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In the field of pipeline weld defect detection, common object detection algorithms have high complexity and 
huge computational load, making it difficult to meet the real-time monitoring requirements of pipeline weld 
defects on pipeline production lines. To address this issue, this paper proposes a lightweight pipeline weld de-
fect detection model YOLOv8n-BVS based on the YOLOv8n object detection framework. The model introduces 
the BRA module to improve the recognition ability of small defects. To further improve the accuracy of mod-
el recognition, a lightweight upsampling algorithm CARAFE is used in the feature fusion network to improve 
the quality and richness of fused features. Finally, the experimental results showed that the model parameters 
were 1.56M, which was only 51.6% of the baseline, while the average accuracy reached 87.9%, an improvement 
of 3.4% compared to the baseline. This verified that the YOLOv8n-BVS model met the requirements of online 
detection of pipeline weld defects while ensuring detection quality.
KEYWORDS: Lightweight neural network; Pipeline welds; Defect detection; Real-time recognition.

1. Introduction
Welding is the most important production method 
for oil and gas pipelines, and the quality of welds is an 
important factor in ensuring the safety of oil and gas 
pipelines. Detecting weld defects through X-ray is an 
important technical means to ensure weld quality. At 

present, in this testing position, practitioners must 
observe the X-ray pipeline weld seam detection im-
ages returned on the assembly line in real-time, and 
judge defects based on their professional knowledge 
and experience. This method has high work intensity, 
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strong subjectivity, and high responsibility, resulting 
in a sharp decrease in the number of relevant prac-
titioners year by year. There is an urgent need for an 
intelligent defect detection method to alleviate work 
pressure [5, 11].
With the development of artificial intelligence tech-
nology, deep learning methods are widely used in in-
dustrial quality inspection. The research on pipeline 
weld defect detection using deep learning methods is 
gradually increasing. However, due to the large com-
putational resources required for training and test-
ing of deep neural network models, and the limited 
computing power of deploying terminal devices, it is 
difficult to achieve real-time and efficient recognition 
results. Moreover, the pipeline running speed on the 
pipeline weld defect detection pipeline is relatively 
fast. The industrial deployment of intelligent research 
results on pipeline defects has brought significant dif-
ficulties and challenges. Most existing research on 
pipeline weld seam defect recognition has not taken 
into account the capture of small defects in the detec-
tion image during pipeline travel, which can lead to 

Figure 1
Job positions and inspection drawings for pipeline weld defect detection

missed detections [15, 18]. Therefore, reducing model 
complexity and computational complexity as much as 
possible while ensuring detection accuracy is an im-
portant issue that needs to be addressed in this field. 
YOLO, as a classic stage object detection algorithm, 
has the advantages of high real-time performance, 
simplicity and efficiency, multi-scale detection, global 
contextual information utilization, and multitasking 
[7]. These characteristics make it perform well in fast 
object detection and real-time application scenarios. 
On the other hand, the large number of parameters 
and high computational cost of YOLO series models 
make it difficult to achieve industrial deployment of 
defect detection research results. Therefore, how to 
improve the YOLO series while ensuring high object 
detection performance is a hot research topic.
In the task of detecting defects in pipeline welds, 
the computing power of terminal detection equip-
ment is often only a few GFLOPS levels, and the 
memory is less than 8GB. However, at present, YO-
LO-based object detection algorithms generally have 
a computing power of 40-150GFLOPS. Predicting a  
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the detection image during pipeline travel, which 
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global contextual information utilization, and 
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large number of parameters and high 
computational cost of YOLO series models make 
it difficult to achieve industrial deployment of 
defect detection research results. Therefore, how 
to improve the YOLO series while ensuring high 
object detection performance is a hot research 
topic. 

Defect detection is a highly promising 
application scenario for deep learning. 
Compared with traditional computer 
vision algorithms and statistical learning 
methods, deep learning defect 
recognition methods have higher 
detection accuracy and stronger 
robustness in complex backgrounds [1, 4]. 
Researchers are increasingly interested in 
using deep learning-based methods to 
detect defects in pipeline welds. Some 
studies have proposed hybrid methods 
that combine multiple deep-learning 
algorithms. For example, a feature 
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640 x 640 image requires about 16GB of memory, 
which exceeds the processing capacity of terminal 
detection equipment. Without increasing computing 
resources, terminal detection devices cannot guar-
antee the stable operation of object detection models 
with large computational complexity [3, 12]. In ad-
dition, higher detection accuracy is needed to meet 
practical production needs, especially in identifying 
small defects such as pores and cracks.

2. Related Work
Defect detection is a highly promising application 
scenario for deep learning. Compared with tradition-
al computer vision algorithms and statistical learning 
methods, deep learning defect recognition methods 
have higher detection accuracy and stronger robust-
ness in complex backgrounds [1, 4]. Researchers are 
increasingly interested in using deep learning-based 
methods to detect defects in pipeline welds. Some 
studies have proposed hybrid methods that combine 
multiple deep-learning algorithms. For example, a 
feature pyramid network FPN model based on Fast-
er RCNN was proposed to address defects of differ-
ent sizes in welds, weak contrast, and wide boundary 
transitions in X-ray images, and a new visual attention 
mechanism SPAM (Squeeze and Position Attention 
Mechanism) was introduced [14]. Based on the idea 
of zero sample learning (ZSL), the semantic descrip-
tion of defect categories by experts is fully utilized 
to cross-integrate artificial semantic features with 
ultrasound detection signal features [9]. A study has 
focused on small defects in pipeline circumferential 
welds, using the Convolutional Block Attention Mod-
ule (CBAM) to optimize the YOLOv5 network model 
structure and improve the detection network’s at-
tention preference for extracting small target defect 
signals [17]. The CBAM+YOLOv5 model improved 
the detection accuracy of MFL signals for pipeline 
circumferential welds from 89.33% to 98.11%, and 
correctly identified and classified the MFL signals 
of pipeline circumferential welds with a confidence 
level of 85%, with slight anomalies [16]. The current 
advanced deep learning-based object detection algo-
rithms are difficult to deploy in some industrial pro-
duction scenarios due to their overly complex models 
and large computational complexity, which are limit-
ed by the computing power of terminal detection de-

vices. To solve these problems, Chen et al. [2] proposed 
a lightweight architecture FNNet based on CNN for 
fabric defect detection. Compared with advanced 
lightweight architectures, FNNet has a faster training 
speed and computational resources are required. Xu 
et al. [18] designed a lightweight pipeline weld surface 
defect detection algorithm, using MobileNetV2 as the 
backbone network to construct a defect classification 
model, and introduced a CBAM dual channel atten-
tion module to improve the detection accuracy of the 
model while reducing its complexity. Wang et al. pro-
posed a lightweight transmission line defect detection 
method based on coordinate attention. This method 
decouples the large convolution kernels in the net-
work in both channel and space using YOLOv5, reduc-
ing the parameters of the convolution kernels and the 
computational complexity of convolution operations, 
achieving the lightweight of the network [15]. Kumar 
et al. designed GMANet as a bottleneck network based 
on the Ghost module and redesigned the feature fu-
sion network to obtain a lightweight surface defect 
detection algorithm [8].

3. Methodology
This study focuses on addressing the limitations of 
computational power in online pipeline weld defect 
detection on terminal devices, where high computa-
tional complexity often hampers real-time perfor-
mance. Using the YOLOv8n model as a baseline, we 
developed a pipeline weld defect detection model that 
balances detection accuracy and speed through three 
key improvements. First, to address the common is-
sue of small defects being easily missed or misdiag-
nosed, we introduce the Bi-level Routing Attention 
(BRA) mechanism to enhance feature extraction. This 
improves the detection of small objects and boosts 
the overall performance of the YOLOv8n-based ob-
ject detection model. Second, to reduce model com-
plexity and the computational burden of traditional 
convolutions, we replace conventional convolution 
operations with the VanillaNet module in both the 
backbone and bottleneck networks. Finally, to fur-
ther enhance detection performance, we incorporate 
the CARAFE module during the upsampling process. 
Traditional interpolation methods can blur or distort 
detailed features, but CARAFE preserves this infor-
mation more effectively, allowing for more accurate 
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recovery of subtle features such as micropores and 
small cracks. This improves the model’s ability to de-
tect fine defects in pipeline welds.

3.1. Optimization of Small Defect 
Recognition Capability
Divide the input feature map X∈RH×W×C of the obtained 
detection image into S×S non overlapping regions, so 
that each region contains HW/S2 feature vectors.Xis 
transformed into Xr∈R(S2×HW/s2×C)through reshaping op-
eration, and linear mapping is obtained to obtain lin-
ear maps Q, K, V, as shown in public Equations (1)-(3):

Q = X r W q (1)

K = X r W k (2)

V = X r W v. (3)

Calculate the average values of regions Q and K sepa 
rately to obtain Qr, Kr ∈ RS2×C, and then perform ma-
trix multiplication on the obtained average values to 
obtain the adjacency matrix Ar of the affinity graph 
between regions, as shown in public Equation (4):

Ar = Q r(W r) T. (4)

In the adjacency matrix Ar, each element represents 
the semantic correlation between two regions. A 
routing index matrix is generated through top-k oper-
ation to preserve the first k connections between each 
region and other regions. The result is shown in pub-
lic Equation (5):

I r = topIndex(Ar). (5)

The i-th row of Ir contains the k most relevant index-
es of the i-th region. Calculate the tensors V and K as 
shown in public Equations (6)-(7):

K g = gather(K, I r) (6)

V g= gather(V, I r), (7)

wherein, Kg, Vg ∈ RS2×kHW/s2×C) after obtaining the region 
to region routing index matrix Ir, for each Q in region 
i, it will focus on the key-values located inkrouting 
regions and concentrated on them. These regions are 
dispersed throughout the entire feature map by index 
Ir

(i, 1), I
r

(i, 2), ..., I
r

(i, k), and all K and V in these k regions are 
gathered, applying attention to Kg and Vg.

O = Attention(Q, K g, V g) + LCE(V), (8)

where LCE(V)is the local context enhancement term, 
function LCE(V) parameterizes using deep convolu-
tion and sets the kernel size to 5.
The directed graph routing between regions enables 
the feature map to optimize the selection of relat-
ed content in parts, not only enabling more accurate 
defect targets to be selected overall but also obtain-
ing receptive field content more accurately in local 
areas. This means that the BRA mechanism based 
on double-layer routing has a more accurate recep-
tive field selection ability [18, 20]. BRA is a dynam-
ic sparse attention based on double-layer routing, 
which can achieve more flexible computation alloca-
tion and internal perception, making it have dynamic 
query-aware sparsity. The schematic diagram of its 
structure is shown in Figure 2.
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Lightweight 
On the pipeline production line, where 
the average speed of pipeline operation 
reaches 0.15 m/s, real-time defect 
recognition poses a significant challenge. 
To address this, we replace the traditional 
convolutional operation in the YOLOv8n 
model's backbone with the lightweight 
VanillaNet module. Conventional 
convolution operations are 
computationally expensive, making them 
unsuitable for real-time pipeline defect 
detection. VanillaNet, a minimalist neural 
network developed by Huawei Noah and 
the University of Sydney, simplifies the 
convolution process by removing 
residual and attention modules, 
achieving strong performance across 
various computer vision tasks. The 
13-layer VanillaNet model, for instance, 
reaches 83% accuracy on ImageNet, 
demonstrating that complex deep 
learning designs are not always necessary 
for effective performance. By introducing 
VanillaNet in place of traditional 
convolutions, we retain strong feature 
aggregation performance while 
significantly improving the detection 
efficiency of the model. 

 
Figure 2 The network structure of Bi-level routing attention 
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3.2. Research on Model Lightweight
On the pipeline production line, where the average 
speed of pipeline operation reaches 0.15 m/s, real-time 
defect recognition poses a significant challenge. To 
address this, we replace the traditional convolutional 
operation in the YOLOv8n model’s backbone with the 
lightweight VanillaNet module. Conventional con-
volution operations are computationally expensive, 
making them unsuitable for real-time pipeline defect 
detection. VanillaNet, a minimalist neural network 
developed by Huawei Noah and the University of 
Sydney, simplifies the convolution process by remov-
ing residual and attention modules, achieving strong 
performance across various computer vision tasks. 
The 13-layer VanillaNet model, for instance, reaches 
83% accuracy on ImageNet, demonstrating that com-
plex deep learning designs are not always necessary 

for effective performance. By introducing VanillaNet 
in place of traditional convolutions, we retain strong 
feature aggregation performance while significantly 
improving the detection efficiency of the model.
As shown in Figure 3, the network consists of three 
stages. In the P1 stage, Stem converts the original 
3-channel image into a feature map with C channels 
through downsampling. Then, in the P2 stage, a max 
pooling layer with a step size of 2 is used to adjust 
the size of the feature map and expand the number of 
channels to twice that of the previous layer. Finally, 
the classification results are output through the fully 
connected layer in the P3 stage. To preserve the fea-
ture information contained in the feature map and 
minimize computational costs, all convolutional lay-
ers use a 1 × 1 kernel, and BN is added to the end of each 
layer to simplify the training process of the network.

3.3. Model Performance Optimization

Pipeline weld seam detection images often suffer 
from high background noise, making it difficult for the 
model to distinguish useful defect information during 
the upsampling process. This results in poor-quality 
feature maps and excessive interference, ultimately 
affecting the model’s detection accuracy. To address 
this issue and enhance the model’s ability to express 
defect features, we introduce the lightweight CA-
RAFE upsampling algorithm into the feature fusion 

Figure 3
The network structure of VanillaNet

network of the YOLOv8n baseline model. Tradition-
al upsampling methods typically neglect the seman-
tic information in feature maps and have limited re-
ceptive fields, leading to suboptimal performance. 
CARAFE overcomes these limitations with its two 
key components: the upsampling kernel prediction 
module and the content-aware recombination mod-
ule. The upsampling kernel prediction module gener-
ates an upsampling kernel that predicts the attention 
weights for each position, based on the mapping rela-
tionship of the downsampled feature map. This en-
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sures that spatial details and contextual information 
are preserved during feature recombination. The con-
tent-aware recombination module further enhances 
the upsampling process by retaining as much spatial 
information as possible, improving the accuracy of 
object boundaries and defect detection. The specific 
process of upsampling is as follows: For the input fea-
ture map, C × H × W with a size of X and an upsam-
pling ratio of σ, a 1×1 convolution is used to compress 
its channel count to obtain a new feature map X' with 
a size of C × σH × σW. For any target position L of X^', 
there is a corresponding source position l' = (i', j') on 
X, where i = (i'/σ'), j = ( j'/σ'). If N(Xl, k) is the k×k sub-
domain of X centered on position l, then kernel pre-

diction module Ψ predicts a position kernel for each 
position based on the neighborhood of Xl, which l'can 
be represented as public Equation (9):

W(l' ) = Ψ(N(Xl, Xencoder)). (9)

Recombine the features with the content perception 
restructuring module Φ, and recombine the neigh-
borhood of Xl with the kernel W(l') to obtain X(l')' as 
shown in public Equation (10):

X'l' = Φ(N(Xl, Kup), Wl'). (10)

In summary, the YOLOv8n-BVS network structure 
proposed in this article is shown in Figure 4.

Figure 4
The network structure of YOLOv8n-BVS
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Among them, are the number of correctly 
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4. Results and Discussion
4.1. Datasets and Evaluation Indicators
The data for this experiment comes from real X-ray 
inspection images of steel pipe manufacturing plants. 
Due to the strong professionalism of defect determi-
nation in X-ray inspection images, this study con-
ducted a one-year special cooperation with data 
annotation engineers stationed in the steel pipe man-
ufacturing plant to assist X-ray inspectors in stan-
dardizing and annotating X-ray inspection images of 
real pipeline weld defects, and constructing a profes-
sional and standardized defect annotation dataset, 
The common five types of pipeline weld defects are 
shown in Figure 5.
This research experiment used a single GPU (NVID-
IA GeForce RTX 3080 16G) during the training phase, 
with an image input size of 640 * 640, an initial learn-
ing rate of 0.025, a Batchsize of 16, an SGD optimizer, 
and a training round count of 300.
In this study, the following indicators were used to 
evaluate the performance of the model: Precision (P), 
Recall (R), and Mean Average Precision (mAP). The 
calculation method for each indicator is shown in 
Equations (11)-(14):
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Among them, are the number of correctly predicted 
positive samples, the number of incorrectly predict-
ed negative samples, and the number of incorrectly 
predicted positive samples. To study the balance be-
tween lightweight and model recognition accuracy, 
floating-point operations (FLOPs) are introduced. 
FLOPs refer to the total number of floating-point op-
erations performed by an algorithm or model in the 
fields of computer science and numerical computing. 
This indicator is usually used to measure the compu-
tational complexity of an algorithm or model, rather 
than the specific runtime. By comparing the FLOPs of 
different models, it is possible to preliminarily eval-
uate their differences in computation. Fewer FLOPs 
may mean that the model is lighter and more suitable 
for running in resource-constrained environments.

4.2. Experimental Analysis

This article takes YOLOv8n as the baseline and in-
troduces the VanillaNet module in the backbone net-
work and bottleneck network to reduce the overall 
complexity of the model. At the same time, the BRA 
module and CARAFE upsampling operator are in-
troduced in the bottleneck network to improve the 
recognition ability of small defects and enhance the 
expression ability of output features, respectively, to 
further improve the detection and recognition accu-
racy of the model. To verify the effectiveness of the 
baseline model improvement in this article, ablation 
experiments were conducted on the steel pipe weld 
defect dataset. By gradually adding optimization 
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𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝑁𝑁𝑁𝑁
 (12) 

𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃 = � 𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
1

0
 (13) 

𝑚𝑚𝑚𝑚𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃 =
1
𝑁𝑁𝑁𝑁
� 𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴

𝑒𝑒𝑒𝑒

𝑖𝑖𝑖𝑖=0
. (14) 

Among them, are the number of correctly 
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modules to the baseline model, performance indica-
tors before and after ablation were compared, and the 
effects of model parameter quantity, detection accu-
racy, and detection speed on model variation were 
analyzed. The contributions of each part of the model 
to pipeline weld defect detection and their interrela-
tionships were compared.
According to the results of the ablation experiment, 
as shown in Table 1, it can be analyzed:
1 After adding the BRA structure to the bottleneck 

network, the computational complexity of the 
model decreased by 2.6 GFLOPs compared to the 
baseline, and the improvement in model inference 
speed was particularly significant, increasing from 
232 to 333 at the baseline, an increase of 101. The 
model not only selects the target more accurately 
overall but also obtains the receptive field content 
of local areas more accurately. Significantly im-
proved the detection accuracy of defects such as 
pores, cracks, and slag inclusions. This confirms 
that the BRA attention mechanism based on dou-
ble-layer routing has a more accurate ability to se-
lect receptive fields.

Table 1
Results of the Ablation Experiment

Model BRA Vanil-
laNet

CA-
RAFE pores

Incom-
plete pene-

trations
cracks

Incom-
plete 

fusions

Slag in-
clusions

mAP 
(%)

Params 
(M) GFLOPs FPS

Base-
Line+ - - - 82.8 83.2 86 88.4 84.4 84.96 3.02 8.2 236

Base-
Line+ √ 87.2 83.6 88.4 88.6 86.4 86.84 4.64 5.8 342

Base-
Line+ √ 81.4 81 87.6 82.8 84 83.36 1.32 5.1 322

Base-
Line+ √ 83.6 84.6 88.8 86.5 87.2 86.14 3.15 8.8 222

Base-
Line+ √ √ 81.2 83.8 86.6 87.6 85.5 84.94 1.45 6.0 275

Base-
Line+ √ √ 86.6 83.5 88.8 83.9 88.6 86.28 1.42 5.6 282

Base-
Line+ √ √ √ 87.8 86.2 90.2 88.2 87.5 87.98 1.56 6.2 275

2 After introducing the VanillaNet module into the 
backbone and bottleneck networks, the parame-
ter count decreased from baseline 3.02M to 1.32M, 
a decrease of 1.7M. The computational load de-
creased from baseline 8.2GFLOPs to 5.1GFLOPs, 
a decrease of 3.1GFLOPs, and FPS improved by 
86 compared to baseline. VanillaNet uses a con-
tinuous convolution pooling structure to extract 
features, avoiding branch structures and reducing 
a large amount of computation. Therefore, using 
lightweight VanillaNet modules as feature ex-
traction can effectively reduce model complexity 
and improve inference speed.

3 After introducing the CARAFE upsampling mod-
ule in the bottleneck network, the mAP of the mod-
el increased from 84.96% of the baseline to 86.14%, 
an improvement of 1.18%. The detection accuracy 
of defects such as porosity, incomplete penetra-
tion, and cracks has been improved, with cracks 
having the highest detection accuracy, reaching 
88.8%. The number of parameters and computa-
tion increased by 0.13M and 0.6GFLOPs respec-
tively compared to the baseline, while FPS de-
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creased by 14. Verified that the CARAFE operator 
can achieve upsampling by learning the correla-
tion between pixels in the neighborhood, thereby 
capturing richer contextual information and fa-
cilitating the reconstruction of detailed features. 
Although it slightly increased the computational 
complexity, it significantly improved the detection 
accuracy of the model.

4 After introducing both the VanillaNet and BRA 
modules simultaneously, the model’s parameter 
count and computational complexity were reduced 
by 1.6M and 2.6GFLOPs compared to the base-
line, FPS was improved by 46, mAP was improved 
by 1.32%, and defect detection accuracy was im-
proved; After introducing both the VanillaNet 
module and the CARAFE upsampling module si-
multaneously, the mAP of the model is consistent 
with the baseline. The number of parameters and 
computational complexity of the model decreased 
by 1.57M and 2.2GFLOPs respectively compared 
to the baseline, while FPS increased by 39.

5 After introducing the BRA module, VanillaNet 
module, and CARAFE upsampling module simul-
taneously, the YOLOv8n-BVS model achieved a 
maximum mAP of 87.98%, while the parameter and 
computational complexity were only 51.6% and 
75.6% of the baseline, and the FPS increased by 39 
compared to the baseline. The experiment has con-
firmed that the model proposed in this article has 
high recognition accuracy and faster recognition 
speed in pipeline weld defect detection and recog-
nition tasks, promoting the industrial deployment 
of intelligent online detection and recognition of 
weld defects.

To further verify the recognition ability of the 
YOLOv8n-BVS model for small defects, an experi-
mental comparison was made between the YOLOv8n 
model and the YOLOv8n-BVS model in this paper to 
identify the attention heatmap of small defect areas 
in pipeline welds, as shown in Figure 6. The exper-
iment selected continuous micro pore defects and 
small cracks defects. The baseline model focused 
more on global targets when identifying these two 
types of defects and could not extract local features, 
In the case of larger computational complexity, the 
YOLOv8n-BVS model is unable to effectively identi-
fy small defect targets. However, it can quickly locate 
the key parts of the target, determine the position and 

boundary of the target area, and efficiently complete 
the task of identifying pipeline weld defects.

5. Conclusion
In the field of pipeline weld defect detection, the 
limited computing power of terminal devices often 
makes it challenging to deploy deep learning mod-
els for real-time online detection and recognition of 
weld defects. This article proposes the lightweight 
YOLOv8n-BVS pipeline weld defect detection algo-
rithm, which incorporates the BRA network struc-
ture, VanillaNet module, and CARAFE upsampling 
module. The model improves the ability to select 
targets and detect subtle defects more accurate-
ly. Although the improvements in model inference 
speed and computational complexity are incremen-
tal, the model still achieves a notable enhancement 
in efficiency. By reducing the number of parame-
ters and computational requirements, the FPS in-
creased, and the computational resources needed 
for inference were reduced compared to the base-
line model. In practical production environments, 
the model achieved a mean average precision (mAP) 
of 87.98% on the pipeline weld defect dataset, with 
model parameters and computational complexity at 
only 51.6% and 75.6% of the baseline, respectively. 
The YOLOv8n-BVS model requires fewer compu-
tational resources to maintain high detection ac-
curacy. With its precise defect detection, efficient 
performance, and strong applicability, it offers a 
valuable solution for real-time pipeline weld defect 
detection, meeting the demands of online monitor-
ing in industrial settings.
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Figure 6
Comparison between the YOLOv8n model and the YOLOv8n-BVS model in this paper for attention thermography of 
identifying small defects in pipeline welds
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