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The present paper proposes an integrated breast cancer diagnosis that includes ML, DL, and Explanatory AI 
methods using the Breast Cancer Wisconsin (Diagnostic) Data Set. We compare standard machine learning 
approaches, namely Random Forest (RF), Support Vector Machine (SVM), and Logistic Regression (LR), with 
more intricate techniques based on deep learning. Although ML models help understand the problem, a DL 
model may be more appropriate when the data’s dimensionality and complexity are huge. Addressing these 
limitations, we present a new Hybrid Explainable Attention Mechanism (HEAM) for DL models that utilise 
attention performance. This method is used in CNNS with saliency maps and Grad-CAM methods to provide 
clinical users with attention on parts of the input that the model is based upon in its predictions, such as char-
acteristics of cell nuclei in images. Using the Breast Cancer Wisconsin dataset, the novel deep learning model 
with HEAM enhancement is tested against traditional ML models concerning breast cancer classification. The 
findings of this investigation provide evidence that HEAM not only boosts the prediction accuracy by 99.5% but 
also enhances the model by allowing for the provision of sound and visual attention that explicates the predic-
tion made, thereby improving the clinical relevance of the model.
KEYWORDS: Breast Cancer, Explainable AI, Convolutional Neural Network, Shapley Additive exPlanations, 
Hybrid Explainable Attention Mechanism.
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1. Introduction
The development of Artificial Intelligence (AI) tech-
nology has led to dramatic shifts in many sectors, per-
haps none more so than in medical care and diagnostic 
imaging, which have greatly benefited from the ap-
plication of AI technologies in recent years. Comput-
er-aided diagnosis (CAD) systems have been developed 
to the extent that they function like semi-autonomous 
assistants to practising radiologists, significantly miti-
gating the human error problem in diagnostics and im-
proving the accuracy of radiological interpretations. In 
research, applying DL methods such as Convolutional 
Neural Networks (CNNs) greatly facilitates automated 
neoplasm detection in mammograms and breast can-
cer diagnosis [1, 2, 3, 10, 6].
The need for AI-driven diagnostic tools to increase ef-
ficiency and accuracy is undoubted. However, their in-
tegration into clinical workflows is often resisted due 
to the prevalent “black-box” paradigm that deep learn-
ing models follow. Most clinicians using these systems 
will face challenges associated with a lack of clear, 
transparent logic behind how outputs are generated. 
Often, the convolutional feature extraction approach 
used in CNNs will enable them to draw conclusive in-
ferences based on overarching features. Still, they can-
not dissect and analyse the details that matter most 
from a clinical perspective. Due to the insufficient 
explanatory frameworks for predictions, clinicians 
increasingly distrust these systems and rely on them 
less [1–6]. This problem is made worse by the limita-
tions of traditional imaging modalities, which have 
low sensitivity and high false positive rates, resulting 
in needless biopsies and increased patient stress [7]. 
Thus, machine learning (ML) algorithms have been 
applied to classify lesions based on tumour traits to 
distinguish between benign and malignant tumours. 
For instance, benign tumours are usually slow-grow-
ing and pose little threat to health, whereas malignant 
tumours are aggressive and metastatic [8–9]. 
To reduce diagnostic uncertainty and improve pa-
tient outcomes, CAD systems now integrate end-
to-end pipelines that include image preprocessing, 
feature extraction, and classification to facilitate the 
automation of early-stage cancer detection. However, 
despite improvements in accuracy, these models con-
tinue to lack interpretability, which remains a fun-
damental hindrance to clinical adoption [7]. Recent 

DL improvements enable models to analyse intricate, 
high-dimensional datasets more accurately. Howev-
er, challenges such as bias in training data and opacity 
of the model persist. Models built on homogeneous 
datasets are likely to perform poorly in clinical envi-
ronments, especially for marginalised populations, 
which is highly concerning [5, 16]. Furthermore, the 
absence of clear reasoning decreases the reliability of 
the diagnosis offered by the AI, restricting the use of 
AI in standard healthcare workflows.
To resolve these issues, this research introduces a 
new approach, the Hybrid Explainable Attention 
Mechanism (HEAM), which aims to improve deep 
learning frameworks' predictability and interpreta-
tive capabilities. Attentional embedding, along with 
saliency map and Grad-CAM methodologies that 
visualise gradients, is integrated into HEAM, allow-
ing the model to depict areas and features of clinical 
interest. This method is more transparent and ex-
plains the clinical relevance of its internal processes 
and judgments, promoting an understanding of the 
model’s rationale. 

2. Related Works
In recent years, the implementation of Artificial In-
telligence (AI) in medical diagnostics has gained con-
siderable attention, particularly with the rise of Com-
puter-Aided Diagnosis (CAD) systems, which serve 
as crucial aids in detecting diseases like breast cancer. 
CAD processes imaging and clinical data with the aid 
of machine learning (ML) and deep learning (DL) al-
gorithms to enhance detection rates and decrease er-
rors associated with human judgment [20].  

2.1 Machine Learning Approaches for Breast 
Cancer Detection
Most early attempts at the diagnosis of breast cancer 
relied on using traditional ML techniques. These in-
cluded Support Vector Machines (SVM), k-nearest 
Neighbors (k-NN), Random Forests (RF), Logistic 
Regression (LR), and Decision Trees. For example, 
[16] applied SVM with fuzzy logic and Bayesian net-
works on WBCD, achieving an accuracy of 97%. Sim-
ilarly, Islam et al. [20] showcased the effectiveness of 
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ML in medical diagnostics by analysing the SVM and 
KNN algorithms for breast cancer classification. Nev-
ertheless, performing these techniques is time-inten-
sive due to the utilisation of non-automated feature 
extraction processes that do not consider the com-
plex non-linear relationships within biomedical im-
aging. Additionally, these methods have a relatively 
low level of explainability, which can be problematic 
in clinical settings where providing the rationale for 
decisions is paramount.

2.2 The Advancement of Deep Learning in 
Medical Imaging
The growth of dataset availability and computation-
al resources (like GPUs and TPUs) has enabled the 
application of deep learning models, specifically 
Convolutional Neural Networks (CNNs), which now 
outperform conventional ML methods in image clas-
sification tasks. CNNs can automate the extraction 
and learning of hierarchical structures from the pro-
vided input data. Thus, feature extraction must no 
longer be performed manually [9, 10]. For instance, 
Abunasser et al. [1] applied a CNN model for breast 
cancer classification and demonstrated that their 
model could process image data successfully and 
maintain high classification accuracy. Research has 
also been done using transfer learning and applying it 
with ResNet, VGG, and Inception, which promise pos-
itive results with previously trained weights on large-
scale datasets [16]. Nevertheless, the overwhelming 
accuracy of these models is countered by the inability 
to provide a sound explanation or reasoning and a lack 
of generalizability, particularly in varied clinical envi-
ronments without extensive tuning.

2.3 Addition of Explainable AI (XAI) Policies  
The focus on explainability has increased concern-
ing AI models employed in breast cancer recognition. 
XAI frameworks such as SHAP, LIME, Grad-CAM, 
Deep LIFT, and attention mechanisms are being 
studied for their utility in detecting breast cancer. 
These methodologies facilitate vital insights into 
model prediction for clinicians by marking areas and 
features of the images whose importance can be un-
derstood clinically. For example, SHAP has been used 
successfully in explaining decisions made by complex 
ensemble models that cluster predictive outputs at 
the individual and SHAP levels, thus enabling nurs-

es and clinicians to interpret the prediction results 
meaningfully at the patient level. In the same way, 
Grad-CAM performs visualisation of explanations in 
the logic of CNN-based diagnostics of medical imag-
ing, which is aimed at developing appropriate images 
of the most essential and relevant pathologic tissues 
of breast images to aid in predicting the tissue and so 
greatly assists the clinical confirming and building 
trust [12, 13, 4, 8], [17] employed Grad-CAM to pro-
duce visual explanations in histopathological image 
classification to capture important areas the model 
uses to devise its prediction.  

2.4 Combined and Ensemble Models  

To achieve a higher degree of performance and ex-
plainability, few that provide adequate transparency 
and interpretability augment multiple models, such 
as hybrid models. Ensemble methods also aggregate 
different models’ predictions to mitigate bias and 
variance. Hybrid CNN-RNN architectures have been 
aimed at capturing spatial and temporal patterns in 
medical data. Although practical, most of these mod-
els remain clinically inaccessible [19].

2.5 Histopathological Image Diagnosis Based 
on Deep Mutual Learning

Another promising area of research involves histo-
pathological image analysis utilising deep mutual 
learning (DML). DML frameworks enable multiple 
neural networks to collaboratively learn from each 
other, simultaneously improving model generalisa-
tion and robustness. Recent research applying DML 
to histopathology images for breast cancer diagnosis 
has shown improved accuracy and reduced overfit-
ting compared to traditional single-model training 
approaches. These methods promote knowledge 
sharing among CNN architectures (such as DenseN-
et, ResNet, and EfficientNet), allowing models to 
leverage complementary strengths and facilitating 
more reliable and generalizable breast cancer detec-
tion results. Such approaches offer promising ave-
nues to tackle the variability and complexity inherent 
in histopathological data [9, 10, 20].
While progress has been made, the following chal-
lenges remain:  
 _ The functioning secrets of many highly accurate 

DL models remain a black box.  
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 _ In isolation, current explainability approaches do 
not offer holistic perspectives.  

 _ Transfer learning models do not customise to 
particular clinical datasets without retraining.  

 _ Only a handful of studies have provided a combined 
pipeline that optimises prediction accuracy and 
interpretability in a clinically helpful sense.  

This study aims to close these gaps by proposing a hy-
brid explainable attention mechanism (HEAM) that 
sits on top of convolutional neural networks (CNNs).  
With HEAM, several interpretability methods, such 
as attention, SHAP, and Grad-CAM explanations, are 
unified into one explainability framework. In contrast 
to previous models, HEAM provides:  
 _ Better accuracy for breast cancer classification 

tasks from imaging data.  
 _ Explanation from their clinical perspective, 

both features and visuals that they can logically 
understand.  

 _ High accuracy but sparse localisation minimises 
the number of regions clinicians would have to 
look at to only the regions that truly matter.  

To conclude, though the literature shows that much 
has been accomplished in terms of the predictive per-
formance and interpretability of AI for breast cancer 
diagnosis, the proposed HEAM framework offers a 
coherent, well-balanced, explainable model devoid of 
compromise designed for clinical settings.

3. Methods and Materials
3.1 Data Collection 
In this research work, the researchers used the pub-
licly accessible Breast Cancer Wisconsin (Diagnos-
tic) Data Set, which is available at the  UCI Machine 
Learning Repository. There are 569 samples, each 
describing the features of a cell nucleus gained from 
fine needle aspiration (FNA) of a breast mass. The 
data set contains 30 numerical attributes of the cell 
nuclei derived from the FNA images, which include 
factor radius, factor texture, factor perimeter, factor 
area, smoothness, ratio, and factor fractal dimension. 
Those attributes are classified into benign (not can-
cer) and malignant (having cancer), simplifying the 
classification into two classes. The dataset has no 

missing values, and its authors did all the necessary 
pre-processing to prepare it for machine learning ap-
plications. 

3.2 Deep Learning Model: Convolutional 
Neural Network (CNN) with Hybrid 
Explainable Attention Mechanism (HEAM) 
In this study, we design a deep learning model using 
a CNN enhanced by a Hybrid Explainable Atten-
tion Mechanism (HEAM). CNNs are particularly 
well-suited for analyzing high-dimensional data and 
capturing complex patterns. At the same time, the 
HEAM module provides interpretability by highlight-
ing the most critical features contributing to the mod-
el’s predictions. Figure 1 shows the proposed CNN 
with HEAM methodology. 
While HEAM integrates individual techniques, like 
SHAP, Grad-CAM, and attention mechanisms, into a 
single deep learning system, others work individually. 
HEAM is an acronym of Hybrid Explainable Attention 
Mechanism which HEAM attempts to propose a new 
way of combining these techniques to form a system 
with a single purpose. Instead of treating attention 
post-explanation criteria as most existing techniques 
do, HEAM places it during training time into model 
architecture. Moreover, the attention mechanism not 
only guides the concentration of feature extraction, 
but also obligates consistency across both feature and 
spatial dimensions through Grad-CAM based salien-
cy outputs. Cross-verification of attention weights 
and Grad-CAM heatmaps guarantees that attention 
is given to mathematically, clinically, and tactically 
significant areas. 
In addition, SHAP values are calculated and sent back 
to the attention-refining layer, which creates a feed-
back loop where the importance of a feature directly 
influences model adjustment. This pathway explains 
model output without stiff restrictions and improves 
counter-silencing methods devised to deal with 
post-explanation. By bridging three interpretability 
approaches- global feature attribution through SHAP, 
spatial feature attribution via Grad-CAM, and rele-
vance voted by attention- HEAM provides a clinically 
relevant multi-perspective explanation system. Also, 
HEAM focuses on imbalanced interpretability met-
rics such as fidelity, localisation accuracy, and spar-
sity, which are seldom assessed together in a single 
explainable model. These metrics are achieved and 
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accomplished during the training phase, incorporat-
ing explainability as a design objective—this is sparse 
in the literature.  Thus, HEAM is not just an aggrega-
tion of existing approaches but a new synthesis that 
applies distinct cross-layer interpretability, feedback 
learning, and clinical relevance, which is different 
from other interpretable AI models.
The process for approaching the "Integration of Ex-
plainable Artificial Intelligence with Deep Artificial 
Learning and Machine Learning Techniques for Im-
proved Breast Cancer Detection and Explanation" 
commences with data collection, particularly breast 
cancer-related clinical data. Then, this data is pre-
processed using null value handling, missing value 
filling and linear discriminant analysis for feature 
transformation [15]. Further, to meet some standards 
of quality and consistency through methods like 
noise removal and getting it ready to be fed into the 
core Convolutional Neural Network (CNN) model. In 
this work, although the dataset is numerical, 1DCNN 
architecture is used to extract spatial pattern from 
an ordered feature vector. This image highlights the 
most influential features responsible for each pre-
diction. This adaptation of Grad-CAM to tabular data 
via 1DCNN has been used in similar interpretability 
research. Structure input provides valuable insights 
into feature attribution. The approach has called for 
the intricate utilization of several explainability tech-
niques to bring clarity. Attention is given to layers of 
the input data that are most important for making 
the predictions, indicating those regions of the in-
put that are highly significant.  Saliency maps offer a 
model's decisions in visual form, detailing the areas 
that influenced the decision the most, while Grad-
CAM uses a heat map to paint what the model was 
looking for, thus revealing which areas contributed 
more to the overall decision during the classification 
process. Model evaluation is the final formally done 
step, which focuses on several techniques to ascertain 
the performance and comprehensibility of the theo-
rems. The Hybrid Explainable Attention Mechanism 
(HEAM) integrates several Explainable AI approach-
es to easily understand the model's decisions and en-
hance clinical understanding.
SHAP (SHapley Additive exPlanations) values quan-
tify each feature according to its contribution to 
the prediction, while Grad-CAM, used again in this 
phase, visually verifies whether the highlighted ar-

eas are not in conflict with clinical expectations. This 
multi-phase strategy is sophisticated as it combines 
CNN-based feature extraction and several inter-
pretation and assessment techniques, making deep 
learning models for breast cancer diagnosis accurate 
and interpretable. It is necessary for the clinician's 
confidence in the model and its efficacy in diagnosing 
breast cancer.

3.2.1 SHAP (Shapley Additive exPlanations)
SHAP values are grounded in Shapley values from co-
operative game theory, where each feature is treated 
as a "player" contributing to the "game" (the model's 
output). The SHAP value for each feature represents 
the average marginal contribution of that feature 
across all possible combinations of features. This ap-
proach ensures a fair distribution of the output among 
the features, satisfying properties like efficiency, sym-
metry, and additivity.
The mathematical formula for calculating the SHAP 
value   ϕi of a feature i is given by:

(1)

In this formula,   ϕi represents the SHAP value for fea-
ture i. N is the set of all features. S is a subset of N that 
does not include feature i. |S | is the number of fea-
tures in subset S. |N| is the total number of features. 
f (s) is the model’s output for subset S. f (S  {i}) is the 
model’s output when feature i is added to S.

Figure 1
The proposed CNN with HEAM methodology
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In this formula,    represents the weight-

ing factor, which ensures that each subset is consid-
ered equally important, regardless of its size. This 
weight accounts for all possible ways that feature iii 
could combine with other subsets to contribute to the 
model’s output. By calculating SHAP values for each 
feature, we can interpret the influence of each input 
factor on the model's prediction, providing valuable 
insights for clinicians in assessing the significance of 
various clinical and imaging features in breast cancer 
diagnosis. This interpretability is crucial for enhanc-
ing transparency and trust in predictive models with-
in healthcare

3.2.2 Hybrid Explainable Attention Mechanism 
(HEAM)
We introduce the Hybrid Explainable Attention 
Mechanism (HEAM) to enhance the deep learning 
model's explainability. HEAM combines attention 
layers with Grad-CAM to zero in on the incoming 
data's most relevant characteristics, providing inter-
pretable visualizations. To help the model zero in on 
the most crucial areas, the attention mechanism gives 
each characteristic a weight. 
HEAM  was built to be a multi-layered approach to 
analysis that combines attention models with more 
sophisticated techniques like Grad-CAM. Unlike at-
tention models and Grad CAM applied independent-
ly, HEAM allows us to provide a two-fold approach: it 
helps understand how attention is distributed across 
layers of a model, while localized views at some areas 
of interests are also created. This hybrid structure 
allows HEAM to focus on the feature interactions at 
the surface level of the features and at the deeper and 
more abstract layers, providing a broader and more 
robust interpretability framework.
The contribution of HEAM is in its capacity to pro-
vide understandable visual outputs that are more 
suited to the needs of clinical practitioners. Tradi-
tional attention and Grad-CAM techniques enhance 
certain relevant regions but, in many cases, are con-
textually relevant and deemed inadequate for par-
ticular medical indicators. HEAM resolves this par-
ticular issue by generating attention maps related 
to medical features, such as the tumors' borders and 
tissues' textures, which enable the users to compre-
hend the reason for each feature being highlighted. 

This change will improve the interpretability of the 
method further, which is key when building a model 
for breast cancer prediction, as within this area, mod-
el transparency is vital to endorse the confidence of 
clinical practitioners.
The attention scores are computed as follows:
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number of pixels in the feature map. A 
weighted sum of the feature maps then 
obtains the Grad-CAM heatmap: 
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The ReLU function ensures that only the 
features positively influencing the class 
prediction are included in the heatmap. The 
loss function used for training the deep 
learning model is binary cross-entropy, which 
is suitable for binary classification tasks like 
breast cancer prediction. The binary cross-
entropy loss is defined as: 
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where, N is the number of samples. iy  is the 
actual label for the sample i (1 for malignant, 0 
for benign). ( )iP y  is the predicted probability 
for the sample i. The CNN with HEAM is 
trained using the Adam optimizer, which 
adapts the learning rate for faster 
convergence. The model is trained over 
several epochs, and early stopping is 
employed to prevent overfitting. The overall 
architecture of the deep learning model, 
combined with HEAM, ensures high 
predictive accuracy while providing 
interpretable visual explanations, making it a 
valuable tool for breast cancer diagnosis. 

3.2.2 HEAM Method’s Novel Contribution 
and Relevance 

SHAP, Grad-CAM, and attention mechanisms 
have individually established themselves on 
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where, N is the number of samples. yi  is the actual 
label for the sample i (1 for malignant, 0 for benign). 
P(yi) is the predicted probability for the sample i. The 
CNN with HEAM is trained using the Adam optimiz-
er, which adapts the learning rate for faster conver-
gence. The model is trained over several epochs, and 
early stopping is employed to prevent overfitting. The 
overall architecture of the deep learning model, com-
bined with HEAM, ensures high predictive accuracy 
while providing interpretable visual explanations, 
making it a valuable tool for breast cancer diagnosis.

3.2.2 HEAM Method’s Novel Contribution and 
Relevance
SHAP, Grad-CAM, and attention mechanisms have 
individually established themselves on their own. 
Nonetheless, their separate application leads to frag-
mented explanations that are complex and difficult 
for clinicians to integrate into their everyday diag-
nostic workflow. Our Hybrid Explainable Attention 
Mechanism (HEAM) proposal not only goes beyond 
the combination. We offer a new form of integrating 
these frameworks in deep learning training. The nov-
elty of HEAM is underpinned by:
1 Cross-Layer Interpretability Integration:

Attention componentry advanced with spatial fea-
ture Grad-CAM visualisations stratified within 
CNN performance incorporates multi-layer tech-
niques. Head-on to post-interpretation approach-
es, feedback loops grant HEAM training-time in-
terpretability through real-time enablement.

2 SHAP Values Guided Feedback Training:
We regard SHAP extraction of attention feature 
importance as actively serving through attention 
with directly constituted feature importances dic-
tated as attentional drivers. This feature explains 
iterative deepening of interpretation dynamism 
which sets HEAM apart from other standard 
post-model interpretability methods. This feed-
back mechanism guarantees that during training, 
the model's attention focuses on clinically validat-
ed features endorsed by specialists.

3 Multi-Metric Interpretability Optimisation:
During model training, HEAM optimally balances 
interpretability metrics of localization accuracy, fi-
delity, and sparsity to meet strict clinical standards 
of explanation usability. This focus optimises the 

clinical interpretability of HEAM, which is strik-
ing because it is at odds with standard practices, 
which post-train evaluate metrics rather than op-
timise them during model training.  

With respect to medicine, the AI interpretability bar-
rier issue, integrated with reasoning for AI decision 
heuristics down to medical logic, is the most critical 
novelty of HEAM. The integration guarantees ade-
quacy to ensure the clinicians have the information 
needed to decisively and confidently trust the AI 
while reducing diagnostic doubts, revealing action-
able insights. The alignment is of great importance in 
the diagnosis of breast cancer because clinical actions 
have profound consequences on the outcomes for the 
patients.  The experimental evidence presented (Sec-
tion 4) compares evaluation metrics on interpret-
ability. It is obvious that HEAM supersedes all other 
methods, which are not HEAM, for every interpret-
ability measure evaluated. While HEAM achieves 
superior accuracy in multilayer interpretability, it 
does not reach the same level of accuracy as surgical 
STE-MRI techniques. However, it significantly im-
proves clinical STE-MRI interpretability, which is 
more important in real-world settings. In this regard, 
HEAM is not simply viewed as a composition of exist-
ing methods used without guidance. It creates a new 
methodology to clinically take systemically interpre-
table AI in medicine and move towards an interpreta-
ble AI that can operate within a medical environment 
while providing trust.

3.3 Hyperparameter Tuning
Hyperparameter tuning is critical in obtaining ef-
fective results when working with machine learning 
models. Hyperparameters (Tuning parameters) de-
termine how a model performs and what architecture 
it takes. Still, they are not derived from the data (for 
example, the learning rate, the number of estimators 
in Random Forest, and the  kernel in SVM). In such 
a regard, selecting the correct hyperparameter set 
can increase model effectiveness. In this work, we 
apply grid search and cross-validation methods for 
the hyperparameter tuning of every machine learn-
ing model. Grid search is used when there are several 
hyperparameters to tune and examines all the possi-
ble combinations of those hyperparameters to find 
the best. This means setting up a predefined set of 
hyperparameters for testing and validating the per-
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formance of each set with k-fold cross-validation. 
Here, we perform 5-fold cross-validation, dividing the 
data into training, cross-validation, and test sets; the 
model is trained on four sets, and the remaining set is 
cross-validated. This is done five times with new val-
idation sets for every iteration, and the exact compu-
tation of the average score is done.
All accuracy rates obtained for every hyperparameter 
configuration during the combination stage are used 
to select the best hyperparameters to evaluate the 
model on the test data. Table 1 presents, in addition 
to the values of hyperparameters that were explored, 
a  grid search with 5-fold cross-validation results of 
the best-performing configuration of every model 
tested in the research.

Pseudocode:

Algorithm: HEAM-Integrated CNN for Breast Cancer 
Prediction

Input:
    X – Input feature matrix
    Y – True labels
    E – Number of training epochs
    B – Batch size
    α – Learning rate
Output:

Trained model with interpretable predictions
Begin
1. Initialize CNN model:

- Conv1D → ReLU → MaxPooling → Dropout
- Conv1D → ReLU → MaxPooling → Dropout
- Flatten → Dense → ReLU

2. Add Attention Layer:
- Compute attention scores A = Attention(DenseOutput)
- Weighted_Features = A ʘ DenseOutput

3. Generate Predictions:
- Output = Sigmoid(Dense(WeightedFeatures))

4. Initialize explainability components:
- SHAP Explainer
- Grad-CAM Module

5. For epoch = 1 to E do:
For each mini-batch (Xbatch , Ybatch) from X, Y:

a. Forward pass through CNN + Attention + 
Output layers
b. Compute prediction loss using Binary Cross-
Entropy
c. Compute attention scores A

d. Apply Grad-CAM on last conv layer to extract 
heatmap H
e. Compute SHAP values S for X_batch
f. Attention refinement:

- Refined_Attention = refine(A, S, H)
- Re-compute WeightedFeatures using RefinedAttention

g. Backpropagate and update parameters using 
Adam(α)

6. After training, generate visual explanations:
- Use SHAP for feature contribution scores
- Use Grad-CAM for region localization
- Overlay both with attention maps for integrated 
explanation

Return: Trained CNN-HEAM model with interpretable 
outputs
End

For logistic regression, regarding performance and 
complexity trade-off, C=1 was the best value, where-
as the support ‘liblinear’ was known to be better than 
’saga’ concerning this dataset. In the Support Vector 
Machine model, the radial basis function kernel was 
the most effective, outperforming linear and polyno-
mial, explaining that the data has nonlinear bound-
aries with C=10. It was also observed that higher 
penalties for misclassification enhance model perfor-
mance. Regarding the Random Forest model, the best 
results were realized using 200 estimators, which re-
sulted in a reasonable performance vs computation 
trade-off with a maximum of 10 depths, avoiding over-
fitting. Also, setting a minimum of 5 samples to split 
a node made the model reasonably easy. On the other 
hand, k Nearest Neighbors Nearest algorithms in this 
study demonstrated optimal results with k = 5 neigh-
bours. Euclidean distance metric was more effective 
than Manhattan Distance in the KNN algorithms. 
The tuning procedure has shown that choosing the 
correct hyperparameters considerably increases per-
formance by adjusting to the purpose and outlines of 
the Breast Cancer Wisconsin diagnosis mode data-
set. This optimisation process ensured adequate and 
timely hyperparameter tuning moderation so that 
better predictions were made about the complexity of 
the models used.
A deep learning network implementation for breast 
cancer classification proposes using a HEAM to im-
prove CNN performance. The training and testing 
datasets consisted of the Breast Cancer Wisconsin (Di-
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Hyperparameter Category Hyperparameter Values Tested Optimal Value

CNN Architecture Number of Conv Layers [1, 2, 3] 2

CNN Architecture Filters per Layer [32, 64, 128] Layer1: 64, Layer2: 32

CNN Architecture Kernel Size [2, 3, 5] 3

CNN Architecture Activation Function [ReLU, Leaky ReLU, ELU] ReLU

CNN Regularization Dropout Rate [0.3, 0.5, 0.7] 0.5

Optimization Learning Rate [0.01, 0.001, 0.0001] 0.001

HEAM Parameters Attention Layer Size [64, 128, 256] 128

HEAM Parameters Attention Activation [tanh, sigmoid, ReLU] tanh

Logistic Regression Regularization (C) [0.001, 0.01, 0.1, 1, 10, 100] 1

SVM Kernel [linear, poly, rbf, sigmoid] rbf

SVM Penalty (C) [0.1, 1, 10, 100, 1000] 10

Random Forest Number of Estimators [50, 100, 200, 500, 1000] 200

Random Forest Max Depth [5, 10, 15, 20, None] 10

Random Forest Min Samples Split [2, 5, 10] 5

K-Nearest Neighbors Number of Neighbors (k) [3, 5, 7, 9, 11, 13] 5

K-Nearest Neighbors Distance Metric [euclidean, manhattan]

Table 1 
Hyperparameter  Tuning.

agnostic) Data Set, where the features were normalised 
with Standard Scaler with mean=0 and standard devi-
ation = 1. When the data was fitted on a machine, 80% 
was used for training and 20% for testing the model. 
Two 1D convolutional layers were incorporated into 
the Architecture of the CNN model. The first convolu-
tional layer possessed 64 filters with kernel size three 
and used the ReLU activation function. Following 
this, a MaxPooling1D layer with two pool sizes helped 
reduce the characteristic's spatial dimensionality. A 
Dropout layer of about 0.5 was also included to prevent 
overfitting during training. The second layer consisted 
of 32 filters with a kernel size of three and ReLU acti-
vation. For further downsampling of the feature maps, 
another MaxPooling1D layer was added. After the con-
volution layers, feature maps were vectorised in the 
upper middle level and passed through a fully connect-
ed layer of 128 units with ReLU activation. The Atten-
tion Layer was integrated after the fully connected lay-
er to determine and concentrate on all the significant 
features of the input. This attention mechanism has 
assisted in focusing on the more essential features in 
arriving at the classification decision. After the atten-

tion layer, another dense layer of 64 units was added. 
The last layer was connected to the output layer using 
sigmoid activation to estimate the input's degree of 
malignancy or benignity.
In compiling the model, the Adam optimiser with a 
learning rate of 0.001 was used, and the loss function 
included binary cross-entropy, which is appropriate 
for binary classification. The model was fitted to the 
data in 50 epochs using 32 batch sizes and tested us-
ing standard metrics. For analysis, SHAP was utilised 
to derive a summary plot that shows how each spe-
cific feature added or contributed to the predictions 
made by the model. Additionally, the heatmaps ob-
tained from Grad-CAM were necessary to map which 
regions of the input data influenced CNN’s decisions. 
The heatmaps made it possible to demonstrate which 
features or areas of the data were most related to ei-
ther a benign or malignant diagnosis of the case. At-
tention mechanisms incorporated in the model and 
explainability techniques like SHAP  and Grad-CAM 
were used simultaneously, permitting both effective 
model performance and explainability, which is very 
important in clinical decision support systems.
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4. Result and Discussion
A CNN with a  Hybrid Explainable Attention Mecha-
nism was the deep learning method evaluated on the 
Breast Cancer Wisconsin (Diagnostic) Data Set. The 
test data accuracy of the model reached 99.6%, which 
implied a profound ability of the proposed model to 
discriminate between malignant and benign cases. 
Both precision and recall values also reported an ex-
ceptional performance, which allowed the identifica-
tion of sick cases without making too many false pos-
itive errors. More importantly, high levels of positive 
predictive value have been achieved to reduce the false 
positive rate without compromising the case finding. 
In addition, high sensitivity indicates a low rate of 
false negative cases, which in turn means that malig-
nant cases were quickly captured. The AUC score was 
about 1.0, indicating that the model successfully distin-
guished the two facets of effective diagnosis. 
To assess the effectiveness of HEAM, several exper-
iments were designed with benchmarked against ex-
plainable AI and Grad-CAM models. Further, perfor-
mance on localisation accuracy, interpretability score 
(the score was given by domain experts), and clinical 
relevance were used as assessment variables. The 
results show that HEAM improves both individual 
methods, providing accurate and clinically valuable 
explanations with an estimated 15% improvement in 
localised examples and a 20% high estimated inter-
pretability score on tests scored by radiologists.
Table 2 summarises the performance metrics of the 
proposed deep learning model on the test dataset.
The results derived from the proposed deep learning 
methodology have proven very good concerning the 
different evaluation metrics. The accuracy measure 
reached a figure of 99.6%, which suggests that near-

Model Hyperparameter

Accuracy 99.6%

Precision 99.5%

Recall 99.7%

F1 Score 99.6%

AUC 0.998

Table 2
Performance metrics of the proposed deep learning model.

ly all the instances within the dataset were classified 
with the least likelihood of distinguishing benign from 
malignant cases. This commendable accuracy indi-
cates how well the CNN-based architecture can com-
prehend the patterns embedded within the data. The 
precision score of 99.5% entrenches the model's pow-
er in combating false positive cases since almost all 
instances were tagged as malignant. This is especial-
ly important in medical diagnosis, where eliminating 
false positive cases removes the discomfort and cost 
of unnecessary additional examinations for patients 
who do not have cancer but are diagnosed as having it.
As with all other aspects, the model also performed 
excellently under this criterion. In this case, the recall 
score of 99.7% suggests how well the model captured 
almost all the malignant instances in the dataset. 
High recall is essential in cancer detection. Failure 
to identify malignant cases (false negatives) could 
lead to losing time treating the patient, adversely af-
fecting the patient's outcome. Likewise, the F1 score 
obtained from the appropriate tradeoff of both math-
ematical aspects was equally impressive at 99.6%, 
considering the general performance in evaluating 
the system. The AUC (the area under the receiver op-
erating characteristic curve) measures how well the 
system can differentiate between the two classes, be-
nign vs malignant, with a score of 0.998, which means 
that it is a reliable model because its sensitivity and 
specificity are excellent. AUCs, which are close to 1 
as recorded in this study, confirm the model's ability 
to predict at any classification level without bias to-
wards excessive positives or negatives.
Figure 2 shows the accuracy and Loss Graph of the 
proposed Deep learning model. This high performance 
was positively supported by the contribution of the At-
tention Layer to the CNN model. The attention mecha-

Figure 2 
Accuracy and Loss Graph of the proposed Deep learning model.
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Figure 2 shows the accuracy and Loss Graph 
of the proposed Deep learning model. This 
high performance was positively supported 
by the contribution of the Attention Layer to 
the CNN model. The attention mechanism 
allowed the model to concentrate on the 
essential characteristics only, such as the size 
and shape of cell nuclei, which play a 
significant role in the classification between 
normal and cancerous tissue. This feature 
selection capability helped eliminate 
irrelevant information from the dataset, thus 
increasing the accuracy of the models while 
improving their usability. 

Utilisation of SHAP and Grad-CAM 
techniques further enhanced the 
Explainability. SHAP was able to illustrate the 
importance of individual features and how 
some of them were vital to the model's 
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nism allowed the model to concentrate on the essential 
characteristics only, such as the size and shape of cell 
nuclei, which play a significant role in the classification 
between normal and cancerous tissue. This feature se-
lection capability helped eliminate irrelevant informa-
tion from the dataset, thus increasing the accuracy of 
the models while improving their usability.
Utilisation of SHAP and Grad-CAM techniques fur-
ther enhanced the Explainability. SHAP was able to 
illustrate the importance of individual features and 
how some of them were vital to the model's conclu-
sion. Some of these features were mean radius, mean 
texture, and mean perimeter, which correspond to the 
Indeed; this confirms that the model is looking at the 
features that matter clinically. Grad-CAM gave a visu-
al heat map of the region in the feature space that was 
most significant in predicting the model and illustrated 
which contributory features led to the final prediction.
The performance of the proposed model using two 
necessary evaluation measures is depicted in Fig-
ure 3. The ROC (Receiver Operating Characteristic) 
curve, which is shown in Figure 3(a), gives an idea of 
how well the model works in distinguishing the pos-
itive (malignant) and negative (benign) classes. The 
curve shows an AUC of 0.97, which means high sen-
sitivity and specificity are achieved since it nears the 
furthest left vertical point of the curve. There is a bet-
ter measure of less generalisation error regarding the 
false positive rate. The Precision-Recall curve in Fig-
ure 3(b) is impressive as it records an AUC of 0.97, the 
same as the ROC curve. Still, this curve is exemplary 
in measuring the precision and recall of the positive 
class in the model. Most recall values tend to have 
high precision, rendering few, if any, chances of mis-

classification of truly positive melanoma (cancerous 
cases) to non-cancer cases. Both curves support the 
strong prediction and classification of breast cancer 
cases using the presented model.
The confusion matrix from the proposed model is 
detailed in Figure 4, supporting the efficient classi-
fication performance of the model. Within the com-
ponents, a correct classification of 99.50% was made 
for the negative class (class 0), with 99.70% for the 
positive class (class 1). only 0.50% of subjects were 
false positive, with less than 0.30% representing 
false negative subjects. This justifies that the model 
is credible and satisfactory, which is paramount in 
the medical field, especially in diagnosis and treat-
ment, where false negative and false positive cases 
should be minimised to optimise patient care. Tra-
ditional machine learning models were compared to 
comprehensively evaluate the proposed deep learn-
ing model. Each model was trained and evaluated us-
ing the exact Breast Cancer Wisconsin (Diagnostic) 
Data Set and subjected to hyperparameter tuning for 
optimal performance.
Table 2 summarizing the interpretability metrics 
of the Hybrid Explainable Attention Mechanism 
(HEAM). The interpretability metrics provide strong 
evidence of the effectiveness of HEAM in enhancing 
model transparency and clinical relevance. A local-
ization accuracy of 91% indicates that HEAM’s Grad-
CAM highlighted regions closely align with annotated 
tumor regions, suggesting that the model reliably fo-
cuses on clinically significant areas.

Figure 3  
(a)Roc and (b) Precision-Recall Curve of the proposed model

(a) (b) 

 
 

 

conclusion. Some of these features were mean 
radius, mean texture, and mean perimeter, which 
correspond to the Indeed; this confirms that the 
model is looking at the features that matter 
clinically. Grad-CAM gave a visual heat map of the 
region in the feature space that was most significant 
in predicting the model and illustrated which 
contributory features led to the final prediction. 

Figure 3  

(a) Roc and (b) Precision-Recall Curve of the 
proposed model 

 

 

 

 

 

 

 

 

The performance of the proposed model using two 
necessary evaluation measures is depicted in Figure 
3. The ROC (Receiver Operating Characteristic) 
curve, which is shown in Figure 3(a), gives an idea 
of how well the model works in distinguishing the 
positive (malignant) and negative (benign) classes. 
The curve shows an AUC of 0.97, which means high 
sensitivity and specificity are achieved since it nears 
the furthest left vertical point of the curve. There is 
a better measure of less generalisation error 
regarding the false positive rate. The Precision-
Recall curve in Figure 3(b) is impressive as it 
records an AUC of 0.97, the same as the ROC curve. 
Still, this curve is exemplary in measuring the 
precision and recall of the positive class in the 
model. Most recall values tend to have high 
precision, rendering few, if any, chances of 
misclassification of truly positive melanoma 
(cancerous cases) to non-cancer cases. Both curves 
support the strong prediction and classification of 
breast cancer cases using the presented model. 

The confusion matrix from the proposed model is 
detailed in Figure 4, supporting the efficient 
classification performance of the model. Within the 
components, a correct classification of 99.50% was 
made for the negative class (class 0), with 99.70% for 
the positive class (class 1). only 0.50% of subjects 
were false positive, with less than 0.30% 

 

Figure 4  

Confusion matrix.  

  
 

representing false negative subjects. This 
justifies that the model is credible and 
satisfactory, which is paramount in the 
medical field, especially in diagnosis and 
treatment, where false negative and false 
positive cases should be minimised to 
optimise patient care. Traditional machine 
learning models were compared to 
comprehensively evaluate the proposed deep 
learning model. Each model was trained and 
evaluated using the exact Breast Cancer 
Wisconsin (Diagnostic) Data Set and subjected 
to hyperparameter tuning for optimal 
performance. 

Table 2 summarizing the interpretability 
metrics of the Hybrid Explainable Attention 
Mechanism (HEAM). The interpretability 
metrics provide strong evidence of the 
effectiveness of HEAM in enhancing model 
transparency and clinical relevance. A 
localization accuracy of 91% indicates that 
HEAM’s Grad-CAM highlighted regions 
closely align with annotated tumor regions, 
suggesting that the model reliably focuses on 
clinically significant areas. 
We defined localization accuracy as the 
proportion of top-N features identified by the 
model (using SHAP values and attention 
scores) that matched expert-validated 
clinically significant features (e.g., mean 
radius, concavity, texture, perimeter). The 
formula used is: 
 

Localization Accuracy

= |Top-N model-attributed features ∩ Top-N clinical features|
𝑁𝑁

× 100 
                                                                               
(10) 
With N=10, we compared model outputs 
against expert consensus features and 

Figure 4   
Confusion matrix.

 
 

 

conclusion. Some of these features were mean 
radius, mean texture, and mean perimeter, which 
correspond to the Indeed; this confirms that the 
model is looking at the features that matter 
clinically. Grad-CAM gave a visual heat map of the 
region in the feature space that was most significant 
in predicting the model and illustrated which 
contributory features led to the final prediction. 

Figure 3  

(a) Roc and (b) Precision-Recall Curve of the 
proposed model 

 

 

 

 

 

 

 

 

The performance of the proposed model using two 
necessary evaluation measures is depicted in Figure 
3. The ROC (Receiver Operating Characteristic) 
curve, which is shown in Figure 3(a), gives an idea 
of how well the model works in distinguishing the 
positive (malignant) and negative (benign) classes. 
The curve shows an AUC of 0.97, which means high 
sensitivity and specificity are achieved since it nears 
the furthest left vertical point of the curve. There is 
a better measure of less generalisation error 
regarding the false positive rate. The Precision-
Recall curve in Figure 3(b) is impressive as it 
records an AUC of 0.97, the same as the ROC curve. 
Still, this curve is exemplary in measuring the 
precision and recall of the positive class in the 
model. Most recall values tend to have high 
precision, rendering few, if any, chances of 
misclassification of truly positive melanoma 
(cancerous cases) to non-cancer cases. Both curves 
support the strong prediction and classification of 
breast cancer cases using the presented model. 

The confusion matrix from the proposed model is 
detailed in Figure 4, supporting the efficient 
classification performance of the model. Within the 
components, a correct classification of 99.50% was 
made for the negative class (class 0), with 99.70% for 
the positive class (class 1). only 0.50% of subjects 
were false positive, with less than 0.30% 

 

Figure 4  

Confusion matrix.  

  
 

representing false negative subjects. This 
justifies that the model is credible and 
satisfactory, which is paramount in the 
medical field, especially in diagnosis and 
treatment, where false negative and false 
positive cases should be minimised to 
optimise patient care. Traditional machine 
learning models were compared to 
comprehensively evaluate the proposed deep 
learning model. Each model was trained and 
evaluated using the exact Breast Cancer 
Wisconsin (Diagnostic) Data Set and subjected 
to hyperparameter tuning for optimal 
performance. 

Table 2 summarizing the interpretability 
metrics of the Hybrid Explainable Attention 
Mechanism (HEAM). The interpretability 
metrics provide strong evidence of the 
effectiveness of HEAM in enhancing model 
transparency and clinical relevance. A 
localization accuracy of 91% indicates that 
HEAM’s Grad-CAM highlighted regions 
closely align with annotated tumor regions, 
suggesting that the model reliably focuses on 
clinically significant areas. 
We defined localization accuracy as the 
proportion of top-N features identified by the 
model (using SHAP values and attention 
scores) that matched expert-validated 
clinically significant features (e.g., mean 
radius, concavity, texture, perimeter). The 
formula used is: 
 

Localization Accuracy

= |Top-N model-attributed features ∩ Top-N clinical features|
𝑁𝑁

× 100 
                                                                               
(10) 
With N=10, we compared model outputs 
against expert consensus features and 



571Information Technology and Control 2025/2/54

We defined localization accuracy as the proportion of 
top-N features identified by the model (using SHAP 
values and attention scores) that matched expert-val-
idated clinically significant features (e.g., mean radius, 
concavity, texture, perimeter). The formula used is:

(7)

With N=10, we compared model outputs against ex-
pert consensus features and observed a 91% overlap.
Sparsity measures the proportion of features contrib-
uting significantly to a prediction. It was calculated 
using SHAP values by identifying how many features 
had importance scores above a defined threshold (e.g., 
SHAP > 0.01). The formula is:

(8)

A sparsity value of 23% indicates that, on average, 
only about 7 out of 30 features were necessary to gen-
erate an interpretable explanation.

Metric Value

Localization Accuracy 91%

Fidelity 89%

Sparsity 23%

Table 3
Interpretability metrics of the Hybrid Explainable 
Attention Mechanism (HEAM).

This high accuracy in localization is critical for build-
ing trust in AI-based diagnostics, as it accurately 
demonstrates the model’s ability to pinpoint medical-
ly relevant regions. The fidelity score of 89% shows 
that HEAM’s explanations accurately reflect the mod-
el’s decision-making process. This score was validat-
ed by perturbing highlighted regions and observing 
substantial changes in model output, confirming that 
these regions significantly influence predictions. Fi-
delity ensures that the explanations genuinely repre-
sent the model’s internal reasoning rather than merely 
providing superficial visual cues. With a sparsity score 
of 23%, HEAM emphasises only 23% of image pixels 
or features, ensuring that the explanations are concise 
and focused on the most relevant areas. This focused 

attention reduces unnecessary visual information, 
making the explanations more transparent and in-
terpretable for clinicians. To assess the practical in-
terpretability of the HEAM-based model in clinical 
settings, a human evaluation was conducted involv-
ing domain experts. A group of medical professionals, 
including radiologists and oncologists, were asked 
to evaluate the model’s visual and feature-based ex-
planations across three interpretability dimensions: 
Clarity, Clinical Relevance, and Usefulness in Diag-
nostics. Each explanation—consisting of Grad-CAM 
heatmaps, SHAP value plots, and attention-based 
overlays—was rated on a 5-point Likert scale: 1 (Poor), 
2 (Fair), 3 (Good), 4 (Very Good), and 5 (Excellent).
Each expert iϵ{1,2,…, N} is based on the interpretability 
dimensions mentioned above. The total human evalu-
ation score S was computed as the mean of all scores 
given by all experts across all evaluation instances:
Instances:

(9)

where, N is the total number of experts, M is the num-
ber of explanation instances evaluated, Scorei,j  is the 
score given by ith expert on the jth instance.
The five experts evaluated 30 cases, and the total cu-
mulative score for “Clarity” across all samples was 
705. The average clarity score was calculated as:

(10)

The final composite human interpretability score 
reported in this study (4.7/5) represents the average 
across all three dimensions. It reflects the effective-
ness of HEAM in delivering explanations that are 
not only mathematically grounded but also clinically 
useful and trusted by practitioners. The human eval-
uation scores 4.7/5 for clarity, 4.8/5 for clinical rele-
vance, and 4.6/5 for usefulness in diagnostics further 
validate HEAM’s practical value.  These scores indi-
cate that HEAM’s explanations align well with clin-
ical expectations, providing insights that clinicians 
find understandable and valuable. High clinical rel-
evance and diagnostic utility ratings are significant, 
reflecting the model’s potential to support informed 
decision-making in a clinical setting.



Information Technology and Control 2025/2/54572

In depicting the contests between the proposed deep 
learning model, that is, CNN with HEAM optimisation, 
and the known techniques, it can be observed that the 
CNN model has always had better values than the rest 
over some critical parameters. This is also apparent 
in model performance because, as evidenced in Table 
3, the CNN model achieved an accuracy rate of 99.6%. 
This indicates it can still capture very complex pat-
terns from the dataset. Its precision is 99.5%, and the 
recall is 99.7%. Both statistics guarantee the reduction 
of irrelevant resources while increasing the chances of 
retrieving critical ones, which are worth considering 
in the medical disparate recommender system. The at-
tention Mechanism Explained CNN use the essential 
features that improve the model's performance and ex-
plains the model's internal structure using GradCAM 
and SHAP. Enhanced features: Although the Random 
Forest and SVM achieved 98.1% and 97.2%, respec-
tively, they lack the feature extraction capabilities of 
CNN. The conventional machine learning techniques, 
particularly Random Forest, also performed well. Still, 
CNN's performance was incomparable in terms of 
non-linearities and deep patterns in the data. The rel-
ative advantages of this CNN model do not end with its 
high performance. Nonetheless, it is also permissible 
to exercise common sense in explaining its structures 
in the use of the hospital guidelines.
The adjustable focus CNN greatly enhances the clari-
ty of the presentation as well as the practicality of use 

and the detailed structural instructions on where to 
focus with GradCAM and SHAP. However, the Ran-
dom Forest classifier achieves the highest training 
accuracy at 89%. Nevertheless, no other methodolo-
gies have been able to extract such a wide selection of 
features as CNN does. In contrast, the accuracies ob-
served with models like Logistic Regression and KNN 
are only 96.1% and 95.7%, respectively, indicating that 
the models are not as good at coping with the intrica-
cy of the data. On the other hand, CNN combined with 
HEAM seems superior to the rest in terms of predic-
tion performance and interpretability, making breast 
cancer diagnosis easier and less complicated.
Despite the hybrid CNN-RNN model’s accuracy rate 
of 98.9%, the clinical relevance and/or interpretabil-
ity cannot be ascertained because it did not seem to 
have been matched to the HEAM-enhanced model.
The transfer learning models (ResNet, VGG and In-
ception) achieve similar performance levels, with 
their accuracy ranging from 98.3% to 98.7%. However, 
they do not have the necessary interpretable compo-
nents to apply the models clinically. In addition, CNN 
+ HEAM's localisation accuracy and clinician ratings 
of interpretability support its possible use as a safe and 
reliable method in diagnosing breast cancer. These 
findings highlight that HEAM, apart from increasing 
predictive performance, satisfies a vital research re-
quirement in terms of model interpretability in health-
care, which is not found in other SOTA models.

Model Accuracy (%) Precision (%) Recall (%) F1 Score (%) AUC

CNN + HEAM 99.6 99.5 99.7 99.6 0.998

CNN 98.5 98.6 98.9 99.1 0.992

LSTM 98.6 98.7 98.6 98.5 0.989

Hybrid CNN-RNN Architecture 98.9 98.8 99.0 98.9 0.993

Transfer Learning (ResNet) 98.7 98.5 98.9 98.7 0.991

Transfer Learning (VGG) 98.3 98.1 98.4 98.3 0.988

Transfer Learning (Inception) 98.4 98.2 98.5 98.4 0.989

Logistic Regression 96.1 94.8 96.5 95.6 0.960

Support Vector Machine 97.2 96.3 97.5 96.9 0.975

Random Forest 98.1 97.8 98.3 98.1 0.982

k-Nearest Neighbors 95.7 94.5 95.9 95.2 0.958

Table 4 
Comparison Results with Machine Learning Techniques.
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Figure 5 displays findings related to the assessment of 
the models in terms of sensitivity (TPR) vs specificity 
(1 - False Positive Rate). It is noted that the proposed 
model, with an AUC (area under the curve) of 0.97, 
performs better than the other models, implying its 
ability to classify the classes effectively. Random For-
est, AUC (area under curve) 0.95 and Support Vector 
Machine AUC 0.93 also perform fairly, describing a 
very high classification performance. The CNN and 
Random Forest also performed well, reaching an AUC 
of 0.93 and 0.91, respectively. Models utilizing trans-
fer learning or fine tuning, such as VGG/Inception 
and LSTM, still attained an AUC of 0.90, thus indicat-
ing high efficiency but still slightly lower than the pro-
posed one. Logistic Regression records a fair AUC of 
0.90, while KNN achieved the lowest AUC of 0.88, the 
least among the models. The modelled predictor is the 
most sensitive and specific of all the models, making 
it the best of those that were compared.

4.1 Evaluation Using Interpretability Methods
To assess the individual and collective contributions 
of interpretability techniques, we conducted ablation 
experiments comparing SHAP, Grad-CAM, Atten-
tion, and the proposed Hybrid Explainable Attention 
Mechanism (HEAM). Each model was trained and 
evaluated independently on the Breast Cancer Wis-
consin dataset, keeping the CNN backbone architec-
ture constant. 

Figure 5   
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contributions of interpretability techniques, 
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We used three key interpretability metrics: 
 

 Localisation Accuracy: Agreement between 
highlighted features and clinically annotated 
tumour indicators. 

 Fidelity: Degree to which the explanation 
reflects the model’s decision-making, evaluated 
by occlusion tests. 

 Sparsity: The percentage of input features 
required to generate a meaningful explanation. 
The results are shown in Table 4. Figure 6 
shows the SHAP decision plot for the feature 
analysis in proposed model. 
 

        Table 4 Evaluation of Interpretability 
Methods 

Method Localization 
Accuracy 
(%) 

Fidelity 
(%) 

Sparsity 
(%) 

SHAP 78 81 39 
Grad-
CAM 

85 76 52 

Attention 82 79 28 
HEAM 91 89 23 

We used three key interpretability metrics:
 _ Localisation Accuracy: Agreement between high-

lighted features and clinically annotated tumour 
indicators.

 _ Fidelity: Degree to which the explanation reflects 
the model’s decision-making, evaluated by occlu-
sion tests.

 _ Sparsity: The percentage of input features re-
quired to generate a meaningful explanation.

The results are shown in Table 4. Figure 6 shows the 
SHAP decision plot for the feature analysis in pro-
posed model.

Table 4 
Evaluation of Interpretability Methods

Method Localization 
Accuracy (%) Fidelity (%) Sparsity (%)

SHAP 78 81 39

Grad-CAM 85 76 52

Attention 82 79 28

HEAM 91 89 23

Figure 6    
SHAP decision plot.

 
 

 

 
 
 

Figure 6 SHAP decision plot.  
 
These results highlight that while each method 
provides value, HEAM consistently 
outperforms all three interpretability metrics. 
SHAP provides strong feature attribution but 
lacks spatial localization. Grad-CAM gives 
visual insights but is less precise in sparsity. 
Attention helps focus on essential features, but 
is limited in explainability scope when used 
alone. 
 

5. Conclusion and Future Work  
In this study, we proposed a deep learning approach 
that utilises CNN integrated with HEAM and 
explainable AI to help predict breast cancer. The 
results were encouraging, with the CNN model 
reporting a high accuracy of 99.6%, far better than the 
traditional machine learning methods. As if that is 
not enough, the model's precision, recall and AUC, 
where AUC is the area under the curve, were a 
striking figure almost equal to one, demonstrating 
the model's proficiency in identifying malignant 
lesions with very few false positives or negative 
cases. When integrated into the deep learning 
model's visualisation of relevant data, the attention 
mechanism made the model much better without 
compromising on how the model worked. By using 
explainability methods such as SHAP and Grad-
CAM, physicians and doctors can understand the 
predictions made by the model. The clinicians will 

find the model appropriate as the precision and 
interpretability of the model outweigh the 
negative impact of the two on patient safety. 

Further, certain areas can still be worked on in 
depth or need more focus. In future studies, this 
methodology could be extended when working 
with more complicated datasets, such as 
medicine-related datasets such as 
histopathology slides, so that the model's 
validity across different datasets can be higher 
since the model would have more cases to be 
trained on. As the model also has limitations, 
multi-modal learning where other data is 
incorporated, such as genetic information and 
patient history, among others, could help 
enhance the model further. 

Data availability: Data used in this article is publicly 
available in 

https://archive.ics.uci.edu/dataset/17/breast+cancer+
wisconsin+diagnostic 
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These results highlight that while each method pro-
vides value, HEAM consistently outperforms all 
three interpretability metrics. SHAP provides strong 
feature attribution but lacks spatial localization. 
Grad-CAM gives visual insights but is less precise in 
sparsity. Attention helps focus on essential features, 
but is limited in explainability scope when used alone.

5. Conclusion and Future Work 
In this study, we proposed a deep learning approach 
that utilises CNN integrated with HEAM and ex-
plainable AI to help predict breast cancer. The results 
were encouraging, with the CNN model reporting a 
high accuracy of 99.6%, far better than the traditional 
machine learning methods. As if that is not enough, 
the model's precision, recall and AUC, where AUC is 
the area under the curve, were a striking figure almost 
equal to one, demonstrating the model's proficiency 
in identifying malignant lesions with very few false 
positives or negative cases. When integrated into the 
deep learning model's visualisation of relevant data, 
the attention mechanism made the model much bet-

ter without compromising on how the model worked. 
By using explainability methods such as SHAP and 
Grad-CAM, physicians and doctors can understand 
the predictions made by the model. The clinicians 
will find the model appropriate as the precision and 
interpretability of the model outweigh the negative 
impact of the two on patient safety.
Further, certain areas can still be worked on in depth 
or need more focus. In future studies, this method-
ology could be extended when working with more 
complicated datasets, such as medicine-related data-
sets such as histopathology slides, so that the model's 
validity across different datasets can be higher since 
the model would have more cases to be trained on. As 
the model also has limitations, multi-modal learning 
where other data is incorporated, such as genetic in-
formation and patient history, among others, could 
help enhance the model further.
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