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Blood cells have an important place in the human immune system. The amount of blood cells in the blood is 
used to determine whether human health is normal or unusual. For this reason, detecting and determining the 
amount of RBC, WBC and Platelets elements in the blood is very important for human health. In the manage-
ment of all these processes, basic factors such as the complexity of cell structures, loss of time, and the necessity 
of expert opinion make the realization of these processes very complicated. In this study, cell detection was 
carried out using models of Detectron2 and Yolo algorithms to automatically detect and quantify blood cells 
quickly. The BCCD dataset was used to run the models. In the study, the performance results of the models of 21 
different most recent artificial intelligence algorithms in detecting blood cells were analyzed. In this compre-
hensive research, the accuracy values of the train and test process of the models were examined comparatively, 
and the most suitable model was determined, which aims to provide a high success rate for small models. As a 
result of the study, the highest AP value with 93.7% in the train result among 5 models belonging to Detectron2 
from 21 models belongs to the Faster R-CNN X_101_32x8d_FPN_3x and Faster R-CNN R_101_C4_3x models; 
Among the 16 models belonging to Yolo, the highest AP value as a result of the train belongs to the Yolov7-w6 
model with 95.8%. When the test results are examined, among the Detectron2 models, the Faster R-CNN 
R_101_FPN_3x model achieved 90.3% AP value. In addition, among the Yolo models, the Yolov5-s model was 
the most successful algorithm with an AP value of 94.5%. When the train and test results of the models, training 
time, weight size values were examined, it was determined that the Yolov5-s model was the most successful 
model in classifying and detecting blood cells in the BCCD dataset.
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1. Introduction
Technological developments have been widely used 
in recent years to increase efficiency and reduce 
costs in the health sector as well as in every field. Es-
pecially in the field of medical imaging, the number 
of artificial intelligence applications is constantly in-
creasing and the developed systems reduce the costs 
and reduce the workforce. In addition, since features 
such as blood cell structures and cell numbers are 
important effective parameters in the diagnosis and 
treatment of the disease in clinical studies, quanti-
tative analysis of cell images and artificial intelli-
gence-based detection are frequently used in these 
areas.  For automatic detection of blood cells, it is 
necessary to separate the cells from the image back-
ground with conventional image processing meth-
ods. In this process, unnecessary workload arises 
due to the complexity of the image background and 
the similarity of cell structures. In addition to this 
workload loss of time, there is also a loss of quality 
and efficiency in the detection and classification of 
cells. To overcome all these problems, deep learning 
(DL) based object recognition algorithms were used.
In the field of health, the doctor or specialist should 
examine the patient and decide whether the disease 
is present by examining the results of the patient's 
analysis. It is vital for the patient that this process 
takes place quickly and accurately. The human-like 
decision-making structure of artificial intelligence 
algorithms, continuous development and continu-
ous optimization studies have made the use of ar-
tificial intelligence in the field of medical imaging 
widespread [3]. In this study, it is aimed to deter-
mine the diagnosis of a person's health status by 
deep learning method, depending on the RBC, WBC 
and Platelets elements in the blood. By looking at the 
number of RBC in a person's blood, information can 
be obtained about the presence of heart failure and 
coronary artery disease [7]. WBC count was deter-
mined to be proportional to AIS disease in a person 
[35]. Again, WBC count is associated with anhedo-
nia, fatigue, slowing down, low appetite, while plate-
let count is associated with insomnia, restlessness, 
suicidal ideation and suicide attempt [13]. 
The main contributions of this study are:
	_ Processing of image data of blood cells and 

classification with different deep learning models;

	_ Acceleration of blood analysis process with deep 
learning method considering that these elements 
in blood can be detected as a result of long-term 
training and experience in laboratory environment;

	_ Performing blood cell detection using weight files 
obtained from deep learning models to perform 
blood analysis;

	_ Comparative analysis of performance times, 
processing speeds and accuracy results of current 
object detection algorithms.

In the continuation of the study, firstly, the studies in 
the literature related to automatic object detection 
were examined. After the literature review, the algo-
rithms and architectural structures used in object 
detection, the dataset used and their details were re-
searched and shared. In line with the research, the 
models to be used in the study were determined and 
the details of the operation of the determined mod-
els were shared. The experimental results obtained 
from the models were evaluated comparatively and 
as a result of the evaluation, the most suitable model 
for the dataset was determined. The contributions 
of the study are mentioned by comparing with the 
studies in the literature that detect blood cells. Fi-
nally, details of future studies are given.

2. Related Works
Related works on object detection with deep learning 
in the last three years were examined. Details such 
as the results of the works and the algorithms used 
are shared. Leng et al. [12] used the Raabin dataset to 
detect leukocytes with blood cells. The dataset used 
was composed of three classes: eosinophil, mono-
cyte and neutrophil. Instead of using normal CNN, 
Pyramid Vision Transformer was used in the back-
bone structure of the DETR algorithm. In addition 
to changing the backbone structure, the DAM struc-
ture, which interpolates position values and applies 
them to weight values, has been added to the DETR 
algorithm. Yolov3-TL, Faster R-CNN-TL, DETR-TL, 
Improved DETR-TL, Improved DETR-FS models 
were trained with the dataset. According to the re-
sults obtained, it was stated that the Improved DE-
TR-TL model showed the best performance with a 
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mAP value of 96.1%. Stating that platelet detection 
is important in evaluating blood status and liver dis-
eases, Liu et al. [16] performed deep learning-based 
platelet detection. Researchers argued that datasets 
containing blood cells were insufficient and difficult 
to access and created a single-class dataset consist-
ing of 412 images. The dataset is divided into three, 
296 images are reserved for use in the training pro-
cess, 33 images are reserved for use in the validation 
process, and the remaining 83 images are reserved 
for use in the testing process. Then, the number of it-
erations was set to 100, the batch size value was set to 
4, the learning rate was set to 0.001 for the first 50 it-
erations and 0.0001 thereafter. Models were run with 
the adjusted hyperparameter values and it was deter-
mined that the highest AP value of 84.2% belonged 
to the Yolov3 model. Then, ablation experiments 
including multiscale fusion, anchor box clustering 
and match parameter structures were performed 
on the Yolov3 algorithm. As a result of the studies, it 
has been shown that the Yolov3 model, with simul-
taneous changes in the match parameter and an-
chor box clustering, reached an AP value of 87.3%. 
Hu et al. [4], who worked on feature extraction of 
small objects, used the BCCD dataset to detect blood 
cells. Based on the Faster R-CNN model, two differ-
ent backbone structures were used: ResNet50 and 
FPN. Additionally, models were created using two 
different frameworks: Pytorch and MindSpore. In 
the created models, the optimization algorithm was 
SGD, the momentum value was 0.9, and the learning 
rate was 0.05. Pixel level balancing operations were 
used selectively in different parts of four different 
loss functions. As a result of the studies, a mAP value 
of 63.7% was obtained in the model in which two dif-
ferent pixel level balancing processes were used to-
gether, running on the Pytorch framework. Rahaman 
et al. [21] used the BCCD dataset in the study to en-
able doctors and physicians to automatically detect 
blood cells from real images. It has been stated that 
platelet count is common for COVID-19 and some 
diseases. In the study, Yolov5-s and Yolov5-m models 
were trained with the BCCD dataset and compara-
tive results were shared. According to the results ob-
tained, the precision value of Yolov5-s was recorded 
as 79.7%, while the precision value of the Yolov5-m 
model was recorded as 79.9%. As a result, it has been 
suggested that Yolov5-m is more successful in de-
tecting and counting blood cells. To automatically 

identify and locate WBC types from blood cells, Kut-
lu et al. [11] conducted a study. BCCD and LISC data-
sets were combined to detect five WBC types called 
Eosinophils, Basophils, Neurophils, Monocytes and 
Lymphocytes. The size of 6250 images in the created 
dataset is set to 256x256. Four different models based 
on R-CNN were trained: VGG16, ResNet50, AlexNet 
and GoogLeNet. As a result of the studies, the Res-
Net50 model demonstrated higher performance than 
other models with a mAP value of 74%.

3. Material and Methods
3.1. Object Detection and Deep Learning
In recent years, it has been strengthened with arti-
ficial intelligence-based components. AI algorithm 
systems provide both faster and more accurate ob-
ject detection. Object detection in the field of com-
puter vision has emerged as one of the issues to be 
overcome in visual recognition. Object detection is 
the process of identifying the position of a detected 
or targeted object on the image by separating it from 
the image background and identifying which class 
the object belongs to [38]. Its success rate and high 
working speed compared to traditional methods 
have increased the use of DL algorithms in object 
detection. DL is a sub-branch of machine learning 
consisting of many layers and nonlinear processing 
units [36]. Thanks to CNN, deep learning learns the 
basic shapes in the first layer and the features on the 
images (such as color, shape, texture) in the next lay-
ers, that is, in the deeper layers [9]. 

3.2. Faster R-CNN
Faster R-CNN is one of the deep neural networks 
designed for automatic detection of target objects. 
When the development process was examined, the 
R-CNN system was first developed. R-CNN creates 
2000 region suggestions on an image and feeds each 
region suggestion one by one to the CNN, acting as 
a feature extractor and creating a 4096-dimension-
al feature vector [18]. In convolutional meshing of 
R-CNN, applying forward pass for each object in-
creases the computational load. In this situation, 
SPPnet and Fast R-CNN, in which the input image 
passes through the CNN in one go, are proposed for 
solving problem [6]. This process can be ordered as 
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identifying region suggestions from the image fea-
ture map, resizing it in the ROI pooling layer, and 
then defining the objects in each region [18]. The in-
novations made in Fast R-CNN made it faster than 
R-CNN. However, the desired speed could not be 
reached. Developed Faster R-CNN, which uses the 
RPN structure to suggest quality region suggestions 
by suggesting the boundaries and accuracy scores 
of the objects in each location to increase temporal 
problems and accuracy [18].

3.3. Detectron2
Pytorch-based Detectron2 was launched by the 
Facebook AI team for use in various object detec-
tion tasks [34]. Considering the structure in which 
Base-RCNN and FPN structure are used together, 
it consists of three parts: backbone network FPN, 
RPN and ROI head (box head) [26]. The backbone 
network FPN extracts the characteristics of the in-
put image; RPN can find objects' box locations and 
classification labels [30]. 
There are many state-of-the-art models of Detec-
tron2. The difference between these models is due to 
the changes in the backbone, number of layers, back-
bone combination and learning rate (LR) scheduler 
structures. At the same time, these differences deter-
mine the names of the models. Backbone appears in 
two variants: ResNet (R) or ResNext (X); the number 
of layers is 50 or 101; backbone combination: Combi-
nation of ResNet and FPN, Conv5 head with ResNet 
Conv4 backbone (c4) or ResNet Conv5 with dilations 
(DC5); 1x or 3x is used for LR scheduler [17]. 
For example, when the Faster R-CNN R_50_FPN_1x 
model is examined: 50-layer ResNet is used as back-
bone, an FPN is used and 1x is used as LR scheduler.

3.4. Yolo
Yolo is an object detection algorithm created by Red-
mon J. and his team, using a neural network called 
Darknet, which leads to faster and more accurate re-
sults than its peers [27]. After the creation of Yolo, 
the improvement work on the algorithm continued. 
The aim of these improvement and optimization 
studies is to increase the performance of the Yolo 
algorithm in terms of speed and accuracy [22].  The 
third version of Yolo, which uses the Darknet-53 
network structure by adding 53 more layers on top of 
the layers used in Yolov2, and can be classified into 

multi-labels [23]. Yolov3, CSPDarknet53, SPP and 
PAN are used in the backbone and neck parts, respec-
tively, while the head part is the same as the head part 
of Yolov3 [2]. Yolov5 consists of four main parts: the 
network input section where images, namely data, 
are entered, the backbone where the features of the 
target objects are extracted, the neck and the head, 
where the extracted features are parsed [8]. While 
the focus structure undertakes the slicing of the 
image without entering the backbone part, the CSP 
structure in the backbone part increases the learn-
ing ability of CNNs and reduces memory usage [37]. 
In addition, it has strong semantic and positioning 
features with the FPN layer in the Yolov5 structure, 
improving the detection ability of objects of differ-
ent scales [39]. Yolov7 is the use of ELAN structure 
in the backbone to gain the ability to continuously 
improve its learning ability; Again, in the backbone 
part, using the MP structure and ELAN together to 
extract the image features is one of the innovations 
[29]. The developers argue that RepConv will break 
the network structure as it will cause too much gra-
dient diversity, and they designed RepConv's repa-
rameterized convolution instead of the identity link 
[33].  When the Yolov7 architecture is examined, we 
see that the neck part of the model and the head part 
are combined and again called the head. This is one 
of the changes Yolov7 developers have made on the 
network. In addition, the new labeling method used 
is a feature that distinguishes the Yolov7 from oth-
er models. In this labeling structure, there are two 
heads called aux head and lead head that work in a 
hierarchy. The lead head has a stronger learning 
structure and the aux head is weaker in this regard. 
The hierarchy between two heads with different 
learning performances is that the learned informa-
tion is transmitted by the lead head to the aux head 
and the lead head better focuses on the learning 
process of new information. The current released 
version of Yolov8 provides the ability to perform de-
tection, segmentation and classification tasks [5].  
In addition, there are five different models named 
n, s, m, l, x belonging to Yolov8. Yolo v8n is a model 
that requires low hardware requirements and has a 
fast processing time. In addition, while the accuracy 
increases in the Yolov8s model, the number of pa-
rameters also increases. The speed and resource re-
quirements are higher in the Yolo v8m model. While 
Yolo v8l and Yolov8x reach maximum accuracy, they 
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also need high hardware requirements. Although the 
number of parameters is low in small models such 
as Yolo v8n, the fps value is higher. In contrast, the 
FLOPs value is high and the FPS value is low in large 
models such as Yolov8x. 
Considering the GPU requirements, large models 
need more performance. Latency represents the 
time a model takes to process the image and is usu-
ally shown in milliseconds. When Yolov8 models are 
examined, GPU and CPU latency is the highest in the 
Yolov8x model. In YOLO models, the width (α) and 
depth (β) factors allow the depth and width dimen-
sions of the model to be interpreted. These values in-
crease optimization and slow down the speed of the 
model in high models (l,x), while in low models (n,s) 
they give faster results. 
As seen in Table 1, the differences between the mod-
els are due to the changes in the depth multiple (d), 
width multiple (w) and ratio (r) values.
Since the anchor box is not used in the Yolov8 model, 
the center point of the object is estimated directly, 

Models d (depth 
multiple)

w (width mul-
tiple) r (ratio)

Yolov8-n 0.33 0.25 2.0

Yolov8-s 0.33 0.50 2.0

Yolov8-m 0.67 0.75 1.5

Yolov8-l 1.00 1.00 1.0

Yolov8-x 1.00 1.25 1.0

Table 1 
Depth Multiple, Width Multiple and Ratio Values of 
Yolov8 Models

indicating that the Anchor-Base was abandoned and 
the Anchor-Free idea was adopted. Another advan-
tage of detection without anchor box is that it speeds 
up the Non-Maximum Suppression process due to 
the reduction in the number of predicted boxes [28]. 
In addition, in some deep learning models, data aug-
mentation is performed during online training. One 
of these data augmentation processes is mosaic aug-
mentation. Doing this throughout the entire train-
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File formats in which labeling information is 
hidden have been arranged for use in models 
of dataset Yolo and models of Detectron2. In 
Yolo models, txt files (364 txt files) for each 
image are stored, and a json file (3 json files) 
where label information is stored for each 
dataset group (train, test, validation) in 
Detectron2 models. 

The labels distribution of the classes of the 
image data in the dataset is given in Figure 3. 
When Figure 3 is examined, graphics 
showing the location, width and height of the 
label boundaries of the RBC, WBC, Platelets 
classes in the dataset are seen. The number of 
images belonging to each classification set is 
given in Figure 3(a). The distribution of RBC, 
WBC and platelet classes in the dataset is 
shown. It is understood from here that the 
class with the most data entry is the RBC 
class. Data entry of Platelets and WBC classes 
are close to each other. What we are referring 
to as data entry here is the number of tagged 
objects in the images in the dataset. Figure 
3(b) chart represents the boundaries of the 
labels in the image data in the dataset. The 
abundance of the same label boundaries can 
be understood by the darkening of red color. 
It can be seen that the data density is 
concentrated in the center. This indicates that 
the data is clustered in a particular class or 
feature set. Graph in Figure 3(c) gives the 
coordinates of the center points of the labeled 
blood cells on the image. Here the image size 
is considered as 1.0 x 1.0 and the center point 
is determined on the x and y axis. It can be 
understood from the darkening of the blue 
color in which region of the image the center 
points of the labeled blood cells are located 
within the entire dataset. The distribution is 
seen to be quite homogeneous and random. 
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ing process greatly reduces performance. Mosaic 
augmentation process has been turned off in the last 
ten epochs to avoid the mentioned performance deg-
radation. Due to the conflicts between classification 
and regression processes in object detection, Yolov8 
uses the decoupled head for classification and local-
ization. CIoU+DFL is used for Bbox. loss and BCE is 
used for class loss. CIoU loss includes distance, as-
pect ratio, and overlapping area geometric factors 
all. For this reason, it is called Complete IoU. DFL 
treats the continuous distribution of box positions 
as discrete probability. BCE creates a benchmark 
that measures the Binary Cross Entropy value be-
tween the target and the output.
C2f combined all output from Bottleneck, while C3 
used only the last output. This reason in the first part 
of the stem, C2f, not C3, was used as the main struc-
ture, and 3x3 conv was chosen instead of 6x6 conv 
[14]. In the Bottleneck part, unlike Yolov5, the ker-
nel size has been changed to 3x3. Finally, the same 
channel sizes are combined in the neck to reduce the 
overall size and number of parameters of the tensors. 
Details of the structures of the article Yolov5, Yolov7 
and Yolov8 models are given in Figure 1.

3.5. Dataset
The most suitable dataset for this study was 
searched and it was deemed appropriate to use the 
images in the dataset named BCCD [25] in this study. 
There are three different classes in the dataset and a 
total of 364 images of the dataset were used. These 
classes are RBC, WBC and Platelets. There is a total 
of 4888 labels belonging to three classes. There are 
36 images and 489 labels containing blood cells in 
the test set. Of the 489 tags in the test set, 36 belong 
to the Platelets class, 35 belong to the WBC class, 
and the remaining 418 tags belong to the RBC class. 
Labeled images of the dataset are shown in Figure 2. 
File formats in which labeling information is hidden 
have been arranged for use in models of dataset Yolo 
and models of Detectron2. In Yolo models, txt files 
(364 txt files) for each image are stored, and a json 
file (3 json files) where label information is stored 
for each dataset group (train, test, validation) in De-
tectron2 models.
The labels distribution of the classes of the image 
data in the dataset is given in Figure 3. When Figure 
3 is examined, graphics showing the location, width 
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and height of the label boundaries of the RBC, WBC, 
Platelets classes in the dataset are seen. The num-
ber of images belonging to each classification set is 
given in Figure 3(a). The distribution of RBC, WBC 
and platelet classes in the dataset is shown. It is un-
derstood from here that the class with the most data 
entry is the RBC class. Data entry of Platelets and 
WBC classes are close to each other. What we are re-
ferring to as data entry here is the number of tagged 
objects in the images in the dataset. Figure 3(b) chart 
represents the boundaries of the labels in the image 
data in the dataset. The abundance of the same label 
boundaries can be understood by the darkening of 
red color. It can be seen that the data density is con-
centrated in the center. This indicates that the data is 
clustered in a particular class or feature set. Graph in 
Figure 3(c) gives the coordinates of the center points 
of the labeled blood cells on the image. Here the image 
size is considered as 1.0 x 1.0 and the center point is 
determined on the x and y axis. It can be understood 
from the darkening of the blue color in which region 
of the image the center points of the labeled blood 
cells are located within the entire dataset. The distri-
bution is seen to be quite homogeneous and random. 
Moreover, no specific pattern or relationship was de-
tected. This may indicate that there is no significant 
correlation between the two variables. Figure 3(d) 
graph gives the width and height information on the 
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image according to the center points of the labeled 
blood cells. Here, the image size is considered as 1.0 
x 1.0 and represents the size of blood cells according 
to their height and width information in the same ra-
tio of image. The graph shows a relationship between 
width and height, and a dense clustering in the center. 
This may indicate that the data is generally of simi-
lar size (e.g., object detection frame sizes), while the 
sparse points around it represent samples that devi-
ate from the standard sizes. It helps us understand 
whether the dataset contains mostly small objects 
or large objects. If the objects throughout the dataset 
are small, the blue color on the graph becomes darker 
near the zero value; however, if objects are large, the 
blue color becomes darker near the value 1.

Figure 4(b) graph shows the distribution of the center 
points of all labeled blood cells on the x and y axis. The 
more blood cell center points there are on the same 
axes of different images in the data set, the darker the 
color of the graph will be in that region. For example, if 
there are blood cells at the same point in 3 different im-
ages, this area will appear darker on the graph. Figure 
4(c) graph shows the distribution of the center points 
of blood cells on the y-axis in the images in the entire 
dataset. The distribution seems balanced across the 
dataset. Figure 4(d) graph shows the width distribu-
tion of the center point of blood cells according to the 
x-axis. From this graph, information can be obtained 
on how many blood cells on the same x-axis are of the 
same width in different images in the dataset. If there 
are blood cells of the same width on the same axis of 
different images, that region is shown darker in the 
graph. Figure 4(e) graph shows the width distribu-
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Moreover, no specific pattern or relationship was 
detected. This may indicate that there is no 
significant correlation between the two variables. 
Figure 3(d) graph gives the width and height 
information on the image according to the center 
points of the labeled blood cells. Here, the image 
size is considered as 1.0 x 1.0 and represents the 
size of blood cells according to their height and 
width information in the same ratio of image. The 
graph shows a relationship between width and 
height, and a dense clustering in the center. This 
may indicate that the data is generally of similar 
size (e.g., object detection frame sizes), while the 
sparse points around it represent samples that 
deviate from the standard sizes. It helps us 
understand whether the dataset contains mostly 
small objects or large objects. If the objects 
throughout the dataset are small, the blue color on 
the graph becomes darker near the zero value; 
however, if objects are large, the blue color 
becomes darker near the value 1. 
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One of the best ways to analyze data is with a cor-
relogram. Correlogram is the visualization of the re-
lationships of the data in the dataset. The labels cor-
relogram in Figure 4 is a 2d histogram that shows the 
axes of the image data relative to all axes in the xywh 
space. It shows the common features and differences 
between the labels. It specifies the common proper-
ties of the object classes in the dataset of the object 
detection model and the ability to capture special 
properties for each object class. Figure 4(a) graph 
shows the distribution of the center points of blood 
cells on the x-axis in the images in the entire dataset. 
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Figures 3-4 provide information about the aspect 
ratios and position distribution of blood cells on the 
image. Since feature map extraction is determined 
according to anchor box sizes, the location distri-
bution and aspect information of the objects in the 
dataset are of great importance. Thanks to the an-
chor boxes in the detection layers, the detection lay-
er with the most appropriate anchor box according 
to the target object size is responsible for detecting 
the object. It is understood from this that the assign-
ment of the object class is also based on the object 
size. During the object detection process, thousands 
of anchor boxes are created on the image and the 
intersection rate with the real object is calculated. 
Achieving the highest agreement with the real ob-
ject boundaries ends with the detection of that ob-
ject. For these reasons, appropriate anchor boxes 
should be created by examining the location and as-
pect ratio distribution of the objects in the dataset. 
The location information and aspect information of 
the blood cells in the BCCD dataset were examined 
and the default anchor box values of Yolov5 were 
found to be appropriate. An anchor box is not used in 
Yolov7 and Yolov8.

3.6. Running the Models
The Yolov5, Yolov7, Yolov8 and Detectron2 models 
were run on Google Colab, a virtual computer plat-
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models were run on Google Colab, a virtual 
computer platform designed for artificial 
intelligence developers. The image data in 
the BCCD dataset were processed on Colab 
using Python software language and Pytorch, 
Keras, Tensorflow libraries. Of 364 image 
data, 292 (80%) were used for train, 36 (10%) 
for validation, and the remaining 36 (10%) for 
testing.  

Transfer learning is to ensure that the model 
gives better performance by preventing the 
values in the weight file of a model to be 
trained as custom from being determined 
from scratch. Here, the train was performed 
based on the values in the weight files of the 
models trained with the COCO dataset. 

The original BCCD dataset images are 
640x418. In Yolo models, the width and 
length of the image must be equal in size 
adjustments. To avoid losing resolution the 
image data to be given as input for the train 
process of each model is set as 640x640. The 
epoch value, which means how many times 
the image data will be displayed to the 
neural networks, is determined as 50 and the 
iteration value is 2000. In each epoch period, 
images are displayed to the neural network 
as a group. The term describing the size of 
these image groups is called batch size. Batch 
size is set to 16 for all models. High GPU is 
required to increase the batch size value. For 
this reason, the batch size value is 16. 

The learning rate, which works depending on 
the optimization algorithm and can be 
defined as the update rate of the parameters 
in the neural network, was determined as 
0.01 in 16 models of Yolo and 0.001 in 5 
models of Detectron2. SGD was used in all 
models as an optimization algorithm that 
increases the performance of the model in 
complex learning processes. The momentum 
value makes the SGD run faster. 0.937 for 
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form designed for artificial intelligence developers. 
The image data in the BCCD dataset were processed 
on Colab using Python software language and Py-
torch, Keras, Tensorflow libraries. Of 364 image 
data, 292 (80%) were used for train, 36 (10%) for val-
idation, and the remaining 36 (10%) for testing. 
Transfer learning is to ensure that the model gives 
better performance by preventing the values in the 
weight file of a model to be trained as custom from 
being determined from scratch. Here, the train was 
performed based on the values in the weight files of 
the models trained with the COCO dataset.
The original BCCD dataset images are 640x418. 
In Yolo models, the width and length of the image 
must be equal in size adjustments. To avoid losing 
resolution the image data to be given as input for 
the train process of each model is set as 640x640. 
The epoch value, which means how many times the 
image data will be displayed to the neural networks, 
is determined as 50 and the iteration value is 2000. 
In each epoch period, images are displayed to the 
neural network as a group. The term describing 
the size of these image groups is called batch size. 
Batch size is set to 16 for all models. High GPU is 
required to increase the batch size value. For this 
reason, the batch size value is 16.
The learning rate, which works depending on the 
optimization algorithm and can be defined as the 
update rate of the parameters in the neural net-
work, was determined as 0.01 in 16 models of Yolo 
and 0.001 in 5 models of Detectron2. SGD was used 
in all models as an optimization algorithm that 
increases the performance of the model in com-
plex learning processes. The momentum value 
makes the SGD run faster. 0.937 for Yolo models 
and 0.9 for Detectron2 models. Finally, the activa-
tion function, which is a factor that increases the 
performance by converting the outputs to non-
linear values, was chosen as SiLu for Yolo models 
and ReLu for Detectron2 models. Additionally, 
the loss functions used in the models are as fol-
lows: rpn_losses function for Detectron2, GIoU for 
Yolov5, focal loss for Yolov7 and DFL Loss+CIOU 
for Yolov8. 
The performance of the model was examined by 
measuring the correct and incorrect predictions 
of the model for classification, accuracy, precision, 
sensitivity, F1 score and ROC-AUC values.
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4. Experimental Results
The train results of the Detectron2 models run with 
the BCCD dataset, the test results obtained by testing 
the models from the image data previously included 
in the dataset with data unknown to the models, the 
dimensions of the weight files obtained by running 
the models and the training time are given in Table 2. 
When the training accuracy values of Detectron2 
models are examined, the highest AP value is 93.7%, 
with Faster R-CNN R_101_C4_3x and Faster R-CNN 
X_101_32x8d_FPN_3x models. The model that follows 
these models is the Faster R-CNN R_101_FPN_3x 
model with an AP value of 88.7%. Looking at the test 
results, the model that gives the best results with an 
AP value of 90.3% is the Faster R-CNN R_101_FPN_3x 
model. The model that follows this model as a result of 
the test is the Faster R-CNN X_101_32x8d_FPN_3x 
model with an AP value of 88.9%. With the joint evalu-
ation of Train and test results, we determine the model 
with the highest performance among the Detectron2 
models. In this case, the Faster R-CNN X_101_32x8d_
FPN_3x model with a value of 91.3% is the model with 
the highest performance among the Detectron2 mod-
els. When Detectron2 models are evaluated in terms 
of weight size and training time, the fastest model with 
0.068 hours and the smallest weight size value with 
126 MB is the Faster R-CNN R_50_C4_1x model. The 
models that follow this model with 0.086 hours, 0.109 
hours training times and 158 MB, 199 MB weight size 
values are Faster R-CNN R_50_FPN_1x and Fast-
er R-CNN R_101_C4_3x, respectively. In this case, 
the train AP and test AP values are low in the models 
where the training time and weight size values are low 
in Detectron2 models; It is seen that training time and 
weight size values are worse in models with high train 
AP and test AP values.

In Figure 5, there are classification loss charts of 
Detectron2 models. When Figure 5 is examined, 
the classification loss value decreases rapidly in the 
beginning in all models. This sudden and rapid de-
crease lasts up to approximately 400 iterations in 
all models. After this sudden decrease, the classifi-
cation loss value in all models continues to decrease 
gradually horizontally. When the graph of the Faster 
R-CNN R_50_C4_1x model is examined, the classi-
fication loss value is approximately 0.25 when 2000 
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reached in Faster R-CNN R_101_C4_3x and Faster 
R-CNN R_101_FPN_3x models, the classification 
loss value remains above 0.2, while Faster R -The 
value of 0.2 in CNN X_101_32x8d_FPN_3x model is 
closer than these two models.
In Figure 6, there are false negative results of Detec-
tron2 models. False negative describes the situation 

Models Train Accuracy (AP50) Test Accuracy (AP50) Weight Size (Mb) Train Time (h)

Faster R-CNN R_50_C4_1x 0.875 0.886 126 0.068

Faster R-CNN R_50_FPN_1x 0.875 0.868 158 0.086

Faster R-CNN R_101_C4_3x 0.937 0.836 199 0.109

Faster R-CNN R_101 FPN_3x 0.887 0.903 230 0.128

Faster R-CNN X_101_32x8d FPN_3x 0.937 0.889 399 0.256

Table 2
Result For Detectron2 Models.
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el with a training time value of 0.083 h. In terms of 
speed, Yolov5-n model is followed by Yolov5-s and 
Yolov5-m models with training time values of 0.096 
h and 0.126 h, respectively. 
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The train results of the Yolo models run with the 
BCCD dataset. Train results are examined, the mod-
el with the highest precision value is the Yolov5-s 
model with 91.6%. As a result of precision, this mod-
el is followed by Yolov7-w6 and Yolov8-x models 
with 91.1% and 90% values, respectively. The model 
with the highest value of 92.3% in terms of recall is 
the Yolov8-s model. Yolov8-s model is followed by 
Yolov5-m and Yolov8-n models, respectively, with 
recall values of 92% and 91.2%. The model with the 
highest F1 score value, which is used to evaluate 
the precision and recall values in a single unit, is 
the Yolov7-w6 model with 90.9%. Yolov7-w6 model 
is followed by Yolov8-s and Yolov8-n models with 
89.9% and 89.7% values as F1 score.

Models Weight Size (Mb) Training Time (h)

Yolov5-n 3.72 0.083

Yolov5-s 13. 7 0.096

Yolov5-m 40.2 0.126

Yolov5-l 88.5 0.19

Yolov5-x 165 0.344

Yolov7 71.3 0.288

Yolov7-x 135 0.424

Yolov7-w6 154 0.364

Yolov7-e6 211 0.505

Yolov7-d6 292 0.611

Yolov7-e6e 315 0.675

Yolov8-n 5.94 0.131

Yolov8-s 21.4 0.143

Yolov8-m 49.5 0.202

Yolov8-l 83.5 0.274

Yolov8-x 130 0.403

Table 3
Weight File Sizes and Training Time for Yolo Models.

The results obtained by testing the image data in the 
BCCD dataset with data that the Yolo models have 
never seen are given in Table 4. As a result of the 
examination of the models in terms of the precision 
value in the test result, it is seen that the highest pre-
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cision value among the Yolo models is the Yolov5-x 
model with 89.1%. This model is followed by Yolov5-l 
and Yolov7-x models, with precision values of 88.8% 
and 88.7%, respectively. When the recall value of the 
test results is examined, the highest recall value is 
the Yolov7-w6 and Yolov7-e6 models with 92.7%. 
These two models are followed by Yolov7-d6 and 
Yolov5-m models with recall values of 91.8% and 
91.7%, respectively. The model with the best perfor-
mance in F1 score results is the Yolov8-n model with 
89.5%. The model that follows the Yolov8-n model 
with an F1 score of 88.6% is the Yolov5-s model.
The most important among all results is the success 
rate of the model in the testing process. In this re-
spect, the highest AP value of 94.5% belongs to the 
Yolov5-s model. The models that follow this mod-
el as a test AP value are the Yolov5-m and Yolov5-l 
models. The AP value of the Yolov5-m model is 94% 
and the AP value of the Yolov5-l model is 93.3%.

about the success rate of the model. Here, a large area 
under the curve means that the model has a high suc-
cess rate. Conversely, the small area under the curve 
indicates that the model's performance ratio is low. 
When Figure 7 is examined, the model in which the 
area under the curve is larger than the others is the 
Yolov5-s model. Therefore, we conclude that the 
Yolov5-s model performs better than other models. 
When the performances of the models are evaluat-
ed separately for each class, the highest AP value of 
the Platelets class is the Yolov5-m model with 95.4%. 
This model is followed by Yolov5-s and Yolov5-l 

Models Precision Recall F1 Score AP50

Yolov5-n 0.868 0.895 0.881 0.926

Yolov5-s 0.879 0.894 0.886 0.945

Yolov5-m 0.848 0.917 0.881 0.94

Yolov5-l 0.888 0.877 0.882 0.933

Yolov5-x 0.891 0.856 0.873 0.909

Yolov7 0.87 0.881 0.875 0.919

Yolov7-x 0.887 0.883 0.884 0.928

Yolov7-w6 0.837 0.927 0.879 0.923

Yolov7-e6 0.828 0.927 0.874 0.922

Yolov7-d6 0.84 0.918 0.877 0.904

Yolov7-e6e 0.828 0.916 0.869 0.931

Yolov8-n 0.884 0.908 0.895 0.93

Yolov8-s 0.866 0.905 0.885 0.919

Yolov8-m 0.867 0.905 0.885 0.924

Yolov8-l 0.85 0.901 0.874 0.926

Yolov8-x 0.846 0.904 0.874 0.908

Table 4
Testing Result for Yolo Models.

The PR curves of the test results of the Yolov5 mod-
els are shown in Figure 7. When the PR curve is ex-
amined, the area under the curve gives us information 
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models with 94.3% and 94.1% values, respectively. 
The highest AP value of the RBC class is the Yolov5-s 
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87.2%. In the WBC class, all Yolov5 models showed 
the same performance with an AP value of 99.5%. 
The Yolov5 model with the highest AP value for all 
classes is the Yolov5-s model with 94.5%. With AP 
values of 94% and 93.3%, Yolov5-m and Yolov5-l 
models, respectively, follow the Yolov5-s model in 
performance.
The PR curves of the test results of the Yolov7 mod-
els are shown in Figure 8. When Figure 8 is exam-
ined, the model in which the area under the curve 
is larger than the others is the Yolov7-e6e model. 
Therefore, we conclude that the Yolov7-e6e model 
performs better than other models. When the per-
formances of the models are evaluated separately for 
each class, the highest AP value of the Platelets class 
is the Yolov7-e6e model with 91.5%. This model is 
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Yolov7-e6 model is followed by Yolov7-x and Yolov7-
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the highest AP value for all classes is the Yolov7-e6e 
model with 93.1%. 
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Yolov8-n and Yolov8-s models, respectively, in terms 
of RBC class with an AP value of 87.7% and 86.5%. In 
the WBC class, all Yolov8 models showed the same 
performance with an AP value of 99.5%. The Yolov8 

model with the highest AP value for all classes is the 
Yolov8-n model with 93%. With AP values of 92.6% 
and 92.4%, respectively, Yolov8-l and Yolov8-m 
models follow the Yolov8-n model in terms of per-
formance. With AP values of 92.8% and 92.3%, 
Yolov7-x and Yolov7-w6 models, respectively, follow 
the Yolov7-e6e model in terms of performance. 
The Yolov5-n model has achieved 100% accuracy 
in detecting the WBC class. When the other classes 
were examined, it was 91% for the Platelets class and 
93% for the RBC class. 
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The Yolov5-n model has achieved 100% accuracy 
in detecting the WBC class. When the other classes 
were examined, it was 91% for the Platelets class 
and 93% for the RBC class.  

 

The detection of WBC and Platelets classes of the 
Yolov5-s model was 100% successful. It has 
achieved 90% success in determining the RBC 
class. The Yolov5-m model achieved 88%, 96% and 
100% accuracy in the detection of Platelets, RBC 
and WBC classes, respectively. The Yolov5-l 
model provided 91%, 80% and 100% accuracy in 
the detection of Platelets, RBC and WBC classes, 
respectively. The Yolov5-x model provided 85%, 
77% and 100% accuracy in the detection of 
Platelets, RBC and WBC classes, respectively. 
Among the Yolov5 models, the Yolov5-s model 
gave the best performance in determining the 
classes correctly. 

The Yolov7 model achieved 97% accuracy in 
detecting the WBC and Platelets classes. It 
provided 96% success for the RBC class. A 97% 
success rate was achieved in the detection of 
Yolov7-x model WBC and Platelets classes. 91% 
success was achieved in the determination of the 
RBC class. The Yolov7-w6 model achieved 100% 
success in detecting the WBC class, respectively. 
When the other classes are examined, it has 
achieved 97% success in the Platelets class and 
95% in the RBC class. The Yolov7-e6 model 
provided 97% success in the detection of Platelets 
and WBC classes, and 91% in the detection of RBC 
class. The Yolov7-d6 model provided 100% 
accuracy in the detection of Platelets and WBC 
classes, and 96% in the detection of RBC class. The 
Yolov7-e6e model provided 97% success in the 
detection of Platelets and WBC classes, and 94% in 

the detection of RBC class. Among the 
Yolov7 models, the Yolov7-d6 model gave 
the best performance in determining the 
classes correctly. 

The Yolov8-n model has achieved 100% 
accuracy in detecting the WBC class. It 
provided 88% and 94% success for RBC and 
Platelets classes, respectively. A 100% success 
rate was achieved in detecting the WBC class 
of the Yolov8-s model. In the detection of 
RBC and Platelets classes, 92% and 91% 
success were achieved, respectively. The 
Yolov8-m model achieved 100% accuracy in 
detecting the WBC class. When the other 
classes are examined, it has achieved a 
success rate of 94% in the Platelets class and 
91% in the RBC class. The Yolov8-l model 
provided 85%, 80% and 100% accuracy in the 
detection of Platelets, RBC and WBC classes, 
respectively. The Yolov8-x model provided 
91%, 93% and 100% accuracy in the detection 
of Platelets, RBC and WBC classes, 
respectively. Among the Yolov8 models, the 
Yolov8-m model gave the best performance 
in determining the classes correctly. 

Training accuracy alone is insufficient to 
evaluate the performance of models. In order 
for the performance evaluation to be carried 
out correctly, the results of the train should 
be examined together with the test results. 
The reason for this is that the models perform 
object detection on the data they do not see 
after they are trained with the appropriate 
dataset for the desired job-specific object 
detection. This shows that the results 
obtained in the test process are more 
important than the results obtained in the 
train process. When the testing accuracy 
(AP50) values are examined, the model with 
the highest test value with 94.5% is the 
Yolov5-s model. Following this model are 
Yolov5-m and Yolov5-l models with testing 
accuracy values of 94% and 93.3%, 
respectively. When the testing accuracy 
values of Detectron2 models are examined, 
the best performance with a value of 90.3% 
belongs to the Faster R-CNN R_101_FPN_3x 
model. Detectron2 models following this 
model are Faster R-CNN 
X_101_32x8d_FPN_3x and Faster R-CNN 
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Figure 9
Precision-Recall Curves of Yolov8 Models.

The detection of WBC and Platelets classes of the 
Yolov5-s model was 100% successful. It has achieved 
90% success in determining the RBC class. The 
Yolov5-m model achieved 88%, 96% and 100% ac-
curacy in the detection of Platelets, RBC and WBC 
classes, respectively. The Yolov5-l model provid-
ed 91%, 80% and 100% accuracy in the detection of 
Platelets, RBC and WBC classes, respectively. The 
Yolov5-x model provided 85%, 77% and 100% ac-

curacy in the detection of Platelets, RBC and WBC 
classes, respectively. Among the Yolov5 models, the 
Yolov5-s model gave the best performance in deter-
mining the classes correctly.
The Yolov7 model achieved 97% accuracy in detect-
ing the WBC and Platelets classes. It provided 96% 
success for the RBC class. A 97% success rate was 
achieved in the detection of Yolov7-x model WBC 
and Platelets classes. 91% success was achieved in 
the determination of the RBC class. The Yolov7-w6 
model achieved 100% success in detecting the WBC 
class, respectively. When the other classes are ex-
amined, it has achieved 97% success in the Platelets 
class and 95% in the RBC class. The Yolov7-e6 mod-
el provided 97% success in the detection of Platelets 
and WBC classes, and 91% in the detection of RBC 
class. The Yolov7-d6 model provided 100% accu-
racy in the detection of Platelets and WBC classes, 
and 96% in the detection of RBC class. The Yolov7-
e6e model provided 97% success in the detection 
of Platelets and WBC classes, and 94% in the de-
tection of RBC class. Among the Yolov7 models, the 
Yolov7-d6 model gave the best performance in deter-
mining the classes correctly.
The Yolov8-n model has achieved 100% accuracy in 
detecting the WBC class. It provided 88% and 94% 
success for RBC and Platelets classes, respectively. 
A 100% success rate was achieved in detecting the 
WBC class of the Yolov8-s model. In the detection of 
RBC and Platelets classes, 92% and 91% success were 
achieved, respectively. The Yolov8-m model achieved 
100% accuracy in detecting the WBC class. When the 
other classes are examined, it has achieved a success 
rate of 94% in the Platelets class and 91% in the RBC 
class. The Yolov8-l model provided 85%, 80% and 
100% accuracy in the detection of Platelets, RBC and 
WBC classes, respectively. The Yolov8-x model pro-
vided 91%, 93% and 100% accuracy in the detection of 
Platelets, RBC and WBC classes, respectively. Among 
the Yolov8 models, the Yolov8-m model gave the best 
performance in determining the classes correctly.
Training accuracy alone is insufficient to evaluate 
the performance of models. In order for the perfor-
mance evaluation to be carried out correctly, the re-
sults of the train should be examined together with 
the test results. The reason for this is that the models 
perform object detection on the data they do not see 
after they are trained with the appropriate dataset for 
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the desired job-specific object detection. This shows 
that the results obtained in the test process are more 
important than the results obtained in the train pro-
cess. When the testing accuracy (AP50) values are 
examined, the model with the highest test value with 
94.5% is the Yolov5-s model. Following this model 
are Yolov5-m and Yolov5-l models with testing ac-
curacy values of 94% and 93.3%, respectively. When 
the testing accuracy values of Detectron2 models 
are examined, the best performance with a value of 
90.3% belongs to the Faster R-CNN R_101_FPN_3x 
model. Detectron2 models following this model are 
Faster R-CNN X_101_32x8d_FPN_3x and Faster 
R-CNN R_50_C4_1x with 88.9% and 88.6% values, 
respectively. However, Yolo models seem to be more 
successful than Detectron2 models. Although the 
training results among Yolo models were higher in 
Yolov7 models, these values decreased after testing. 
In Yolov5 models, on the other hand, the difference 
between the results obtained after the train process 
and the results obtained after the test process is less. 
Apart from the training accuracy and testing accu-
racy results, the speed of the model and the weight 
file size it creates are also important in terms of both 
the performance of the model and its use in mobile 
systems. When the weight size values are examined, 
the lowest file size is the Yolov5-n model with 3.72 
MB. In terms of weight size, Yolov5-n is modeled 
as Yolov8-n and Yolov5-s with file sizes of 5.94 MB 
and 13.7 MB, respectively. When the training time 
(h) values are examined, the lowest training time 
is 0.068 and the Faster R-CNN R_50_C4_1x mod-
el. This model is followed by Yolov5-n and Faster 
R-CNN R_50_FPN_1x models with training time 
values of 0.083 and 0.086, respectively. The Yolov5-s 
model follows the Yolov5-n model with 0.096 hours 
of training time. When these 4 fastest running mod-
els were compared in terms of weight size, it was 
seen that the model with the lowest weight size value 
was the Yolov5-n model with 3.72 Mb. This model is 
followed by the Yolov5-s model with 13.7 Mb. When 
looking at Detectron2 models, the Faster R-CNN 
R_50_C4_1x model has a weight size of 126 Mb, and 
the Faster R-CNN R_50_FPN_1x model has a weight 
size of 158 Mb. Of these 4 models with similar train-
ing times, the weight sizes of the Detectron2 models 
are approximately 10 times the weight sizes of the 
Yolo models. At the same time, training and testing 
accuracy values are lower than Yolo models. For this 

reason and as a result of the examinations on the 
graphs given above, Yolo models are more suitable 
for the detection of blood cells.
In general, according to the result values obtained for 
object detection, which is the main task of the mod-
els, the Yolov5-s model is more successful than other 
models with a value of 94.5%. At the same time, being 
the third model as weight size and the fourth model 
as training time among the models for detecting blood 
cells mobile by integrating with the mobile system 
makes the Yolov5-s model superior to other models.

4.1. Visualized Results
In this study, which was conducted in the field of 
medical imaging on blood cell detection and count-
ing, the most suitable dataset was determined, 
the hyperparameter values of the models were de-
termined and fine-tuned, and finally, training and 
testing operations were carried out in the Python 
environment. After all the procedures, blood cells 
were detected and counted with the Yolov5-s model, 
which has the best performance, to see the usability 
of the study in clinical studies and laboratory anal-
ysis processes. The original version of the 4 images 
used in the detection and counting process (Figure 
10(a)-(d)) is given on the top line and the detected 
version is on the bottom line. Figure 10 was exam-
ined, it was seen that the blood cell detection process 
was carried out successfully.
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5. Discussion 
Studies with current algorithms for the 
detection of blood cells are limited in the 
literature. Xu et al. [32] detected WBC, RBC 
and Platelets using BCCD dataset and 
Deformable DETR, Yolov3, YoloF, YoloF+, 
TE-YoloF-B0, TE-YoloF-B1, TE-YoloF-B2, TE-
YoloF-B3 models. Giving the comparative 
results of the results of the models, they 
suggested the TE-YoloF-B3 model, which has 
the highest AP50 value of 90.6%. EfficientNet 
was used in the backbone structure of the 
model used and Mish was used as the 
activation function to increase the precision 
value. At the same time, the original 
backbone of Yolov5 was used as the 
backbone structure, and SiLu was used in 
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YoloF+, TE-YoloF-B0, TE-YoloF-B1, TE-YoloF-B2, 
TE-YoloF-B3 models. Giving the comparative re-
sults of the results of the models, they suggested the 
TE-YoloF-B3 model, which has the highest AP50 
value of 90.6%. EfficientNet was used in the back-
bone structure of the model used and Mish was used 
as the activation function to increase the precision 
value. At the same time, the original backbone of 
Yolov5 was used as the backbone structure, and 
SiLu was used in Yolo models and ReLu was used 
in Detectron2 models as the activation function. 
A better performance was achieved with Yolov5-s, 
with the train mAP value being 94.5% and the test 
mAP value being 94.5%. In addition, the test results 
of all Yolo models, except for the Yolov7-d6 model, 
whose test mAP value was 90.4%, showed better 
performance than the study by Xu et al. [32]. Among 
the train mAP values, all models except Yolov7-x 
and Yolov7-d6 models are better than the results 
obtained by Xu et al. [32]. In contrast to this study, 
higher accuracy was achieved with lower epoch 
numbers and optimized parameters with the de-
veloped models. At the same time, significant im-
provements were achieved in terms of training time 
and resource usage. Pfeil et al. [20] carried out the 
detection of blood cells with deep learning models. 
Researchers have created a dataset for the detec-
tion of three different classes in blood cells, namely 
RBC, WBC and Platelets. D2Det, MS R-CNN, Yo-
loact and Mask R-CNN models were run with the 
created dataset. According to the results obtained 
by running the models, the most successful model 
is the MS R-CNN model with an AP value of 57%. 
For the detection of blood cells, the researchers pro-
posed the MS R-CNN model. In the test results of 
our study, none of the Yolo models fell below 90% 
in mAP value. As a result of Train, the lowest mAP 
value belongs to the Yolov7-d6 model with 88.3%. 
When Detectron2 models are examined, the lowest 
train AP value is 87.5% and the lowest test AP val-
ue is 83.6%. Detectron2 models performed worse 
than Yolo models. However, according to the study 
by Pfeil et al. [20], all models showed better per-
formance. Mercaldo et al. [19] conducted a study 
using the BCCD dataset to detect blood cells. The 
researchers ran the dataset in the Yolov5s mod-
el and shared the results. They stated the success 
rate of the model as 91.8% in the detection of blood 
cells with the BCCD dataset and suggested the use 

of the Yolov5s model in the detection of blood cells. 
Before running the Yolov5-s model, the aothors set 
the size of the dataset images to 416x416. Batch size 
value is set to 16 and epoch number is set to 250. 
More epochs increase the time required to calculate 
each iteration, which can significantly extend the 
total training time. Therefore, using a high num-
ber of epochs in the study may cause a significant 
problem. After these settings were made, the train 
time of Yolov5-s lasted 33 minutes and 7 seconds. 
In our study, the image data in the dataset was set 
to 640x640 before being given as input to the net-
work. Batch size value is set to 16 and epoch number 
is set to 50. When the Yolov5-s algorithm was run 
with these adjustments, the train time lasted only 
5 minutes and 45 seconds. With the adjustments 
made, a 17.4% faster model and a more accurate 
model with a 2.7% higher mAP value were obtained 
than the study by Mercaldo et al. [19]. Alam and Is-
lam [1] performed the detection of blood cells with 
the BCCD dataset. Yolo-tiny, VGG-16, ResNet50, 
InceptionV3, MobileNet models were used for au-
tomatic detection of blood cells. As a result of the 
study, the success rates of the models are: Yolo-ti-
ny 62.3%, VGG-16 71.3%, ResNet50 74.3%, Incep-
tionV3 68.2%, MobileNet 52%. On the other hand, in 
our study, as a result of the train and test processes, 
none of the mAP values of the Detectron2 and Yolo 
models are below 83%. In our study, not only accu-
racy (mAP) but also training time, data processing 
settings and model weight dimensions were taken 
into account in performance evaluations. Xia et al. 
[31] also worked with the same dataset, BCCD. They 
used Yolov3-tiny, Yoloc3-SPP and Yolov3 models in 
their studies. In line with their research and results, 
they suggested that the Yolov3-SPP model, which 
achieved an 88.6% success rate, should be used in 
the detection of blood cells because it outperformed 
other models. In their study, Xia et al. [31] set the ep-
och number to 100 and the train duration lasted 10 
minutes. In our study, Yolov5-s, which was run over 
50 epochs, is almost 2 times faster and is a more ac-
curate model with a 5.9% higher mAP value. In our 
study, not only accuracy (mAP) but also training 
time, data processing settings and model weight di-
mensions were taken into account in performance 
evaluations. Kang et al [10], who conducted a study 
on blood cell detection and counting, evaluated 
models with three different datasets. BCCD data-
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set containing 364 images is divided into two: 327 
for train and 37 for testing. CBC dataset containing 
360 images is divided into two: 300 for train and 60 
for testing. BCCD dataset containing 364 images 
is divided into three: 255 for training, 73 for vali-
dation and 36 for testing. Yolov5-x, Yolov7 and an 
improved model, CST-Yolov7, were used to perform 
the detection process. In the models, the learning 
rate value is determined as 0.001, the batch size 
value is 20 and the number of epochs is 150. After 
training the models with the BCCD dataset, mAP 
values of 92.3% for Yolov5-x, 89.6% for Yolov7 and 
92.7% for CST-Yolov7 were obtained. In our study, 
the 364 image data in the BCDD dataset was divided 
into three: 292 train, 36 validation and 36 test. The 
epoch number is determined as 50 and the batch 
size value is 16. This means a faster running model 
and less processing power. In the Yolov5-s model, 
the learning rate value is determined as 0.01. With 
these adjustments, 94.5% mAP value was obtained 
in the train and test processes of the Yolov5-s mod-
el. This showed that a 1.8% higher mAP value was 
obtained than this study. Shakarami et al. [24] nor-
mal convolution and dilated convolution; Swish and 
LeakyReLU activation function; Loss functions IoU 
and DIoU and all combinations of these three parts 
were run by creating the Yolov3 model. Yolov3 mod-
els consisting of the specified combinations of the 
BCCD dataset were run in 38 epochs. The learning 
rate value was determined as 0.0001. Yolov3 combi-
nation with Dilated Convolution, Swish activation 
function, DIoU loss function reached 89.86% mAP 
value. In our study, the learning rate value of the 
Yolov5-s model was determined as 0.01 and the loss 
function GIoU was used. The activation function 
was set to SiLu and the models were run for 50 ep-
ochs. By making these adjustments, a mAP value of 
94.5% was obtained, that is, a result that was 4.64% 
higher than the mAP value of the study.
It has been observed that a sufficiently comprehen-
sive comparison is not made in deep learning studies 
for the detection of blood cells. In order to conduct 
a comprehensive comparative study in line with our 
observations, blood cells were detected and counted 
by running 21 different models with the image data 
in the BCCD dataset. The fact that 21 different mod-
els include models from Yolo and Detectron2 made 
the scope of comparison even wider. In addition, it 

was determined that Yolov8, the latest version of 
Yolo, was not used in the blood cell detection process 
in the literature, and in this study, five different mod-
els of Yolov8 were run with the BCCD dataset and 
compared with other models. Studies on automatic 
detection of blood cells are limited in the literature. 
Existing studies mostly have lower accuracy rates or 
longer processing times. For example, the accura-
cy rates of the models used in studies such as Pfeil 
et al. [20] (57% AP value) and Xu et al. [32] (90.6% 
AP value) are lower than the performance of more 
modern and optimized models. In many studies in 
the literature, training time and computational cost 
are high. For example, in Mercaldo et al.’s study [19], 
the YOLOv5-s model took 33 minutes, while the ac-
curacy rate was only 91.8%. In this study, the model 
achieved higher performance and accuracy in 5 min-
utes 45 seconds. A comprehensive comparison be-
tween different AI models (such as Detectron2 and 
YOLO) is rare. This makes it difficult to determine 
which model is more suitable for a given dataset 
and purpose. In this study, one of the highest accu-
racy rates in the literature was achieved using the 
YOLOv5-s model with a test mAP value of 94.5%. 
The model’s success in detecting small blood cells 
such as platelets is higher than other studies in the 
literature. The hyperparameter values used in the 
study were chosen appropriately so that the models, 
especially small models, can be used in the mobile 
system and give a high performance rate. As a result 
of what has been done, the 94.5% success rate of the 
Yolov5-s model is quite high compared to the stud-
ies in the literature. In addition, the weight size and 
training time values of the model are very small. This 
proves that the Yolov5-s model is very fast and is the 
most suitable model for mobile systems in blood cell 
detection and counting processes.

6. Conclusion
With the current study, blood cells were detected 
with deep learning technology and a suitable envi-
ronment was created for the analysis of blood cells. 
Today, there are many deep learning models avail-
able for object detection. In order to determine the 
most suitable model for the need, it is necessary to 
compare the models, especially the current models. 
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Studies are insufficient for comprehensive compar-
ison. Since there is no comprehensive research on 
the detection of blood cells with deep learning, our 
study was the first in its field by presenting the re-
sults of 21 different models. It is also seen that the 
success rate is higher than other studies. 
As a result of research, it will provide the highest 
efficiency and benefit for the analysis of blood cells; 
A high-sensitivity blood cell detection model based 
on the Yolov5-s object detection algorithm was pro-
posed, aiming to avoid the need for expert person-
nel, high-cost laboratory environment and complex 
equipment. 
We suggested the most appropriate hyperparame-
ters values to increase the accuracy of our model and 
to make it integrate into the mobile system by keep-
ing the resulting file size small. Our results show that 
this system can be integrated into a mobile system. 
As a result, we implemented the highly accurate, 
minimum size Yolo model for analysis of blood cells. 
The following points should be emphasized here: 
first of all, the need for and workload of expert per-
sonnel has been reduced by the use of deep learning 
models. With software and image technology, the 
need for a costly laboratory has been eliminated. 
Third and lastly, a model that can be integrated into 
a mobile device that is available to everyone, such as 
a mobile phone, has been provided, eliminating the 
need for complex hardware.
In this study, hyperparameter values that can be 
referenced for the detection of blood cells are giv-
en. Developers of Yolov8, the most up-to-date model 
of Yolo, have achieved a higher mAP value with the 
COCO dataset compared to other versions of Yolo. 
Here, it is seen that the Yolov5-s model is superior to 
the Yolov8 models in terms of mAP value.
The study can be used as a reference source pro-
viding information about the performance of the 
BCCD dataset in object detection models. With the 
given hyperparameter values, it has been observed 
that Yolov5-s, a lightweight model, has higher per-
formance than other models. Under normal cir-
cumstances, the speed of large-scale models should 
be slow but the performance should be higher than 
other models. The higher performance of Yolov5-s 
compared to large-scale models makes it possible to 
integrate the lightweight model into a mobile system 

that can be used in clinical studies.
In future studies, the integration of deep learning 
models into the mobile system is to provide an easy-
to-use, low-cost and lightweight system for patholo-
gists, biologists and laboratory workers. For this, it is 
a remarkable and worth researching method to diag-
nose diseases from blood cells by making minor ad-
justments to the general software flow of deep learn-
ing models. In addition, it is thought that the image 
data of the BCCD dataset will be run with different 
deep learning models with a large number of image 
data obtained by using data augmentation methods. 
We aim to further increase the success rate by con-
tinuing optimization studies on the high-performing 
hybrid deep learning model.

Acknowledgements 
The authors are grateful to Editors for their valu-
able comments and contributions to the manu-
script. This research paper was derived as a part 
of Mübarek Mazhar Çakır’s MSc thesis, conducted 
under the supervision of Gökalp Çınarer at the De-
partment of Mechatronics Engineering in School of 
Graduate Studies, Yozgat Bozok University, Yozgat, 
Turkey.

Author Contributions 
Gökalp Çinarer and Mübarek Mazhar Çakir de-
signed the study; Gökalp Çinarer created artifi-
cial intelligence models and performed the coding; 
Mübarek Mazhar Çakir implemented the experi-
ments; Gökalp Çinarer and Mübarek Mazhar Çakir 
wrote and revised the manuscript. All authors re-
viewed the manuscript.

Funding 
The authors declare that they have no known com-
peting financial interests or personal relationships 
that could have appeared to influence the work re-
ported in this paper.

Declarations
Conflict of interest. All authors declare no conflict of 
interest related to this article.
Data availability. The dataset used in the study is 
free to the public. Therefore, no ethical approval is 
required.



935Information Technology and Control 2025/3/54

References
1.	 Alam, M. M., Islam, M. T. Machine Learning Approach 

of Automatic Identification and Counting of Blood 
Cells. Healthcare Technology Letters, 2019, 6(4), 103-
108. https://doi.org/10.1049/htl.2018.5098

2.	 Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y. M. YOLOv4: 
Optimal Speed and Accuracy of Object Detection. arX-
iv Pre-print arXiv:2004.10934, 2020.	

3.	 Chaddad, A., Peng, J., Xu, J., Bouridane A. Survey of 
Explainable AI Techniques in Healthcare. Sensors, 
2023, 23(2), 634. https://doi.org/10.3390/s23020634

4.	 Hu, B., Liu, Y., Chu, P., Tong, M., Kong, Q. Small Object 
Detection via Pixel Level Balancing With Applications 
to Blood Cell Detection. Frontiers in Physiology, 2022, 
13, 911297. https://doi.org/10.3389/fphys.2022.911297

5.	 Jocher, G. YOLOv8. https://github.com/ultralytics/ul-
tralytics.	

6.	 Jiang, H., Learned-Miller, E. Face Detection with the 
Faster R-CNN. International Conference on Auto-
matic Face and Gesture Recognition, 2017, 650-657. 
https://doi.org/10.1109/FG.2017.82

7.	 Jin, F., Chag, X., Wang, X., Xiong, H., Wang, L., Zhang, 
B., Wang, P., Zhao, L. Relationship Between Red Blood 
Cell-Related Indices and Coronary Artery Calcifica-
tion. Postgraduate Medical Journal, 2023, 99(1167), 
4-10. https://doi.org/10.1093/postmj/qgac003

8.	 Jocher, G., Changyu, L., Hogan, A., Yu, L., Rai, P., Sul-
livan, T. ultralytics/yolov5: Initial Release. https://ze-
nodo.org/record/ 3908560.	

9.	 Jogin, M., Mohana, Madhulika, M. S., Divya, G. D., 
Meghana, R. K., Apoorva, S. Feature Extraction Using 
Convolution Neural Networks (CNN) and Deep Learn-
ing. IEEE International Conference on Recent Trends 
in Electronics, Information and Communication 
Technology, 2018, 2319-2323. https://doi.org/10.1109/
RTEICT42901.2018.9012507

10.	 Kang, M., Ting, C.-M., Ting, F. F., Phan, R. CST-YO-
LO: A Novel Method for Blood Cell Detection Based 
on Improved YOLOv7 and CNN-Swin Transformer. 
arXiv Pre-print arXiv:2306.14590v1, 2023 https://doi.
org/10.1109/ICIP51287.2024.10647618

11.	 Kutlu, H., Avci, E., Özyurt, F. White Blood Cells Detec-
tion and Classification Based on Regional Convolution-
al Neural Networks. Medical Hypotheses, 2020, 135, 
109472. https://doi.org/10.1016/j.mehy.2019.109472

12.	 Leng, B., Wang, C., Leng, M., Ge, M., Dong, W. Deep 
Learning Detection Network for Peripheral Blood Leu-
kocytes Based on Improved Detection Transformer. 

Biomedical Signal Processing and Control, 2023, 82, 
104518. https://doi.org/10.1016/j.bspc.2022.104518

13.	 Lengvenyte, A., Strumila, R., Belzeaux, R., Aouizerate, 
B., Dubertret, C., Haffen, E., Llorca, P. M., Roux, P., Po-
losan, M., Schwan, R., Walter, M., D'Amoto, T., Kanuel, 
D., Leboyer, M., Bellivier, F., Etain, B., Navickas, A., 
Olie, E., Courtet, P. Associations of White Blood Cell 
and Platelet Counts with Specific Depressive Symp-
tom Dimensions in Patients with Bipolar Disorder: 
Analysis of Data From the FACE-BD Cohort. Brain, 
Behavior, and Immunity, 2023, 108, 176-187. https://
doi.org/10.1016/j.bbi.2022.12.002

14.	 Li, P., Zheng, J., Li, P., Long, H., Li, M., Gao, L. Toma-
to Maturity Detection and Counting Model Based on 
MHSA-YOLOv8. Sensors, 2023, 23(15), 6701. https://
doi.org/10.3390/s23156701

15.	 Li, M., Zhang, Z., Lei, L., Wang, X., Guo, X. Agricultural 
Greenhouses Detection in High-Resolution Satellite 
Images Based on Convolutional Neural Networks: Com-
parison of Faster R-CNN, YOLO v3 and SSD. Sensors, 
2020, 20(17), 4938. https://doi.org/10.3390/s20174938

16.	 Liu, R., Ren, C., Fu, M., Chu, Z., Guo, J. Platelet Detection 
Based on Improved YOLO_v3. Cyborg and Bionic Systems, 
2022, 2022. https://doi.org/10.34133/2022/9780569

17.	 Lorente, Ò., Riera, I., Rana, A. Scene Understand-
ing for Autonomous Driving. arXiv Pre-print arX-
iv:2105.04905, 2021.	

18.	 Maity, M., Banerjee, S., Chaudhuri, S. S. Faster R-CNN 
and YOLO Based Vehicle Detection: A Survey. Inter-
national Conference on Computing Methodologies 
and Communication, 2021, 1442-1447. https://doi.
org/10.1109/ICCMC51019.2021.9418274

19.	 Mercaldo, F., Martinelli, F., Santone, A., Cesarelli, M. 
Blood Cells Counting and Localisation Through Deep 
Learning Object Detection. IEEE International Con-
ference on Big Data, 2023, 4400-4409. https://doi.
org/10.1109/BigData55660.2022.10020952

20.	 Pfeil, J., Nechyporenko, A., Frohme, M., Hufert, F. T., 
Schulze, K. Examination of Blood Samples Using Deep 
Learning and Mobile Microscopy. BMC Bioinformat-
ics, 2022, 23(1), 1-14. https://doi.org/10.1186/s12859-
022-04602-4

21.	 Rahaman, M. A., Ali, M. M., Ahmed, K., Bui, F. M., 
Mahmud, S. M. H. Performance Analysis Between 
YOLOv5s and YOLOv5m Model to Detect and Count 
Blood Cells: Deep Learning Approach. ACM Interna-
tional Conference Proceeding Series, 2022, 316-322. 
https://doi.org/10.1145/3542954.3543000



Information Technology and Control 2025/3/54936

22.	 Redmon, J., Farhadi, A. YOLO9000: Better, Faster, 
Stronger. arXiv Pre-print arXiv:1612.08242, 2016. 
https://doi.org/10.1109/CVPR.2017.690

23.	 Redmon, J., Farhadi, A. YOLOv3: An Incremental Im-
provement. arXiv Pre-print arXiv:1804.02767, 2018.	

24.	 Shakarami, A., Menhaj, M. B., Mahdavi-Hormat, A., 
Tarrah, H. A Fast and Yet Efficient YOLOv3 for Blood 
Cell Detection. Biomedical Signal Processing and 
Control, 2021, 66, 102495. https://doi.org/10.1016/j.
bspc.2021.102495

25.	 Shenggan. BCCD (Blood Cell Count and Detection) Da-
taset. https://github.com/Shenggan/BCCD_Dataset.	

26.	 Singh, R., Shetty, S., Patil, G., Bide, P. J. Helmet Detec-
tion Using Detectron2 and EfficientDet. International 
Conference on Computing Communication and Net-
working Technology, 2021. https://doi.org/10.1109/
ICCCNT51525.2021.9579953

27.	 Stancel, M., Hulic, M. An Introduction to Image Clas-
sification and Object Detection using YOLO Detector. 
ICTERI PhD Symposium, 2019.	

28.	 Terven, J. R., Cordova-Esparza, D. M. A Comprehen-
sive Review of YOLO: From YOLOv1 and Beyond. arX-
iv Pre-print arXiv:2304.00501v5, 2023. https://doi.
org/10.3390/make5040083

29.	 Wang, C.-Y., Bochkovskiy, A., Liao, H.-Y. M. YOLOv7: 
Trainable Bag-of-Freebies Sets New State-of-the-
Art for Real-time Object Detectors. arXiv Pre-print 
arXiv:2207.02696, 2022. https://doi.org/10.1109/
CVPR52729.2023.00721

30.	 Wen, H., Huang, C., Guo, S. The Application of Con-
volutional Neural Networks (CNNs) to Recognize 
Defects in 3D-Printed Parts. Materials, 2021, 14(10), 
2575. https://doi.org/10.3390/ma14102575

31.	 Xia, T., Fu, Y. Q., Jin, N., Chazot, P., Angelov, P., Jiang, 
R. AI-enabled Microscopic Blood Analysis for Mi-
crofluidic COVID-19 Hematology. International 
Conference on Computational Intelligence and Ap-

plications, 2020, 98-102. https://doi.org/10.1109/IC-
CIA49625.2020.00026

32.	 Xu, F., Li, X., Yang, H., Wang, Y., Xiang, W. TE-YOLOF: 
Tiny and Efficient YOLOF for Blood Cell Detection. 
Biomedical Signal Processing and Control, 2022, 73. 
https://doi.org/10.1016/j.bspc.2021.103416

33.	 Yang, F., Zhang, X., Liu, B. Video Object Tracking 
Based on YOLOv7 and DeepSORT. arXiv Pre-print 
arXiv:2207.12202, 2022.	

34.	 Yildirim, M. S., Dandil, E. Automated Multiple 
Sclerosis Lesion Segmentation on MR Images via 
Mask R-CNN. International Symposium on Multi-
disciplinary Studies and Innovative Technolo-
gies, 2021, 570-577. https://doi.org/10.1109/ISM-
SIT52890.2021.9604593

35.	 You, S., Ou, Z., Zhang, W., Zheng, D., Zhong, C., Dong, 
X., Qiu, C., Lu, T., Cao, Y., Liu, C. F. Combined Util-
ity of White Blood Cell Count and Blood Glucose for 
Predicting in-hospital Outcomes in Acute Ischemic 
Stroke. Journal of Neuroinflammation, 2019, 16(1), 
1-9. https://doi.org/10.1186/s12974-019-1422-7

36.	 Zhang, W. J., Yang, G., Lin, Y., Ji, C., Gupta, M. M.. On 
Definition of Deep Learning. Proceedings of the World 
Automation Congress, 2018, 232-236. https://doi.
org/10.23919/WAC.2018.8430387

37.	 Zhang, Y., Guo, Z., Wu, J., Tian, Y., Tang, H., Guo, X. Re-
al-Time Vehicle Detection Based on Improved YOLO 
v5. Sustainability, 2022, 14(19), 12274. https://doi.
org/10.3390/su141912274

38.	 Zhao, Z. Q., Zheng, P., Xu, S. T., Wu, X. Object Detec-
tion with Deep Learning: A Review. IEEE Transac-
tions on Neural Networks and Learning Systems, 
2019, 30(11), 3212-3232. https://doi.org/10.1109/TN-
NLS.2018.2876865

39.	 Zhou, F., Zhao, H., Nie, Z. Safety Helmet Detection 
Based on YOLOv5. IEEE International Conference on 
Power Electronics, Computer Applications, 2021, 6-11. 
https://doi.org/10.1109/ICPECA51329.2021.9362711

This article is an Open Access article distributed under the terms and conditions of the Creative 
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).


