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In the era of digital healthcare, secure information interaction among users, gateways, and multiple devices in 
a cyber-physical system (CPS) is very important, but also very challenging. However, existing authentication 
schemes can only accomplish authentication between gateways and smart devices, and do not consider the 
authentication needs of gateways, users and multiple devices. In addition, users need to initiate multiple key 
authentication requests to complete multi-device authentication, which greatly increases the communication 
overhead and security risks. In response, this paper proposes a lightweight multi-party key authentication pro-
tocol based on cyber-physical system. On the basis of meeting the user, gateway and multi-device authentica-
tion requirements, the key authentication process is effectively simplified by the CPS architecture, and the user 
only needs to initiate a request to complete the three-party multi-device authentication, which greatly reduces 
the communication overhead, reduces the security risks, and improves the scheme’s adaptability and general-
ization ability in large-scale device scenarios. Finally, the mathematical analysis confirms the reliability of the 
proposed scheme and points out that the scheme reduces the computational and communication requirements 
compared with similar methods, which is crucial for CPSs with limited resources.
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1. Introduction
In the era of digital healthcare, the traditional In-
ternet of Things (IoT) is struggling to cope with the 
many challenges posed by large-scale production 
and consumption and rapidly evolving smart health-
care services [1]. To this end, cyber-physical systems 
(CPS) have reformatively improved the efficiency of 
healthcare delivery by deploying sensors and other 
acquisition devices to provide a wide range of social 
healthcare services. However, while enjoying conve-
nience, cyber-physical systems also have many se-
curity risks. Consumers can connect multiple smart 
devices simultaneously for health testing, and region-
al clusters of devices support user access to the CPS 
for data collection and analysis. In this process, the 
underlying devices store the collected data in a cloud 
server, which can only be accessed by legitimate man-
agers and users. A little carelessness can lead to data 
and user privacy leakage, and if the data information 
is obtained by unscrupulous merchants or attackers, 
it will lead to irreversible and serious consequences. 
So to safeguard the legitimacy and privacy of the com-
ponents in the cyber-physical system, authentication 
management between users, gateways and multiple 
devices becomes especially critical [3, 13].
Nowadays, more and more scholars have begun to 
study the authentication management techniques 
among multiple devices to ensure the security of com-
munication under complex architectures. Ming et al. 
[14] proposed a one-to-many key authentication tech-
nique based on elliptic curve cryptography and Chi-
nese remainder theorem, but its high computational 
complexity and communication overhead are not 
suitable for large-scale device communication in cy-
ber-physical systems. Gaba et al. [10] proposed a sus-
tainable healthcare tripartite authentication protocol 
based on zero-knowledge proof that utilizes physical 
unclonable features, biometrics, etc. to reduce com-
munication and computational costs, but does not 
consider the case of multi-device authentication. It 
can be seen that as the consumer base continues to 
expand, the components in the cyber-physical sys-
tem grow as well. The traditional authentication 
schemes are either unable to satisfy the need for 
three-way authentication between users, gateways 
and multiple devices, or the schemes are designed to 
be complex, with excessive communication cost and 
computational complexity, and cannot be adapted to 
resource-limited CPSs [22].

Therefore, in order to solve the above problems, sim-
plify the authentication process, reduce the com-
munication overhead, and satisfy the demand for 
three-party authentication among users, gateways, 
and multi-devices in cyber-physical systems, we pro-
pose a lightweight multi-party key authentication and 
management protocol with low power consumption, 
low cost, and process simplicity. The user only needs 
to initiate one request to complete the multi-device 
authentication including the gateway. The main con-
tributions of this paper are as follows.
First, this paper proposes a lightweight multi-party 
key authentication management protocol based on 
cyber-physical system to solve the communication 
authentication problem of users, gateways and multi-
ple devices in digital healthcare. Through three-fac-
tor authentication and bilinear mapping of users, it 
resists identity attacks and key exposure attacks to 
ensure the security of information interaction in the 
whole system.
Second, to meet the large-scale communication re-
quirements of multi-device in cyber-physical sys-
tems, the scheme process is cleverly simplified, and 
the user only needs to initiate one authentication re-
quest to complete the multi-device authentication in-
cluding the gateway, which greatly reduces the com-
munication and computation overheads, and greatly 
improves the scheme’s generalization capability.
Third, we demonstrate the security of this approach 
in a well-recognized stochastic prediction model. In 
addition, the scheme is adaptable to a wide range of 
functions such as user revocation, smart device join-
ing and exiting, and is resistant to a variety of common 
attacks. In this paper, we evaluate the computational 
and communication performance through quanti-
tative analysis. Compared with related schemes, the 
scheme proposed in this paper has lower computa-
tional and communication costs when users access 
multiple smart devices simultaneously
The rest of the paper is organized as follows. Section 
related work briefly summarizes the related works on 
key authentication and management in CPS. Section 
preliminaries present the problem definition and pre-
liminary knowledge. The proposed schemes section 
describes our specific program design and details. Safe-
ty analyses and proofs are described in section security 
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Safety analyses and proofs are described in section 
security analysis. The experimental evaluations 
and comparison results are reported in Section 
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As an important supporting technology for digital 
healthcare, cyber-physical systems bring great 
convenience to people's work and life. In his paper, 
Verma [18] stated that the current intractable 
epidemics require a robust intelligent healthcare 
system that integrates the physical world with the 
cyberworld by monitoring and controlling medical 

devices, patients, and external devices. In the 
same year, Chen et al. [7] proposed that 
healthcare cyber data is generated digitally 
and accessed remotely by healthcare 
professionals and patients during 
communication, device and information 
interactions in cyber-physical systems. In the 
following year, Al-Ghuraybi et al. [2] 
proposed that cyber-physical systems are 
designed for multi-party data sharing and 
transmission, and therefore have security 
issues in terms of authentication processes 
and prevention of unauthorized access. 

To address secure transmission in digital 
healthcare, Bhattacharya et al. [4] proposed a 
blockchain-based deep learning-as-a-service 
framework for defending against conspiracy 
attacks based on lattice ciphers and digital 
signatures. Immediately after, Vinoth and 
colleagues [19] proposed a key agreement 
protocol integrating access control and multi-
factor authentication keys in 2021. 
Subsequently, Gaba and colleagues [10] 
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analysis. The experimental evaluations and compari-
son results are reported in Section performance evalu-
ation. The last Section concludes the paper.

2. Related Work
As an important supporting technology for digital 
healthcare, cyber-physical systems bring great con-
venience to people’s work and life. In his paper, Ver-
ma [18] stated that the current intractable epidemics 
require a robust intelligent healthcare system that 
integrates the physical world with the cyberworld by 
monitoring and controlling medical devices, patients, 
and external devices. In the same year, Chen et al. [7] 
proposed that healthcare cyber data is generated digi-
tally and accessed remotely by healthcare profession-
als and patients during communication, device and 
information interactions in cyber-physical systems. In 
the following year, Al-Ghuraybi et al. [2] proposed that 
cyber-physical systems are designed for multi-party 

data sharing and transmission, and therefore have se-
curity issues in terms of authentication processes and 
prevention of unauthorized access.
To address secure transmission in digital healthcare, 
Bhattacharya et al. [4] proposed a blockchain-based 
deep learning-as-a-service framework for defending 
against conspiracy attacks based on lattice ciphers 
and digital signatures. Immediately after, Vinoth 
and colleagues [19] proposed a key agreement pro-
tocol integrating access control and multi-factor au-
thentication keys in 2021. Subsequently, Gaba and 
colleagues [10] proposed a key agreement protocol 
for sustainable healthcare management based on ze-
ro-knowledge proofs to facilitate three-way authenti-
cation between users, devices, and gateways. Cao and 
colleagues [6] proposed a key authentication proto-
col aimed at securing communication between user 
groups. Although the above methods have better per-
formance and security, they are not suitable for CPS 
multi-device data transmission authentication due 
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Xu et al. [20] in 2020 proposed a blockchain-based 
authentication and dynamic group key protocol, 
where each member of a group only needs to 

authenticate its neighboring members once to 
complete the authentication, which reduces 
the communication overhead but does not 
consider the authentication between users 
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to their excessive communication and computational 
costs and lack of generalization capability.
Xu et al. [20] in 2020 proposed a blockchain-based 
authentication and dynamic group key protocol, 
where each member of a group only needs to au-
thenticate its neighboring members once to com-
plete the authentication, which reduces the com-
munication overhead but does not consider the 
authentication between users and devices. Salman 
et al. [16] proposed a lightweight protocol for key 
authentication and stated that it is the physically 
unavailable cloning function’s first application in 
healthcare. Subsequently, Li et al. [12] proposed a 
revocable lightweight authentication scheme for re-
source-constrained devices in cyber-physical power 
systems based on certificate-less encryption. From 
the above literature, it can be seen that the existing 
lightweight key authentication schemes cannot sat-
isfy the tripartite authentication requirements of 
users, gateways and multiple devices.

Preliminaries
3.1. CPS Key Authentication Process
The cyber-physical system provides a new and con-
venient production method for digital healthcare, 
and the medical institution can control the informa-
tion interaction between the user and the wearable 
smart device to realize the whole life cycle moni-
toring of the patient’s physical condition, and the 
system model is shown in Figure 1 The wearable 
device carried by the consumer transmits medical 
data information to the network layer for a round 
of integration and filtering, and then the network 
layer uploads the information to the control layer 
for data analysis and further testing. Among other 
things, doctors and staff at hospitals or healthcare 
institutions can use the cyber-physical system to 
detect and analyze consumers’ physical conditions 
and patients’ illnesses, facilitating the implementa-
tion of more accurate medical operations. However, 
there are still unscrupulous elements and third-par-
ty organizations that want to steal users’ private in-
formation for profit. Therefore, key authentication 
and management protocols need to be used during 
transmission to ensure the security and legitimacy 
of both sides of the data interaction.

Table 1
Notations and Descriptions

Symbol Description

KMC Key management center

GW Gateway

U User

jWSD jth wearable smart device

GID Identity of GW

UID Identity of U

jTID Temporary identity of jWSD

, pubs P Private key and public key of GW

, ,d
j j jW A T The WSD’s public key

, ,d
j j jS a t The WSD’s private key

,uW B The User’s public key

,uS b The User’s private key

jTSK Temporary key between GW  and smart 
device jWSD

TUK Temporary key between GW  and U

GK The session key

r Variables

,PW BIO Password, and biometrics of U
n
mTS Current timestamp

TS∆ Maximun transmission delay

Table 1 shows the notation system that appears in this 
paper. In our system model, this process consists of 
four entities as detailed below.

Key Management Centre (KMC): Located at the 
control layer, KMC is a trusted entity responsible 
for managing wearable smart devices, authorisation 
gateways and user registration.
Gateway (GW): Located at the network layer, in the 
early stages of key agreement, GW is responsible for 
helping users using wearable technology authenticate 
each other. 
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User (U): That is, the consumer, who can choose to 
use a variety of smart devices to collect and send data 
and initiate a session key agreement query by access-
ing the smart card via GW.
Wearable Smart Device (WSD): jWSD  denotes the 
j th wearable smart device, which is responsible for 
collecting data in the cyber-physical system and trans-
mitting it to U and GW. The KMC completes the basic 
setup of the WSD, and subsequently assists U in com-
pleting the registration and authorization of the GW. 
Using the GW, the user and the WSD reach a consensus 
on the session key to ensure that the communication is 
protected. In addition, WSDs typically have a certain 
amount of computing power and storage capacity and 
can be joined or disconnected at any time.

3.2. Threat Model
In the suggested scheme, both [9] and [5] threat mod-
els are employed. Based on this, it’s clear that an ad-
versary can modify, delete, falsify, and replicate mes-
sages.
U and WSD are not considered trustworthy because 
they can be easily stolen. KMC and GW, on the con-
trary, are considered trustworthy operators and will 
not be harmed. Additionally, an adversary may have 
access to transient information, such as session sta-
tus, session key, and certain confidential information 
of the user.

3.3. Fuzzy Extractor
The fuzzy extractor is responsible for generating and 
reconstructing the biometric key, which includes the 
following two algorithms:
Gen( ) ( , )BIO BK BP→ : The biometrics feature BIO  
is used as the entry point, probability algorithm gen-
erates the biometric key BK  and the rebuilding pa-
rameters BP .
Rep( , )BIO BP BK′ → : The deterministic algorithm 
generates a biometric key BK with the biometrics fea-
ture BIO′  like BIO  and rebuilding parameter BP  as 
an entry.

4. The Proposed Schemes
This part meticulously outlines a robust multi-party 
authentication and key agreement framework, en-
compassing the initialization, deployment of smart 

devices, user registration, gateway authorisation, 
authentication and key agreement processes, cancel-
lation, updating passwords and biometrics, updating 
temporary universal keys, and stages of smart device 
joining and leaving. Figure 2 illustrates the specific 
process of key authentication and negotiation.

4.1. Initialization Phase

KMC executes the initial setup for the system by exe-
cuting these steps.
Step 1: Generates a cyclic additive group 1G  of order 
q, a cyclic multiplicative group 2G  of order q, a gen-
erator Q  of 1G , and 1 1 2:e G G G× →  is a bilinear map. 
For points ( , )x y  belonging to 1G  or 2G , we only focus 
on x. Subsequently, 
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Step 3: Upon receiving the smart card, U inputs his 
identifier UID, code PW , and biometric data BIO. 
Subsequently, User’s smart card SC  retrieves the 
biometric key BK  and the reconstruction parameter 
RP  using the fuzzy extractor ( ) ( )Gen ,BIO BK RP→ . 
Following this, SC  calculates ( )BS h UID PW BK=  
mod 0l , with the integer 0l  selected by the smart card, 
determining the effectiveness of obstructing online 
guessing attack using fuzzy verifier.
Step 4: KMC computes ( )uW h UID= , u uS sW=  and 
sents { },u uW S  to U.
Step 5: The smart card holds 0{ , , }BS RP l  saved by U.

4.4. Gateway Registration Phase
KMC helps GW to make registration settings.The pre-
cise mathematical depiction of this process can be de-
scribed as below. 
Step 1: KMC securely transmits s to GW.
Step 2: Through a secure path, KMC sends { }jWID , 

[1, ]j n∈  and UID  to GW.

4.5. Authentication and Key Agreement Phase
U and all wearable smart devices 1 2{ , ,..., }nWSD WSD WSD

1 2{ , ,..., }nWSD WSD WSD  make mutual authentication and agree to dis-
tinct session keys via GW, necessitating U and jWSD  
to both generate temporary keys and transmit their 
settings to the GW. The detailed process is represent-
ed in mathematical terms as follows.
Step 1: 1: uU GW msg→ ,
 1: d

j jWSD GW msg→
 _ Initially, U adds his smart card into the reader, 

entering his unique identity UID , the password PW , 
and biometrics BIO . Subsequently, the smart card 
SC  of U reconstructs the biometric key BK  using a 
fuzzy extractor ( )Rep ,BIO RP BK→ . Immediately 
after that, calculate ( )BS h UID PW BK′ =  mod 0l  
and verifies if BS BS′ = . If not, the login request 
will be stopped. Otherwise, the validation of U 
succeeded. Immediately after that, U selects a 
stochastic b  along with the present timestamp 

1
uTS , computes B bQ= , pubTUK bP= , 1

uM B= , 
( )2 1 1

u u u uM h M UID TS S= ‖‖ . { }1 1 2 1, ,u u u umsg M M TS=  
is transmitted to GW through U via an open 
channel.

 _
jWSD  generates a random ja

 
and 

the current timestamp 1
d
jTS . jWSD  

computes j jA a Q= , j j pubTSK a P= . 1
d
j jM A= , 

( )2 1 1||d d d d
j j j j jM h M WID TS S= ‖ .  { }1 1 2 1, ,d d d d

j j j jmsg M M TS=  
{ }1 1 2 1, ,d d d d

j j j jmsg M M TS=  is sent to GW by jWSD  via an open channel.

Step 2: 2:j jGW WSD msg→
 _ When GW gets 1

umsg  from U, it verifies if 
1 1| |u uTS TS TS′− ≤ ∆ , where 1

uTS ′  represents the 
moment GW obtained 1

umsg . Subsequently, GW 
calculates 1

uTUK sM sB= = . Verification of 
condition ( ) ( )2 1 1, , ( )u u u u

pube Q M e P h M UID TS W= ‖‖ , 
ceases upon the check’s failure.

 _ Upon receiving 1
d
jmsg , GW checks whether 

1 1
d d
j jTS TS TS′− ≤ ∆ , where 1

d
jTS ′  is the time 

that jWSD  received 1
d
jmsg . Subsequently, GW 

computes 1
d

j j jTSK sM sA= = , GW check whether 
( ) ( )2 1 1, , ( )d d d d

j pub j j j je Q M e P h M WID TS W= ‖‖ , aborts if 
the check fails.

 _ GW generates a unique jTID  as temporary identity 
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( ) ( )5WID , , Dec
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1 1( , )nX e T T Q= − , j j jt TID c= ⊕ , Check wheth-
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n
n j
j j

j
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The security model is based on Real Random (ROR). 
It is easy to infer whether or not a scheme supports se-
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γ
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∏ ∏ ∏ : With this query,   can 

eavesdrop on all information exchanged between 
honest communicators. 

Send , , ,
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m
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  
 
∏ ∏ ∏ : Query is modelled as an 

active attack. When the inquiry of    for the 
message $m$ is received, a reply message is 
returned. 

Reveal ,
i jU WSD

γα 
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 
∏ ∏ : Through this query,   is 
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∏  and 
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γ

∏  conventions. 
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iU

v
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 
∏ : This query is designed to ensure 

the security of information that involves three 
distinct factors. When a request is received from 

entity  , the corresponding data is provided 
in response. 

 0v = : Returns the password PW  to  . 

 1v = : Data from the smart card goes back 
to  . 

 2v = : Returns the biometric BIO  to  . 
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operates a single time. When   receives a 
query, choose bit b at random. If 1b = , 
provide the session key *SK , and if 0b = , 
opt for and return a string matching the 
length of *SK . 

Semantic security of session key: In the ROR 
model, the adversary's advantage in breaking 
the semantic security of the proposed scheme 

Σ  is defined as ( ) 2Pr 1Adv t b bΣ ′ = = −  . 

The advantage of Σ  for success in an attack is 
negligible if the authentication and key 
management system Σ  is safe from an 
adversary of  . 

5.2. Formal Security Proof 

  represents an 
adversary that is challenging the security of 
the proposed scheme Σ  within the given 
mathematical framework  . Represent 
D  and N  to be uniformly distributed 
cryptography and biometry dictionaries. The 
advantage of   in disrupting the session key 
security in the suggested scheme is 
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2

Adv ( ) 2 Adv
| Hash |
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| | | |
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s
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q q             q
N D
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Σ ′≤ + ⋅
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where | |D , | |N , | |Hash , ( )ECCDHAdv t ′ , 

δ , eq , sq  and hq  represent the sizes of D  

and N , respectively, the range space of the 
hash function ( )h ⋅ , the dominance of   to 
crack the ECCDH problem within  , the 
probability of the "false positive" case, and 
the number of Execute  query, Sent  query 
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model, the adversary's advantage in breaking 
the semantic security of the proposed scheme 

Σ  is defined as ( ) 2Pr 1Adv t b bΣ ′ = = −  . 

The advantage of Σ  for success in an attack is 
negligible if the authentication and key 
management system Σ  is safe from an 
adversary of  . 

5.2. Formal Security Proof 

  represents an 
adversary that is challenging the security of 
the proposed scheme Σ  within the given 
mathematical framework  . Represent 
D  and N  to be uniformly distributed 
cryptography and biometry dictionaries. The 
advantage of   in disrupting the session key 
security in the suggested scheme is 
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 needs to choose bit b. Under the 
ROR model, it can be established that the initial game 

0∏  is equivalent to the proposed solution. Therefore, 
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the security of information that involves three 
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 1v = : Data from the smart card goes back 
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query, choose bit b at random. If 1b = , 
provide the session key *SK , and if 0b = , 
opt for and return a string matching the 
length of *SK . 

Semantic security of session key: In the ROR 
model, the adversary's advantage in breaking 
the semantic security of the proposed scheme 

Σ  is defined as ( ) 2Pr 1Adv t b bΣ ′ = = −  . 

The advantage of Σ  for success in an attack is 
negligible if the authentication and key 
management system Σ  is safe from an 
adversary of  . 

5.2. Formal Security Proof 

  represents an 
adversary that is challenging the security of 
the proposed scheme Σ  within the given 
mathematical framework  . Represent 
D  and N  to be uniformly distributed 
cryptography and biometry dictionaries. The 
advantage of   in disrupting the session key 
security in the suggested scheme is 
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are described as follows: 
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between parties represented by 
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∏ ∏ ∏ : With this query,   can 

eavesdrop on all information exchanged between 
honest communicators. 

Send , , ,
i jU GW WSD

m
β γα 

  
 
∏ ∏ ∏ : Query is modelled as an 

active attack. When the inquiry of    for the 
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Corrupt ,
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∏ : This query is designed to ensure 

the security of information that involves three 
distinct factors. When a request is received from 

entity  , the corresponding data is provided 
in response. 

 0v = : Returns the password PW  to  . 

 1v = : Data from the smart card goes back 
to  . 

 2v = : Returns the biometric BIO  to  . 

Test ,
i jU WSD

γα 
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 
∏ ∏ :The query emulates the 

semantic safety of the grouping key *SK  and 
operates a single time. When   receives a 
query, choose bit b at random. If 1b = , 
provide the session key *SK , and if 0b = , 
opt for and return a string matching the 
length of *SK . 

Semantic security of session key: In the ROR 
model, the adversary's advantage in breaking 
the semantic security of the proposed scheme 

Σ  is defined as ( ) 2Pr 1Adv t b bΣ ′ = = −  . 

The advantage of Σ  for success in an attack is 
negligible if the authentication and key 
management system Σ  is safe from an 
adversary of  . 

5.2. Formal Security Proof 

  represents an 
adversary that is challenging the security of 
the proposed scheme Σ  within the given 
mathematical framework  . Represent 
D  and N  to be uniformly distributed 
cryptography and biometry dictionaries. The 
advantage of   in disrupting the session key 
security in the suggested scheme is 
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where | |D , | |N , | |Hash , ( )ECCDHAdv t ′ , 

δ , eq , sq  and hq  represent the sizes of D  

and N , respectively, the range space of the 
hash function ( )h ⋅ , the dominance of   to 
crack the ECCDH problem within  , the 
probability of the "false positive" case, and 
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scheme supports semantic security against an 
adversary   with  . The model primitives 
are described as follows: 

Participants: Our proposed scheme has multiple 
participants, which are U, GW and jWSD . The 

instances α , β  and γ  of U, GW and jWSD  are 

denoted by 
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Partnership: Should 
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α
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γ

∏  have the 

capability to directly exchange information, utilize 
identical session keys, and avoid creating session 
keys with other instances, they are acknowledged 
as partners. 

Freshness:   session key, denoted as SK , is 
deemed to be fresh when it is newly established 

between parties represented by 
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α

∏  and 
jWSD

γ

∏ , and 

remains confidential, with no disclosure to an 
unauthorized third party, such as an adversary. 

Adversary   can make the following queries: 
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i jU GW WSD
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 
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∏ ∏ ∏ : Query is modelled as an 

active attack. When the inquiry of    for the 
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to  . 
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semantic safety of the grouping key *SK  and 
operates a single time. When   receives a 
query, choose bit b at random. If 1b = , 
provide the session key *SK , and if 0b = , 
opt for and return a string matching the 
length of *SK . 

Semantic security of session key: In the ROR 
model, the adversary's advantage in breaking 
the semantic security of the proposed scheme 

Σ  is defined as ( ) 2Pr 1Adv t b bΣ ′ = = −  . 

The advantage of Σ  for success in an attack is 
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management system Σ  is safe from an 
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the proposed scheme Σ  within the given 
mathematical framework  . Represent 
D  and N  to be uniformly distributed 
cryptography and biometry dictionaries. The 
advantage of   in disrupting the session key 
security in the suggested scheme is 

( )
2

Adv ( ) 2 Adv
| Hash |

2 max , ,
| | | |

ECCDHh

s s
s

qt t

q q             q
N D

δ

Σ ′≤ + ⋅

 
+ ⋅  

 

 

, 

where | |D , | |N , | |Hash , ( )ECCDHAdv t ′ , 

δ , eq , sq  and hq  represent the sizes of D  

and N , respectively, the range space of the 
hash function ( )h ⋅ , the dominance of   to 
crack the ECCDH problem within  , the 
probability of the "false positive" case, and 
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sequently, by the principle of the birthday paradox, it 
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[ ] [ ]
2

1 2Pr Pr
2

hqSuc Suc
 Hash 

− ≤
∣ ∣

.
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the semantic security of the proposed scheme 

Σ  is defined as ( ) 2Pr 1Adv t b bΣ ′ = = −  . 

The advantage of Σ  for success in an attack is 
negligible if the authentication and key 
management system Σ  is safe from an 
adversary of  . 

5.2. Formal Security Proof 

  represents an 
adversary that is challenging the security of 
the proposed scheme Σ  within the given 
mathematical framework  . Represent 
D  and N  to be uniformly distributed 
cryptography and biometry dictionaries. The 
advantage of   in disrupting the session key 
security in the suggested scheme is 
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where | |D , | |N , | |Hash , ( )ECCDHAdv t ′ , 

δ , eq , sq  and hq  represent the sizes of D  

and N , respectively, the range space of the 
hash function ( )h ⋅ , the dominance of   to 
crack the ECCDH problem within  , the 
probability of the "false positive" case, and 
the number of Execute  query, Sent  query 

 is capable of impersonating U, engaging 
with GW, and thereby acquiring the session key GK . 
In 4G , the premise is that 

 
 

 

scheme supports semantic security against an 
adversary   with  . The model primitives 
are described as follows: 

Participants: Our proposed scheme has multiple 
participants, which are U, GW and jWSD . The 

instances α , β  and γ  of U, GW and jWSD  are 

denoted by 
iU

α

∏ ,
GW

β

∏  and 
jWSD

γ

∏ . 

Partnership: Should 
iU

α

∏  and 
jWSD

γ

∏  have the 

capability to directly exchange information, utilize 
identical session keys, and avoid creating session 
keys with other instances, they are acknowledged 
as partners. 

Freshness:   session key, denoted as SK , is 
deemed to be fresh when it is newly established 

between parties represented by 
iU

α

∏  and 
jWSD

γ

∏ , and 

remains confidential, with no disclosure to an 
unauthorized third party, such as an adversary. 

Adversary   can make the following queries: 

Execute , ,
i jU GW WSD

γβα 
  
 
∏ ∏ ∏ : With this query,   can 

eavesdrop on all information exchanged between 
honest communicators. 

Send , , ,
i jU GW WSD

m
β γα 

  
 
∏ ∏ ∏ : Query is modelled as an 

active attack. When the inquiry of    for the 
message $m$ is received, a reply message is 
returned. 

Reveal ,
i jU WSD

γα 
  
 
∏ ∏ : Through this query,   is 

capable of acquiring the group key SK  related to 

the 
iU

α

∏  and 
jWSD

γ

∏  conventions. 

Corrupt ,
iU

v
α 

  
 
∏ : This query is designed to ensure 

the security of information that involves three 
distinct factors. When a request is received from 

entity  , the corresponding data is provided 
in response. 

 0v = : Returns the password PW  to  . 

 1v = : Data from the smart card goes back 
to  . 

 2v = : Returns the biometric BIO  to  . 

Test ,
i jU WSD

γα 
  
 
∏ ∏ :The query emulates the 

semantic safety of the grouping key *SK  and 
operates a single time. When   receives a 
query, choose bit b at random. If 1b = , 
provide the session key *SK , and if 0b = , 
opt for and return a string matching the 
length of *SK . 

Semantic security of session key: In the ROR 
model, the adversary's advantage in breaking 
the semantic security of the proposed scheme 

Σ  is defined as ( ) 2Pr 1Adv t b bΣ ′ = = −  . 

The advantage of Σ  for success in an attack is 
negligible if the authentication and key 
management system Σ  is safe from an 
adversary of  . 

5.2. Formal Security Proof 

  represents an 
adversary that is challenging the security of 
the proposed scheme Σ  within the given 
mathematical framework  . Represent 
D  and N  to be uniformly distributed 
cryptography and biometry dictionaries. The 
advantage of   in disrupting the session key 
security in the suggested scheme is 

( )
2

Adv ( ) 2 Adv
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where | |D , | |N , | |Hash , ( )ECCDHAdv t ′ , 

δ , eq , sq  and hq  represent the sizes of D  

and N , respectively, the range space of the 
hash function ( )h ⋅ , the dominance of   to 
crack the ECCDH problem within  , the 
probability of the "false positive" case, and 
the number of Execute  query, Sent  query 

 can acquire a maximum of 
two factors, given that the most adverse circumstances 
are taken into account. As a result, the situation can be 
divided into the following three distinct scenarios:
Case  1: 

 
 

 

scheme supports semantic security against an 
adversary   with  . The model primitives 
are described as follows: 

Participants: Our proposed scheme has multiple 
participants, which are U, GW and jWSD . The 

instances α , β  and γ  of U, GW and jWSD  are 

denoted by 
iU

α

∏ ,
GW

β

∏  and 
jWSD

γ

∏ . 

Partnership: Should 
iU

α

∏  and 
jWSD

γ

∏  have the 

capability to directly exchange information, utilize 
identical session keys, and avoid creating session 
keys with other instances, they are acknowledged 
as partners. 

Freshness:   session key, denoted as SK , is 
deemed to be fresh when it is newly established 

between parties represented by 
iU

α

∏  and 
jWSD

γ

∏ , and 

remains confidential, with no disclosure to an 
unauthorized third party, such as an adversary. 

Adversary   can make the following queries: 

Execute , ,
i jU GW WSD

γβα 
  
 
∏ ∏ ∏ : With this query,   can 

eavesdrop on all information exchanged between 
honest communicators. 

Send , , ,
i jU GW WSD

m
β γα 

  
 
∏ ∏ ∏ : Query is modelled as an 

active attack. When the inquiry of    for the 
message $m$ is received, a reply message is 
returned. 

Reveal ,
i jU WSD

γα 
  
 
∏ ∏ : Through this query,   is 

capable of acquiring the group key SK  related to 

the 
iU

α

∏  and 
jWSD

γ

∏  conventions. 

Corrupt ,
iU

v
α 

  
 
∏ : This query is designed to ensure 

the security of information that involves three 
distinct factors. When a request is received from 

entity  , the corresponding data is provided 
in response. 

 0v = : Returns the password PW  to  . 

 1v = : Data from the smart card goes back 
to  . 

 2v = : Returns the biometric BIO  to  . 

Test ,
i jU WSD

γα 
  
 
∏ ∏ :The query emulates the 

semantic safety of the grouping key *SK  and 
operates a single time. When   receives a 
query, choose bit b at random. If 1b = , 
provide the session key *SK , and if 0b = , 
opt for and return a string matching the 
length of *SK . 

Semantic security of session key: In the ROR 
model, the adversary's advantage in breaking 
the semantic security of the proposed scheme 

Σ  is defined as ( ) 2Pr 1Adv t b bΣ ′ = = −  . 

The advantage of Σ  for success in an attack is 
negligible if the authentication and key 
management system Σ  is safe from an 
adversary of  . 

5.2. Formal Security Proof 

  represents an 
adversary that is challenging the security of 
the proposed scheme Σ  within the given 
mathematical framework  . Represent 
D  and N  to be uniformly distributed 
cryptography and biometry dictionaries. The 
advantage of   in disrupting the session key 
security in the suggested scheme is 
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where | |D , | |N , | |Hash , ( )ECCDHAdv t ′ , 

δ , eq , sq  and hq  represent the sizes of D  

and N , respectively, the range space of the 
hash function ( )h ⋅ , the dominance of   to 
crack the ECCDH problem within  , the 
probability of the "false positive" case, and 
the number of Execute  query, Sent  query 
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∏ . Given that 

 
 

 

scheme supports semantic security against an 
adversary   with  . The model primitives 
are described as follows: 

Participants: Our proposed scheme has multiple 
participants, which are U, GW and jWSD . The 

instances α , β  and γ  of U, GW and jWSD  are 

denoted by 
iU

α

∏ ,
GW

β

∏  and 
jWSD

γ

∏ . 

Partnership: Should 
iU

α

∏  and 
jWSD

γ

∏  have the 

capability to directly exchange information, utilize 
identical session keys, and avoid creating session 
keys with other instances, they are acknowledged 
as partners. 

Freshness:   session key, denoted as SK , is 
deemed to be fresh when it is newly established 

between parties represented by 
iU

α

∏  and 
jWSD

γ

∏ , and 

remains confidential, with no disclosure to an 
unauthorized third party, such as an adversary. 

Adversary   can make the following queries: 

Execute , ,
i jU GW WSD

γβα 
  
 
∏ ∏ ∏ : With this query,   can 

eavesdrop on all information exchanged between 
honest communicators. 

Send , , ,
i jU GW WSD

m
β γα 

  
 
∏ ∏ ∏ : Query is modelled as an 

active attack. When the inquiry of    for the 
message $m$ is received, a reply message is 
returned. 

Reveal ,
i jU WSD

γα 
  
 
∏ ∏ : Through this query,   is 

capable of acquiring the group key SK  related to 

the 
iU

α

∏  and 
jWSD

γ

∏  conventions. 

Corrupt ,
iU

v
α 

  
 
∏ : This query is designed to ensure 

the security of information that involves three 
distinct factors. When a request is received from 

entity  , the corresponding data is provided 
in response. 

 0v = : Returns the password PW  to  . 

 1v = : Data from the smart card goes back 
to  . 

 2v = : Returns the biometric BIO  to  . 

Test ,
i jU WSD

γα 
  
 
∏ ∏ :The query emulates the 

semantic safety of the grouping key *SK  and 
operates a single time. When   receives a 
query, choose bit b at random. If 1b = , 
provide the session key *SK , and if 0b = , 
opt for and return a string matching the 
length of *SK . 

Semantic security of session key: In the ROR 
model, the adversary's advantage in breaking 
the semantic security of the proposed scheme 

Σ  is defined as ( ) 2Pr 1Adv t b bΣ ′ = = −  . 

The advantage of Σ  for success in an attack is 
negligible if the authentication and key 
management system Σ  is safe from an 
adversary of  . 

5.2. Formal Security Proof 

  represents an 
adversary that is challenging the security of 
the proposed scheme Σ  within the given 
mathematical framework  . Represent 
D  and N  to be uniformly distributed 
cryptography and biometry dictionaries. The 
advantage of   in disrupting the session key 
security in the suggested scheme is 
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where | |D , | |N , | |Hash , ( )ECCDHAdv t ′ , 

δ , eq , sq  and hq  represent the sizes of D  

and N , respectively, the range space of the 
hash function ( )h ⋅ , the dominance of   to 
crack the ECCDH problem within  , the 
probability of the "false positive" case, and 
the number of Execute  query, Sent  query 

 

has the capability to make quiries, the probability of 
 
 

 

scheme supports semantic security against an 
adversary   with  . The model primitives 
are described as follows: 

Participants: Our proposed scheme has multiple 
participants, which are U, GW and jWSD . The 

instances α , β  and γ  of U, GW and jWSD  are 

denoted by 
iU

α

∏ ,
GW

β

∏  and 
jWSD

γ

∏ . 

Partnership: Should 
iU

α

∏  and 
jWSD

γ

∏  have the 

capability to directly exchange information, utilize 
identical session keys, and avoid creating session 
keys with other instances, they are acknowledged 
as partners. 

Freshness:   session key, denoted as SK , is 
deemed to be fresh when it is newly established 

between parties represented by 
iU

α

∏  and 
jWSD

γ

∏ , and 

remains confidential, with no disclosure to an 
unauthorized third party, such as an adversary. 

Adversary   can make the following queries: 

Execute , ,
i jU GW WSD

γβα 
  
 
∏ ∏ ∏ : With this query,   can 

eavesdrop on all information exchanged between 
honest communicators. 

Send , , ,
i jU GW WSD

m
β γα 

  
 
∏ ∏ ∏ : Query is modelled as an 

active attack. When the inquiry of    for the 
message $m$ is received, a reply message is 
returned. 

Reveal ,
i jU WSD

γα 
  
 
∏ ∏ : Through this query,   is 

capable of acquiring the group key SK  related to 

the 
iU

α

∏  and 
jWSD

γ

∏  conventions. 

Corrupt ,
iU

v
α 

  
 
∏ : This query is designed to ensure 

the security of information that involves three 
distinct factors. When a request is received from 

entity  , the corresponding data is provided 
in response. 

 0v = : Returns the password PW  to  . 

 1v = : Data from the smart card goes back 
to  . 

 2v = : Returns the biometric BIO  to  . 

Test ,
i jU WSD

γα 
  
 
∏ ∏ :The query emulates the 

semantic safety of the grouping key *SK  and 
operates a single time. When   receives a 
query, choose bit b at random. If 1b = , 
provide the session key *SK , and if 0b = , 
opt for and return a string matching the 
length of *SK . 

Semantic security of session key: In the ROR 
model, the adversary's advantage in breaking 
the semantic security of the proposed scheme 

Σ  is defined as ( ) 2Pr 1Adv t b bΣ ′ = = −  . 

The advantage of Σ  for success in an attack is 
negligible if the authentication and key 
management system Σ  is safe from an 
adversary of  . 

5.2. Formal Security Proof 

  represents an 
adversary that is challenging the security of 
the proposed scheme Σ  within the given 
mathematical framework  . Represent 
D  and N  to be uniformly distributed 
cryptography and biometry dictionaries. The 
advantage of   in disrupting the session key 
security in the suggested scheme is 
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where | |D , | |N , | |Hash , ( )ECCDHAdv t ′ , 

δ , eq , sq  and hq  represent the sizes of D  

and N , respectively, the range space of the 
hash function ( )h ⋅ , the dominance of   to 
crack the ECCDH problem within  , the 
probability of the "false positive" case, and 
the number of Execute  query, Sent  query 

 accurately replicating iU  stands at 
| |

sq
N

.
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scheme supports semantic security against an 
adversary   with  . The model primitives 
are described as follows: 

Participants: Our proposed scheme has multiple 
participants, which are U, GW and jWSD . The 

instances α , β  and γ  of U, GW and jWSD  are 

denoted by 
iU

α

∏ ,
GW

β

∏  and 
jWSD

γ

∏ . 

Partnership: Should 
iU

α

∏  and 
jWSD

γ

∏  have the 

capability to directly exchange information, utilize 
identical session keys, and avoid creating session 
keys with other instances, they are acknowledged 
as partners. 

Freshness:   session key, denoted as SK , is 
deemed to be fresh when it is newly established 

between parties represented by 
iU

α

∏  and 
jWSD

γ

∏ , and 

remains confidential, with no disclosure to an 
unauthorized third party, such as an adversary. 

Adversary   can make the following queries: 

Execute , ,
i jU GW WSD

γβα 
  
 
∏ ∏ ∏ : With this query,   can 

eavesdrop on all information exchanged between 
honest communicators. 

Send , , ,
i jU GW WSD

m
β γα 

  
 
∏ ∏ ∏ : Query is modelled as an 

active attack. When the inquiry of    for the 
message $m$ is received, a reply message is 
returned. 

Reveal ,
i jU WSD

γα 
  
 
∏ ∏ : Through this query,   is 

capable of acquiring the group key SK  related to 

the 
iU

α

∏  and 
jWSD

γ

∏  conventions. 

Corrupt ,
iU

v
α 

  
 
∏ : This query is designed to ensure 

the security of information that involves three 
distinct factors. When a request is received from 

entity  , the corresponding data is provided 
in response. 

 0v = : Returns the password PW  to  . 

 1v = : Data from the smart card goes back 
to  . 

 2v = : Returns the biometric BIO  to  . 

Test ,
i jU WSD

γα 
  
 
∏ ∏ :The query emulates the 

semantic safety of the grouping key *SK  and 
operates a single time. When   receives a 
query, choose bit b at random. If 1b = , 
provide the session key *SK , and if 0b = , 
opt for and return a string matching the 
length of *SK . 

Semantic security of session key: In the ROR 
model, the adversary's advantage in breaking 
the semantic security of the proposed scheme 

Σ  is defined as ( ) 2Pr 1Adv t b bΣ ′ = = −  . 

The advantage of Σ  for success in an attack is 
negligible if the authentication and key 
management system Σ  is safe from an 
adversary of  . 

5.2. Formal Security Proof 

  represents an 
adversary that is challenging the security of 
the proposed scheme Σ  within the given 
mathematical framework  . Represent 
D  and N  to be uniformly distributed 
cryptography and biometry dictionaries. The 
advantage of   in disrupting the session key 
security in the suggested scheme is 
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where | |D , | |N , | |Hash , ( )ECCDHAdv t ′ , 

δ , eq , sq  and hq  represent the sizes of D  

and N , respectively, the range space of the 
hash function ( )h ⋅ , the dominance of   to 
crack the ECCDH problem within  , the 
probability of the "false positive" case, and 
the number of Execute  query, Sent  query 

 gains access to the PW  and BIO  through 
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scheme supports semantic security against an 
adversary   with  . The model primitives 
are described as follows: 

Participants: Our proposed scheme has multiple 
participants, which are U, GW and jWSD . The 

instances α , β  and γ  of U, GW and jWSD  are 

denoted by 
iU

α

∏ ,
GW

β

∏  and 
jWSD

γ

∏ . 

Partnership: Should 
iU

α

∏  and 
jWSD

γ

∏  have the 

capability to directly exchange information, utilize 
identical session keys, and avoid creating session 
keys with other instances, they are acknowledged 
as partners. 

Freshness:   session key, denoted as SK , is 
deemed to be fresh when it is newly established 

between parties represented by 
iU

α

∏  and 
jWSD

γ

∏ , and 

remains confidential, with no disclosure to an 
unauthorized third party, such as an adversary. 

Adversary   can make the following queries: 

Execute , ,
i jU GW WSD

γβα 
  
 
∏ ∏ ∏ : With this query,   can 

eavesdrop on all information exchanged between 
honest communicators. 

Send , , ,
i jU GW WSD

m
β γα 

  
 
∏ ∏ ∏ : Query is modelled as an 

active attack. When the inquiry of    for the 
message $m$ is received, a reply message is 
returned. 

Reveal ,
i jU WSD

γα 
  
 
∏ ∏ : Through this query,   is 

capable of acquiring the group key SK  related to 

the 
iU

α

∏  and 
jWSD

γ

∏  conventions. 

Corrupt ,
iU

v
α 

  
 
∏ : This query is designed to ensure 

the security of information that involves three 
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query, choose bit b at random. If 1b = , 
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message $m$ is received, a reply message is 
returned. 

Reveal ,
i jU WSD

γα 
  
 
∏ ∏ : Through this query,   is 

capable of acquiring the group key SK  related to 

the 
iU

α

∏  and 
jWSD

γ

∏  conventions. 

Corrupt ,
iU

v
α 

  
 
∏ : This query is designed to ensure 

the security of information that involves three 
distinct factors. When a request is received from 

entity  , the corresponding data is provided 
in response. 

 0v = : Returns the password PW  to  . 

 1v = : Data from the smart card goes back 
to  . 

 2v = : Returns the biometric BIO  to  . 

Test ,
i jU WSD

γα 
  
 
∏ ∏ :The query emulates the 

semantic safety of the grouping key *SK  and 
operates a single time. When   receives a 
query, choose bit b at random. If 1b = , 
provide the session key *SK , and if 0b = , 
opt for and return a string matching the 
length of *SK . 

Semantic security of session key: In the ROR 
model, the adversary's advantage in breaking 
the semantic security of the proposed scheme 

Σ  is defined as ( ) 2Pr 1Adv t b bΣ ′ = = −  . 

The advantage of Σ  for success in an attack is 
negligible if the authentication and key 
management system Σ  is safe from an 
adversary of  . 

5.2. Formal Security Proof 

  represents an 
adversary that is challenging the security of 
the proposed scheme Σ  within the given 
mathematical framework  . Represent 
D  and N  to be uniformly distributed 
cryptography and biometry dictionaries. The 
advantage of   in disrupting the session key 
security in the suggested scheme is 

( )
2

Adv ( ) 2 Adv
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2 max , ,
| | | |
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s s
s

qt t

q q             q
N D

δ

Σ ′≤ + ⋅

 
+ ⋅  

 

 

, 

where | |D , | |N , | |Hash , ( )ECCDHAdv t ′ , 

δ , eq , sq  and hq  represent the sizes of D  

and N , respectively, the range space of the 
hash function ( )h ⋅ , the dominance of   to 
crack the ECCDH problem within  , the 
probability of the "false positive" case, and 
the number of Execute  query, Sent  query 

 is capable of making sq  queries, the 
probability of 

 
 

 

scheme supports semantic security against an 
adversary   with  . The model primitives 
are described as follows: 

Participants: Our proposed scheme has multiple 
participants, which are U, GW and jWSD . The 

instances α , β  and γ  of U, GW and jWSD  are 

denoted by 
iU

α

∏ ,
GW

β

∏  and 
jWSD

γ

∏ . 

Partnership: Should 
iU

α

∏  and 
jWSD

γ

∏  have the 

capability to directly exchange information, utilize 
identical session keys, and avoid creating session 
keys with other instances, they are acknowledged 
as partners. 

Freshness:   session key, denoted as SK , is 
deemed to be fresh when it is newly established 

between parties represented by 
iU

α

∏  and 
jWSD

γ

∏ , and 

remains confidential, with no disclosure to an 
unauthorized third party, such as an adversary. 

Adversary   can make the following queries: 

Execute , ,
i jU GW WSD

γβα 
  
 
∏ ∏ ∏ : With this query,   can 

eavesdrop on all information exchanged between 
honest communicators. 

Send , , ,
i jU GW WSD

m
β γα 

  
 
∏ ∏ ∏ : Query is modelled as an 

active attack. When the inquiry of    for the 
message $m$ is received, a reply message is 
returned. 

Reveal ,
i jU WSD

γα 
  
 
∏ ∏ : Through this query,   is 

capable of acquiring the group key SK  related to 

the 
iU

α

∏  and 
jWSD

γ

∏  conventions. 

Corrupt ,
iU

v
α 

  
 
∏ : This query is designed to ensure 

the security of information that involves three 
distinct factors. When a request is received from 

entity  , the corresponding data is provided 
in response. 

 0v = : Returns the password PW  to  . 

 1v = : Data from the smart card goes back 
to  . 

 2v = : Returns the biometric BIO  to  . 

Test ,
i jU WSD

γα 
  
 
∏ ∏ :The query emulates the 

semantic safety of the grouping key *SK  and 
operates a single time. When   receives a 
query, choose bit b at random. If 1b = , 
provide the session key *SK , and if 0b = , 
opt for and return a string matching the 
length of *SK . 

Semantic security of session key: In the ROR 
model, the adversary's advantage in breaking 
the semantic security of the proposed scheme 

Σ  is defined as ( ) 2Pr 1Adv t b bΣ ′ = = −  . 

The advantage of Σ  for success in an attack is 
negligible if the authentication and key 
management system Σ  is safe from an 
adversary of  . 

5.2. Formal Security Proof 

  represents an 
adversary that is challenging the security of 
the proposed scheme Σ  within the given 
mathematical framework  . Represent 
D  and N  to be uniformly distributed 
cryptography and biometry dictionaries. The 
advantage of   in disrupting the session key 
security in the suggested scheme is 

( )
2

Adv ( ) 2 Adv
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2 max , ,
| | | |
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δ
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 
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, 

where | |D , | |N , | |Hash , ( )ECCDHAdv t ′ , 

δ , eq , sq  and hq  represent the sizes of D  

and N , respectively, the range space of the 
hash function ( )h ⋅ , the dominance of   to 
crack the ECCDH problem within  , the 
probability of the "false positive" case, and 
the number of Execute  query, Sent  query 

 successfully impersonating U is sqδ . 

As soon as the Corrupt ,
iU

v
α 

  
 
∏  query is completed, 

 
 

 

scheme supports semantic security against an 
adversary   with  . The model primitives 
are described as follows: 

Participants: Our proposed scheme has multiple 
participants, which are U, GW and jWSD . The 

instances α , β  and γ  of U, GW and jWSD  are 

denoted by 
iU

α

∏ ,
GW

β

∏  and 
jWSD

γ

∏ . 

Partnership: Should 
iU

α

∏  and 
jWSD

γ

∏  have the 

capability to directly exchange information, utilize 
identical session keys, and avoid creating session 
keys with other instances, they are acknowledged 
as partners. 

Freshness:   session key, denoted as SK , is 
deemed to be fresh when it is newly established 

between parties represented by 
iU

α

∏  and 
jWSD

γ

∏ , and 

remains confidential, with no disclosure to an 
unauthorized third party, such as an adversary. 

Adversary   can make the following queries: 

Execute , ,
i jU GW WSD

γβα 
  
 
∏ ∏ ∏ : With this query,   can 

eavesdrop on all information exchanged between 
honest communicators. 

Send , , ,
i jU GW WSD

m
β γα 

  
 
∏ ∏ ∏ : Query is modelled as an 

active attack. When the inquiry of    for the 
message $m$ is received, a reply message is 
returned. 

Reveal ,
i jU WSD

γα 
  
 
∏ ∏ : Through this query,   is 

capable of acquiring the group key SK  related to 

the 
iU

α

∏  and 
jWSD

γ

∏  conventions. 

Corrupt ,
iU

v
α 

  
 
∏ : This query is designed to ensure 

the security of information that involves three 
distinct factors. When a request is received from 

entity  , the corresponding data is provided 
in response. 

 0v = : Returns the password PW  to  . 

 1v = : Data from the smart card goes back 
to  . 

 2v = : Returns the biometric BIO  to  . 

Test ,
i jU WSD

γα 
  
 
∏ ∏ :The query emulates the 

semantic safety of the grouping key *SK  and 
operates a single time. When   receives a 
query, choose bit b at random. If 1b = , 
provide the session key *SK , and if 0b = , 
opt for and return a string matching the 
length of *SK . 

Semantic security of session key: In the ROR 
model, the adversary's advantage in breaking 
the semantic security of the proposed scheme 

Σ  is defined as ( ) 2Pr 1Adv t b bΣ ′ = = −  . 

The advantage of Σ  for success in an attack is 
negligible if the authentication and key 
management system Σ  is safe from an 
adversary of  . 

5.2. Formal Security Proof 

  represents an 
adversary that is challenging the security of 
the proposed scheme Σ  within the given 
mathematical framework  . Represent 
D  and N  to be uniformly distributed 
cryptography and biometry dictionaries. The 
advantage of   in disrupting the session key 
security in the suggested scheme is 

( )
2

Adv ( ) 2 Adv
| Hash |

2 max , ,
| | | |

ECCDHh
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s
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q q             q
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δ

Σ ′≤ + ⋅

 
+ ⋅  

 
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, 

where | |D , | |N , | |Hash , ( )ECCDHAdv t ′ , 

δ , eq , sq  and hq  represent the sizes of D  

and N , respectively, the range space of the 
hash function ( )h ⋅ , the dominance of   to 
crack the ECCDH problem within  , the 
probability of the "false positive" case, and 
the number of Execute  query, Sent  query 

 proceeds to issue a Test ,
i jU WSD

γα 
  
 
∏ ∏  query and then 

ascertains if the outcome of this Test ,
i jU WSD

γα 
  
 
∏ ∏  que-

ry corresponds to the actual session key GK  or if it 
is instead a randomly generated string. However, the 
above cases cannot exist at the same time. Therefore
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Finally, all oracles have been modelled in the previous 
game. If 

 
 

 

scheme supports semantic security against an 
adversary   with  . The model primitives 
are described as follows: 

Participants: Our proposed scheme has multiple 
participants, which are U, GW and jWSD . The 

instances α , β  and γ  of U, GW and jWSD  are 

denoted by 
iU

α

∏ ,
GW

β

∏  and 
jWSD

γ

∏ . 

Partnership: Should 
iU

α

∏  and 
jWSD

γ

∏  have the 

capability to directly exchange information, utilize 
identical session keys, and avoid creating session 
keys with other instances, they are acknowledged 
as partners. 

Freshness:   session key, denoted as SK , is 
deemed to be fresh when it is newly established 

between parties represented by 
iU

α

∏  and 
jWSD

γ

∏ , and 

remains confidential, with no disclosure to an 
unauthorized third party, such as an adversary. 

Adversary   can make the following queries: 

Execute , ,
i jU GW WSD

γβα 
  
 
∏ ∏ ∏ : With this query,   can 

eavesdrop on all information exchanged between 
honest communicators. 

Send , , ,
i jU GW WSD

m
β γα 

  
 
∏ ∏ ∏ : Query is modelled as an 

active attack. When the inquiry of    for the 
message $m$ is received, a reply message is 
returned. 

Reveal ,
i jU WSD

γα 
  
 
∏ ∏ : Through this query,   is 

capable of acquiring the group key SK  related to 

the 
iU

α

∏  and 
jWSD

γ

∏  conventions. 

Corrupt ,
iU

v
α 

  
 
∏ : This query is designed to ensure 

the security of information that involves three 
distinct factors. When a request is received from 

entity  , the corresponding data is provided 
in response. 

 0v = : Returns the password PW  to  . 

 1v = : Data from the smart card goes back 
to  . 

 2v = : Returns the biometric BIO  to  . 

Test ,
i jU WSD

γα 
  
 
∏ ∏ :The query emulates the 

semantic safety of the grouping key *SK  and 
operates a single time. When   receives a 
query, choose bit b at random. If 1b = , 
provide the session key *SK , and if 0b = , 
opt for and return a string matching the 
length of *SK . 

Semantic security of session key: In the ROR 
model, the adversary's advantage in breaking 
the semantic security of the proposed scheme 

Σ  is defined as ( ) 2Pr 1Adv t b bΣ ′ = = −  . 

The advantage of Σ  for success in an attack is 
negligible if the authentication and key 
management system Σ  is safe from an 
adversary of  . 

5.2. Formal Security Proof 

  represents an 
adversary that is challenging the security of 
the proposed scheme Σ  within the given 
mathematical framework  . Represent 
D  and N  to be uniformly distributed 
cryptography and biometry dictionaries. The 
advantage of   in disrupting the session key 
security in the suggested scheme is 

( )
2

Adv ( ) 2 Adv
| Hash |

2 max , ,
| | | |

ECCDHh

s s
s

qt t

q q             q
N D

δ

Σ ′≤ + ⋅

 
+ ⋅  

 

 

, 

where | |D , | |N , | |Hash , ( )ECCDHAdv t ′ , 

δ , eq , sq  and hq  represent the sizes of D  

and N , respectively, the range space of the 
hash function ( )h ⋅ , the dominance of   to 
crack the ECCDH problem within  , the 
probability of the "false positive" case, and 
the number of Execute  query, Sent  query 

 succeeds in guessing bit b, then 

 
 

 

scheme supports semantic security against an 
adversary   with  . The model primitives 
are described as follows: 

Participants: Our proposed scheme has multiple 
participants, which are U, GW and jWSD . The 

instances α , β  and γ  of U, GW and jWSD  are 

denoted by 
iU

α

∏ ,
GW

β

∏  and 
jWSD

γ

∏ . 

Partnership: Should 
iU

α

∏  and 
jWSD

γ

∏  have the 

capability to directly exchange information, utilize 
identical session keys, and avoid creating session 
keys with other instances, they are acknowledged 
as partners. 

Freshness:   session key, denoted as SK , is 
deemed to be fresh when it is newly established 

between parties represented by 
iU

α

∏  and 
jWSD

γ

∏ , and 

remains confidential, with no disclosure to an 
unauthorized third party, such as an adversary. 

Adversary   can make the following queries: 

Execute , ,
i jU GW WSD

γβα 
  
 
∏ ∏ ∏ : With this query,   can 

eavesdrop on all information exchanged between 
honest communicators. 

Send , , ,
i jU GW WSD

m
β γα 

  
 
∏ ∏ ∏ : Query is modelled as an 

active attack. When the inquiry of    for the 
message $m$ is received, a reply message is 
returned. 

Reveal ,
i jU WSD

γα 
  
 
∏ ∏ : Through this query,   is 

capable of acquiring the group key SK  related to 

the 
iU

α

∏  and 
jWSD

γ

∏  conventions. 

Corrupt ,
iU

v
α 

  
 
∏ : This query is designed to ensure 

the security of information that involves three 
distinct factors. When a request is received from 

entity  , the corresponding data is provided 
in response. 

 0v = : Returns the password PW  to  . 

 1v = : Data from the smart card goes back 
to  . 

 2v = : Returns the biometric BIO  to  . 

Test ,
i jU WSD

γα 
  
 
∏ ∏ :The query emulates the 

semantic safety of the grouping key *SK  and 
operates a single time. When   receives a 
query, choose bit b at random. If 1b = , 
provide the session key *SK , and if 0b = , 
opt for and return a string matching the 
length of *SK . 

Semantic security of session key: In the ROR 
model, the adversary's advantage in breaking 
the semantic security of the proposed scheme 

Σ  is defined as ( ) 2Pr 1Adv t b bΣ ′ = = −  . 

The advantage of Σ  for success in an attack is 
negligible if the authentication and key 
management system Σ  is safe from an 
adversary of  . 

5.2. Formal Security Proof 

  represents an 
adversary that is challenging the security of 
the proposed scheme Σ  within the given 
mathematical framework  . Represent 
D  and N  to be uniformly distributed 
cryptography and biometry dictionaries. The 
advantage of   in disrupting the session key 
security in the suggested scheme is 

( )
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| | | |
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, 

where | |D , | |N , | |Hash , ( )ECCDHAdv t ′ , 

δ , eq , sq  and hq  represent the sizes of D  

and N , respectively, the range space of the 
hash function ( )h ⋅ , the dominance of   to 
crack the ECCDH problem within  , the 
probability of the "false positive" case, and 
the number of Execute  query, Sent  query 

 wins the 
game. Since 

 
 

 

scheme supports semantic security against an 
adversary   with  . The model primitives 
are described as follows: 

Participants: Our proposed scheme has multiple 
participants, which are U, GW and jWSD . The 

instances α , β  and γ  of U, GW and jWSD  are 

denoted by 
iU

α

∏ ,
GW

β

∏  and 
jWSD

γ

∏ . 

Partnership: Should 
iU

α

∏  and 
jWSD

γ

∏  have the 

capability to directly exchange information, utilize 
identical session keys, and avoid creating session 
keys with other instances, they are acknowledged 
as partners. 

Freshness:   session key, denoted as SK , is 
deemed to be fresh when it is newly established 

between parties represented by 
iU

α

∏  and 
jWSD

γ

∏ , and 

remains confidential, with no disclosure to an 
unauthorized third party, such as an adversary. 

Adversary   can make the following queries: 

Execute , ,
i jU GW WSD

γβα 
  
 
∏ ∏ ∏ : With this query,   can 

eavesdrop on all information exchanged between 
honest communicators. 

Send , , ,
i jU GW WSD

m
β γα 

  
 
∏ ∏ ∏ : Query is modelled as an 

active attack. When the inquiry of    for the 
message $m$ is received, a reply message is 
returned. 

Reveal ,
i jU WSD

γα 
  
 
∏ ∏ : Through this query,   is 

capable of acquiring the group key SK  related to 

the 
iU

α

∏  and 
jWSD

γ

∏  conventions. 

Corrupt ,
iU

v
α 

  
 
∏ : This query is designed to ensure 

the security of information that involves three 
distinct factors. When a request is received from 

entity  , the corresponding data is provided 
in response. 

 0v = : Returns the password PW  to  . 

 1v = : Data from the smart card goes back 
to  . 

 2v = : Returns the biometric BIO  to  . 

Test ,
i jU WSD

γα 
  
 
∏ ∏ :The query emulates the 

semantic safety of the grouping key *SK  and 
operates a single time. When   receives a 
query, choose bit b at random. If 1b = , 
provide the session key *SK , and if 0b = , 
opt for and return a string matching the 
length of *SK . 

Semantic security of session key: In the ROR 
model, the adversary's advantage in breaking 
the semantic security of the proposed scheme 

Σ  is defined as ( ) 2Pr 1Adv t b bΣ ′ = = −  . 

The advantage of Σ  for success in an attack is 
negligible if the authentication and key 
management system Σ  is safe from an 
adversary of  . 

5.2. Formal Security Proof 

  represents an 
adversary that is challenging the security of 
the proposed scheme Σ  within the given 
mathematical framework  . Represent 
D  and N  to be uniformly distributed 
cryptography and biometry dictionaries. The 
advantage of   in disrupting the session key 
security in the suggested scheme is 
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where | |D , | |N , | |Hash , ( )ECCDHAdv t ′ , 

δ , eq , sq  and hq  represent the sizes of D  

and N , respectively, the range space of the 
hash function ( )h ⋅ , the dominance of   to 
crack the ECCDH problem within  , the 
probability of the "false positive" case, and 
the number of Execute  query, Sent  query 

 does not know bit b, [ ]4
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5.3. Formal Security Analyses 

1) Anonymity: UID  of U is hidden in the 
ciphertext 2 Enc ( , )u

TUKM UID eu= , where 

pubTUK bP= , 1
uM B bQ= = , b  is a random 

number. For an adversary to acquire the UID, they 
must first possess either b  or s  and then calculate 

pubTUK sB bP= = . Nevertheless, because of the 

inherent complexity of solving Diffie-Hellman 
problem, it is infeasible for an adversary to 
calculate TUK  and thereby retrieve the UID  
within polynomial time. Likewise, the identity 

jWID  of jWSD  is embedded within the 

ciphertext ( )6 Enc WID , ,
jj TSK j j jM c T= To 

acquire the identity jWID , the adversary must 

possess the corresponding jTSK . Nevertheless, 

jTSK  is exclusively held by GW and jWSD  that it 

is deployed for. It is clear that the adversary does 
not have access to jTSK . Thus, the proposed 

scheme ensures the anonymity of both the U and 
WS2) Untraceability: The message 

{ }1 2 3 1, , ,u u u uM M M TS  for each session is unique 

due to the incorporation of a random number b  
and a timestamp 1

uTS . Hence, the adversary is 
incapable of tracking the actions of U. Similarly, 
during each session, jWSD  selects distinct 

random numbers ja , jt , and timestamps 1
d
jTS , 

3
jTS  to calculate the messages 

{ }1 1 2 1msg , ,d d d d
j j j jM M TS= , 

{ }3 6 7 3msg , ,j j j jM M TS= . Furthermore, the 

jTID  is refreshed following the completion of 

each authentication phase, making it 
impossible for an adversary to foresee the 
updated jTID . Thus, it is out of the question 

for an adversary to trace the actions of 

jWSD . Consequently, our proposed scheme 

ensures the untraceability of both U and 
WSD . 

3) Forward and Backward Secrecy: The 
symmetric keys jTSK  and TUK  are derived 

using the methodology of the Diffie-Hellman 
key exchange protocol. Regarding the 
grouping key GK , it can be determined by 
acquiring all the jT  values within the group. 

Within our proposed system, the event of a 

jWSD  joining or leaving the group 

necessitates an update of the jT  parameter on 

the part of all remaining devices. 
Consequently, our scheme ensures both 
forward and backward secrecy for the 
symmetric keys and GK . 

4) Resist Smart Card Stolen Attack: Should 
adversary   acquire the smart card 
belonging to the registered user, they could 
potentially extract the data 

0{ , , , , h( ),Gen( ) ,Rep( )}Q BS RP l  ⋅ ⋅ ⋅  
through the execution of a side-channel 
attack. Nevertheless,   remains uninformed 
about the confidential details pertaining to U, 
including the UID , PW , and BK , which 
constitute secret information. Consequently, 
  is unable to acquire the secret key TUK  
necessary to impersonate U. As a result, the 
proposed scheme is fortified against attacks 
that involve the theft of a smart card. 

5) Replay Attack: Our scheme incorporates a 
series of timestamps from uTS  to dTS  in 
order to prevent replay attacks. Upon 
receiving a message, the receiver initially 
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tates an update of the jT  parameter on the part of 
all remaining devices. Consequently, our scheme 
ensures both forward and backward secrecy for the 
symmetric keys and GK .
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scheme supports semantic security against an 
adversary   with  . The model primitives 
are described as follows: 

Participants: Our proposed scheme has multiple 
participants, which are U, GW and jWSD . The 

instances α , β  and γ  of U, GW and jWSD  are 

denoted by 
iU

α

∏ ,
GW

β

∏  and 
jWSD

γ

∏ . 

Partnership: Should 
iU

α

∏  and 
jWSD

γ

∏  have the 

capability to directly exchange information, utilize 
identical session keys, and avoid creating session 
keys with other instances, they are acknowledged 
as partners. 

Freshness:   session key, denoted as SK , is 
deemed to be fresh when it is newly established 

between parties represented by 
iU

α

∏  and 
jWSD

γ

∏ , and 

remains confidential, with no disclosure to an 
unauthorized third party, such as an adversary. 

Adversary   can make the following queries: 

Execute , ,
i jU GW WSD

γβα 
  
 
∏ ∏ ∏ : With this query,   can 

eavesdrop on all information exchanged between 
honest communicators. 

Send , , ,
i jU GW WSD

m
β γα 

  
 
∏ ∏ ∏ : Query is modelled as an 

active attack. When the inquiry of    for the 
message $m$ is received, a reply message is 
returned. 

Reveal ,
i jU WSD

γα 
  
 
∏ ∏ : Through this query,   is 

capable of acquiring the group key SK  related to 

the 
iU

α

∏  and 
jWSD

γ

∏  conventions. 

Corrupt ,
iU

v
α 

  
 
∏ : This query is designed to ensure 

the security of information that involves three 
distinct factors. When a request is received from 

entity  , the corresponding data is provided 
in response. 

 0v = : Returns the password PW  to  . 

 1v = : Data from the smart card goes back 
to  . 

 2v = : Returns the biometric BIO  to  . 

Test ,
i jU WSD

γα 
  
 
∏ ∏ :The query emulates the 

semantic safety of the grouping key *SK  and 
operates a single time. When   receives a 
query, choose bit b at random. If 1b = , 
provide the session key *SK , and if 0b = , 
opt for and return a string matching the 
length of *SK . 

Semantic security of session key: In the ROR 
model, the adversary's advantage in breaking 
the semantic security of the proposed scheme 

Σ  is defined as ( ) 2Pr 1Adv t b bΣ ′ = = −  . 

The advantage of Σ  for success in an attack is 
negligible if the authentication and key 
management system Σ  is safe from an 
adversary of  . 

5.2. Formal Security Proof 

  represents an 
adversary that is challenging the security of 
the proposed scheme Σ  within the given 
mathematical framework  . Represent 
D  and N  to be uniformly distributed 
cryptography and biometry dictionaries. The 
advantage of   in disrupting the session key 
security in the suggested scheme is 

( )
2
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N D
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, 

where | |D , | |N , | |Hash , ( )ECCDHAdv t ′ , 

δ , eq , sq  and hq  represent the sizes of D  

and N , respectively, the range space of the 
hash function ( )h ⋅ , the dominance of   to 
crack the ECCDH problem within  , the 
probability of the "false positive" case, and 
the number of Execute  query, Sent  query 
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 is unable to acquire the secret key TUK  nec-
essary to impersonate U. As a result, the proposed 
scheme is fortified against attacks that involve the 
theft of a smart card.
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timestamps from uTS  to dTS  in order to prevent re-
play attacks. Upon receiving a message, the receiver 
initially checks the authenticity of the timestamp to 
ensure its validity. Furthermore, each timestamp is 
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signifying that the timestamp is immutable.
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agreement request, they must possess the secret 
key TUK . Nevertheless, the TUK  is safeguarded by 
the UID , PW , and BK , all of which are exclusively 
known to U. Hence, the scheme is well-defended 
against user impersonation attacks.
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 does not possess 
access to such information. Consequently, the 
impersonation attack on the wearable smart device 
is safeguarded against.

6. Performance Evaluation
In this section, we examine our proposed scheme 
alongside related ones [19, 23, 8, 11, 15, 17, 21] focusing 
on a comparative analysis of security and functional-
ity, computational requirements, communication ex-
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penses, and suitability for industrial applications. For 
the configuration of the experiment, the experiment 
uses Python3.7 to build the system communication 
model under the deep learning framework Tensor-
flow1.15.0, perating system Ubuntu18.04, CUDA ver-
sion CUDA10.0, GPU block NVIDIA Titan Xp, and 
128G of RAM.

6.1. Functionality Features and Security
The comparative analysis of our proposed scheme 
with existing schemes, particularly regarding func-
tionality and security aspects, is presented in Ta-
ble 2. It is apparent that the schemes proposed by 
[23, 11, 15, 17] are all key management schemes for 
single wearable smart devices and do not support 
multi-party authentication. In addition, schemes 
such as [23, 8, 21] do not consider user revocation 
and device joining and leaving. This is important 
because the number of wearable smart devices in-
creases or decreases as the demand of downstream 
tasks changes. Schemes such as [11, 15] do not con-
sider anonymity, which makes the user’s identity 
highly vulnerable to attack and the user’s privacy 
and security is at risk. The scheme of [19] cannot 
guarantee forward and backward security, which 
puts the information of the authentication process 
at risk of leakage. The scheme of [21] is not resis-
tant to user impersonation attacks, which makes the 

whole cryptographic authentication scheme unus-
able in the scenario of multi-device applications in 
cyber-physical systems. In contrast, our proposed 
solution fulfills all the functional characteristics 
and security requirements, which are particularly 
important in digital healthcare.

6.2. Computation Cost
Symbols symt , ht , pmt , and bpt

 
represent the computa-

tional time needed for implementing symmetric en-
cryption or decryption, a generalised hash function 
operation, a dot-multiplication algorithm for elliptic 
curve cryptography algorithms, and a bilinear pairing 
operation, etc. Since the computational cost of the 
XOR operation and the dot-add operation is low, we 
do not bring in the computation here. Table 3 shows 
the specific energy consumption of the operations.

A1: Mutual authentication. A2: User revocation. A3: Anonymity. A4: Untraceability. A5: Perfect forward secrecy. A6: User 
impersonation attack. A7: Gateway impersonation attack. A8: Device impersonation attack. A9: Replay attack. A10: Device 
join/leave. A11: One-to-many scheme

Table 2
Functional Comparison

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 

Vinoth et al. [19]  N/A   X      

Zhang et al. [23]  N/A        N/A X

Cui et al. [8]  N/A        N/A 

Zheng et al. [11]  N/A X X X N/A N/A X  X X

Zhang et al. [15]  N/A X X  N/A N/A X  X X

Shin et al. [17]          N/A X

Xu et al. [21]  N/A    X N/A    

Our Scheme           

Table 3
Energy Consumption

Operations Consumption

Symmetric Enc or Dec 0.00217mJ

Point multiplication 8.8mJ

Hash function 0.000108mJ

Bilinear pairing 47mJ
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Figure 3
Computation Cost Versus Number of Wearable Smart Device
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Table 4 presents the comparative analysis of 
computational costs between our proposed 
scheme and the existing schemes as 
documented in [19, 23, 8, 11, 15, 17, 21]. The 
total computational costs of accessing a 
wearable smart device for the related schemes 
[19, 23, 8, 11, 15, 17, 21] and the proposed 
scheme are 35.2151, 52.8154, 70.4027, 
343.6098, 138, 52.8033, 185.0047 and 352.4145 
mJ, respectively. Our scheme is initially more 
computationally messy because of the use of 
bilinear pairs, but as the number of devices 
increases, our scheme is less computationally 
intensive than other schemes that use bilinear 
pairs. The total computational costs of the 
above scheme and the proposed scheme to 
access n wearable smart devices are 
(4 2 3 ) 15 2 3h m sym h m symT T T n T T T+ + + + + , 

(22 6 6 )h m symT T T n+ + , 

(19 5 ) 6 3h m h mT T n T T+ + + , 

(( 9) ( 6) 4 6 )h m sym bpn T n T T T n+ + + + + , 

((3 2) 2 )m bpn T nT n+ + , (31 6 )h mT T n+ , 

(4 5 2 3 )h m sym bpT T T T n+ + +  and 

(7 2 2 3 )
7 6 4 3

h m bp sym
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 mJ, respectively. 

Figure 3 illustrates the correlation between 
the total computational cost and the number 
of wearable devices. From the Figure 3, it can 
be seen that the computational cost of the 
proposed scheme is slightly higher than the 
few researched schemes due to the use of 
bilinear pairs to resist the key exposure attack 
in the multi-smart device application 
scenario. Compared with multiple scenarios 
of [11, 15, 21] the proposed scheme in this 
paper reduces 0.88%, 0.26%, 0.67% 
respectively. The computational cost is the 
smallest among similar bilinear pair 
correlation schemes. It is worth emphasizing 
that this scheme provides a better choice for 
CPS with the same requirements. 

Table 4 

 Comparison of Computation Cost. 

Schemes computation cost(ms) 

Vinoth et al. [19] 
(4 2 3 )

15 2 3
h m sym

h m sym

T T T n
T T T
+ +

+ + +
 

Table 4 presents the comparative analysis of compu-
tational costs between our proposed scheme and the 
existing schemes as documented in [19, 23, 8, 11, 15, 
17, 21]. The total computational costs of accessing a 
wearable smart device for the related schemes [19, 23, 
8, 11, 15, 17, 21] and the proposed scheme are 35.2151, 
52.8154, 70.4027, 343.6098, 138, 52.8033, 185.0047 
and 352.4145 mJ, respectively. Our scheme is initial-
ly more computationally messy because of the use of 
bilinear pairs, but as the number of devices increas-
es, our scheme is less computationally intensive 
than other schemes that use bilinear pairs. The total 
computational costs of the above scheme and the pro-
posed scheme to access n wearable smart devices are
(4 2 3 ) 15 2 3h m sym h m symT T T n T T T+ + + + + ,
(22 6 6 )h m symT T T n+ + , (19 5 ) 6 3h m h mT T n T T+ + + ,
(( 9) ( 6) 4 6 )h m sym bpn T n T T T n+ + + + + ,
((3 2) 2 )m bpn T nT n+ + , (31 6 )h mT T n+ ,
(4 5 2 3 )h m sym bpT T T T n+ + +

and 
(7 2 2 3 )

7 6 4 3
h m bp sym

h m bp sym

T T T T n
T T T T

+ + +

+ + + +
 mJ, respectively.

Figure 3 illustrates the correlation between the total 
computational cost and the number of wearable de-
vices. From the Figure 3, it can be seen that the compu-

Table 4
Comparison of Computation Cost

Schemes computation cost(ms)

Vinoth et al. [19]
(4 2 3 )

15 2 3
h m sym

h m sym

T T T n
T T T
+ +

+ + +

Zhang et al. [23] (22 6 6 )h m symT T T n+ +

Cui et al. [8] (19 5 ) 6 3h m h mT T n T T+ + +

Zheng et al. [11] (( 9) ( 6)
4 6 )

h m

sym bp

n T n T
T T n      

+ + +
+ +

(( 9) ( 6)
4 6 )

h m

sym bp

n T n T
T T n      

+ + +
+ +

Zhang et al. [15] ((3 2) 2 )m bpn T nT n+ +

Shin et al. [17] (31 6 )h mT T n+

Xu et al. [21] (4 5 2 3 )h m sym bpT T T T n+ + +

The proposed 
scheme

(7 2 2 3 )
7 6 4 3

h m bp sym

h m bp sym

T T T T n
T T T T

+ + +

+ + + +

tational cost of the proposed scheme is slightly high-
er than the few researched schemes due to the use of 
bilinear pairs to resist the key exposure attack in the 
multi-smart device application scenario. Compared 
with multiple scenarios of [11, 15, 21] the proposed 
scheme in this paper reduces 0.88%, 0.26%, 0.67% 
respectively. The computational cost is the smallest 
among similar bilinear pair correlation schemes. It is 
worth emphasizing that this scheme provides a better 
choice for CPS with the same requirements.

6.3. Communication Cost
In this subsection, we conduct an analysis and com-
parison of the communication expenses associated 
with our proposed scheme versus those of related 
schemes, as referenced in [19, 23, 8, 11, 15, 17, 21]. As 
mentioned earlier, the length of the elements in 

 
 

 

Zhang et al. [23] (22 6 6 )h m symT T T n+ +  

Cui et al. [8] (19 5 ) 6 3h m h mT T n T T+ + +  

Zheng et al. [11] 
(( 9) ( 6)

4 6 )
h m

sym bp

n T n T
T T n      

+ + +
+ +

 

Zhang et al. [15] ((3 2) 2 )m bpn T nT n+ +  

Shin et al. [17] (31 6 )h mT T n+  

Xu et al. [21] 
(4 5 2 3 )h m sym bpT T T T n+ + +

 

The proposed 
scheme 

(7 2 2 3 )
7 6 4 3

h m bp sym

h m bp sym

T T T T n
T T T T
+ + +

+ + + +
 

6.3. Communication Cost 

In this subsection, we conduct an analysis and 
comparison of the communication expenses 
associated with our proposed scheme versus those 

of related schemes, as referenced in [19, 23, 8, 
11, 15, 17, 21]. As mentioned earlier, the 
length of the elements in  , the length of the 
elements in *

q , the length of the symmetric 

encrypted ciphertext, the identity, the output 
of the hash function, and the timestamp are 
160, 160, 128, 160, 160, 160, and 32 bits, 
respectively. 

Table 5 illustrates the comparative outcomes 
regarding communication expenses between 
our proposed scheme and the pertinent 
schemes referenced in [19, 23, 8, 11, 15, 17, 21] 
in terms of communication costs, which are 
3328, 1024, 2688, 1920, 2976, 2688, 3008 and 
2016 bit. The total communication cost under 
n wearable smart devices are 

2320 1664 1344n n+ + , 21024n , 
2176 512n + , 21920n , 2976n , 2688n , 

2768 2240n n+  and 1024 992n +  bit.

Table 5 

Comparison of Communication Cost. 

Schemes 
Communication cost(bits) Total communication cost(bits) 

iU  GW  jWSD  a wearable smart device n wearable smart devices 

Vinoth et al. [19] 512 2144 672 3328 2320 1664 1344n n+ +  

Zhang et al. [23] N/A N/A 1024 1024 21024n  

Cui et al. [8] 672 832 1184 2688 2176 512n +  

Zheng et al. [11] N/A N/A 1920 1920 21920n  

Zhang et al. [15] 864 512 1600 2976 2976n  

Shin et al. [17] 992 1184 512 2688 2688n  

Xu et al. [21] N/A N/A 3008 3008 2768 2240n n+  

Our Scheme 320 1024 672 2016 1024 992n +  

 

Figure 4 illustrates how the total communication 
cost correlates with the quantity of wearable smart 
devices. It is observable that the communication 
cost of the proposed scheme is the smallest among 
all the schemes, and the gap between the rest of 
the schemes and the present scheme is getting 
wider and wider as the number of wearable smart 
devices increases. Under the premise of satisfying 
the above mentioned versatility and security, our 
solution achieves the minimisation of 
communication costs and greatly improves the 
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Figure 4 illustrates how the total communication 
cost correlates with the quantity of wearable smart 
devices. It is observable that the communication cost 
of the proposed scheme is the smallest among all the 
schemes, and the gap between the rest of the schemes 
and the present scheme is getting wider and wider 
as the number of wearable smart devices increases. 
Under the premise of satisfying the above mentioned 
versatility and security, our solution achieves the 
minimisation of communication costs and greatly 
improves the ability to promote the application in 
cyber-physical system area equipment. Compared 
with the related scheme  [19, 23, 8, 11, 15, 17, 21]  the 
communication cost of our scheme is reduced by 

Table 5
Comparison of Communication Cost

Schemes
Communication cost(bits) Total communication cost(bits)

Ui GW WSDj a wearable smart device n wearable smart devices

Vinoth et al. [19] 512 2144 672 3328 320n2 +1664n + 1344

Zhang et al. [23] N/A N/A 1024 1024 1024n2 

Cui et al. [8] 672 832 1184 2688 2176n + 512

Zheng et al. [11] N/A N/A 1920 1920 1920n2

Zhang et al. [15] 864 512 1600 2976 2976n 

Shin et al. [17] 992 1184 512 2688 2688n 

Xu et al. [21] N/A N/A 3008 3008 768n2 + 2240n 

Our Scheme 320 1024 672 2016 1024n + 992

0.77%, 0.89%, 0.49%, 0.94%, 0.62%, 0.58% and 0.88%, 
respectively (in case the number of equipment is 10). 
With the shortage of resources in the cyber-physical 
system, the scheme saves communication overheads 
to a great extent. In the digital healthcare multi-de-
vice communication scenario, the scheme has strong 
generalization capability and adaptability, which pro-
vides strong support for the further landing applica-
tion of the scheme.

7. Conclusions and Future Work
In this paper, we study the problem of communica-
tion authentication for users, gateways and multiple 
devices in digital healthcare cyber-physical systems. 
We propose a secure lightweight multi-party key 
authentication protocol to meet the authentication 
requirements of users, gateways and multi-devices, 
which uses bilinear pairs to solve the key anti-expo-
sure problem. Only one key session needs to be es-
tablished between the user and the wearable smart 
device to achieve multi-device key authentication, 
which greatly simplifies the authentication process, 
reduces the communication overhead and computa-
tional complexity, and increases the generalization 
capability of the scheme. We have conducted rigorous 
security proofs and analyses of the proposed scheme, 
and the results show that the proposed key agreement 
can cope with attacks in most scenarios, and due to 
its low communication and computation overhead, it 
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7. Conclusions and Future Work 
In this paper, we study the problem of 
communication authentication for users, gateways 
and multiple devices in digital healthcare cyber-
physical systems. We propose a secure lightweight 
multi-party key authentication protocol to meet 
the authentication requirements of users, gateways 
and multi-devices, which uses bilinear pairs to 
solve the key anti-exposure problem. Only one key 
session needs to be established between the user 
and the wearable smart device to achieve multi-
device key authentication, which greatly simplifies 
the authentication process, reduces the 
communication overhead and computational 
complexity, and increases the generalization 
capability of the scheme. We have conducted 

rigorous security proofs and analyses of the 
proposed scheme, and the results show that 
the proposed key agreement can cope with 
attacks in most scenarios, and due to its low 
communication and computation overhead, it 
greatly improves its generalizability, and has 
a good generalization and application 
capability in the cyber-physical domain. 

In the subsequent research work, we will 
continue to dig deeper into more efficient, 
convenient and robust key authentication and 
management protocols on the basis of 
ensuring the security of user communication 
and ensure that the protocol can be applied to 
multi-device transmission scenarios. In 
addition, we will also consider breaking 
through the difficulties of key authority 
control as well as user access control, and 
expand the concepts proposed in this paper 
to more application areas. 
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