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In the real world, emotional data often comes from multiple heterogeneous sources, making it difficult 
for unimodal approaches to capture emotional information fully. Existing sentiment analysis models 
struggle with accuracy when handling complex emotional expressions. Accordingly, this paper proposes 
a multi-modal sentiment analysis framework, MEA-IFE, which is characterized by effective feature ex-
traction and high predictive accuracy. To mitigate potential information loss and expression limitations in 
BERT-BiLSTM during text feature extraction, MEA-IFE introduces a parallel structure of SK-Net and BiL-
STM, enhancing the ability to extract multi-dimensional text features. Additionally, it integrates the ECA 
mechanism to improve the capture of essential information in text. For image-related challenges, MEA-IFE 
incorporates Vision Transformer better to capture both global and detailed features of images, combining 
CNN and Transformer architectures. During the feature fusion phase, MEA-IFE employs a multi-head at-
tention mechanism to dynamically integrate text and image features, exploring the interactive potential be-
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tween different modalities. Experiments performed using the Kaggle text dataset and the FER2013 image 
dataset demonstrate an impressive accuracy of up to 98.00%, validating its effectiveness. When compared 
with models like AM-MF, AMSAER, HAN-CA-SA, and TBGAV, MEA-IFE shows outstanding performance 
across accuracy, precision, recall, and F1 score, with respective improvements of 0.40%, 0.20%, 0.75%, and 
0.52%. The model also excels in the AUC metric, further confirming its advantages. The proposed MEA-IFE 
model possesses high predictive accuracy and strong feature integration capabilities, meeting the precision 
demands of complex multi-modal sentiment tasks.
KEYWORDS: Feature Extraction, Multi-head Attention, Sentiment Analysis, Multimodal Fusion

1. Introduction
Sentiment analysis is a critical domain within NLP 
that focuses on the automatic detection of emotional 
tendencies in data. It involves the extraction, analy-
sis, and mining of subjective data that is infused with 
emotional nuances [5]. Owing to the rapid expan-
sion of social media and online reviews, sentiment 
analysis is being applied more and more extensively 
across various sectors, including business intelli-
gence, market research, and public safety [15]. How-
ever, emotional data in the real world often originates 
from multiple heterogeneous sources, including text, 
images, and voice. As a result, unimodal analysis 
methods struggle to comprehensively capture emo-
tional information, making the effective integration 
of multi-modal information a key challenge [11]. Ad-
ditionally, existing sentiment analysis models still 
face issues of low accuracy when dealing with com-
plex emotional expressions, which do not fulfil the re-
quirements of real-world applications [4].
Early research on sentiment analysis primarily fo-
cused on text datasets. Tang et al. [6] proposed an 
LSTM-based model that demonstrated high accuracy 
on Twitter datasets, particularly when considering 
the semantic relevance between target words and 
their contextual counterparts. Nevertheless, this ap-
proach had certain limitations in training time and 
was highly dependent on the datasets used. Salem et 
al. [12] introduced Slim LSTM, which reduced the 
number of parameters to accelerate training and low-
er computational costs. This model achieved good 
results on the GOP debate Twitter dataset but still 
faced challenges in handling imbalanced datasets and 
complex emotional expressions. Wang et al. [19] in-
troduced a method which combines text filtering net-
works with an enhanced BERT model, resulting in a 
significant improvement in classification accuracy on 

the sentiment analysis dataset from the AI Challeng-
er. However, issues related to redundancy and noise 
in long texts persisted, necessitating further improve-
ments in text filtering accuracy and the effective pro-
cessing of extended text information. Wu et al. [1] in-
troduced the Quasi-Attention Context-Guided BERT 
model, which significantly improved sentiment anal-
ysis performance by integrating contextual informa-
tion, demonstrating excellent results on the Senti-
Hood and SemEval-2014 datasets. Nevertheless, text 
sentiment analysis is easily influenced by context and 
semantic factors, making it challenging to reflect hu-
man emotions accurately.
Image sentiment analysis captures non-verbal emo-
tional signals, such as facial expressions and postures, 
providing a more intuitive and objective reflection of 
emotional states. This research field, which centers 
on recognizing and analyzing sentiment in images, 
offers numerous application possibilities but encoun-
ters considerable challenges due to the abstract char-
acteristics of visual content. Cao et al. [8] introduced 
a method for image sentiment classification utilizing 
Adaboost combined with BP neural networks, which 
achieved good classification results compared to tra-
ditional BP neural network methods, particularly in 
enhancing the efficiency and accuracy of semantic 
classification of emotional images. Xu et al. [7] pre-
sented an innovative framework for visual sentiment 
prediction based on DCNN, which effectively per-
formed sentiment analysis through transfer learning 
from a DCNN that had been pre-trained on a large 
dataset, significantly improving sentiment prediction 
performance. However, further exploration is needed 
to optimize the model for better robustness against 
noisy data. You et al. [21] proposed an image senti-
ment analysis model based on CNN, which employed 
progressive training and domain transfer strategies 
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to mitigate the impact of noisy data on model perfor-
mance. This model demonstrated excellent results on 
the Flickr and Twitter datasets but still suffered from 
limitations in effectively extracting global features. 
Zhu et al. [23] developed a cohesive CNN-RNN model 
that extracted features at various levels through CNN 
in a multi-task learning framework and performed 
feature fusion using a Bi-RNN, thereby improving the 
performance of sentiment recognition.
The studies mentioned above focus solely on sin-
gle-modal data sources, overlooking the interactions 
between multiple modalities. Compared to unimodal 
approaches, multi-modal sentiment analysis meth-
ods exhibit higher performance. Wang et al. [18] in-
troduced the CCLA sentiment classification model, 
which effectively captures local and long-range se-
mantic and emotional information in text by com-
bining CNN, LSTM and Attention. Tang et al. [17] 
introduced a model named CTFN, which captures 
bidirectional interactions between different modal-
ities using a coupled learning approach. This model 
integrates a cyclic consistency constraint to enhance 
performance, allowing it to retain only the encoder 
part of the Transformer, thereby reducing complexity. 
Zhang et al. [22] presented the TBGAV model, which 
employs TinyBERT and BiGRU-Attention to extract 
and enhance text features, utilizes VGG19 to extract 
visual features, and applies a bilinear fusion meth-
od to improve multi-modal sentiment classification 
performance. Similarly, Xie et al. [20] introduced the 
AM-MF model, which combines RoBERTa, ResNet, 
and Vision Transformer for multi-modal feature ex-
traction. This model builds a CMA interaction com-
ponent that enables the integration of features be-
tween various modalities and employs a soft attention 
strategy for deeper integration of both internal and 
cross-modal information, significantly improving 
sentiment classification accuracy. Nevertheless, these 
approaches still encounter challenges, such as being 
overly simplistic and ineffective in feature extraction, 
indicating the need for more effective models to meet 
the demands of complex sentiment analysis tasks.
Analyzing sentiment across multiple modalities in-
volves combining features from various sub-modali-
ties to capture emotional information more compre-
hensively. Dushyant et al. [25] utilized an IIM module 
to learn interactions between different modalities, 
enhancing model performance with cross-modal 
features and introducing a CAM module to capture 

contextual details, thereby enhancing the accuracy 
of sentiment and emotion analysis. Ameer et al. [2] 
introduced a late fusion-based multi-modal multi-
task learning framework, integrating three late fusion 
models (TFN, LMF, and LF-DNN) into this multi-task 
learning structure, resulting in significant improve-
ments in multi-modal task performance. Zhang et al. 
[9] employed a transformer-based unimodal encoder 
to extract features and introduced a soft modal atten-
tion mechanism during the fusion stage of the fea-
tures. This mechanism dynamically assigns different 
importance weights to each emotion label, capturing 
the dependency relationships between various mo-
dalities and emotion labels. They modeled the bidirec-
tional interactions between modalities using a coupled 
learning approach within the encoder. Zhao et al. [24] 
designed a unified multi-modal prompting method 
and employed probabilistic fusion techniques to ag-
gregate predictions based on different modal prompts, 
effectively mitigating the impact of feature discrep-
ancies between modalities. Despite certain advances 
in current multi-modal fusion methods, there remain 
shortcomings in fusion flexibility and cross-modal 
contextual modeling. Therefore, an efficient and flex-
ible fusion mechanism must be designed to enhance 
the representational capability of the model.
In conclusion, this study presents a Multi-modal 
Emotion Analyzer with an Integrated Feature En-
hancement model, which is characterized by effective 
feature extraction capabilities and high predictive 
accuracy. Specifically, to address the potential is-
sues of information loss or limited expressive pow-
er in text feature extraction by BERT-BiLSTM, the 
paper introduces the SK-Net to be integrated into 
parallel with Bi-LSTM to improve the multi-scale 
spatial feature extraction abilities of the model. The 
parallel integration of SK-Net and Bi-LSTM can ex-
tract richer and more comprehensive feature repre-
sentations from multiple perspectives. Subsequent-
ly, based on BERT-SKNet-BiLSTM, the Efficient 
Channel Attention is introduced to improve the text 
feature extraction module's ability to capture import-
ant information. To address the issue of insufficient 
global feature capture in the DCNN AlexNet model 
for image information extraction, this paper intro-
duces the Vision Transformer module to enhance the 
global representation in images. In the feature fusion 
part, multi-head attention is combined to adaptively 
merge cross-modal text and image features, fully ex-
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ploring the interaction between different modalities, 
which significantly enhances the accuracy of emotion 
and sentiment analysis. This study evaluates the pro-
posed model against four other models, AM-MF, AM-
SAER [3], HAN-CA-SA [16], and TBGAV, to demon-
strate its effectiveness and superiority.
The contributions of this research are outlined as 
follows:
1 A BERT-SKNet-BiLSTM-ECA module is proposed 

for text feature extraction. This module integrates 
BERT, SK-Net, BiLSTM and ECA to derive richer 
and more comprehensive text features, addressing 
potential information loss and limited expressive-
ness in BERT's feature extraction. 

2 For image feature extraction, a DCNN+Vision 
Transformer model is proposed, which can en-
hance the ability to capture global representations 
in images, compensating for the insufficiency of 
DCNN models in capturing global features in im-
age information extraction. 

3 The MEA-IFE model can enhance the prediction 
accuracy of multi-modal sentiment evaluation. 
Through the combination of multi-head attention 
to adaptively fuse cross-modal text and image fea-
tures, it explores the interaction relationships be-
tween different modalities, effectively improving 
feature integration and overall model performance.

This paper is organized as follows: Section 2 pres-
ents the proposed models and methods, including 
the text and image feature extraction modules fusion 

mechanism, along with a comprehensive overview 
of the components within each module. Section 3 is 
the experimental part, which introduces the simula-
tion environment, evaluation indicators, and datasets 
used in the experiments and proves the efficacy and 
advantages of the proposed model through ablation 
experiments and comparative experiments. Section 
4 will discuss the advantages, limitations, application 
prospects, and future work of the proposed model.

2. Models and Methods 
The framework of the MEA-IFE multi-modal sen-
timent analysis model proposed in this study, illus-
trated in Figure 1, comprises the text and image fea-
ture extraction module, along with the multi-modal 
fusion part.

2.1 Text Feature Extraction Module  
After preprocessing, the original text data is input into 
BERT, which can comprehend the contextual nuanc-
es within the text, capture the semantic relationships 
between words, phrases, and sentences, and generate 
a high-dimensional feature representation. Subse-
quently, the features generated by BERT will be sent 
into two parallel integrated modules: Bi-LSTM and 
SK-Net. The Bi-LSTM module can handle the con-
textual details within the text, capturing the global 
information in the content and further enhancing the 
model's understanding of sequential data. The SK-

Figure 1
MEA-IFE Multi-modal Sentiment Analysis Framework Diagram.

assigns different importance weights to each emotion label, capturing the dependency relationships between various 
modalities and emotion labels. They modeled the bidirectional interactions between modalities using a coupled 
learning approach within the encoder. Zhao et al. [24] designed a unified multi-modal prompting method and 
employed probabilistic fusion techniques to aggregate predictions based on different modal prompts, effectively 
mitigating the impact of feature discrepancies between modalities. Despite certain advances in current multi-modal 
fusion methods, there remain shortcomings in fusion flexibility and cross-modal contextual modeling. Therefore, an 
efficient and flexible fusion mechanism must be designed to enhance the representational capability of the model. 
In conclusion, this study presents a Multi-modal Emotion Analyzer with an Integrated Feature Enhancement model, 
which is characterized by effective feature extraction capabilities and high predictive accuracy. Specifically, to 
address the potential issues of information loss or limited expressive power in text feature extraction by BERT-
BiLSTM, the paper introduces the SK-Net to be integrated into parallel with Bi-LSTM to improve the multi-scale 
spatial feature extraction abilities of the model. The parallel integration of SK-Net and Bi-LSTM can extract richer 
and more comprehensive feature representations from multiple perspectives. Subsequently, based on BERT-SKNet-
BiLSTM, the Efficient Channel Attention is introduced to improve the text feature extraction module's ability to 
capture important information. To address the issue of insufficient global feature capture in the DCNN AlexNet 
model for image information extraction, this paper introduces the Vision Transformer module to enhance the global 
representation in images. In the feature fusion part, multi-head attention is combined to adaptively merge cross-modal 
text and image features, fully exploring the interaction between different modalities, which significantly enhances the 
accuracy of emotion and sentiment analysis. This study evaluates the proposed model against four other models, AM-
MF, AMSAER [3], HAN-CA-SA [16], and TBGAV, to demonstrate its effectiveness and superiority. 
The contributions of this research are outlined as follows: 
(1) A BERT-SKNet-BiLSTM-ECA module is proposed for text feature extraction. This module integrates BERT, 
SK-Net, BiLSTM and ECA to derive richer and more comprehensive text features, addressing potential information 
loss and limited expressiveness in BERT's feature extraction.  
(2) For image feature extraction, a DCNN+Vision Transformer model is proposed, which can enhance the ability to 
capture global representations in images, compensating for the insufficiency of DCNN models in capturing global 
features in image information extraction.  
(3) The MEA-IFE model can enhance the prediction accuracy of multi-modal sentiment evaluation. Through the 
combination of multi-head attention to adaptively fuse cross-modal text and image features, it explores the interaction 
relationships between different modalities, effectively improving feature integration and overall model performance. 
This paper is organized as follows: Section 2 presents the proposed models and methods, including the text and 
image feature extraction modules fusion mechanism, along with a comprehensive overview of the components within 
each module. Section 3 is the experimental part, which introduces the simulation environment, evaluation indicators, 
and datasets used in the experiments and proves the efficacy and advantages of the proposed model through ablation 
experiments and comparative experiments. Section 4 will discuss the advantages, limitations, application prospects, 
and future work of the proposed model. 

 

2. Models and Methods  
The framework of the MEA-IFE multi-modal sentiment analysis model proposed in this study, illustrated 
in Figure 1, comprises the text and image feature extraction module, along with the multi-modal fusion 
part. 
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2.1 Text Feature Extraction Module   
After preprocessing, the original text data is input into BERT, which can comprehend the contextual nuances within 
the text, capture the semantic relationships between words, phrases, and sentences, and generate a high-dimensional 
feature representation. Subsequently, the features generated by BERT will be sent into two parallel integrated 
modules: Bi-LSTM and SK-Net. The Bi-LSTM module can handle the contextual details within the text, capturing 
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Net module can adaptively extract features at differ-
ent scales, effectively enhancing the model's capacity 
to identify local characteristics. The features extract-
ed by the Bi-LSTM and SK-Net modules will then be 
passed into the ECA module for feature fusion. ECA 
can efficiently identify and enhance important chan-
nel features, and this lightweight architecture can 
decrease the model's complexity while maintaining 
good performance.

2.1.1 BERT
BERT is a pre-trained LM proposed in 2018, built on 
the Transformer architecture. In contrast to conven-
tional unidirectional language models like Word2Vec 
and ELMo, BERT uses a bidirectional training meth-
od, which means that when processing each word, 
it considers the words to the left and right simulta-
neously. It allows the model to gain a deeper insight 
into the context, capture bidirectional relationships 
between words, and thus generate richer context-re-
lated word vectors. BERT utilizes the encoder compo-
nent of the Transformer, relying on the self-attention 
mechanism to process sequential data, effectively cap-
turing long-distance dependencies. BERT's pre-train-
ing consists of two primary tasks: MLM and NSP. In 
MLM, certain words in the input sentences are ran-
domly masked, and the model is tasked with predict-
ing them; NSP asks the model to predict whether two 
sentences are consecutive. BERT has attained break-
through performance across a range of NLP tasks, be-
coming a new standard for many tasks, and has driven 

the research direction of pre-trained language models, 
having a profound impact on the entire field.
BERT's architecture primarily features an embed-
ding layer along with 12 stacked Transformer encod-
ers. After tokenization and preprocessing, including 
the addition of [CLS] and [SEP] tokens, the text is fed 
into the embedding layer. This layer comprises three 
main parts: Token Embedding, Segment Embedding, 
and Position Embedding. Token Embedding rep-
resents the tokenized words as vectors in a high-di-
mensional space, while Segment Embedding helps 
differentiate between different sentences. Position 
Embedding is introduced to give the model insights 
into each token's position within the sequence, allow-
ing it to grasp the relationships between words. The 
integration of these three types of embeddings equips 
BERT to handle complex language structures and 
contextual relationships.
The text data represented by the embedding layer is 
transmitted to the cascaded Transformer encoders, 
where each encoder layer includes self-attention and 
FNN, enabling the model to identify intricate de-
pendencies within the input sequence. In the BERT 
model, self-attention is one of the core components, 
capable of capturing long-distance dependencies be-
tween different tokens and constructing richer global 
semantic feature representations. This mechanism 
enables the model to take into account other tokens 
throughout the entire input sequence while process-
ing each token, thus achieving a more accurate seman-

Figure 2
Structural Representation of the BERT Embedding Layer.

the global information in the content and further enhancing the model's understanding of sequential data. The SK-Net 
module can adaptively extract features at different scales, effectively enhancing the model's capacity to identify local 
characteristics. The features extracted by the Bi-LSTM and SK-Net modules will then be passed into the ECA module 
for feature fusion. ECA can efficiently identify and enhance important channel features, and this lightweight 
architecture can decrease the model's complexity while maintaining good performance. 
2.1.1 BERT 
BERT is a pre-trained LM proposed in 2018, built on the Transformer architecture. In contrast to conventional 
unidirectional language models like Word2Vec and ELMo, BERT uses a bidirectional training method, which means 
that when processing each word, it considers the words to the left and right simultaneously. It allows the model to 
gain a deeper insight into the context, capture bidirectional relationships between words, and thus generate richer 
context-related word vectors. BERT utilizes the encoder component of the Transformer, relying on the self-attention 
mechanism to process sequential data, effectively capturing long-distance dependencies. BERT's pre-training consists 
of two primary tasks: MLM and NSP. In MLM, certain words in the input sentences are randomly masked, and the 
model is tasked with predicting them; NSP asks the model to predict whether two sentences are consecutive. BERT 
has attained breakthrough performance across a range of NLP tasks, becoming a new standard for many tasks, and 
has driven the research direction of pre-trained language models, having a profound impact on the entire field. 
BERT's architecture primarily features an embedding layer along with 12 stacked Transformer encoders. After 
tokenization and preprocessing, including the addition of [CLS] and [SEP] tokens, the text is fed into the embedding 
layer. This layer comprises three main parts: Token Embedding, Segment Embedding, and Position Embedding. 
Token Embedding represents the tokenized words as vectors in a high-dimensional space, while Segment Embedding 
helps differentiate between different sentences. Position Embedding is introduced to give the model insights into each 
token's position within the sequence, allowing it to grasp the relationships between words. The integration of these 
three types of embeddings equips BERT to handle complex language structures and contextual relationships. 
Figure 2 
Structural Representation of the BERT Embedding Layer. 
 
 
 
 
 
 
The text data represented by the embedding layer is transmitted to the cascaded Transformer encoders, where each 
encoder layer includes self-attention and FNN, enabling the model to identify intricate dependencies within the input 
sequence. In the BERT model, self-attention is one of the core components, capable of capturing long-distance 
dependencies between different tokens and constructing richer global semantic feature representations. This 
mechanism enables the model to take into account other tokens throughout the entire input sequence while processing 
each token, thus achieving a more accurate semantic understanding. The encoder module also includes normalization 
layers, which can help stabilize the training process and accelerate convergence. Normalization layers typically use 
Layer Normalization, which can reduce the issue of internal covariate shift, thereby enhancing the stability of the 
model throughout the training process. The FNN further nonlinearly transforms the features processed by self-
attention and normalization to enhance the semantic expression ability of the features. Additionally, residual modules 
are introduced in the encoder module, which assists in addressing the issues of gradient vanishing or explosion in 
deep networks, ensuring that information can be effectively transmitted within the network. By repeating the above 
process in multiple Transformer layers, the model can gradually refine and accumulate high-level semantic features of 
the text, ultimately outputting an in-depth understanding of the text. 
Figure 3 
Framework Diagram of BERT-based Feature Extraction. 
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tic understanding. The encoder module also includes 
normalization layers, which can help stabilize the 
training process and accelerate convergence. Nor-
malization layers typically use Layer Normalization, 
which can reduce the issue of internal covariate shift, 
thereby enhancing the stability of the model through-
out the training process. The FNN further nonlinearly 
transforms the features processed by self-attention 
and normalization to enhance the semantic expres-
sion ability of the features. Additionally, residual mod-
ules are introduced in the encoder module, which as-
sists in addressing the issues of gradient vanishing or 
explosion in deep networks, ensuring that information 
can be effectively transmitted within the network. By 
repeating the above process in multiple Transformer 
layers, the model can gradually refine and accumulate 
high-level semantic features of the text, ultimately 
outputting an in-depth understanding of the text.

which dictates how the next hidden state uses the 
current cell state. The coordinated operation of these 
three gates allows LSTM to retain and leverage long-
term dependencies within the sequence, mitigating 
the vanishing and exploding gradient issues common 
in RNNs. The relationships mentioned above are fur-
ther expressed through formulas as follows:

 
2.1.2 Bi-LSTM 
Bi-LSTM is a particular variant of RNN architecture that integrates LSTM units with bidirectional processing 
mechanisms. By adding bidirectional operations to the foundation of LSTM, Bi-LSTM is capable of simultaneously 
handling both preceding and subsequent information in sequence data, thereby enhancing its ability to capture 
dependencies within the sequence. LSTM consists of three main components: the input gate, which regulates new 
information retained in the cell state; the forget gate, which determines information to discard; and the output gate, 
which dictates how the next hidden state uses the current cell state. The coordinated operation of these three gates 
allows LSTM to retain and leverage long-term dependencies within the sequence, mitigating the vanishing and 
exploding gradient issues common in RNNs. The relationships mentioned above are further expressed through 
formulas as follows: 
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where represents the current time step, denotes the hidden state of the previous time step, indicates the cell state of the 
prior time step, and refers to the weight matrix and bias term, signifies the sigmoid function and represents the 
hyperbolic tangent function. 
The Bi-LSTM module adds bidirectional processing capabilities to the foundation of the LSTM. At each step, the 
model is capable of processing not only the forward information associated with the current time step but also the 
information from preceding time steps. It means that for each element in the sequence, the Bi-LSTM will generate 
two hidden states. This bidirectional processing mechanism enables the model to consider contextual information 
simultaneously, thus offering a deeper understanding of sequence data. 
2.1.3 SK-Net Mechanism 
SK-Net (Selective Kernel Network) is a CNN architecture designed to adaptively select features across multiple 
scales, thereby improving the model's capacity to capture information at diverse scales. Traditional convolutional 
neural networks use fixed-size convolutional kernels and cannot dynamically modify the size of the receptive field. 
SK-Net achieves adaptive receptive fields by dynamically adjusting the size of the convolutional kernels, thereby 
better-capturing features at different scales. The core idea is to use a set of convolutional kernels of different sizes that 
can extract local features of the data in parallel. Then, the model subsequently incorporates a channel attention 
mechanism that adaptively allocates varying weights to the features extracted by different convolutional kernels. This 
selective mechanism allows SK-Net to flexibly handle features of different scales without the need for manual design 
or preset. The main architecture is shown in Figure 4. 
Figure 4 
SK-Net Architecture Diagram. 
 
 
 
 
 
 
 
SK-Net is commonly used in computer vision tasks for extracting image features, but its adaptive feature extraction 
capability can also be applied to text feature extraction. For text data, these convolutional kernels of different sizes 
can capture features at different granularities within the text, greatly enhancing the extraction of local textual features. 
The integration of the SK-Net module in parallel with the Bi-LSTM module can fully extract features at different 
granularities in the text, taking into account both local and global features, which achieves more comprehensive 

(1)

 
2.1.2 Bi-LSTM 
Bi-LSTM is a particular variant of RNN architecture that integrates LSTM units with bidirectional processing 
mechanisms. By adding bidirectional operations to the foundation of LSTM, Bi-LSTM is capable of simultaneously 
handling both preceding and subsequent information in sequence data, thereby enhancing its ability to capture 
dependencies within the sequence. LSTM consists of three main components: the input gate, which regulates new 
information retained in the cell state; the forget gate, which determines information to discard; and the output gate, 
which dictates how the next hidden state uses the current cell state. The coordinated operation of these three gates 
allows LSTM to retain and leverage long-term dependencies within the sequence, mitigating the vanishing and 
exploding gradient issues common in RNNs. The relationships mentioned above are further expressed through 
formulas as follows: 

1( [ , ] )t f t t ff W h X b
        (1) 

 1( [ , ] )t i t t ii W h X b             (2) 

 1tanh( [ , ] )t c t t cC W h X b      (3) 

 1t t t t tC f C i C                    (4) 

 1( [ , ] )t o t t oo W h X b            (5) 

 tanh( )t t th o C ,                         (6) 
where represents the current time step, denotes the hidden state of the previous time step, indicates the cell state of the 
prior time step, and refers to the weight matrix and bias term, signifies the sigmoid function and represents the 
hyperbolic tangent function. 
The Bi-LSTM module adds bidirectional processing capabilities to the foundation of the LSTM. At each step, the 
model is capable of processing not only the forward information associated with the current time step but also the 
information from preceding time steps. It means that for each element in the sequence, the Bi-LSTM will generate 
two hidden states. This bidirectional processing mechanism enables the model to consider contextual information 
simultaneously, thus offering a deeper understanding of sequence data. 
2.1.3 SK-Net Mechanism 
SK-Net (Selective Kernel Network) is a CNN architecture designed to adaptively select features across multiple 
scales, thereby improving the model's capacity to capture information at diverse scales. Traditional convolutional 
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where represents the current time step, denotes the hidden state of the previous time step, indicates the cell state of the 
prior time step, and refers to the weight matrix and bias term, signifies the sigmoid function and represents the 
hyperbolic tangent function. 
The Bi-LSTM module adds bidirectional processing capabilities to the foundation of the LSTM. At each step, the 
model is capable of processing not only the forward information associated with the current time step but also the 
information from preceding time steps. It means that for each element in the sequence, the Bi-LSTM will generate 
two hidden states. This bidirectional processing mechanism enables the model to consider contextual information 
simultaneously, thus offering a deeper understanding of sequence data. 
2.1.3 SK-Net Mechanism 
SK-Net (Selective Kernel Network) is a CNN architecture designed to adaptively select features across multiple 
scales, thereby improving the model's capacity to capture information at diverse scales. Traditional convolutional 
neural networks use fixed-size convolutional kernels and cannot dynamically modify the size of the receptive field. 
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better-capturing features at different scales. The core idea is to use a set of convolutional kernels of different sizes that 
can extract local features of the data in parallel. Then, the model subsequently incorporates a channel attention 
mechanism that adaptively allocates varying weights to the features extracted by different convolutional kernels. This 
selective mechanism allows SK-Net to flexibly handle features of different scales without the need for manual design 
or preset. The main architecture is shown in Figure 4. 
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where represents the current time step, denotes the 
hidden state of the previous time step, indicates the 
cell state of the prior time step, and refers to the weight 
matrix and bias term, signifies the sigmoid function 
and represents the hyperbolic tangent function.
The Bi-LSTM module adds bidirectional processing 
capabilities to the foundation of the LSTM. At each 
step, the model is capable of processing not only the 
forward information associated with the current time 
step but also the information from preceding time 
steps. It means that for each element in the sequence, 
the Bi-LSTM will generate two hidden states. This bi-
directional processing mechanism enables the model 
to consider contextual information simultaneously, 
thus offering a deeper understanding of sequence data.

2.1.3 SK-Net Mechanism
SK-Net (Selective Kernel Network) is a CNN archi-
tecture designed to adaptively select features across 
multiple scales, thereby improving the model's ca-
pacity to capture information at diverse scales. Tra-
ditional convolutional neural networks use fixed-size 
convolutional kernels and cannot dynamically modify 
the size of the receptive field. SK-Net achieves adap-
tive receptive fields by dynamically adjusting the size 
of the convolutional kernels, thereby better-capturing 
features at different scales. The core idea is to use a 
set of convolutional kernels of different sizes that can 
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Framework Diagram of BERT-based Feature Extraction.

the global information in the content and further enhancing the model's understanding of sequential data. The SK-Net 
module can adaptively extract features at different scales, effectively enhancing the model's capacity to identify local 
characteristics. The features extracted by the Bi-LSTM and SK-Net modules will then be passed into the ECA module 
for feature fusion. ECA can efficiently identify and enhance important channel features, and this lightweight 
architecture can decrease the model's complexity while maintaining good performance. 
2.1.1 BERT 
BERT is a pre-trained LM proposed in 2018, built on the Transformer architecture. In contrast to conventional 
unidirectional language models like Word2Vec and ELMo, BERT uses a bidirectional training method, which means 
that when processing each word, it considers the words to the left and right simultaneously. It allows the model to 
gain a deeper insight into the context, capture bidirectional relationships between words, and thus generate richer 
context-related word vectors. BERT utilizes the encoder component of the Transformer, relying on the self-attention 
mechanism to process sequential data, effectively capturing long-distance dependencies. BERT's pre-training consists 
of two primary tasks: MLM and NSP. In MLM, certain words in the input sentences are randomly masked, and the 
model is tasked with predicting them; NSP asks the model to predict whether two sentences are consecutive. BERT 
has attained breakthrough performance across a range of NLP tasks, becoming a new standard for many tasks, and 
has driven the research direction of pre-trained language models, having a profound impact on the entire field. 
BERT's architecture primarily features an embedding layer along with 12 stacked Transformer encoders. After 
tokenization and preprocessing, including the addition of [CLS] and [SEP] tokens, the text is fed into the embedding 
layer. This layer comprises three main parts: Token Embedding, Segment Embedding, and Position Embedding. 
Token Embedding represents the tokenized words as vectors in a high-dimensional space, while Segment Embedding 
helps differentiate between different sentences. Position Embedding is introduced to give the model insights into each 
token's position within the sequence, allowing it to grasp the relationships between words. The integration of these 
three types of embeddings equips BERT to handle complex language structures and contextual relationships. 
Figure 2 
Structural Representation of the BERT Embedding Layer. 
 
 
 
 
 
 
The text data represented by the embedding layer is transmitted to the cascaded Transformer encoders, where each 
encoder layer includes self-attention and FNN, enabling the model to identify intricate dependencies within the input 
sequence. In the BERT model, self-attention is one of the core components, capable of capturing long-distance 
dependencies between different tokens and constructing richer global semantic feature representations. This 
mechanism enables the model to take into account other tokens throughout the entire input sequence while processing 
each token, thus achieving a more accurate semantic understanding. The encoder module also includes normalization 
layers, which can help stabilize the training process and accelerate convergence. Normalization layers typically use 
Layer Normalization, which can reduce the issue of internal covariate shift, thereby enhancing the stability of the 
model throughout the training process. The FNN further nonlinearly transforms the features processed by self-
attention and normalization to enhance the semantic expression ability of the features. Additionally, residual modules 
are introduced in the encoder module, which assists in addressing the issues of gradient vanishing or explosion in 
deep networks, ensuring that information can be effectively transmitted within the network. By repeating the above 
process in multiple Transformer layers, the model can gradually refine and accumulate high-level semantic features of 
the text, ultimately outputting an in-depth understanding of the text. 
Figure 3 
Framework Diagram of BERT-based Feature Extraction. 
 
 
 
 
 
 
 
 

2.1.2 Bi-LSTM
Bi-LSTM is a particular variant of RNN architecture 
that integrates LSTM units with bidirectional pro-
cessing mechanisms. By adding bidirectional opera-
tions to the foundation of LSTM, Bi-LSTM is capable 
of simultaneously handling both preceding and sub-
sequent information in sequence data, thereby en-
hancing its ability to capture dependencies within the 
sequence. LSTM consists of three main components: 
the input gate, which regulates new information re-
tained in the cell state; the forget gate, which deter-
mines information to discard; and the output gate, 
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extract local features of the data in parallel. Then, the 
model subsequently incorporates a channel attention 
mechanism that adaptively allocates varying weights 
to the features extracted by different convolutional 
kernels. This selective mechanism allows SK-Net to 
flexibly handle features of different scales without the 
need for manual design or preset. The main architec-
ture is shown in Figure 4.
SK-Net is commonly used in computer vision tasks 
for extracting image features, but its adaptive feature 
extraction capability can also be applied to text fea-
ture extraction. For text data, these convolutional ker-
nels of different sizes can capture features at different 
granularities within the text, greatly enhancing the 
extraction of local textual features. The integration 
of the SK-Net module in parallel with the Bi-LSTM 
module can fully extract features at different granu-
larities in the text, taking into account both local and 

Figure 4
SK-Net Architecture Diagram.

 
2.1.2 Bi-LSTM 
Bi-LSTM is a particular variant of RNN architecture that integrates LSTM units with bidirectional processing 
mechanisms. By adding bidirectional operations to the foundation of LSTM, Bi-LSTM is capable of simultaneously 
handling both preceding and subsequent information in sequence data, thereby enhancing its ability to capture 
dependencies within the sequence. LSTM consists of three main components: the input gate, which regulates new 
information retained in the cell state; the forget gate, which determines information to discard; and the output gate, 
which dictates how the next hidden state uses the current cell state. The coordinated operation of these three gates 
allows LSTM to retain and leverage long-term dependencies within the sequence, mitigating the vanishing and 
exploding gradient issues common in RNNs. The relationships mentioned above are further expressed through 
formulas as follows: 

1( [ , ] )t f t t ff W h X b
        (1) 

 1( [ , ] )t i t t ii W h X b             (2) 

 1tanh( [ , ] )t c t t cC W h X b      (3) 

 1t t t t tC f C i C                    (4) 

 1( [ , ] )t o t t oo W h X b            (5) 

 tanh( )t t th o C ,                         (6) 
where represents the current time step, denotes the hidden state of the previous time step, indicates the cell state of the 
prior time step, and refers to the weight matrix and bias term, signifies the sigmoid function and represents the 
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model is capable of processing not only the forward information associated with the current time step but also the 
information from preceding time steps. It means that for each element in the sequence, the Bi-LSTM will generate 
two hidden states. This bidirectional processing mechanism enables the model to consider contextual information 
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scales, thereby improving the model's capacity to capture information at diverse scales. Traditional convolutional 
neural networks use fixed-size convolutional kernels and cannot dynamically modify the size of the receptive field. 
SK-Net achieves adaptive receptive fields by dynamically adjusting the size of the convolutional kernels, thereby 
better-capturing features at different scales. The core idea is to use a set of convolutional kernels of different sizes that 
can extract local features of the data in parallel. Then, the model subsequently incorporates a channel attention 
mechanism that adaptively allocates varying weights to the features extracted by different convolutional kernels. This 
selective mechanism allows SK-Net to flexibly handle features of different scales without the need for manual design 
or preset. The main architecture is shown in Figure 4. 
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SK-Net is commonly used in computer vision tasks for extracting image features, but its adaptive feature extraction 
capability can also be applied to text feature extraction. For text data, these convolutional kernels of different sizes 
can capture features at different granularities within the text, greatly enhancing the extraction of local textual features. 
The integration of the SK-Net module in parallel with the Bi-LSTM module can fully extract features at different 
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global features, which achieves more comprehensive 
feature extraction and sequence modeling.

2.1.4 ECA Mechanism
ECA is a lightweight channel attention mechanism 
that effectively improves upon traditional channel 
attention mechanisms. The core advantage of ECA 
lies in its significant reduction in model parameters 
and overall computational complexity through the 
simplification of the computation process, thereby 
enhancing the operational efficiency of the model. 
Traditional channel attention mechanisms, such as 
SENet and CBAM, typically rely on two fully con-
nected layers to calculate the channel attention 
weights. However, ECA simplifies the structure and 
reduces the model's complexity through the substi-
tution of fully connected layers with one-dimen-
sional convolutional layers.

Figure 5
Flowchart of the ECA Mechanism.
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2.1.4 ECA Mechanism 
ECA is a lightweight channel attention mechanism that effectively improves upon traditional channel attention 
mechanisms. The core advantage of ECA lies in its significant reduction in model parameters and overall 
computational complexity through the simplification of the computation process, thereby enhancing the operational 
efficiency of the model. Traditional channel attention mechanisms, such as SENet and CBAM, typically rely on two 
fully connected layers to calculate the channel attention weights. However, ECA simplifies the structure and reduces 
the model's complexity through the substitution of fully connected layers with one-dimensional convolutional layers. 
Figure 5 
Flowchart of the ECA Mechanism. 
 
 
 
 
 
 
After the text data has been processed through the Bi-LSTM module and SK-Net for feature extraction, these features 
are sent to the ECA module. The ECA module functions to automatically recognize and enhance important channel 
features while suppressing less critical information. This mechanism enables the model to prioritize essential features, 
facilitating the effective integration of global features obtained from Bi-LSTM and local features derived from SK-
Net, thus contributing to an enhancement in the model's accuracy and further improving its generalization capability 
and practical applicability. 

2.2 Image Feature Extraction Module 
The image feature extraction module is composed of DCNN and Vision Transformer. The DCNN part utilizes the 
AlexNet architecture, which extracts local features from images via a sequence of convolutional layers, activation 
functions, and pooling layers. To address the issue of insufficient global feature capture in DCNN-based image 
feature extraction, this paper introduces a Vision Transformer module that employs self-attention techniques to 
identify global relationships and long-range dependencies within images. By integrating CNNs with Transformers, 
the representational capacity of both global and local features in images is enhanced. 
2.2.1 DCNN 
DCNN is a deep learning architecture that effectively learns high-level features of images and is widely used in 
computer vision because of its powerful feature extraction abilities. Its fundamental characteristic lies in the 
arrangement of various convolutional layers, pooling layers, and FC layers. Convolutional layers extract local features 
from images while pooling layers decrease the dimensionality of these features and enhance their invariance. FC 
layers integrate the features obtained from the previous layers. In this context, the AlexNet architecture [13] is 
employed as a feature extractor to capture potential emotional features within images. To further explore the emotion-
related features in image data, we have adjusted some parameters of the AlexNet model and removed the FC layers 
and classification parts, retaining only the feature extraction part of the network to concentrate on extracting semantic 
information related to the emotional features contained in the images. The main framework is shown in Figure 6. 
Figure 6 
AlexNet Feature Extraction Framework [13]. 

 
AlexNet is a DCNN architecture introduced by Alex Krizhevsky et al. in 2012 [13]. One of its core features is the use 
of the ReLU activation function, as shown in Equation (7). This choice can markedly enhance the model's training 
speed. Compared with traditional Sigmoid or Tanh activation functions, ReLU reduces computational complexity and 
alleviates the vanishing gradient problem, making it more efficient for processing deep networks. In addition, 
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After the text data has been processed through the 
Bi-LSTM module and SK-Net for feature extraction, 
these features are sent to the ECA module. The ECA 
module functions to automatically recognize and en-
hance important channel features while suppressing 
less critical information. This mechanism enables the 
model to prioritize essential features, facilitating the 
effective integration of global features obtained from 
Bi-LSTM and local features derived from SK-Net, 
thus contributing to an enhancement in the model's 
accuracy and further improving its generalization ca-
pability and practical applicability.

2.2 Image Feature Extraction Module
The image feature extraction module is composed of 
DCNN and Vision Transformer. The DCNN part uti-
lizes the AlexNet architecture, which extracts local 
features from images via a sequence of convolutional 
layers, activation functions, and pooling layers. To ad-
dress the issue of insufficient global feature capture in 
DCNN-based image feature extraction, this paper in-
troduces a Vision Transformer module that employs 
self-attention techniques to identify global relation-
ships and long-range dependencies within images. By 
integrating CNNs with Transformers, the represen-
tational capacity of both global and local features in 
images is enhanced.

2.2.1 DCNN
DCNN is a deep learning architecture that effectively 
learns high-level features of images and is widely used 
in computer vision because of its powerful feature 
extraction abilities. Its fundamental characteristic 
lies in the arrangement of various convolutional lay-
ers, pooling layers, and FC layers. Convolutional lay-
ers extract local features from images while pooling 
layers decrease the dimensionality of these features 
and enhance their invariance. FC layers integrate the 
features obtained from the previous layers. In this 
context, the AlexNet architecture [13] is employed 
as a feature extractor to capture potential emotional 
features within images. To further explore the emo-
tion-related features in image data, we have adjusted 
some parameters of the AlexNet model and removed 
the FC layers and classification parts, retaining only 
the feature extraction part of the network to concen-
trate on extracting semantic information related to 
the emotional features contained in the images. The 
main framework is shown in Figure 6.
AlexNet is a DCNN architecture introduced by Alex 
Krizhevsky et al. in 2012 [13]. One of its core features 
is the use of the ReLU activation function, as shown 
in Equation (7). This choice can markedly enhance 
the model's training speed. Compared with tradi-

Figure 6
AlexNet Feature Extraction Framework [13].
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tional Sigmoid or Tanh activation functions, ReLU 
reduces computational complexity and alleviates 
the vanishing gradient problem, making it more ef-
ficient for processing deep networks. In addition, 
AlexNet also introduced the Dropout regularization 
technique, which serves as a straightforward yet 
effective approach that forces the network to learn 
more robust feature representations, thereby en-
hancing the model's generalization capability and 
reducing the risk of overfitting.

 

AlexNet also introduced the Dropout regularization technique, which serves as a straightforward yet effective 
approach that forces the network to learn more robust feature representations, thereby enhancing the model's 
generalization capability and reducing the risk of overfitting. 
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2.2.2 Vision Transformer 
Vision Transformer (ViT) is an innovative deep-learning architecture that successfully extends the advanced 
capabilities of the Transformer framework to the domain of image processing. Its core innovation lies in transforming 
traditional image processing tasks into sequence modeling problems, allowing the model to capture both global and 
local features of images using the Transformer. 
The image features obtained from DCNN are passed to the ViT module. ViT first divides the input image into 
multiple patches, which can be considered as local features of the image. Each patch is transformed into a one-
dimensional vector and then embedded via a linear layer to obtain the initial representation. This process not only 
retains the local information of the image but also lays the foundation for subsequent sequencing processing. ViT 
introduces a special category token, which, together with the image's patch embeddings, constitutes the input of the 
Transformer model. This category token is essential to the model, and its final state will be used for the final 
sentiment classification task. Since the Transformer architecture itself does not inherently perceive the order of the 
sequence, ViT supplements this function by adding positional encoding. The positional encoding provides each patch 
with spatial position information in the original image, enabling the model to understand the relative positional 
relationships between different patches. After the image information is flattened and embedded, ViT uses self-
attention to process the image features further, enabling the capture of emotional information within the image. Self-
attention allows the model to take into account the information from all other patches while processing each patch, 
thereby capturing the global context information and potential emotional features in the image. This mechanism 
significantly enhances the model's capacity to understand the global structure of the image. 
Figure 7 
Vision Transformer Framework. 
 
 
 
 
 
 

 

2.3 Fusion Mechanism 
In multi-modal sentiment analysis tasks, processing and fusing features from different data sources is a crucial 
challenge. To effectively fuse cross-modality features, we employ multi-head attention to address the issue of feature 
fusion from different data sources. 
2.3.1 Multi-Head Attention 
Self-attention is a technique for computing the correlations between different positions within a sequence in sequence 
models. The core idea is to allow each element in the sequence to interact with other elements in the sequence to 
calculate its representation. This mechanism allows the model to capture longer-distance dependencies when 
processing sequences rather than relying solely on local context from recurrent or convolutional operations. Self-
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introduces a special category token, which, together with the image's patch embeddings, constitutes the input of the 
Transformer model. This category token is essential to the model, and its final state will be used for the final 
sentiment classification task. Since the Transformer architecture itself does not inherently perceive the order of the 
sequence, ViT supplements this function by adding positional encoding. The positional encoding provides each patch 
with spatial position information in the original image, enabling the model to understand the relative positional 
relationships between different patches. After the image information is flattened and embedded, ViT uses self-
attention to process the image features further, enabling the capture of emotional information within the image. Self-
attention allows the model to take into account the information from all other patches while processing each patch, 
thereby capturing the global context information and potential emotional features in the image. This mechanism 
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ly enhances the model's capacity to understand the 
global structure of the image.

2.3 Fusion Mechanism
In multi-modal sentiment analysis tasks, process-
ing and fusing features from different data sources 
is a crucial challenge. To effectively fuse cross-mo-
dality features, we employ multi-head attention to 
address the issue of feature fusion from different 
data sources.

2.3.1 Multi-Head Attention
Self-attention is a technique for computing the cor-
relations between different positions within a se-
quence in sequence models. The core idea is to allow 
each element in the sequence to interact with other 
elements in the sequence to calculate its represen-
tation. This mechanism allows the model to capture 
longer-distance dependencies when processing se-
quences rather than relying solely on local context 
from recurrent or convolutional operations. Self-at-
tention generates Q, K, and V matrices through differ-
ent linear transformations of the input sequence and 
then calculates the internal attention values of the se-
quence, which can be further expressed as:

AlexNet also introduced the Dropout regularization technique, which serves as a straightforward yet effective 
approach that forces the network to learn more robust feature representations, thereby enhancing the model's 
generalization capability and reducing the risk of overfitting. 
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Multi-head attention is an extension of tradi-
tional self-attention, allowing the model to com-
pute attention weights in parallel across multiple 
representational subspaces, thereby capturing 
the relevance of features at different levels of ab-
straction. Each head of the self-attention focuses 
on different aspects or combinations of the input 
features, thereby augmenting the model's cap aci-
ty to perceive diverse feature combinations. Under 
the framework of multi-head attention, the model 
can perform multiple self-attention operations si-
multaneously, each using a separate set of parame-
ters. It allows for the parallel extraction of features 
from different perspectives, and then the outputs 
of these operations are merged to form an integrat-
ed feature representation. This representation can 
comprehensively capture and fuse features from 
different modalities, providing rich information for 
subsequent processing.

2.3.2 Fully Connected Layer
After processing through multi-head attention, the 
features of images and text are effectively integrated. 
These integrated features are then refined through a 
series of FC layers, introducing nonlinear transfor-
mations to help the model learn higher-level feature 
representations. The ultimately integrated features 
are mapped to sentiment categories through a clas-
sifier. Through this comprehensive treatment of 
multi-head attention and FC layers, the multi-mod-
al sentiment analysis model can more accurate-
ly capture and analyze emotional information in 
cross-modal data, thereby achieving better perfor-
mance in sentiment recognition tasks.

3. Experiments

3.1 Experimental Environment
1 Introduction to the dataset 
We used a total of two datasets. The text dataset 
used by the first dataset is sourced from the Kag-
gle platform, which is specifically designed for text 
sentiment classification tasks and contains approx-
imately 11,000 entries (https://www.kaggle.com/
datasets/wcqyfly/bert-data-glue). The records are 
classified into three sentiment categories: neutral, 
positive, and negative. In terms of sentiment dis-
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parameters. It allows for the parallel extraction of features from different perspectives, and then the outputs of these 
operations are merged to form an integrated feature representation. This representation can comprehensively capture 
and fuse features from different modalities, providing rich information for subsequent processing. 
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integrated features are then refined through a series of FC layers, introducing nonlinear transformations to help the 
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categories through a classifier. Through this comprehensive treatment of multi-head attention and FC layers, the 
multi-modal sentiment analysis model can more accurately capture and analyze emotional information in cross-modal 
data, thereby achieving better performance in sentiment recognition tasks. 
 
 

3. Experiments 
3.1 Experimental Environment 
(1) Introduction to the dataset  
We used a total of two datasets. The text dataset used by the first dataset is sourced from the Kaggle platform, which 
is specifically designed for text sentiment classification tasks and contains approximately 11,000 entries 
(https://www.kaggle.com/datasets/wcqyfly/bert-data-glue). The records are classified into three sentiment categories: 
neutral, positive, and negative. In terms of sentiment distribution, neutral texts account for 47.13% of the total dataset, 
positive texts account for 37.80%, and negative texts account for 15.07%. To ensure the effectiveness of the model 
training, establish a ratio of 10:1 for the training set to the test set. In addition, we also used the FER2013 image 
dataset from the Kaggle platform, which contains over 28,000 training images and more than 3,500 test images 
(https://www.kaggle.com/datasets/wcqyfly/fer2013-data). The original dataset categorizes images into seven 
sentiment categories based on facial expressions: anger, disgust, fear, happiness, sadness, surprise, and neutral. Each 
image is a 48×48 pixel grayscale image suitable for facial expression recognition tasks. To match the sentiment 
categories of the image dataset with the text dataset, we made the necessary adjustments. We unified the expressions 
of anger, disgust, fear, and sadness into the negative category, marked the expressions of happiness as positive, and 
kept the label for neutral expressions unchanged. In this way, we ensured consistency in sentiment categories for the 
image dataset, and we also adjusted the scale of the image data training and test sets to match the text dataset while 
maintaining the same sentiment distribution. When constructing the negative category image dataset, we paid 
particular attention to the diversity and consistency of the data distribution. Since the negative category is composed 
of several original sentiment categories, we randomly extracted according to the original proportion of each negative 
category image in the FER2013 dataset. Ultimately, in the adjusted negative dataset, the proportion of anger is 
29.90%, disgust 3.27%, fear 30.67%, and sadness 36.16%. Through the construction and adjustment of the datasets, 
we ensured the accuracy and reliability of the experiments, which also contributed to improving the model's capacity 
for generalization. 
The second dataset uses the IMDB dataset as the text corpus, which is an extensively applied movie review dataset 
for sentiment analysis and NLP tasks (https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-
reviews). The IMDB dataset comprises 50,000 user reviews of films, categorized as either positive or negative, with a 
sentiment category ratio of 1:1. We use 40,000 of these reviews as the training set, while the remaining 10,000 are 
designated for the test set. This dataset not only provides rich user feedback but also reflects diverse emotional 
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tribution, neutral texts account for 47.13% of the 
total dataset, positive texts account for 37.80%, 
and negative texts account for 15.07%. To ensure 
the effectiveness of the model training, establish 
a ratio of 10:1 for the training set to the test set. In 
addition, we also used the FER2013 image data-
set from the Kaggle platform, which contains over 
28,000 training images and more than 3,500 test 
images (https://www.kaggle.com/datasets/wcqy-
fly/fer2013-data). The original dataset categoriz-
es images into seven sentiment categories based 
on facial expressions: anger, disgust, fear, happi-
ness, sadness, surprise, and neutral. Each image 
is a 48×48 pixel grayscale image suitable for facial 
expression recognition tasks. To match the senti-
ment categories of the image dataset with the text 
dataset, we made the necessary adjustments. We 
unified the expressions of anger, disgust, fear, and 
sadness into the negative category, marked the ex-
pressions of happiness as positive, and kept the la-
bel for neutral expressions unchanged. In this way, 
we ensured consistency in sentiment categories for 
the image dataset, and we also adjusted the scale of 
the image data training and test sets to match the 
text dataset while maintaining the same sentiment 
distribution. When constructing the negative cat-
egory image dataset, we paid particular attention 
to the diversity and consistency of the data distri-
bution. Since the negative category is composed of 
several original sentiment categories, we randomly 
extracted according to the original proportion of 
each negative category image in the FER2013 data-
set. Ultimately, in the adjusted negative dataset, the 
proportion of anger is 29.90%, disgust 3.27%, fear 
30.67%, and sadness 36.16%. Through the construc-
tion and adjustment of the datasets, we ensured the 
accuracy and reliability of the experiments, which 
also contributed to improving the model's capacity 
for generalization.
The second dataset uses the IMDB dataset as the 
text corpus, which is an extensively applied movie 
review dataset for sentiment analysis and NLP tasks 
( https://www.kaggle.com /datasets/lakshmi25-
npathi/imdb-dataset-of-50k-movie-reviews). The 
IMDB dataset comprises 50,000 user reviews of 
films, categorized as either positive or negative, 
with a sentiment category ratio of 1:1. We use 40,000 
of these reviews as the training set, while the re-
maining 10,000 are designated for the test set. This 

dataset not only provides rich user feedback but 
also reflects diverse emotional expressions, making 
it suitable for building and evaluating sentiment 
analysis models. The image dataset employed is 
the RAF-DB dataset, which is specifically designed 
for facial expression recognition and comprises ap-
proximately 15,000 RGB images, including around 
12,000 images in the training set and about 3,000 
in the test set (https://www.kaggle.com/datasets/
shuvoalok/raf-db-dataset). This dataset encom-
passes a diverse range of authentic facial emotional 
expressions. RAF-DB also categorizes images into 
seven emotional classes, providing a wealth of emo-
tion labels to support sentiment recognition tasks. 
In our experiments, we categorized images labeled 
as happiness into the positive class and grouped 
anger, disgust, fear, and sadness into the negative 
class. Additionally, we oversampled the image data-
set to match the text dataset. Additionally, during 
the experiment, both the text dataset and the image 
dataset underwent specific preprocessing steps. We 
filtered out some special characters from the text 
dataset and resized the images in the image dataset 
to dimensions of 256.
Compared to the first dataset, this dataset is larger 
in scale and exhibits greater complexity, with lon-
ger text lengths and richer information in the image 
data. Furthermore, there are significant differences 
in the distributions of the two datasets. Validating 
the model on both datasets contributes to a more 
thorough evaluation of the generalization capability 
of the model proposed in this study.
2 Evaluation metrics
In this experiment, we utilized various evaluation 
metrics to evaluate the performance of our model 
thoroughly. These metrics comprise accuracy, preci-
sion, recall, F1 score, and AUC value.
Accuracy is the ratio of correctly predicted sam-
ples to the total number of samples. In classification 
tasks, a high accuracy means the model can effec-
tively distinguish between categories.

expressions, making it suitable for building and evaluating sentiment analysis models. The image dataset employed is 
the RAF-DB dataset, which is specifically designed for facial expression recognition and comprises approximately 
15,000 RGB images, including around 12,000 images in the training set and about 3,000 in the test set 
(https://www.kaggle.com/datasets/shuvoalok/raf-db-dataset). This dataset encompasses a diverse range of authentic 
facial emotional expressions. RAF-DB also categorizes images into seven emotional classes, providing a wealth of 
emotion labels to support sentiment recognition tasks. In our experiments, we categorized images labeled as 
happiness into the positive class and grouped anger, disgust, fear, and sadness into the negative class. Additionally, 
we oversampled the image dataset to match the text dataset. Additionally, during the experiment, both the text dataset 
and the image dataset underwent specific preprocessing steps. We filtered out some special characters from the text 
dataset and resized the images in the image dataset to dimensions of 256. 
Compared to the first dataset, this dataset is larger in scale and exhibits greater complexity, with longer text lengths 
and richer information in the image data. Furthermore, there are significant differences in the distributions of the two 
datasets. Validating the model on both datasets contributes to a more thorough evaluation of the generalization 
capability of the model proposed in this study. 
(2) Evaluation metrics 
In this experiment, we utilized various evaluation metrics to evaluate the performance of our model thoroughly. These 
metrics comprise accuracy, precision, recall, F1 score, and AUC value. 
Accuracy is the ratio of correctly predicted samples to the total number of samples. In classification tasks, a high 
accuracy means the model can effectively distinguish between categories. 

 
Accuracy TP TN

TP TN FP FN   (10) 
Precision measures the fraction of samples identified as positive that are truly positive. When the importance of 
positive samples is high, and there is a need to reduce false positives, precision becomes a key evaluation metric. A 
high precision indicates reliability in predicting the positive class. 

 
Precision= TP

TP FP                  (11) 
Recall evaluates the percentage of all actual positive samples the model correctly identifies. In scenarios where it is 
necessary to identify as many positive samples as possible, recall is essential. A high recall rate indicates that the 
model can identify a greater number of positive samples, thereby minimizing missed detections. 

 
Recall= TP

TP FN           (12) 
The F1 score represents the harmonic mean of precision and recall, considering both metrics simultaneously. A high 
F1 score signifies that the model has effectively maintained a favorable balance between the two. 

Precision RecallF1 Score 2
Precision+Recall   (13) 

AUC is derived by charting the true positive rate versus the false positive rate at different thresholds, serving as an 
indicator of the model's performance. A higher AUC value typically reflects superior model performance. 
By employing these evaluation metrics comprehensively, we are able to evaluate the model's performance from 
different perspectives, ensuring that the model not only performs well overall but also meets the expected standards 
for precision, recall, and overall classification ability. The comprehensive assessment of these metrics helps us to 
acquire a deeper insight into the model's strengths and weaknesses, offering a more thorough evaluation of its 
performance. 
(3) Simulation environment 
This experiment used a total of two environments. The first dataset utilized Configuration 1, while the second dataset 
utilized Configuration 2. The main hardware configuration parameters are shown in Table 1. 
Table 1 
Experimental Simulation Environment 
Parameters Configuration 

1 
Configuration 

2 

OS Ubuntu 20.04.6 
LTS 

Ubuntu 20.04.6 
LTS 

(10)

Precision measures the fraction of samples identi-
fied as positive that are truly positive. When the im-
portance of positive samples is high, and there is a 
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need to reduce false positives, precision becomes a 
key evaluation metric. A high precision indicates re-
liability in predicting the positive class.

expressions, making it suitable for building and evaluating sentiment analysis models. The image dataset employed is 
the RAF-DB dataset, which is specifically designed for facial expression recognition and comprises approximately 
15,000 RGB images, including around 12,000 images in the training set and about 3,000 in the test set 
(https://www.kaggle.com/datasets/shuvoalok/raf-db-dataset). This dataset encompasses a diverse range of authentic 
facial emotional expressions. RAF-DB also categorizes images into seven emotional classes, providing a wealth of 
emotion labels to support sentiment recognition tasks. In our experiments, we categorized images labeled as 
happiness into the positive class and grouped anger, disgust, fear, and sadness into the negative class. Additionally, 
we oversampled the image dataset to match the text dataset. Additionally, during the experiment, both the text dataset 
and the image dataset underwent specific preprocessing steps. We filtered out some special characters from the text 
dataset and resized the images in the image dataset to dimensions of 256. 
Compared to the first dataset, this dataset is larger in scale and exhibits greater complexity, with longer text lengths 
and richer information in the image data. Furthermore, there are significant differences in the distributions of the two 
datasets. Validating the model on both datasets contributes to a more thorough evaluation of the generalization 
capability of the model proposed in this study. 
(2) Evaluation metrics 
In this experiment, we utilized various evaluation metrics to evaluate the performance of our model thoroughly. These 
metrics comprise accuracy, precision, recall, F1 score, and AUC value. 
Accuracy is the ratio of correctly predicted samples to the total number of samples. In classification tasks, a high 
accuracy means the model can effectively distinguish between categories. 
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high precision indicates reliability in predicting the positive class. 

 
Precision= TP

TP FP                  (11) 
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necessary to identify as many positive samples as possible, recall is essential. A high recall rate indicates that the 
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AUC is derived by charting the true positive rate versus the false positive rate at different thresholds, serving as an 
indicator of the model's performance. A higher AUC value typically reflects superior model performance. 
By employing these evaluation metrics comprehensively, we are able to evaluate the model's performance from 
different perspectives, ensuring that the model not only performs well overall but also meets the expected standards 
for precision, recall, and overall classification ability. The comprehensive assessment of these metrics helps us to 
acquire a deeper insight into the model's strengths and weaknesses, offering a more thorough evaluation of its 
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(3) Simulation environment 
This experiment used a total of two environments. The first dataset utilized Configuration 1, while the second dataset 
utilized Configuration 2. The main hardware configuration parameters are shown in Table 1. 
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OS Ubuntu 20.04.6 
LTS 

Ubuntu 20.04.6 
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Recall evaluates the percentage of all actual positive 
samples the model correctly identifies. In scenarios 
where it is necessary to identify as many positive 
samples as possible, recall is essential. A high recall 
rate indicates that the model can identify a greater 
number of positive samples, thereby minimizing 
missed detections.
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the RAF-DB dataset, which is specifically designed for facial expression recognition and comprises approximately 
15,000 RGB images, including around 12,000 images in the training set and about 3,000 in the test set 
(https://www.kaggle.com/datasets/shuvoalok/raf-db-dataset). This dataset encompasses a diverse range of authentic 
facial emotional expressions. RAF-DB also categorizes images into seven emotional classes, providing a wealth of 
emotion labels to support sentiment recognition tasks. In our experiments, we categorized images labeled as 
happiness into the positive class and grouped anger, disgust, fear, and sadness into the negative class. Additionally, 
we oversampled the image dataset to match the text dataset. Additionally, during the experiment, both the text dataset 
and the image dataset underwent specific preprocessing steps. We filtered out some special characters from the text 
dataset and resized the images in the image dataset to dimensions of 256. 
Compared to the first dataset, this dataset is larger in scale and exhibits greater complexity, with longer text lengths 
and richer information in the image data. Furthermore, there are significant differences in the distributions of the two 
datasets. Validating the model on both datasets contributes to a more thorough evaluation of the generalization 
capability of the model proposed in this study. 
(2) Evaluation metrics 
In this experiment, we utilized various evaluation metrics to evaluate the performance of our model thoroughly. These 
metrics comprise accuracy, precision, recall, F1 score, and AUC value. 
Accuracy is the ratio of correctly predicted samples to the total number of samples. In classification tasks, a high 
accuracy means the model can effectively distinguish between categories. 
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AUC is derived by charting the true positive rate versus the false positive rate at different thresholds, serving as an 
indicator of the model's performance. A higher AUC value typically reflects superior model performance. 
By employing these evaluation metrics comprehensively, we are able to evaluate the model's performance from 
different perspectives, ensuring that the model not only performs well overall but also meets the expected standards 
for precision, recall, and overall classification ability. The comprehensive assessment of these metrics helps us to 
acquire a deeper insight into the model's strengths and weaknesses, offering a more thorough evaluation of its 
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utilized Configuration 2. The main hardware configuration parameters are shown in Table 1. 
Table 1 
Experimental Simulation Environment 
Parameters Configuration 

1 
Configuration 

2 

OS Ubuntu 20.04.6 
LTS 

Ubuntu 20.04.6 
LTS 

(12)

The F1 score represents the harmonic mean of pre-
cision and recall, considering both metrics simul-
taneously. A high F1 score signifies that the model 
has effectively maintained a favorable balance be-
tween the two.

expressions, making it suitable for building and evaluating sentiment analysis models. The image dataset employed is 
the RAF-DB dataset, which is specifically designed for facial expression recognition and comprises approximately 
15,000 RGB images, including around 12,000 images in the training set and about 3,000 in the test set 
(https://www.kaggle.com/datasets/shuvoalok/raf-db-dataset). This dataset encompasses a diverse range of authentic 
facial emotional expressions. RAF-DB also categorizes images into seven emotional classes, providing a wealth of 
emotion labels to support sentiment recognition tasks. In our experiments, we categorized images labeled as 
happiness into the positive class and grouped anger, disgust, fear, and sadness into the negative class. Additionally, 
we oversampled the image dataset to match the text dataset. Additionally, during the experiment, both the text dataset 
and the image dataset underwent specific preprocessing steps. We filtered out some special characters from the text 
dataset and resized the images in the image dataset to dimensions of 256. 
Compared to the first dataset, this dataset is larger in scale and exhibits greater complexity, with longer text lengths 
and richer information in the image data. Furthermore, there are significant differences in the distributions of the two 
datasets. Validating the model on both datasets contributes to a more thorough evaluation of the generalization 
capability of the model proposed in this study. 
(2) Evaluation metrics 
In this experiment, we utilized various evaluation metrics to evaluate the performance of our model thoroughly. These 
metrics comprise accuracy, precision, recall, F1 score, and AUC value. 
Accuracy is the ratio of correctly predicted samples to the total number of samples. In classification tasks, a high 
accuracy means the model can effectively distinguish between categories. 

 
Accuracy TP TN

TP TN FP FN   (10) 
Precision measures the fraction of samples identified as positive that are truly positive. When the importance of 
positive samples is high, and there is a need to reduce false positives, precision becomes a key evaluation metric. A 
high precision indicates reliability in predicting the positive class. 

 
Precision= TP

TP FP                  (11) 
Recall evaluates the percentage of all actual positive samples the model correctly identifies. In scenarios where it is 
necessary to identify as many positive samples as possible, recall is essential. A high recall rate indicates that the 
model can identify a greater number of positive samples, thereby minimizing missed detections. 

 
Recall= TP

TP FN           (12) 
The F1 score represents the harmonic mean of precision and recall, considering both metrics simultaneously. A high 
F1 score signifies that the model has effectively maintained a favorable balance between the two. 

Precision RecallF1 Score 2
Precision+Recall   (13) 

AUC is derived by charting the true positive rate versus the false positive rate at different thresholds, serving as an 
indicator of the model's performance. A higher AUC value typically reflects superior model performance. 
By employing these evaluation metrics comprehensively, we are able to evaluate the model's performance from 
different perspectives, ensuring that the model not only performs well overall but also meets the expected standards 
for precision, recall, and overall classification ability. The comprehensive assessment of these metrics helps us to 
acquire a deeper insight into the model's strengths and weaknesses, offering a more thorough evaluation of its 
performance. 
(3) Simulation environment 
This experiment used a total of two environments. The first dataset utilized Configuration 1, while the second dataset 
utilized Configuration 2. The main hardware configuration parameters are shown in Table 1. 
Table 1 
Experimental Simulation Environment 
Parameters Configuration 

1 
Configuration 

2 

OS Ubuntu 20.04.6 
LTS 

Ubuntu 20.04.6 
LTS 

(13)

AUC is derived by charting the true positive rate 
versus the false positive rate at different thresh-
olds, serving as an indicator of the model's perfor-
mance. A higher AUC value typically reflects supe-
rior model performance.
By employing these evaluation metrics comprehen-
sively, we are able to evaluate the model's perfor-
mance from different perspectives, ensuring that 
the model not only performs well overall but also 
meets the expected standards for precision, recall, 
and overall classification ability. The comprehensive 
assessment of these metrics helps us to acquire a 
deeper insight into the model's strengths and weak-
nesses, offering a more thorough evaluation of its 
performance.
3 Simulation environment
This experiment used a total of two environments. 
The first dataset utilized Configuration 1, while the 
second dataset utilized Configuration 2. The main 
hardware configuration parameters are shown in 
Table 1.

3.2 Model Validation
To assess the effectiveness of the MEA-IFE mod-
el, we visualized and analyzed the loss during the 
training and testing phases, as well as accuracy, 
precision, recall, F1 score, and AUC metrics during 
the testing phase, as shown in Figures 9(a)-(b). In 
Figure 9(a), the orange and blue lines, respectively, 
record the variations in loss during the training and 

Parameters Configuration 1 Configuration 2

OS Ubuntu 20.04.6 
LTS

Ubuntu 20.04.6 
LTS

CPU Intel(R) Xeon(R) 
CPU

Intel(R) Xeon(R) 
Gold 6248R CPU

CPU Memory Memory 29G  
@ 2.00GHz

 Memory 376G  
@ 3.00GHz

GPU Tesla P100-
PCIE-16GB

NVIDIA A100-
PCIE-40GB

Programming 
Language Python 3.10.13 Python 3.10.13

Programming 
environment PyTorch 2.1.2 PyTorch 2.1.2

CUDA 12.4 12.4

Table 1
Experimental Simulation Environment

Parameters Dataset 1 Dataset 2

Attention heads 4 4

Optimizer Adam Adam

Epochs 200 50

Learning rate 1e-5 1e-5

Weight_decay 0.01 0.01

Image_size 48×48×1 256×256×3

Batch size 16 64

Table 2
Experimental Hyperparameter

The configuration of a model's hyperparameters is 
essential to influencing the outcomes of the experi-
mental process. The hyperparameters utilized in this 
experiment are detailed in Table 2.
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Figure 9
Model's LOSS Training Results and Metrics Training Results 
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3.3 Ablation Study 
To validate the importance of each module in the proposed model, we performed an ablation study using the text 
dataset from Kaggle and the FER2013 image dataset for the model we proposed. The results of this ablation study are 
presented in Table 3. 
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(Parallel) 
× × × × 94.61 95.14 94.67 94.77 98.49 
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× × × × 94.21 94.63 94.27 94.15 98.64 

   ×  × × × 94.21 94.54 94.22 94.04 98.41 
  × × ×  × × 96.60 96.90 96.36 96.54 99.17 
   × × ×  × 95.81 96.21 96.19 96.04 98.98 
   × × × ×  93.91 93.46 94.17 93.77 97.96 
     × × × 94.61 94.92 94.85 94.81 98.51 
  ×    × × 96.60 96.55 96.68 96.57 99.28 
  ×     × 97.20 97.64 97.16 97.29 99.64 
  ×      98.00 98.38 98.00 98.13 99.31 

We constructed a baseline model that utilizes a serial architecture of BERT and Bi-LSTM to extract text features. In 
terms of image feature extraction, ResNet50 is utilized to obtain image features, which are subsequently processed 
through an FC layer for sentiment analysis. The evaluation metrics we report are all based on the model's performance 
on the test set. Starting from the Baseline, we incorporated SK-Net, ECA, Multi-head Attention, and Vision 
Transformer and replaced ResNet50 with AlexNet. The experimental results indicate that, with the exception of Multi-
head Attention, the introduction and improvement of the above mechanisms have led to specific improvements in all 
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testing phases as the number of iterations progress-
es. The general trend of the loss is relatively stable. 
At the beginning of the model training, because of 
the random initialization of parameters, the loss 
fluctuation is relatively flat in the first 10 iterations. 
After the 10th iteration, the loss begins to converge 
rapidly, indicating that the model starts to learn and 
converge quickly. As the iterations progress, the loss 

on both the training and testing sets gradually sta-
bilizes after 150 iterations. In Figure 9(b), the blue, 
orange, green, red, and purple lines, respectively, 
represent the changes in accuracy, precision, recall, 
F1 score, and AUC metrics during the testing phase 
as the number of iterations increases. Among them, 
the changes in precision, recall, and F1 score can 
more clearly reflect that the model starts to learn 

Table 3 
Ablation Study Results.

Model Metric

Bert Bi-LSTM ResNet SK-Net ECA AlexNet VIT Attention Accuracy 
(%)

Precision 
(%)

Recall 
(%) 

F1 Score 
(%) AUC (%)

√ √ √ × × × × × 94.01 94.38 94.07 93.77 98.38

√ √ √ √
(Parallel) × × × × 94.61 95.14 94.67 94.77 98.49

√ √ √ √
(Serial) × × × × 94.21 94.63 94.27 94.15 98.64

√ √ √ × √ × × × 94.21 94.54 94.22 94.04 98.41

√ √ × × × √ × × 96.60 96.90 96.36 96.54 99.17

√ √ √ × × × √ × 95.81 96.21 96.19 96.04 98.98

√ √ √ × × × × √ 93.91 93.46 94.17 93.77 97.96

√ √ √ √ √ × × × 94.61 94.92 94.85 94.81 98.51

√ √ × √ √ √ × × 96.60 96.55 96.68 96.57 99.28

√ √ × √ √ √ √ × 97.20 97.64 97.16 97.29 99.64

√ √ × √ √ √ √ √ 98.00 98.38 98.00 98.13 99.31
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and converge quickly from the 10th round. All met-
rics remain at a high level after long-term iteration, 
showing that the model has good generalization ca-
pability and stability, thus verifying its effectiveness.

3.3 Ablation Study
To validate the importance of each module in the pro-
posed model, we performed an ablation study using 
the text dataset from Kaggle and the FER2013 image 
dataset for the model we proposed. The results of this 
ablation study are presented in Table 3.
We constructed a baseline model that utilizes a seri-
al architecture of BERT and Bi-LSTM to extract text 
features. In terms of image feature extraction, Res-
Net50 is utilized to obtain image features, which are 
subsequently processed through an FC layer for sen-
timent analysis. The evaluation metrics we report are 
all based on the model's performance on the test set. 
Starting from the Baseline, we incorporated SK-Net, 
ECA, Multi-head Attention, and Vision Transform-
er and replaced ResNet50 with AlexNet. The exper-
imental results indicate that, with the exception of 
Multi-head Attention, the introduction and improve-
ment of the above mechanisms have led to specific 
improvements in all metrics. For SK-Net, we evaluat-
ed both parallel and serial integration modes. The ex-
perimental results show that the parallel integration 
of SK-Net with Bi-LSTM performs better in text fea-
ture extraction. Specifically, compared with the serial 
integration, this parallel integration method achieved 
improvements of 0.40%, 0.51%, 0.40%, and 0.62% in 
accuracy, precision, recall, and F1 score, respective-
ly. It is essential to highlight that the introduction 
of multi-head attention resulted in slightly worse or 
similar metrics compared to the Baseline. This phe-
nomenon may stem from the limitations in feature 
extraction of the models used in the Baseline, which 
could not fully extract features from each modality. 
Specifically, using only Bert and Bi-LSTM in series in 
the text feature extraction part could not effectively 
capture the local features of the text. In the image fea-
ture extraction part, ResNet50 tends to focus on local 
features and neglect global features. Due to the lim-
itations in feature extraction of each modality, multi-
head attention could not exert its full advantage when 
fusing these features.
By introducing SK-Net and Bi-LSTM in parallel in-
tegration on the Baseline, the accuracy, precision, 
recall, F1 score, and AUC metrics improved by 0.60%, 

0.76%, 0.60%, 1.00%, and 0.11%, respectively. The in-
troduction of SK-Net enhanced the ability to extract 
spatial features across multiple scales in the text pro-
cessing component, compensating for the limitations 
of Bert and Bi-LSTM feature extraction. With the im-
plementation of the ECA mechanism, the recall rate, 
F1 score, and AUC improved by 0.18%, 0.04%, and 
0.02%, respectively. Changing from ResNet50 to the 
AlexNet model resulted in improvements of 1.99%, 
1.63%, 1.72%, 1.76%, and 0.77% in accuracy, precision, 
recall, F1 score, and AUC, respectively. The signifi-
cant performance improvement may be attributed 
to the relatively high complexity of  ResNet50 for the 
dataset used in the experiment, so using the lighter 
AlexNet model works better. After adding the Vision 
Transformer module, the accuracy, precision, recall, 
F1 score, and AUC increased by 0.60%, 1.09%, 0.48%, 
0.72%, and 0.36%, respectively. The results show 
that introducing VIT on the basis of DCNN allows 
the model better to balance global and local features 
during image data processing, thus improving model 
performance. After removing multi-head attention 
for feature fusion in the proposed model, accuracy, 
precision, recall, and F1 score decreased by 0.80%, 
0.74%, 0.84%, and 0.84%, respectively. The improved 
feature extraction module of the model, since the fea-
tures were effectively extracted, the use of the multi-
head attention could effectively improve the model's 
performance at this point. 
To investigate the effect of feature fusion strategies 
on model performance, we compared the feature 
fusion mechanism used by MEA-IFE with the late 
fusion strategy. When the MEA-IFE feature fu-
sion mechanism was replaced with the late fusion 
method, which only involves weighted fusion of 
multi-modal outputs from text and images, the mod-
el attained an accuracy of only 92.81%, a precision of 
93.37%, a recall of 91.27%, an F1 score of 92.23%, and 
an AUC value of 96.36%, as illustrated in Figure 10. 
The experimental findings indicate that the feature 
fusion mechanism employed by MEA-IFE signifi-
cantly outperforms the late fusion method across all 
performance metrics, underscoring the importance 
of feature fusion strategies in enhancing the perfor-
mance of multi-modal models.
The above ablation study can conclude that the in-
troduction of each module and mechanism has con-
tributed to the model's performance on the test set to 
varying degrees.
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3.4 Comparative experiment
To validate the effectiveness and advantages of the 
proposed model, we conducted a comparative anal-
ysis between the AM-MF [20], AMSAER [3], HAN-

Figure 11
Model Loss Comparison.

 
 
 
 
 
 
 
 
 
 
 
Since the HAN-CA-SA model demonstrates a particular difference in loss performance on the dataset relative to the 
other models, we compared the loss differences between MEA-IFE and the AM-MF, AMSAER, and TBGAV models. 
As shown in Figure 11, it is evident that the MEA-IFE model, due to its higher model complexity and parameter 
volume, has a relatively slower convergence rate of the loss function during the initial phases of training. However, as 
the training continues, the MEA-IFE model shows significant improvement, with its loss gradually decreasing and 
eventually stabilizing at a lower level. It surpasses the AM-MF and AMSAER models and performs slightly better than 
the TBGAV model. 
The comparison of accuracy, precision, recall, F1 score, and AUC metrics between MEA-IFE and AM-MF, AMSAER, 
HAN-CA-SA, and TBGAV models is shown in Figures 12(a)-(e), with the specific values presented in Table 4. 
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CA-SA [16], TBGAV [22], and our proposed MEA-
IFE model on the test dataset from Kaggle and the 
FER2013 image dataset.
Since the HAN-CA-SA model demonstrates a partic-
ular difference in loss performance on the dataset rel-
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Figure 10
Comparison of Feature Fusion Strategies.

metrics. For SK-Net, we evaluated both parallel and serial integration modes. The experimental results show that the 
parallel integration of SK-Net with Bi-LSTM performs better in text feature extraction. Specifically, compared with the 
serial integration, this parallel integration method achieved improvements of 0.40%, 0.51%, 0.40%, and 0.62% in 
accuracy, precision, recall, and F1 score, respectively. It is essential to highlight that the introduction of multi-head 
attention resulted in slightly worse or similar metrics compared to the Baseline. This phenomenon may stem from the 
limitations in feature extraction of the models used in the Baseline, which could not fully extract features from each 
modality. Specifically, using only Bert and Bi-LSTM in series in the text feature extraction part could not effectively 
capture the local features of the text. In the image feature extraction part, ResNet50 tends to focus on local features and 
neglect global features. Due to the limitations in feature extraction of each modality, multi-head attention could not 
exert its full advantage when fusing these features. 
By introducing SK-Net and Bi-LSTM in parallel integration on the Baseline, the accuracy, precision, recall, F1 score, 
and AUC metrics improved by 0.60%, 0.76%, 0.60%, 1.00%, and 0.11%, respectively. The introduction of SK-Net 
enhanced the ability to extract spatial features across multiple scales in the text processing component, compensating 
for the limitations of Bert and Bi-LSTM feature extraction. With the implementation of the ECA mechanism, the recall 
rate, F1 score, and AUC improved by 0.18%, 0.04%, and 0.02%, respectively. Changing from ResNet50 to the AlexNet 
model resulted in improvements of 1.99%, 1.63%, 1.72%, 1.76%, and 0.77% in accuracy, precision, recall, F1 score, 
and AUC, respectively. The significant performance improvement may be attributed to the relatively high complexity 
of  ResNet50 for the dataset used in the experiment, so using the lighter AlexNet model works better. After adding the 
Vision Transformer module, the accuracy, precision, recall, F1 score, and AUC increased by 0.60%, 1.09%, 0.48%, 
0.72%, and 0.36%, respectively. The results show that introducing VIT on the basis of DCNN allows the model better 
to balance global and local features during image data processing, thus improving model performance. After removing 
multi-head attention for feature fusion in the proposed model, accuracy, precision, recall, and F1 score decreased by 
0.80%, 0.74%, 0.84%, and 0.84%, respectively. The improved feature extraction module of the model, since the 
features were effectively extracted, the use of the multi-head attention could effectively improve the model's 
performance at this point.  
To investigate the effect of feature fusion strategies on model performance, we compared the feature fusion mechanism 
used by MEA-IFE with the late fusion strategy. When the MEA-IFE feature fusion mechanism was replaced with the 
late fusion method, which only involves weighted fusion of multi-modal outputs from text and images, the model 
attained an accuracy of only 92.81%, a precision of 93.37%, a recall of 91.27%, an F1 score of 92.23%, and an AUC 
value of 96.36%, as illustrated in Figure 10. The experimental findings indicate that the feature fusion mechanism 
employed by MEA-IFE significantly outperforms the late fusion method across all performance metrics, underscoring 
the importance of feature fusion strategies in enhancing the performance of multi-modal models. 
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employed by MEA-IFE significantly outperforms the late fusion method across all performance metrics, underscoring 
the importance of feature fusion strategies in enhancing the performance of multi-modal models. 
Figure 10 
Comparison of Feature Fusion Strategies. 
 
 
 
 
 
 
 
 
 
The above ablation study can conclude that the introduction of each module and mechanism has contributed to the 
model's performance on the test set to varying degrees. 
3.4 Comparative experiment 
To validate the effectiveness and advantages of the proposed model, we conducted a comparative analysis between the 
AM-MF [20], AMSAER [3], HAN-CA-SA [16], TBGAV [22], and our proposed MEA-IFE model on the test dataset 
from Kaggle and the FER2013 image dataset. 
Figure 11 
Model Loss Comparison. 
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ative to the other models, we compared the loss differ-
ences between MEA-IFE and the AM-MF, AMSAER, 
and TBGAV models. As shown in Figure 11, it is evi-
dent that the MEA-IFE model, due to its higher mod-
el complexity and parameter volume, has a relatively 
slower convergence rate of the loss function during 
the initial phases of training. However, as the train-
ing continues, the MEA-IFE model shows significant 
improvement, with its loss gradually decreasing and 
eventually stabilizing at a lower level. It surpasses the 
AM-MF and AMSAER models and performs slightly 
better than the TBGAV model.
The comparison of accuracy, precision, recall, F1 
score, and AUC metrics between MEA-IFE and AM-
MF, AMSAER, HAN-CA-SA, and TBGAV models is 
shown in Figures 12(a)-(e), with the specific values 
presented in Table 4.
The comparative results indicate that on the text 
dataset from Kaggle and the FER2013 image dataset, 
the proposed MEA-IFE achieved the best perfor-
mance in terms of accuracy, precision, recall, and F1 
score metrics. In terms of the AUC metric, MEA-IFE 
also ranks high, just behind the AM-MF model. Spe-
cifically, for the accuracy metric, MEA-IFE is 0.69%, 
0.89%, 1.89%, and 0.40% better than the AM-MF, AM-

Table 4 
Comparative Experimental Results without Noise on Dataset 1.

Model Accuracy (%) Precision (%) Recall (%) F1 Score (%) AUC (%)

HAN-CA-SA [16] 96.11 96.27 96.21 96.20 98.93

AMSAER [3] 97.11 97.25 97.12 97.02 99.13

AM-MF [20] 97.31 97.70 97.25 97.31 99.53

TBGAV [22] 97.60 98.18 97.08 97.61 98.17

MEA-IFE 98.00 98.38 98.00 98.13 99.31

SAER, HAN-CA-SA, and TBGAV models, respective-
ly. For the precision metric, the model leads the AM-
MF, AMSAER, HAN-CA-SA, and TBGAV models by 
0.68%, 1.13%, 2.11%, and 0.20%, respectively. In terms 
of recall, the model is 0.75%, 0.88%, 1.79%, and 0.92% 
better than the AM-MF, AMSAER, HAN-CA-SA, and 
TBGAV models, respectively. Additionally, for the F1 
score metric, the model also leads the AM-MF, AM-
SAER, HAN-CA-SA, and TBGAV models by 0.82%, 
1.11%, 1.93%, and 0.52%, respectively. 
To further validate the model's robustness against 
noise and outliers, we processed the data by intro-
ducing noise and anomalies to the original dataset. 
Specifically, we randomly replaced 1% of the entries 
in the text dataset with empty strings to evaluate 
the model's performance. The detailed experimen-
tal results are presented in Table 5. As illustrated in 
the table, despite the presence of noise, MEA-IFE 
maintains a high level of performance comparable 
to that observed with noise-free data and generally 
outperforms other models across various metrics. It 
provides strong evidence of MEA-IFE's robustness in 
the presence of noise.
To evaluate the model's ability to generalize across 
varying data distributions, we conducted further ex-

Model Accuracy (%) Precision (%) Recall (%) F1 Score (%) AUC (%)

HAN-CA-SA [16] 95.60 96.27 95.67 95.86 98.84

AMSAER [3] 97.30 97.30 96.98 96.87 98.98

AM-MF [20] 94.31 94.97 94.96 94.86 99.09

TBGAV [22] 97.60 98.24 97.17 97.69 98.13

MEA-IFE 98.00 98.00 97.92 97.86 99.36

Table 5 
Comparative Experimental Results with Noise on Dataset 1.
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periments using the IMDB text dataset and the RAF-
DB image dataset. This dataset exhibits significant 
distribution differences compared to the first data-
set and is larger in scale and greater in complexity. 
The experiments on this dataset effectively validate 
the model's generalization ability and its capacity to 
address complex sentiment analysis challenges. The 
comprehensive results are provided in Table 6.
In the IMDB text dataset and the RAF-DB image 
dataset, the MEA-IFE model achieved an accuracy of 
96.33%, surpassing that of the HAN-CA-SA (95.04%), 
AMSAER (96.13%), TBGAV (93.58%), and AM-MF 
(96.02%) models. It indicates that MEA-IFE effec-
tively captures underlying patterns within the data, 
demonstrating its robustness in complex sentiment 
analysis tasks. Additionally, its precision, recall, F1 
score, and AUC are all superior to those of the other 
models. The experimental results indicate that MEA-
IFE demonstrates significant practical application 
potential and good generalization capability in ad-
dressing complex sentiment analysis challenges.
In summary, the comparative experiments have prov-
en the efficacy and advantages of the proposed MEA-
IFE model in the field of sentiment analysis.

4. Discussion
4.1 Summary of Work
The MEA-IFE model presented in this study signifi-
cantly improves the accuracy of sentiment analysis 
by integrating text and image information and opti-
mizing feature extraction and fusion mechanisms. 
The model is characterized by high predictive ac-
curacy, strong feature extraction capabilities, and 
adaptive fusion, making full use of features from 

Table 6 
Comparative Experimental Results on Dataset 2.

Model Accuracy (%) Precision (%) Recall (%) F1 Score (%) AUC (%)

HAN-CA-SA [16] 95.04 95.04 95.04 95.04 98.77

AMSAER [3] 96.13 96.14 96.13 96.13 99.01

AM-MF [20] 96.02 96.02 96.02 96.02 99.05

TBGAV [22] 93.58 93.58 93.56 93.58 97.58

MEA-IFE 96.33 96.34 96.33 96.33 99.10

different modalities. For text feature extraction, 
MEA-IFE introduces an SK-Net in parallel with 
BERT-BiLSTM, enhancing the extraction of multi-
scale spatial features and employing the ECA mech-
anism to strengthen the recognition of important 
textual information. For image feature capture, the 
model introduces Vision Transformer on the basis 
of using DCNN for feature extraction to improve the 
model's global representation capability.

4.2 Differences from Other Works
The primary distinction between the MEA-IFE 
model and existing work resides in its innovative 
multi-modal fusion strategy and feature extraction 
methods. Compared with single-modal sentiment 
analysis models [14], MEA-IFE can more compre-
hensively capture emotional information, avoiding 
biases from single-source information. Furthermore, 
compared with existing multi-modal models [10], 
MEA-IFE enhances the capture of local and global 
features through the introduction of SK-Net and Vi-
sion Transformer and strengthens the recognition of 
feature importance through the ECA mechanism.

4.3 Limitations and Improvements
Despite the notable advancements made by the MEA-
IFE model in sentiment analysis, it does exhibit sev-
eral limitations. With a parameter count of 215.6M, it 
surpasses that of AM-MF (213.0M), TBGAV (135.1M), 
HAN-CA-SA (113.0M), and AMSAER (170.0M). This 
higher complexity and resource demand may lead to 
increased training costs and challenges during the 
training process. Additionally, while the MEA-IFE 
model excels in multi-modal feature fusion, it may 
struggle with certain nuanced emotional expressions. 
The model's generalization capabilities across di-
verse datasets also require further validation and en-
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hancement. Nonetheless, the MEA-IFE model holds 
significant potential for various applications, such as 
sentiment analysis in social media, product reviews, 
public safety monitoring, and enhancing custom-
er service experiences. Further optimization shows 
promise for multi-language sentiment analysis and 
cross-cultural emotion recognition.

4.4 Error Case Analysis
Despite the significant progress made by MEA-IFE 
in sentiment analysis, misjudgments still tend to 
occur when dealing with texts that express complex 
emotions. For example, consider the following text: 
"Ok, this movie is stupid. I mean that in a good way, 
however. It was stupid on purpose and was one of 
the better 'stupid' movies I have seen. The jokes and 
gags are purposefully bad but delivered in a way that 
struck all the right notes with me. The supporting 
characters were pretty shallow and mediocre. There 
is a pretty weak plot, but it works just fine." In this 
case, MEA-IFE might incorrectly assess the senti-
ment as negative.
There are several potential reasons for this mis-
judgment. First, the text contains words such as 
"stupid," "shallow," and "weak," which are typically 
categorized as negative vocabulary. Although the 
overall sentiment is positive, references to the flaws 
in supporting characters and the plot might lead 
the model to lean towards a negative sentiment as-
sessment. Second, the model may fail to grasp that 
the term "stupid" is used in an appreciative context, 
indicating a lack of sensitivity to humor and irony. 
Additionally, the training data may lack instances 
of specific emotional expressions like "deliberate-
ly stupid", limiting the model's ability to recognize 
such nuanced sentiments. Therefore, MEA-IFE still 
exhibits certain limitations when addressing com-
plex emotional expressions, particularly in lengthy 
and intricate texts.

4.5 Future Prospects
In response to the limitations of the MEA-IFE mod-
el, future work can explore the following aspects: 
Firstly, explore more lightweight network structures 
or model pruning techniques to reduce the model's 
parameter volume and computational costs. Sec-
ondly, research on improved models of BERT, such 
as Roberta or ALBERT, to increase the efficiency of 
text feature extraction. In addition, more advanced 

image processing techniques and network struc-
tures can be introduced to enhance the model's ca-
pacity to handle complex image scenarios. Finally, 
research on more efficient feature fusion techniques 
is needed to balance the model's performance and 
computational resource requirements.

5. Conclusion
This paper presents an innovative multi-modal sen-
timent analysis framework, MEA-IFE, characterized 
by its effective feature extraction capabilities and 
high predictive accuracy. The model addresses poten-
tial information loss and expression limitations in the 
BERT-BiLSTM text feature extraction process by in-
troducing a parallel structure of SK-Net and BiLSTM, 
enhancing the model's capacity to capture multi-di-
mensional text features. Additionally, to improve the 
precision of text feature extraction, the model inte-
grates the ECA mechanism, which helps the model 
to capture key information in the text more keenly. 
In terms of image processing, to address the issue of 
DCNN potentially overlooking global features, the 
MEA-IFE model introduces Vision Transformer, 
combining CNN and Transformer to enhance the cap-
ture of both global and detailed image features. At the 
critical stage of feature fusion, the MEA-IFE model 
employs multi-head attention, achieving dynamic fu-
sion of text and image features, profoundly exploring 
the interactive potential across various data modali-
ties, thus significantly enhancing the performance of 
sentiment analysis tasks.
The proposed model was validated on a text dataset 
from Kaggle and the FER2013 image dataset. Ex-
perimental results indicate that the proposed model 
achieves high performance, with an accuracy rate of 
98.00%, precision of 98.38%, recall rate of 98.00%, 
F1 score of 98.13%, and an AUC indicator of 99.31%. 
Ablation experiments indicate that the introduction 
of each module effectively improves the metrics, 
thereby verifying the effectiveness of the improve-
ment strategies. When compared with models such 
as AM-MF, AMSAER, HAN-CA-SA, and TBGAV, the 
results show that the proposed model attained the 
highest performance regarding accuracy, precision, 
recall, and F1 score, with respective improvements 
of 0.40%, 0.20%, 0.75%, and 0.52%, and it also ranks 
high in the AUC indicator. The MEA-IFE model pre-
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sented in this study exhibits high predictive accu-
racy and powerful feature integration capabilities, 
meeting the demand for high precision in complex 
multi-modal sentiment analysis tasks. Considering 
the complexity and large number of parameters in 
the proposed model's structure, future work could 

10. Das, R., Singh, T. D. Multi-Modal Sentiment Analysis: 
A Survey of Methods, Trends, and Challenges. ACM 
Computing Surveys, 2023, 55(13s), 1-38. https://doi.
org/10.1145/3586075 

11. D'Mello, S. K. A Review and Meta-Analysis of Mul-
ti-Modal Affect Detection Systems. ACM Com-
puting Surveys, 2015, 47(3), 1-36. https://doi.
org/10.1145/2682899 

12. Jiang, X., Song, C., Xu, Y., Li, Y., Peng, Y. Research 
on Sentiment Classification for Netizens Based on 
the BERT-BiLSTM-TextCNN Model. Peer Jour-
nal of Computer Science, 2022, 8, e1005. https://doi.
org/10.7717/peerj-cs.1005 

13. Krizhevsky, A., Sutskever, I., Hinton, G. E. ImageN-
et Classification with Deep Convolutional Neural 
Networks. Advances in Neural Information Pro-
cessing Systems, 2012, 25. https://papers.nips.cc/
paper_files /paper/2012/file /c399862d3b9d6b-
76c8436e924a68c45b-Paper.pdf

14. Liu, X., Shi, T., Zhou, G., Liu, M., Yin, Z., Yin, L., Zheng, 
W. Emotion Classification for Short Texts: An Im-
proved Multi-Label Method. Humanities and Social 
Sciences Communications, 2023, 10(1), 1-9. https://
doi.org/10.1057/s41599-023-01816-6 

15. Rezaeinia, S. M., Rahmani, R., Ghodsi, A., Veisi, H. 
Sentiment Analysis Based on Improved Pre-Trained 
Word Embeddings. Expert Systems with Applica-
tions, 2019, 117, 139-147. https://doi.org/10.1016/j.
eswa.2018.08.044 Sujeesha, A. S., Mala, J. B., Rajan, 
R. Automatic Music Mood Classification Using Mul-
ti-Modal Attention Framework. Engineering Appli-
cations of Artificial Intelligence, 2024, 128, 107355. 
https://doi.org/10.1016/j.engappai.2023.107355 

16. Wang, D., Guo, X., Tian, Y., Liu, J., He, L., Luo, X. TET-
FN: A Text Enhanced Transformer Fusion Network 
for Multi-Modal Sentiment Analysis. Pattern Recog-
nition, 2023, 136, 109259. https://doi.org/10.1016/j.
patcog.2022.109259 

explore lighter networks and further optimize the 
network structure to reduce the model's parameter 
volume while maintaining its performance. In terms 
of feature fusion, different fusion strategies can be 
explored to enhance the interaction and fusion of 
features from different modalities.

References 
1. Abdullah, T., Ahmet, A. Deep Learning in Sentiment 

Analysis: Recent Architectures. ACM Computing Sur-
veys, 2022, 55(8), 1-37. https://doi.org/10.1145/3548772

2. Ameer, I., Bölücü, N., Siddiqui, M. H. F., Can, B., Sidor-
ov, G., Gelbukh, A. Multi-Label Emotion Classifica-
tion in Texts Using Transfer Learning. Expert Sys-
tems with Applications, 2023, 213, 118534. https://doi.
org/10.1016/j.eswa.2022.118534 

3. Aslam, A., Sargano, A. B., Habib, Z. Attention-Based 
Multi-Modal Sentiment Analysis and Emotion Rec-
ognition Using Deep Neural Networks. Applied 
Soft Computing, 2023, 144, 110494. https://doi.
org/10.1016/j.asoc.2023.110494 

4. Bashiri, H., Naderi, H. Comprehensive Review and Com-
parative Analysis of Transformer Models in Sentiment 
Analysis. Knowledge and Information Systems, 2024, 
1-57. https://doi.org/10.1007/s10115-024-02214-3

5. Basiri, M. E., Nemati, S., Abdar, M., Nemati, S., Abdar, 
M., Cambria, E., Acharya, U. R. ABCDM: An Atten-
tion-Based Bidirectional CNN-RNN Deep Model for 
Sentiment Analysis. Future Generation Computer Sys-
tems, 2021, 115, 279-294. https://doi.org/10.1016/j.fu-
ture.2020.08.005

6. Brauwers, G., Frasincar, F. A Survey on Aspect-Based 
Sentiment Classification. ACM Computing Surveys, 
2022, 55(4), 1-37. https://doi.org/10.1145/3503044 

7. Campos, V., Jou, B., Giro-i-Nieto, X. From Pixels to 
Sentiment: Fine-Tuning CNNs for Visual Sentiment 
Prediction. Image and Vision Computing, 2017, 65, 15-
22. https://doi.org/10.1016/j.imavis.2017.01.011 

8. Cao, J., Chen, J., Han, J., Li, H. Sentiment Classifica-
tion of Image Based on Adaboost-BP Neural Network. 
Journal of Shanxi University, 2013, 36(3), 331-337. 

9. Chan, J. Y. L., Bea, K. T., Leow, S. M. H., Phoong, S. W., 
Cheng, W. K. State of the Art: A Review of Sentiment 
Analysis Based on Sequential Transfer Learning. 
Artificial Intelligence Review, 2023, 56(1), 749-780. 
https://doi.org/10.1007/s10462-022-10183-8 



Information Technology and Control 2025/2/54470

17. Wang, G., Shin, S. Y., Lee, W. J. A Text Sentiment Clas-
sification Method Based on LSTM-CNN. Journal of 
The Korea Society of Computer and Information, 2019, 
24(12), 1-7. https://doi.org/10.9708/jksci.2019.24.12.001

18. Wang, K., Zheng, Y., Fang, S., et al. Long Text As-
pect-Level Sentiment Analysis Based on Text Fil-
tering and Improved BERT. Journal of Computer 
Applications, 2020, 40(10), 2838-2844. https://doi.
org/10.11772/j.issn.1001-9081.2020020164 

19. Xie, S., Li, J. A Multi-Modal Sentiment Analysis Method 
Integrating Multi-Layer Attention Interaction and Mul-
ti-Feature Enhancement. International Journal of Intel-
ligent Transportation Systems and Applications, 2024, 
17(1), 1-20. https://doi.org/10.4018/IJITSA.335940 

20. Yadav, A., Vishwakarma, D. K. Sentiment Analysis Us-
ing Deep Learning Architectures: A Review. Artificial 
Intelligence Review, 2020, 53(6), 4335-4385. https://
doi.org/10.1007/s10462-019-09794-5 

21. Zhang, K., Wang, S., Yu, Y. A TBGAV-Based Image-Text 
Multi-Modal Sentiment Analysis Method for Tourism 
Reviews. International Journal of Information Tech-
nology and Web Engineering, 2023, 18(1), 1-17. https://
doi.org/10.4018/IJITWE.334595 

22. Zhang, L., Wang, S., Liu, B. Deep Learning for Senti-
ment Analysis: A Survey. Wiley Interdisciplinary Re-
views: Data Mining and Knowledge Discovery, 2018, 
8(4), e1253. https://doi.org/10.1002/widm.1253 

23. Zhao, T., Meng, L., Song, D. Multi-Modal Aspect-Based 
Sentiment Analysis: A Survey of Tasks, Methods, 
Challenges and Future Directions. Information Fu-
sion, 2024, 112, 102552. https://doi.org/10.1016/j.inf-
fus.2024.102552 

24. Zhu, L., Zhu, Z., Zhang, C., Xu, Y., Kong, X. Multi-Modal 
Sentiment Analysis Based on Fusion Methods: A Sur-
vey. Information Fusion, 2023, 95, 306-325. https://
doi.org/10.1016/j.inffus.2023.02.028 

This article is an Open Access article distributed under the terms and conditions of the Creative 
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).


