilation imaging modali-
ties (e. g., SPECT or 68Ga-based PET images) to val-
idate and compare these regional ventilation maps.

6. Conclusion
In this study, we present a multi-scale efficient VMam-
ba attention registration network (MS-VMANet), 
designed to evaluate ventilation across different 
lung 4DCT regions. We compared the proposed MS-
VMANet approach with other unsupervised learn-
ing-based registration approaches and assessed its 
performance on the publicly available DIRLAB data-
set. MS-VMANet achieved significant results in terms 
of quantification metrics (TRE, DSC, and SSIM), 
demonstrating its reliability and accuracy. Further-
more, based on the registration results, we quantified 
the deformation field using the Jacobian determinant 
to generate accurate functional maps reflecting the 
ventilation of each lung region. Beyond the evaluation 
of ventilation, these functional maps can be utilized 
in a range of clinical contexts, including assisting in 
radiotherapy planning to avoid regions with high ven-
tilation, monitoring lung function post-treatment, 
and forecasting potential thoracic complications. This 
approach offers feasible support for the diagnosis and 
management of pulmonary disorders.
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