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Current large language models (LLMs) training involves extensive training data and computing resources to 
handle multiple natural language processing (NLP) tasks. This paper endeavors to assist individuals to com-
pose feasible mathematical question-answering (QA) language models in specific fields. We leveraged Gretel.ai, 
a feasible data generation platform, to generate high-quality mathematical QA data covering several areas, in-
cluding definitions, theorems, and calculations related to linear algebra and abstract algebra. After fine- tuning 
through Open-AI infrastructure, GPT-3 performed significant improvements on accuracy, achieving a roughly 
18.2% increase in abstract algebra benchmark, approximately 1.6x improvement on linear algebra theorems 
benchmark, and approximately 24.0% increase on linear algebra calculations benchmark. And small language 
models (SLMs) such as LLama-2-7B/13B and Mistral-7B have outstanding around 2x accuracy advancements 
in linear algebra calculations. This study demonstrates the potential for individuals to develop customized 
SLMs for specialized mathematical domains using synthetic data generation and fine-tuning techniques. 
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1. Introduction
1.1. Background
In recent years, there has been a significant improve-
ment in NLP and LLMs techniques to increase the 
comprehensive ability and generalization of models. 
From word embedding models [37, 43] to Transform-
er based encoder and decoder autoregressive models 
[13, 46, 4, 7, 52, 51], the flourishing progress of LLMs 
depends on appearance of Transformer structure 
[53], innovation of effective finetuning algorithms 
and techniques [26, 10, 19], and the gradually increas-
ing diversity and scale of training data.
In order to improve the ability of LLMs, [24] indicat-
ed that the model’s performance could be enhanced 
by increasing its parameters to enlarge the model size 
to improve performance according to abundant data-
base. However, the cost of computational resources, 
primarily GPUs, and data collection increases pro-
portionally with the size of the model. Fine-tuning a 
sparse Mixtral model with 2M queries may require 
a NVIDIA H100 GPU with cost of $3460 [58]. And 
pre-training a LLM is substantially more expensive, 
sometimes reaching millions of dollars, due to re-
quirements of GPU clusters, massive dataset, and 
electric consumption. Taking GPT-3 175B [4] as an 
example, it is trained on V100 GPU high-bandwidth 
clusters with mixed datasets composed of Common-
Crawl [46] and WebText [45] totaling nearly 430 bil-
lion tokens and its training expenses exceed $4.6 mil-
lion [27].
Meanwhile, data quality has become an area of con-
cern. In the case of unsupervised pre-training, the 
quality of training data involved in few-shot learn-
ing process would greatly affect the performance of 
LLMs, thus influencing the generalization and adapt-
ability of models to different downstream tasks [4]. 
Similarly, training LLMs with adequate AI generated 
NLP feedback data and efficient parametric fine-tun-
ing technique LoRA [19] could effectively improve the 
performance of QA task in low-data scenarios [30].
Therefore, this paper initially proposes to address the 
downstream task by utilizing AI generated high-qual-
ity data to verify the effectiveness of our method in 
QA of mathematical definitions, theorems and calcu-
lations. On the one hand, our method could effectively 
reduce the costs associated with data collection, data 
cleaning, and computing resources. The synthetic 

data could be generated effortlessly without quantity 
limitation and tailored to meet diverse requirements 
for different applications in various domains. On the 
other hand, individuals could train small mathemati-
cal language models to fulfill personal demands.

1.2. Objective
Since data plays a crucial role in the fine-tuning pro-
cess of downstream tasks for LLMs, the performance 
of models typically shows a monotonic increasing 
trend with the alignment degree between pre-train-
ing data and downstream task fine-tuning data [20]. 
In order to effectively align the downstream task data 
with the large amount of pre-trained data, the follow-
ings should be noted: (i) Include the relevant areas 
of specific targets [57]; (ii) Ensure the diversity and 
accuracy of data, in other words, data quality [29]. 
Our method could adequately explore the general-
ization of LLMs to ensure the performance of SLMs 
for specific task. Compared to LLMs, SLMs could 
achieve even or better performance with less compu-
tational resources, time, and size of dataset. For ex-
ample, there are some highly effec- tive BERT-based 
SLMs:DistilBERT [47], ALBERT [28], TinyBERT 
[23], and MiniLM [55]. SLMs improve their perfor-
mance by learning the self-attention mechanism of 
LLMs during the training process, forming a relation-
ship similar to that of a teacher and students [55, 31]. 
Fine-tuning LLMs with a fewer well-filtered dataset, 
i.e., instruction fine-tuning data [29], is a practical 
approach that can enable the model to achieve SoTA 
performance on various tasks [5].
Notably, [25] conducted a study combining a sim-
ple prompt template with few-shot learning, which 
allowed models to gradually analyze answers and 
inference logic to effectively improve the models’ 
problem-solving ability and accuracy of outputs. In 
addition, [54] proposed that using prompt-based data 
augmentation could ensure the quality of synthetic 
data which would increase the natural language un-
derstanding of models.
Prior research has indicated that fine-tuning math-
ematical tasks using AI generated instructions for 
existing datasets would accelerate the reasoning pro-
cess and enhance model’s performance. Our contri-
butions could be summarized as follows:
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 _ Integrate the instructions directly into data 
generation process which provides models 
with elaborate procedures of problem-solving, 
and facilitate customized datasets tailored to 
individual requirements.

 _ Reduce the costs of fine-tuning models by 
simplifying data collection and lowering the 
requirements for computational resources.

 _ Improve the accuracy of models in mathematical 
QA after fine-tuning and explore the influence of 
model choices to their performance.

2. Related Works
In recent years, general multimodal LLMs have an 
impressive development in many areas of NLP such 
as BERT series [13], T-5 [46], Megatron-Turing NLG 
[49], LLaMA series [51], ChatGPT series [39], PaLM 
[8], and these models have outstanding performance 
on many NLP tasks as shown in Figure 1. Meanwhile, 
these models also have corre- sponding SLMs such as 
GPT-4o mini [40], LLama-2-7B/13B [52], and TinyL-
lama [60]. However, these models may be unsatisfac-
tory in some mathematical QA tasks or details. For 
example, ChatGPT 4o may could not correctly recog-
nize which number is larger as shown in Figure 2.
With the rapid advancement of LLMs, mathematical 
problem-solving capability has emerged to be one of 
critical standards to evaluate the effectiveness and ef-
ficiency of LLMs. Based on well-curated pre-trained 

LLMs, researchers have developed multiple effective 
techniques to finetune models specifically for mathe-
matically downstream tasks or building SLMs.
AlpaGasus: Developed by [5], the AlpaGasus model 
represents a feasible technique that utilizing power-
ful LLMs to mitigate the performance reduction of 
Alpaca [50] caused by the misleading and detrimental 
IFT data. In addition, AlpaGasus achieves a remark-
able cost saving which reaches $4.78 lowest for a 7B 
model. It emphasizes the significance of data quality 
for model performance.
MAmmoTH: As an instruction tuning based math 
model, MAmmoTH [21] primarily enhanced the gen-
eral mathematical reasoning ability according to train 
the model on a dataset called MathInstruct that cov-
ers multiple mathematical areas and corresponding 
hybrid rationales. The model’s performance on gen-
eral math benchmarks [18, 9, 33] has a significantly 
improvement compared to other open source models 
such as WizardMath [34].
MathBERT: Unlike other models, MathBERT [42] 
focused on the structures of formulas and their cor-
responding contexts to strengthen the semantic un-
derstanding of mathematical formulas of the model 
during pre-training process. According to pre-train-
ing model on data including formula with context, 
MathBERT has demonstrated high relevance score 
on NCTIR-12 [59] benchmark and remarkable preci-
sion and recall on TopicMath-100K [42] benchmark. 

Figure 1
Recent years representative LLMs which achieve SoTA 
performance during their periods. BERT [13] initially used 
bidirectional Transformer architectures. T-5 [46] proposed 
to covert NLP tasks into a text-to-text form. GPT-3 [4] 
performed excellent effectiveness of few-shot and zero-
shot learners and made a wide influence. PaLM [8] strongly 
validated the Scaling Laws in LLMs pre-training. GPT-4 
[39] and LLama3 [15] are the most popular and well-known 
LLMs present days due to their high performance

Figure 2
ChatGPT 4o sometimes may have confusion to figure out 
which number is larger, 9.11 or 9.9
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It performed outstanding results on mathematical in-
formation retrieval, formula topic classification and 
formula headline generation downstream tasks.
o1-mini: On September 14th, 2024, OpenAI released 
the o1-mini model [41] which made a progressive 
advancement in cost-efficient reasoning capabili-
ties in mathematics. Notably, o1-mini has outper-
formed both GPT-4o and GPT-4o-mini on the AIME 
benchmark, while also offering a more economical 
inference cost than o1 and o1-preview. Furthermore, 
o1-mini is 3 to 5 times faster than o-1 preview with 
correct answers compared to GPT-4o. However, the 
cost of o1-mini API would be $1000 which is expen-
sive for individuals.
Our paper leverages the convenience and effective-
ness of mathematical text generation in LLMs and 
cheapness of cloud computing to finetune task spe-
cific model with limited conditions for individuals. 
From an expenditure perspective, our method skips 
the instruction filtering step and straightforwardly 
generates high quality data compared to AlpaGasus 
[5] which avoids additional time consumption and 
charges. From an academic perspective, our meth-
od concentrates on the particular mathematical task 
which may be more optimal for individuals to develop 
a model to meet specific requirements in contrast to 
MAmmoTH [21] and MathBERT [42].

3. Data Description

3.1. Fine-Tuning Data Generation
The data used to fine-tune the models is composed 
of three curated datasets with theorems and calcu-
lation of mathematics: one primarily focuses on lin-
ear algebra theorem problems (5000 rows), another 
on computational problems of linear algebra (3000 
rows), and the third containing 3000 abstract algebra 
problems.
For the data generation process, as shown in Figure 
3, we initially designed elaborate prompts and illus-
trative examples covering theorems and calculations 
pertinent to the specific mathematical field. This step 
provided language models in Gretel.ai with supple-
mentary contexts to accomplish in-context learning. 
Then, the cloud platform generated 100 rows of tabu-

Figure 3
Data generation platform Gretel.ai. We provide prompt and 
sample data for Gretel.ai cloud to create navigator model. 
According to navigator, the platform chooses the Gretel-
Llama-3.1-8B-Instruct model to batch synthetic linear 
algebra data

lar data through tunable parameters T = 1.0(tempera-
ture controlling the randomness of generation), K = 
40(number of highest probability tokens considered 
for generation), and P = 1.0 (cumulative probability 
threshold for token selection) to maximize the vari-
ability of generated sample data. Subsequently, the 
platform leveraged existing prompt and augmented 
samples to construct a navigator model capable of se-
lecting appropriate fine-tuned sub-models and gener-
ating data in batches as required as shown in Diagram 
1. The linear algebra data was generated from Gretel-
LLAMA-3.1-8B [36] and abstract algebra data was 
generated from Gretel GPT-3.5 Turbo [38]. In addi-
tion, we have standardized the mathematical formu-
las into LaTeX format to guarantee consistency.

Diagram 1
Data Generation process in Gretel.AI Platform

Nevertheless, we observed that the linear algebra 
dataset contains few computational problems and 
corresponding solutions. Although language models 
possess zero-shot learning capabilities [4], the lack 
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Figure 4
Prompt to synthesize Linear Algebra Computation QA Data

of computation section would reduce the models’ 
performance significantly. Therefore, we also used 
Gretel-LLAMA-3.1-8B with parameters T = 0.9, K = 
35, and P = 0.8 to synthesize linear algebra calculation 
dataset including reasoning process containing nec-
essary concepts and formulas according to effective 
prompt design as shown in Figure 4, which could be 
considered as data augmentation [14].
In contrast to prior research [5, 21, 25], our data gen-
eration method provides individuals with a feasible 
approach to obtain cost-effective high quality data, 
as shown in Figure 5, for fine-tuning customized 
models. The total time to generate the data was ap-
proximately three hours without any expenses since 
Gretel.ai provides all users free 1.5 million charac-
ters usage per month.

3.2. Benchmarks
In order to examine the feasibility of our fine-tuning 
method, we chose widely used mathematical bench-
marks and took samples from them to evaluate the 
performance of fine-tuned models’ accuracy on 

Figure 5
Data difference between two datasets. In our dataset, we included the process of solving problems, which is similar to 
chain-of-thought [56] to get outputs compared to MMLU

these benchmarks. The specific datasets we used are 
listed in Table 1.

Table 1
Overview of datasets and benchmarks used in the 
experiments

Datasets Source Size Usage

Linear Algebra Gretel  
LLAMA-3.1-8B 5.0k Fine-tuning

Abstract Algebra Gretel  
GPT-3.5-Turbo 3.0k Fine-tuning

Linear Algebra 
Calculation

Gretel  
LLAMA-3.1-8B 1.0k Fine-tuning

Theorem QA [6] 52 Evaluation

MATH [18] 2.0k Evaluation

Linear Algebra 
QA [32] 223 Evaluation

Partial MMLU [17] 101 Evaluation

TheoremQA [6] is designed for evaluating the mod-
els’ mathematical reasoning ability to apply theorems 
into specific question to deduce the correct answer. 
Since it lacks a dedicated linear algebra section, we 
utilized human evaluation to filter the satisfactory 
linear algebra data from algebra portion as test set.
MATH [18] is a widely used benchmark for evaluat-
ing the mathematical reasoning abilities of LLMs. It 
contains various areas including precalculus, algebra, 
geometry, and number theory, among others, as test 
datasets. However, the original MATH dataset does 
not include linear algebra QA data. In order to address 
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this drawback and evaluate linear algebra ability of 
fine-tuned models, we randomly selected 1000 eigen-
value problems and determinant problems equally 
from the linear algebra portion of AMPS pretraining 
dataset where you can find it here as a dedicated test 
set.
Linear Algebra QA [32] dataset categorizes the diffi-
culty of problems into five levels and provides direct 
answers accompanied with comprehensive expla-
nations. Although this dataset could be suitable for 
pretraining or fine-tuning, its limited size of 223 rows 
indeed constrains the effectiveness of potential pur-
poses due to insufficient diversity and scale.
MMLU [17] is a comprehensive benchmark covering 
57 subjects across STEM to evaluate models’ perfor-
mance under zero-shot or few-shot settings. In the 
mathematics section, a subsection dedicated to ab-
stract algebra contains multiple versions of QA data 
encompassing a range of topics such as group theory 
and ring theory.

4. Experiments
Our experiments primarily aim to achieve efficient 
fine-tuning of mathematical QA ability of language 
models while minimizing associated costs. In Section 
3.1, we leveraged the Gretel.ai platform to generate 
high-quality synthetic datasets for linear algebra and 
abstract algebra without expenses and prepared them 
for subsequent fine-tuning procedures. In Section 
3.2, we extracted the necessary data from well-estab-
lished benchmarks and standardized their formats to 
facilitate validation.

4.1. Mechanism Workflow
Initially, we deployed the pre-trained models on Goo-
gle Colab utilizing an A100 GPU with 40GB of RAM 
to evaluate their performance on predefined bench-
marks in Table 1. Subsequently, we fine-tuned these 
models using AI-generated mathematical datasets 
and reevaluated their performance to observe im-
provements as Figure 6 shown. We focused on two 
key metrics to assess the fine-tuned models:
Accuracy: The primary metric for mathematical QA 
tasks involving calculations and proofs. While some 
linear algebra and abstract algebra problems neces-

sitate theoretical proofs, evaluating the reasonability 
of answers usually requires assessing the accuracy of 
generated answers and logical steps of the proof.
Cost-Effectiveness: To enable individuals to train 
personalized mathematical SLMs tailored to specif-
ic requirements as discussed in Section 1, the cost of 
computational resources of fine-tuning models and 
accessing synthesized high-quality data would be a 
crucial metric to justify the feasibility.

4.2. Base Models
We fine-tuned a diverse set of base language models: 
open-sourced small language models like LLama-2-
7B/13B and Mistral due to efficiency of deployment 
and free of charge; and close-sourced models such as 
GPT-3.5-Turbo since OpenAI has provided available 
fine-tuning pipelines and affordable pricing.
LLAMA-2-7B/13B [51] are open-sourced auto-re-
gressive models developed by Meta with 2 trillion 
pretraining to- kens, 4092 context lengths, and over 
100K fine-tuning data.
Mistral-7B-v0.1 [22] is an open-sourced model de-
veloped by Mistral AI with the usage of Grouped-Que-
ry Attention [1], Sliding-Window Attention [16], and 
Byte-fallback BPE tokenizer [2] techniques to en-
hance the efficiency and performance of the model on 
many NLP tasks.
Bloom-7B1 [3] is a multilingual SLM developed by Big-
Science which is a decoder-only model modified from 
Megatron-LM GPT2 [48] and was trained using 8-bit 
optimizers [11] and ALiBI positional encodings [44].
GPT-3.5-Turbo [38] is a LLM developed by OpenAI, 
representing an evolution of the GPT-3 series, in oth-
er words, an enhancement of GPT-3 with advanced 
performance. It covers many NLP tasks including 
mathematical reasoning and question-answering.   

Figure 6
Workflows of our experiment

https://drive.google.com/file/d/1hQsua3TkpEmcJD_UWQx8dmNdEZPyxw23/view?usp=sharing
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4.3. Baseline Evaluation
Initially, we evaluated the base models’ performance 
on four benchmark datasets using accuracy as the pri-
mary metric. Furthermore, we employed the GPT-4 
model as a classifier to assess the alignment between 
the benchmarks answers and the answers generated 
by models to quantify the accuracy. Given our focus 
on the linear algebra capabilities of SLMs, we selected 
two benchmark datasets for our baseline assessment: 
Linear Algebra QA and MATH Linear Algebra.

Table 2
Accuracy of Language Models on Algebra Benchmarks

Benchmark Model Accuracy

MMLU Abstract  
Algebra

GPT-3.5-Turbo 
(LLM) 22.00%

9.62%

Linear Algebra Theo-
rem QA
Linear Algebra QA
(SLM)
LLama-2-13B (SLM)
Mistral-7B-v0.1 (SLM)

GPT-3.5-Turbo 
(LLM)

GPT-3.5-Turbo 
(LLM)
5.83%

9.62%
31.84%  

LLama-2-7B

8.07%
14.80%

Bloom 7B1 (SLM)
MATH Linear Algebra
LLama-2-13B (SLM)
Mistral-7B-v0.1 (SLM)

GPT-3.5-Turbo 
(LLM)
0.30%

0.90%
8.60% LLama-

2-7B (SLM)

1.05%
1.95%

Bloom 7B1 (SLM) 0.00%

According to Table 2, we observed that the SLMs ex-
hibited limitations in linear algebra calculations com-
pared to GPT- 3.5-Turbo. This performance disparity 
might be attributed to the inherent constraints of 
SLMs in handling complex mathematical reasoning 
tasks. Furthermore, while model performance gener-
ally improves with increasing parameter size [24], our 
observations suggest that it is not the sole determin-
ing factor since the performance of Mistral-7B-v0.1 
on both benchmarks exceeded LLaMa-2-13B.

4.4. Finetuning Settings
Followed by instruction of Figure 7, we employed 
Huggingface AutoTrain tool to fine-tune SLMs on 
NVidia 1xL40S 8 vCPUs and 62GB of memory. By 
the way, AutoTrain has a user-friendly interface and 
cost-effectiveness which makes it accessible for peo-
ple without coding experience.
According to GPT-3.5-Turbo requirements of training 
data format, we converted our CSV data into JSONL 
format to accommodate GPT chat-model fine-tuning 
requirements. Subsequently, we utilized OpenAI’s 
API to access its infrastructure to fine-tune models 
with our synthetic datasets according to instructions 
of OpenAI Docs. And a well-structured CSV file with 
a single text column containing questions and cor-
responding answers would be sufficient for optimal 
fine-tuning in Autotrain. The following hyperparam-
eters used for fine-tuning were employed:
 _ GPT-3.5-Turbo: Epochs = 3, Batch size = 6, and 

Learning rate multiplier = 2.

Figure 7
After obtaining the fine-tuning data, we separated them into two subsets: Abstract Algebra and Combined Dataset. Then 
we used different datasets to fine-tune models and took accuracy as our metric for evaluation according to GPT-4 model
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 _ LLama-2-7b/13b, Bloom 7B1: Default settings of 
Autotrain. Chat template = none, Mixed precision 
= fp16, Optimizer = adamw torch, LORA = True, 
Scheduler = Linear, Batch size = 2, Block size = 
1024, Epoches = 3, Gradient accumulation = 4, 
Learning rate = 0.00003, Model max length = 2048.

 _ Mistral-7B-v0.1: We adjusted the hyperparameters 
from the previous configuration, increasing the 
batch size to 3 and the number of epochs to 4 for 
better accommodation of model.

The Autotrain and OpenAI’s API platforms provided us 
convenient and efficient fine-tuning approaches for us-
ers to train language models.

4.5 Results
According to Figure 8, we observed that the fine-
tuned model not only provided correct answers but 
also offered explanations, aligning with the Chain-
of-Thought reasoning approach [56]. We fine-tuned 
the GPT-3.5-Turbo model on two distinct datasets: 
one consisting exclusively of abstract algebra data, 
and the other comprising a combination of abstract 
algebra, linear algebra, and linear algebra calcula-

tion data. Both fine-tuned models have performed 
remarkable progresses on benchmarks. However, as 
shown in Figure 9, we unexpectedly observed that the 
model exclusively fine- tuned on abstract algebra data 

Figure 8
The outputs from original and fine-tuned GPT-3.5-Turbo models on benchmarks. Although the original model could 
generate correct answers sometimes, fine-tuned models could provide specific reasoning process and better explanations 
as our fine-tuned data describes

Figure 9
Performance of GPT-3.5-Turbo and its fine-tuned models 
across various datasets and benchmarks
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had an astonishing advancement in Linear Algebra 
QA benchmark, which surpassed the performance of 
fine-tuned model on the combined dataset. 
Interestingly, we also observed that fine-tuning GPT-
3.5 Turbo model on abstract algebra datasets resulted 
in a notable improvement in accuracy on linear alge-
bra benchmarks, particularly in linear algebra theo-
rem QA. One possible explanation is that the abstract 
algebra dataset provides the model with a founda-
tional understanding of mathematical structures and 
concepts that correspond to linear algebra, specifi-
cally, vector spaces could be regarded as a group. This 
overlap in foundational knowledge likely enhanced 
the mathematical inference ability of model in linear 
algebra tasks. Furthermore, this observation suggests 
that our fine-tuned LLM possess generalization ca-
pabilities to comprehensively capture the logical cor-
relations across different mathematical areas.
Subsequently, we fine-tuned the SLMs and evaluate 
their performance on Linear Algebra Calculation and 
Linear Algebra QA benchmarks which demonstrated 
reasonable improvements in mathematical reasoning 
ability as Figure 10 showed. As shown in Figure 10a 
and Figure 10b, we observed that the Mistral-7B-v0.1 
[22] model exhibited best improvements of accura-
cy on both benchmarks after fine-tuning. Its superi-
or performance might be attributed to its advanced 
architectures of transformers and attention mech-
anisms as we mentioned in Section 4.2, and its mod-
ification of FlashAttention [10] and xFormers [35] 
makes training procedures faster.

5. Costs
In our experiments, fine-tuning GPT-3.5-Turbo 
through OpenAI’s API infrastructure had a cost of $5.53 
based to its token-based pricing. In contrast, fine-tun-
ing Llama-2 SLMs through Hugging Face’s Autotrain 
platform required only $0.96 and 32 minutes for the 7B 
model, and $3.15 and 105 minutes for the 13B model, 
which is more cost-effective than AlpaGasus [5]. Sim-
ilarly, fine-tuning Mistral-7B-v0.1 cost $1.05 and took 
31 minutes, while fine-tuning Bloom 7B1 cost $1.05 
and took 35 minutes. Notably, according to Figure 11, 
Mistral-7B-v0.1 is the most fine-tuning effective mod-
el due to its remarkable performance on benchmarks 
with similar costs and fine-tuning time of LLama-2-7B 
and Bloom 7B1 models.

Figure 10
The alternation of accuracy of SLMs on Linear Algebra 
Calculation and Linear Algebra QA benchmark after fine-
tuning on our datasets in Section 3

(a) Linear Algebra Calculation

(b) Linear Algebra QA

The low costs of our fine-tuning procedures for SLMs 
are mainly attributed to efficient application of LoRA 
[19] which significantly reduced the computational 
burden of fine-tuning. This highlights how individu-
als could leverage our method through Autotrain to 
affordably design and customize language models for 
their own purposes.
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6. Discussion
Despite the proven effectiveness of synthetic data 
for fine-tuning language models in linear algebra and 
abstract algebra, in order to leverage broad general-
ization scope of these language models, future works 
could focus on two approaches: (1) scaling up synthet-
ic datasets by integrating more diverse mathematical 
domains including topology, calculus, geometry, and 
number theory. The diverse datasets could likely 
enhance the generalization capabilities of our fine-
tuned models in mathematical reasoning. (2) investi-
gating more advanced base language models such as 
Falcon-7B and Llama2-70B to assess their ability to 
solve complex mathematical questions and validate 
our findings that advanced models can achieve better 
performance at lower costs. 

Figure 11
Performance of SLMs and their performance on different benchmarks

Both pre-trained open-source language models and 
their fine-tuned versions are readily available on 
Huggingface, which offers two user-friendly deploy-
ment approaches for individuals without technical 
background. The first option is to directly deploy 
models through cooperative cloud platforms, such 
as Amazon SageMaker or Azure ML, which provides 
users with optimized CUDA-based environments for 
running language models. The second approach is to 
load the model locally using the Transformers library, 
which is well-suited for users with compatible hard-
ware. Moreover, our fine-tuned mathematical lan-
guage models maintain potential to be a preview tool 
to assist senior high school students preparing for un-
dergraduate mathematics courses.
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While synthetic data provides convenience in 
fine-tuning models, the black-box nature of language 
models introduce uncertainties in data generation 
process, which has raised critical concerns about 
data bias, model transparency, and potential impact 
on education. Since different models in Gretel.ai were 
pretrained on diverse datasets, the generated mathe-
matical data may inherently contain the biases from 
the corresponding training data which potentially 
caused the degradation of models’ performance on 
mathematical reasoning tasks during the fine-tuning 
process. Furthermore, as a closed-source platform, it 
is challenging to track the comprehensive parameters 
of pre-configured models in Gretel.ai, which makes 
users difficult to explore diversity and variability of 
synthetic data through tuning more hyperparame-
ters besides T, K, and P. Due to inherent data biases 
and the lack of model transparency, although math-
ematical abilities of language models have improved 
with fine-tuning on synthetic data, they might unin-
tentionally provide incorrect solutions. Therefore, 
users should apply the answers provided by these 
models with caution and are encouraged to perform 
cross-validation of knowledge with responsibility. 

7. Conclusion 
In conclusion, our method provides a feasible ap-
proach to effectively fine-tune mathematical QA 
language models using synthetic data which yielded 
notable improvements in algebra calculations and 
theorems across various language models. Consid-
ering the trade-off between cost and performance 
in fine-tuning, selecting an appropriate pretrained 

model is crucial to achieve practical usability, and 
advanced pre-trained SLMs tend to have superior 
performance after fine-tuning, while requiring less 
costs and time. It indicates that synthetic data could 
be an effective and efficient resource for enhancing 
the mathematical reasoning capabilities of language 
models, and our method offers individuals a versatile 
choice to deploy their own fine-tuning tasks.
Beyond the application of synthetic data in enhancing 
mathematical ability of language models, our find-
ings contributed to the broader AI/ML community in 
three aspects: (1) synthetic data generation could be 
extended to other fields such as chemistry and phys-
ics for various fine-tuning tasks. (2) it alleviates the 
difficulty of acquiring labeled data to mitigate the risk 
of underfitting when training models with limited 
datasets. (3) the relatively low cost of synthetic data 
allows AI/ML practitioner to channel funds and time 
into model architectures and application designs for 
products. 
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