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In this paper, the research focused on wild and introduced cultivated flowers with multiple diseases such as 
Stephanitis, Sooty Mould, Xanthosis, and Leaf Blight, utilizing transfer learning and data fusion technology to 
construct a plant disease detection model employing Faster R-CNN. The self-built data set collected during the 
flower growth cycle was trained and identified. To solve the problem of disease category imbalance in the actual 
collected data samples, the data of small category samples is enhanced from the perspective of category balance 
and label balance, and FocalLoss is used to improve the original classification loss function. Based on this self-
built data set, the constructed IFRCNN disease detection model was compared with the SSD (Single Shot mul-
tibox Detector), ResNet18 and Yolov3 models. The results showed that for several common plant diseases in 
the dataset, the mAP of IFRCNN disease detection model was significantly higher than that of the other three 
models. It can effectively locate plant leaf disease areas, realize the detection of multiple diseases, and provide 
reference for accurate disease prevention and control.
KEYWORDS: Transfer Learning; FocalLoss; Faster R-CNN.

1. Introduction 
Plant diseases and insect pests are one of the most 
serious natural disasters, which have a direct impact 
on the yield of agricultural crops, and are also one of 

the most complicated and difficult problems in plant 
growth and production, affecting global production 
and ecological security. FAO estimates that plant 
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disease costs the global economy more than $220 
billion a year. Data from China’s forestry department 
shows that during the “11th Five-Year Plan” period, 
forest diseases and pests killed more than 40 mil-
lion trees each year, causing an annual loss of more 
than 110 billion yuan. In recent years, factors such as 
global warming and frequent extreme weather have 
also made the occurrence of plant diseases and pests 
more frequent and widespread. Therefore, time-
ly and accurate identification and control of plant 
diseases has become an urgent and important re-
search topic. However, there is an increasing variety 
of plant pests and diseases, some of which are very 
similar to each other and difficult to distinguish. In 
addition, the limited scientific and cultural level of 
some cultivators, management negligence and other 
factors make the diseases and pests cannot be found 
timely and accurately, which leads to the delay of the 
best period of control. Thus, it can be seen that how 
to timely and accurately detect plant pests and dis-
eases is a key problem faced by agriculture and for-
estry plants.
With the rapid development of deep learning, ma-
chine vision, Internet of Things and other technol-
ogies, researchers have put forward many solutions 
for this. Since 1980, from traditional shallow ma-
chine learning to deep learning has been well applied 
in plant pest identification. Through investigation, it 
is found that existing researches are mainly based 
on traditional image recognition methods and object 
detection methods based on deep learning, and most 
of them focus on cash crops such as fruits and vege-
tables and grains [2, 3, 5, 8, 10, 14, 15, 18, 23, 24] as re-
search objects. For example, Mengistu et al. [11] cut 
and median filter the image of three important leaf 
diseases of coffee, and used K-means method to seg-
ment the image. After dimensionality reduction by 
principal component analysis, 5 gray co-occurrence 
matrix texture features and 6 color features are ex-
tracted, and feature optimization is carried out by 
genetic algorithm, the adaptive radial basis function 
(RBF) neural network classifier can recognize 2730 
test samples with an accuracy of 90.07%. Chong et al. 
[13] experimented with histogram features of gray-
scale images of strawberry leaves by using support 
vector machine (SVM), K-nearest neighbor (KNN) 
and naive Bayesian Support vector machine. A rec-

ognition algorithm for strawberry snake eye disease 
based on gray histogram features was proposed. 
The method of deep learning is to extract Galway’s 
abstract features from a large number of samples 
by deepening the network structure. However, due 
to the limitation of the amount of data, the accura-
cy error of multi-scale and multi-target detection 
in complex natural scenes is large, especially in the 
special cases such as occlusion and texture similari-
ty. Weiyin et al. [22] improved the feature extraction 
network of RetinaNet by combining DenseNet en-
hanced feature reuse, so as to improve the recogni-
tion rate of crop pests by the deep network model. 
Xuesong et al. [1] proposed a disease and insect de-
tection algorithm for crops based on Res2NeXt50, 
which replaced 7×7 convolution with a new hybrid 
convolution, improved subsampling to enhance in-
formation fluidity, and reduced model computation. 
Yanxin et al. [9] used Darknet53 feature network, 
combined with K-means++ algorithm to classify the 
fused features and predict their positions, and con-
structed a YOLOv3-based tobacco disease detection 
model with a Miou of 0.81 and a mAP of 0.77. Singh et 
al. [21] reviewed the application of machine learning 
technology in plant disease detection from the per-
spective of data acquisition and availability of data 
sets. The effectiveness of most existing methods in 
field plant disease detection is very different, and the 
generalization ability has not been explored.
Currently, the emphasis of pest and disease detec-
tion in agriculture and forestry lies predominantly 
on crops. However, this paper delves into the study 
of diseases affecting both wild and introduced rho-
dodendrons. It involves the systematic tracking and 
compilation of various diseases encountered during 
their growth cycle. Furthermore, leveraging data fu-
sion technology, datasets of disease occurrences in 
natural settings have been meticulously construct-
ed. By integrating the concept of transfer learning, 
we propose a pest detection model rooted in Faster 
R-CNN, aimed at enhancing the efficacy of preven-
tion and control measures against flower diseases. In 
this paper, we will elucidate our work in detail across 
four dimensions: data collection and processing, the 
construction of our detection model, experimental 
outcomes, and potential future research avenues.
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2. Disease Detection Model Based 
on Faster R-CNN
2.1. Plant Disease Data Set
Due to the intervention of pathogenic organisms 
or unfavorable environmental conditions, such as 
rainfall and temperature fluctuations, plants exhibit 
varying pathological features in their physiology, tis-
sue structure, and morphology. Moreover, the char-
acteristics of diseases and pests that may arise un-
dergo significant changes with the shifting seasons 
and growth stages of plants. To gather more compre-
hensive and authentic experimental data, the exper-
imental personnel conducted field tracking and data 
collection at the flower cultivation base of the local 
forestry science institute. This involved capturing 
actual images multiple times throughout the flow-
er’s growth cycle, ensuring comprehensive coverage. 
By utilizing diverse shooting equipment and varying 
factors like angles, distances, and brightness, the 
team aimed to incorporate as many disease and pest 
characteristics across different periods as possible 
into the collected data.

Table 1
Details of the original data set

Serial 
Number Disease Category Number Of Original 

Samples

1 Stephanitis 880

2 Sooty Mould 330

3 Brown Spot 605

4 Xanthosis 1006

5 Leaf Swelling 818

6 Leaf Blight 115

Total 3754

In one year, a total of 3,754 disease pictures were 
tracked and taken (the detailed quantity of various 
samples is shown in Table 1), mainly including the 
pictures of multiple diseases in the growth process 
of six kinds of flowers, such as crown bug, brown spot 
and leaf blight (as shown in Figure 1).

Figure 1 
Example of rhododendron leaf disease
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natural conditions and the unpredictability of plant 
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tions such as overcoding and color transformation 
that may have a greater impact on model training 
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(as shown in Figure 2). In this paper, Gaussian noise, 
which is normally distributed, is used, and its val-
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distribution, and different images are generated by 
increasing the disturbance spectrum effect and the 
interference to the image data. This method can not 
only be used for data enhancement, but also improve 
the ability of the model to learn mapping rules from 
the input space during training, so that the model can 
show better adaptability and robustness in the face 
of unknown data. In addition, due to the great differ-
ence in the intensity of light at different times and in 
different weather during field detection in natural en-
vironment, the detection results are greatly affected. 
Therefore, the paper also enhanced the brightness of 
the samples and appropriately increased the noise, as 
shown in the last three sample examples in Figure 2.

Figure 2 
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categories and improve the recognition performance 
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model detection. Even so, the model is still unable to 
meet the needs of real-time detection. Subsequently, 
Ren et al. [16] improved it and proposed the Faster 
R_CNN model in 2017. 
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shown in Figure 3). At the same time, Focal 
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ability of the model for small targets and rare 
categories. Through this combination, the 
model can not only identify and locate 
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On the basis of maintaining the good performance of 
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fied network with convolution features shared by two 
tasks is generated, and real time detection is realized. 
In this study, the Faster R-CNN as the main backbone 
network combined with Inception_v2 feature ex-
traction network will be used to build a plant disease 
and insect detection model (as shown in Figure 3). At 
the same time, Focal Loss will be used to further op-
timize the detection algorithm to improve the detec-
tion ability of the model for small targets and rare cat-
egories. Through this combination, the model can not 
only identify and locate diseases and pests on plants 
in real time, but also accurately identify tiny disease 
spots or pests in a complex background, providing 
strong technical support for precision agriculture.
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possible locations of pests and diseases in the image. 
Therefore, these proposals are the key for the sub-
sequent detection of pests and diseases. At the same 
time, the convolutional feature map is also input into 
the following branch ROI Pooling layer. It Maps the 
candidate Proposals obtained in the RPN network to 
the shared Feature Map, so that each candidate Pro-
posal can correspond to an area in the Feature map, 
so that a Proposal feature map containing detailed 
information can be calculated. Finally, the model 
completes regression and classification operations 
through the fully connected layer to obtain the exact 
location and category of the pest target.

2.3.  Feature Extraction
The experiment in this paper employed a rigorous 
parameter-tuned transfer learning approach [12], 
fine-tuning the Inception_v2 network, which was pre-
trained on the ImageNet dataset, to construct a feature 
extraction network suitable for plant disease detec-
tion. The Inception_v2 model, as the second genera-
tion of the Inception model developed by the Google 
research team based on Inception_v1, has a core design 
philosophy of replacing the original 5*5 convolution 
kernels in the Inception module with two smaller 3*3 
convolution kernels. Through this optimization, not 
only the total parameters of the model are significantly 
reduced, but also the overfitting phenomenon is effec-
tively alleviated [20]. In addition, the detection model 
incorporates Batch Normalization (BN) technology [6, 
19] to independently standardize the input of each neu-
ron, significantly reducing the coupling between gradi-
ent and parameter initialization, and effectively pre-
venting the problem of gradient explosion and gradient 
disappearance. At the same time, in order to accelerate 
the training process and improve the convergence effi-
ciency of the model, a higher learning rate is adopted in 
the training process.
At the commencement of the training process, the 
mean value (as Equation (1)) and variance (as Equa-
tion (2)) of each mini-batch throughout the iterations 
were initially extracted.
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In this context, m represents the number of samples 
in the mini-batch. Subsequently, each feature within 
the mini-batch undergoes standardization, as indi-
cated by Equation (3). 
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where ξ  is a constant, which is used to prevent cases 
where the denominator is zero. Because, in practice, 
we usually do not want the mean of all the samples 
to be 0 and the variance to be 1. Therefore, in order 
to better adapt to the distribution of data, scaling pa-
rameters γ  and migration parameters β are used to 
further process the normalized features to obtain the 
final output feature yi.

βγ +∗= ii xy ˆ (4)

The existing algorithms based on CNN have the prob-
lem of scale sensitivity of convolutional features in 
target detection task, while the leaf size is different in 
plant disease detection task due to distance. Common 
RoI pools simply fit preset feature lengths by copying 
feature values, a practice that distorts the original 
structure of small scale objects. Therefore, the decon-
volution pooling layer of bilinear kernel is used in this 
paper to preserve the context information of small 
scale objects, thus helping to generate features that 
are faithful to the original structure.

2.4. Loss Function
Since plant pests and diseases are restricted by var-
ious uncertain factors such as natural environment, 
climate, season, etc., the characteristics of the collect-
ed pests and diseases differ greatly in different growth 
stages. In order to balance the losses of the majority 
and minority classes, the cross-entropy loss function 
with balance coefficient [7] was adopted in this paper. 
A typical binary cross entropy loss can be defined as 
Equation (5), where tp  represents the confidence that 
is predicted to be of the correct class.
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In order to balance the imbalance between the back-
ground and the target class and the class proportion 
imbalance of the sample itself, the loss function is ex-

pressed as Equation (6) after the introduction of the 
balance factor.
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In order to balance the imbalance between the 
background and the target class and the class 
proportion imbalance of the sample itself, the 
loss function is expressed as Equation (6) after 
the introduction of the balance factor. 
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where,  is the regulatory factor, ( )tp−1 is 
used to reduce the loss contribution degree of 
easily classified samples and increase the loss 
proportion of difficult to classify samples, so 
that the model pays more attention to difficult 
to classify samples. The experimental results 
show that the best effect is obtained when the 
balance factor  =0.25 and the regulation 
factor  =2. 
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generation network and the detection network. 
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where, γ  is the regulatory factor, ( )γtp−1  is used to 
reduce the loss contribution degree of easily classi-
fied samples and increase the loss proportion of dif-
ficult to classify samples, so that the model pays more 
attention to difficult to classify samples. The exper-
imental results show that the best effect is obtained 
when the balance factor α =0.25 and the regulation 
factor γ =2.

3. Experiment
3.1. Training Process
The experiment is conducted on the Ubuntu 18.04 
operating system, employing the deep learning al-
gorithm framework, TensorFlow-GPU 1.13.1. The 
whole training process is carried out alternately by 
the region generation network and the detection net-
work. The entire training procedure is conducted in 
an alternating fashion between the region genera-
tion network and the detection network. Initially, the 
pre-trained model of the feature extraction network 
is loaded, allowing the region generation network to 
undergo end-to-end training. Following this, the de-
tection network is trained, leveraging both its own 
pre-trained model and the output proposals from the 
region generation network. During alternate training, 
the extraction parameters of the shared feature layer 
remain fixed, while the parameters of the detection 
network are employed to initialize the Region Pro-
posal Network (RPN). Additionally, the parameters 
involved in the network’s candidate region extraction 
process and the classification and regression compo-
nents of the detection network are generated within 
the training region.
During the training process, it was found that if the 
network fine-tuned the parameters before adapting 
to the new data, a relatively large gradient may lead 
to the contamination of the originally trained bet-
ter parameters. Consequently, during the migration 
of training processes, the new dataset undergoes a 
predefined number of epochs of initial training pri-
or to the application of fine-tuning techniques. This 
approach aims to minimize the risk of altering pa-
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rameters prematurely, before the network has fully 
acclimated to the new data, thereby preventing large 
gradients from corrupting the initially well-trained 
parameters. In this study, a smaller dataset was em-
ployed compared to those of ImageNet and COCO 
[17]. To prevent excessively rapid weight distortion in 
pretrained network models and maintain the smooth-
ness of the weights, a reduced initial learning rate of 
0.0002 was applied to the fine-tuned hidden layers. 
Additionally, the regularization coefficient was estab-
lished at 0.0005 to curb overfitting. Compared to ran-
domly initializing the weight parameters across all 
network layers, employing transfer learning through 
parameter fine-tuning proves more beneficial for the 
network’s rapid convergence when starting with the 
training dataset.
When RPN generates RoIs, Non-maximum suppres-
sion is used to suppress NMS=0.7, and 2000 RoIs with 
the highest probability are selected. In addition, in 
order to improve the processing speed, only 50 candi-
date boxes were selected in the experiment, and still 
maintained a good effect. The maximum number of 
iterations was set at 200,000, by which point the loss 
decreased to 0.001 and continued to exhibit a stable 
decline.

3.2. Analysis of Experimental Results
The experiment starts with the equilibrium analy-
sis of the samples. The original data were processed 
from the two dimensions of the number of samples 
of different categories and the number of labels, and 
the enhanced pest and disease sample data set was 
randomly divided into a training set and a test set 
according to the ratio of 8:2, and random verification 
was done in the natural scene. To demonstrate the ef-
ficacy of the PD-IFR CNN model for disease and pest 
identification, this paper employs average precision 
(AP) and mean average precision (mAP) — metrics 
commonly utilized in the realm of target detection 
to objectively assess the performance of the disease 
recognition model. Figure 5 shows the experimental 
results of small label samples with the number of la-
bels and the number of category samples balanced, 
taking the three typical diseases of Crown bug, brown 
spot and leaf blight as examples. At 5000step, the ap 
of the large-label model was 0.542893 for Stephani-
tis, 0.586503 for Brown Spot, and 0.309588 for Leaf 
Blight with small label. The detection effect of small 

labels is poor for diseases with features covering the 
whole leaf, such as Stephanitis.
In summary, according to the application character-
istics of plant disease and pest detection, the subse-
quent experiments in this paper adopted a combined 
data set with small labels and a variety of balancing 
strategies.
Figure 6 furthermore illustrates the mAP experimen-
tal findings pertaining to these three diseases, with 
an IOU threshold set at 0.5, subsequent to 5000 iter-
ations of the process. It can be seen that the mAP of 
large labels is generally higher than that of small la-
bels, which also verifies the defects of Faster-RCNN 
for small target detection mentioned above. However, 
the model trained according to the data set balanced 
by the number of pictures and the number of labels 
converges significantly faster than the original data 
set within 5000 steps. The model balanced by the 
number of images also performed slightly better than 
the model balanced by the number of labels. Because 
the unbalance rate of the model trained by the 20-

Figure 5  
AP@0.5 and mAP@0.5 under small labels
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fold expanded data set is roughly the same as that of 
the original data set, the convergence rate is similar 
to that of the original data set, although the size of 
the data set is larger after the data is enhanced by 20 
times.
In order to further verify the detection performance 
of the model, the PD-IFRCNN detection model pro-
posed in the paper was compared with three classi-
cal target detection models with ResNet18, Yolov3, 
Yolov5s and SSD as the core detection module on the 
self-built data set, and the results are shown in Ta-
ble 3. The results further showed that the IFRCNN 
model had a good effect on the detection of various 
flower diseases. With the exception of yellows and 
coal contamination, which were slightly lower than 
Yolov3 and Yolov5s, respectively, most of the disease 
recognition maps showed significant improvements 
compared to several other models (Table 2). This in-

Figure 6 
Experimental results of data sets based on different 
balancing strategies

Table 2 
Comparison of different models

Detection Model
mAP(%)

Leaf Swelling Xanthosis Stephanitis Brown Spot Sooty Mould Leaf Blight

SSD 74.1 78.2 80.3 79.5 78.7 81.6

ResNet18 72.5 76.6 66.81 79.3 76.1 80.8

Yolov3 75.26 78.54 57.62 65.43 75.97 82.7

Yolov5s 78.7 75.3 65.3 79.1 81.1 81.7

PD-IFRCNN 78.5 77.6 81.5 80.3 79.1 83.8

dicates that the model detects all categories as well 
as possible, which means that the improved model 
can detect targets more accurately and be more com-
prehensive in recalling targets.
After comprehensively considering the aforemen-
tioned discussion, we conducted meticulous detec-
tion and testing procedures on flower leaf images 
sourced from the internet and disease-ridden leaf 
images randomly captured in the natural environ-
ment, encompassing varying distances and de-
flection angles. These images underwent rigorous 
screening and preprocessing to guarantee their 
diversity and representativeness. Figure 6 vividly 
showcases the visual outcomes of the model devel-
oped in this paper, wherein the rectangular boxes 
precisely designate the locations of diseases pre-
dicted by the model, further differentiating among 
various disease types through distinct colors and 
marking techniques. This outcome undeniably at-
tests to the remarkable adaptability and detection 
accuracy of the methodology employed in this paper 
when confronted with multi-scale and multi-target 
detection tasks of leaf pests and diseases in a natural 
setting. The model introduced in this paper excels 
at accurately identifying and localizing disease ar-
eas, irrespective of whether the image is crisp and 
clear from a short distance or blurred and distant, or 
whether it captures the leaf in a straight or oblique 
angle. This not only underscores the model’s robust-
ness across diverse conditions but also underscores 
its immense potential for practical applications (as 
shown in Figure 7).
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4. Conclusion
Leveraging the concepts of migration learning and 
data fusion technology, we propose a plant disease 
detection model named IFRCNN, which is based on 
the Faster R-CNN framework. This model employs 
the Inception network, known for its superior feature 
extraction capabilities, as its feature extraction back-
bone. Furthermore, it refines the Loss function by in-
tegrating Focal Loss, ultimately enhancing the mod-

Figure 7
Visual example of IFRCNN detection results

el’s accuracy in detecting plant diseases. In order to 
test the validity of the model, different data sets with 
different labels and different algorithm models were 
evaluated. The results show that the model has a good 
performance for the detection of many common dis-
eases and pests, and it can be well adapted to the prac-
tical application in the natural scene. Nevertheless, 
the feature maps derived from Faster-RCNN through 
convolution are typically single-layered, resulting in a 
lower resolution. Consequently, the detection model 
is not particularly adept at identifying small objects 
at a distance, a point that is further substantiated 
by the comparative experimental data on size labels 
presented in this paper. In our subsequent efforts, 
we will refine the model’s performance by focusing 
on two main avenues: broadening the spectrum of 
data samples for increased diversity, and integrating 
various-sized feature maps while elevating their res-
olution. These measures are aimed at bolstering the 
model’s capability to generalize effectively.
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