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Accurate and timely predictions of highway traffic flow are crucial for implementing intelligent highway man-
agement. This paper introduces a novel prediction approach for highway traffic flow by employing the IH-
PO-VMD-LSTM-Informer model, aiming at enhancing prediction accuracy. Initially, key indicators measur-
ing highway traffic are identified, and Nonlinear Principal Component Analysis (NPCA) is applied to minimize 
the dimensionality and interdependence among these indicators. This reduction process replaces the origi-
nal complex indicators with fewer numbers of principal components, thereby simplifying the feature matrix's 
structure. Subsequently, Variational Modal Decomposition (VMD) processes historical highway traffic flow 
data, enhanced by the strategically improved Hunter-Prey Optimization (HPO) algorithm. This optimization 
facilitates adaptive parameter adjustments for the VMD, enabling effective decomposition of highway traffic 
flow time series data. The Sample Entropy (SE) of Intrinsic Modal Functions (IMFs) from this decomposition 
is used with the substantial indicators to form a comprehensive feature matrix. Then, the predictive module 
combines a Long Short-Term Memory (LSTM) network with the Informer architecture to accurately predict 
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1. Introduction
Intelligence in highway traffic management lever-
ages cutting-edge information technology and so-
phisticated data analysis to monitor and perceive 
the operational state of highways in real time. This 
approach effectively addresses traffic congestion 
during highway operations, making predictions for 
traffic flow in critical research areas in intelligent 
traffic flow management. The nature of highway traf-
fic flow involves the distribution of vehicles across 
varying times and spaces, contributing to its inher-
ent unpredictability, non-linearity, and non-sta-
tionarity. These complexities even make available 
prediction methods suffer from substantial errors, 
failing to satisfy the demands of contemporary soci-
etal development. Consequently, more accurate, re-
al-time prediction methods to serve current require-
ments better have been required [6].
Initially, gathering data on motorway traffic was chal-
lenging due to its scarce availability and poor qual-
ity, which often is restricted to forecasting studies 
of small datasets. Consequently, many conventional 
prediction methods relied heavily on complex models 
grounded in purely mathematical theories, neglecting 
traffic flows' intrinsic properties and evolutionary 
patterns [1]. In short-term traffic flow forecasting, 
variations in research subjects, prediction intervals, 
and various data formats complicate direct compar-
isons of methodologies' strengths and weaknesses. 
Current research typically focuses on single-step 
forecasts covering brief intervals from 1 to 15 minutes, 
aiming to enhance the precision and utility of models 
by integrating multiple forecasting techniques. The 
literature faces several significant challenges regard-
ing the prediction of highway traffic flow, which are 
briefly expressed below [22]:
1 Traffic Vulnerability refers to a reduction in ser-

vice quality across a transport system when dis-
ruptions occur in a traffic network. Factors such as 

the topology of road networks, traffic demands, and 
environmental conditions jointly influence traffic 
vulnerability. For example, rapid urban growth has 
substantially increased highway traffic demands, 
exacerbating traffic volatility, and diminishing the 
system's resilience to external shocks, complicat-
ing forecasting efforts.

2 Traffic Modeling, using linear and nonlinear sys-
tem theories, provides mathematical models 
whose aim is to predict future traffic volumes using 
available data, without adequately accounting for 
traffic's evolutionary traits.

3 Prediction Accuracy must be highly dependable 
and useful to refine traffic management effective-
ly. Current methodologies, which typically analyze 
only real-time traffic data, struggle to meet online 
prediction requirements when high traffic volumes 
and unstable system operations occur. Thus, a new 
approach within a big data framework has emerged 
to address these evolving needs.

Thus, data-driven methods are promising to deal with 
those issues.
In addressing the challenges of highway traffic flow 
prediction, this paper introduces a method called the 
IHPO-VMD-LSTM-Informer. The novel contribu-
tions of the research are detailed below: Initially, a 
nonlinear principal component analysis technique 
[15] is crafted to reduce the dimensions and cor-
relations among the indicators measuring highway 
traffic flow. By utilizing only key principle compo-
nents instead of numerous original indicators, the 
input feature matrix is simplified for the predic-
tion module. Furthermore, traffic flow data is de-
composed using Variational Modal Decomposition 
(VMD), paired with the multi-strategy improved 
Hunter-Prey Optimization (IHPO) algorithm. This 
combination allows for adaptive decomposition, ef-
fectively mitigating the issues of over or under-de-

highway traffic flow from the feature matrix. The effectiveness of the proposed model is verified using a public 
motorway traffic dataset KDD CUP 2017. The results indicate that the proposed model outperforms available 
ones in terms of prediction accuracy, where MAPE and RMSE have 8.09 and 2,84, thus significantly advancing 
intelligent highway management.
KEYWORDS: Highway traffic flow, Nonlinear Principal Component Analysis, Variational Modal Decomposi-
tion, Hunter-Prey Optimization, LSTM
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composition typically caused by manual parameter 
adjustments. This approach enables deeper data 
feature mining via Sample Entropy (SE) and oth-
er indicators. Additionally, the prediction model 
integrates the Long Short-Term Memory (LSTM) 
network with the Informer model to enhance fea-
ture extraction and prediction accuracy. This in-
tegration processes time series data through the 
LSTM model to capture spatial and temporal fea-
tures, which are then fed into the Informer model’s 
encoder for generating traffic flow predictions. In 
summary, the IHPO-VMD-LSTM-Informer model 
was a significant advancement in traffic flow pre-
diction. To address the key limitations of available 
methods such as over-reliance on comprehensive 
feature sets, manual parameter tuning, and isolated 
feature processing, the proposed approach not only 
enhances prediction accuracy but also contributes 
to understanding and managing highway traffic dy-
namics more effectively.
The contributions of the article are as follows:
1 The relatively low prediction accuracy of fluctu-

ating highway flow traffic is highly improved by 
combining 4 different methods such as HPO, VDM, 
LTSM, and Informer.

2 The indicators measuring highway traffic flow are 
preprocessed using Nonlinear Principal Compo-
nent Analysis to eliminate redundant components 
so that a smaller number of principal components 
are reached, which eases the computational pro-
cess. Also, the nonlinear structure of the data is 
better treated.

3 More refined feature extraction is also realized by 
using VDA and IHPO supported by Sample Entro-
py, which makes the process effective.

4 The LSTM-Informer model is more prone to time 
series data which extracts spatial and temporal 
features and generates better predictions.

The paper is structured as follows: Section 1  intro-
duces the current situation and problems related to 
the approaches used to predict highway traffic flow. 
Section 2 presents the related work, describing the 
prediction models. Section 3 deals with the feature 
extraction of the time series data of highway traffic 
flow and constructs the feature matrix. Section 4 
proposes the prediction module for highway traffic 
flow using time series and gives the overall process 

of the prediction. Section 5 validates and tests the 
effectiveness of the proposed model. Section 6 dis-
cusses the implications for specific applications. 
Section 7 concludes the research and provides an 
outlook.

2.Related Work
Previously, the methods called exponential smooth-
ing, Kalman filtering, and time series analysis pre-
dominantly governed traffic flow predictions. Howev-
er, data-driven approaches for predicting traffic flows 
arise. Depending on their inherent model features, 
contemporary prediction methods can be categorized 
into 4 main types: linear and nonlinear system theory, 
knowledge discovery for intelligent prediction, and 
advanced methods [2].
1 Linear system theory includes various models 

such as a historical average, time series, Kalman 
filter, and linear regression. Time series forecast-
ing analyzes trends by examining data's sequence 
over time, which is straightforward to implement 
and typically delivers accurate predictions when 
data is ample, and traffic patterns are consistent. 
However, one downside is that time series fore-
casting requires extensive parameter estimation, 
which can hinder a model's portability and flexi-
bility. Additionally, model identification and test-
ing within a prediction framework can be quite 
complex. The Kalman filter technique, an en-
hanced autoregressive data processing approach, 
integrates state and observation equations into 
a state space model, deriving its predictive algo-
rithm from modern control theory's Kalman fil-
ter principles. Abadi et al. [1] initially utilized a 
dynamic traffic simulator to generate flows on all 
network links by leveraging available traffic de-
tails, projected demand, and historical data from 
sensors on links. Subsequently, they applied an 
optimization technique to refine the origin-des-
tination matrix powering the simulator and em-
ployed both real-time and estimated traffic data 
for predicting future flows on each link for up to 30 
minutes. Their predictive technique employed an 
autoregressive model that adjusted to unforeseen 
incidents. For a practical application, they oper-
ated a macroscopic traffic flow simulator to fore-
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cast flows in a traffic network in San Francisco, 
California, USA, and used Monte Carlo methods 
to assess the method's precision. Zhang et al. [25] 
introduced a new and efficient method for pre-
dicting short-term traffic flows, which enhanced 
the Kalman filter to detect and eliminate noise, 
thereby preserving valuable signals through a spe-
cifically designed cost function. They verified its 
effectiveness in short-term traffic predictions via 
comprehensive testing on 4 benchmark datasets. 
Their results not only surpassed the conventional 
Kalman filter but also outperformed other wide-
spread parametric and non-parametric meth-
ods. On the other hand, Chan et al. [3] explored 
a method for advancing neural networks using 
exponential smoothing, aimed at improving neu-
ral networks previously deployed in traffic flow 
predictions. This technique preprocessed traffic 
data through exponential smoothing before it was 
fed into a neural network for training, resulting 
in preprocessed data that exhibited fewer non-
smooth aspects, discontinuities, and clusters, 
making it better suited to train neural networks.

2 Nonlinear system theory consists of wavelet 
analysis, mutation theory-based forecasting, 
and chaos theory-based prediction. The wavelet 
analysis-based approach decomposes historical 
time series data of traffic. Its strength is in the 
localized examination of temporal and spatial 
frequency data. Despite its utility, wavelet anal-
ysis acts only as one component in the broader 
prediction framework, requiring integration with 
additional models to forecast effectively. Kush-
chenko et al. [11] utilized Morlet wavelets for an-
alyzing traffic flow characteristics. They focused 
on data spanning a week, from Monday to Sunday, 
assessing average speeds and vehicle counts on 
various road sections. Then, wavelet spectra and 
scan plots were developed and scrutinized to de-
termine correlations between extreme points and 
variations in vehicle speeds and counts. Ni et al. 
[14] recognized traffic flow's inherent nonlineari-
ty and substantial disruptions, noting its variable 
characteristics across different time-frequency 
dimensions, using the wavelet analysis to break 
down a comprehensive set of raw traffic signals 
into distinct time-sequence signals, each show-
casing unique features. Subsequently, these wave-

let-transformed signals were processed using the 
ARIMA model.

3 Knowledge discovery encompasses tools like sup-
port vector machines (SVM) and artificial neural 
network (ANN) models. SVMs are recognized for 
their robust generalization capabilities. They are 
also adaptable to a wide range of machine learn-
ing tasks beyond pattern recognition, for example, 
function approximation. However, SVMs may be 
less effective with very large datasets. Artificial 
neural networks or connectionist systems, are 
computational models that mimic key aspects of 
the human brain's structure and function. These 
models generally require substantial data with 
long training duration and are less adaptable. 
They are typically optimized for specific scenar-
ios, which might limit their broader application. 
Feng et al. [5] developed an innovative predic-
tion method for short-term traffic flow utilizing 
a spatiotemporal correlation adaptive multi-ker-
nel support vector machine (AMSVM), dubbed 
AMSVM-STC. Initially, they explored nonlinear 
and stochastic characteristics of traffic flows, 
employing a combination of Gaussian and poly-
nomial kernels to construct the AMSVM. Subse-
quently, they applied an adaptive particle swarm 
optimization technique to refine AMSVM's pa-
rameters, allowing the hybrid kernel's weights 
to adjust in response to real-time traffic trends. 
Furthermore, they integrated spatiotemporal 
correlation data into AMSVM to enhance the 
predictability of short-term traffic flow, demon-
strating that the algorithm effectively adapts to 
rapid changes during peak traffic periods. Mean-
while, Wang et al. [19] implemented a backpropa-
gation (BP) neural network for forecasting traffic 
flow. They configured the network's input layer 
with variables such as date, time, car count, and 
average speed, while the output layer predicted 
total traffic flow for specified periods. Their sim-
ulations confirmed the accuracy of the proposed 
model, although the network's initial configura-
tion—specifically its weights and thresholds—sig-
nificantly influenced its performance. Stanulov et 
al. [18] provided a comparison of machine learn-
ing methods. Moreover, data fusion based on sen-
sor data was studied in [9].

4 Advanced Techniques, Graph Neural Networks 
(GNNs), and Reinforcement Learning (RL) 
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emerged as powerful tools for traffic prediction, 
leveraging spatial relationships between different 
road segments. They modeled traffic as a graph, 
allowing for the capture of intricate spatial de-
pendencies that conventional LSTM models may 
overlook [21]. Despite their strengths, GNNs often 
require a comprehensive and high-quality rep-
resentation of the network structure, which can 
be challenging to obtain in real-world scenarios. 
Furthermore, GNNs typically focus on spatial pat-
terns and may not adequately capture temporal dy-
namics without integration with recurrent struc-
tures like LSTMs [23]. Reinforcement Learning 
(RL) was applied to traffic prediction and manage-
ment, offering a dynamic approach to adaptively 
optimize predictions based on real-time feedback 
from traffic conditions [10]. RL-based methods 
can learn to adjust predictions based on the cur-
rent state of traffic flow and congestion. Howev-
er, RL methods often necessitate a substantial 
amount of training data to effectively learn opti-
mal policies, which can be challenging to obtain 
in practice [12]. In addition, the results of the re-
search progress based on Graph Neural Networks 
were discussed [8]. Attention-enhanced graph 
convolutional LSTM network (AGC-LSTM) was 
proposed to provide short-time forecasts [26]. Ad-
ditionally, they may suffer from high variance in 
predictions, making them less reliable compared 
to more deterministic approaches.

In summary, although the mentioned methods singly 
achieved some success, the actual prediction effect 
of a single model is still poor due to the high random-
ness of traffic flow, which makes predictions difficult. 
Therefore, to address the issues, this paper tries to 
improve the prediction accuracy of highway traffic 
flow by combining optimization with a deep learning 
model, and a decomposition approach. 

3. Feature Extraction for Data of  
Highway Traffic Flow

3.1 Nonlinear Principal Component  
Analysis (NPCA)
The article employs NPCA to examine the key impact 
indicators of highway traffic flow. By substituting the 

original numerous significant indicators with a com-
puted few principal components, the analysis aims to 
diminish both the dimensionality and correlation is-
sues of the indicators. This approach not only lessens 
the number of attributes required for the neural net-
work but also enhances its responsiveness to these 
indicators, thereby improving the prediction accura-
cy. The detailed steps are outlined below:
Step 1: Generate the original data matrix. Let there are 
m main indicators affecting the traffic volume of the 
highway, and the sample data consists of n years, then 
the original data matrix X is given in Equation (1):
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where xij represents the observed value of the jth indi-
cator in the ith year.
Step 2: Data log-centered transformation. The matrix 
X is log-centered to obtain the transformed matrix 
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Step 3: Determine the covariance matrix. Calculate 
the covariance matrix (  )ij m  m

S
×

=S  for matrix Y, where 
Sij  denotes the value of the ith row and the jth column 
in the covariance matrix S.
Step 4: Determine the non-linear principal compo-
nents. Firstly, solve the eigenvalue λj of the covariance 
matrix S, so that λ1≥λ2≥...≥λm are obtained and then 
find its corresponding normalized eigenvectors (a1, 
a2, ..., am) to form the eigenmoment matrix (  )ij m  m

a
×

=A , 
where aij represents the value of the ith row and the jth 
column in the eigenmoment matrix (  )ij m  m

a
×

=A .
The ith nonlinear principal component Yi is denoted by
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Step 5: Determine the number of non-linear principal 
components. Calculate the explained variance contri-
bution τj and cumulative contribution C of the jth ei-
genvalue, denoted as

1
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According to the cumulative contribution rate C≥0.9, 
Equation (3) is used to determine the c(c≤m) princi-
pal components of the indicators representing high-
way traffic volume. Thus, the first c non-linear prin-
cipal components, which are fewer than the original 
number of indicators, are used to comprehensively 
reflect the information of the original m indicators. 

3.2 Variational Modal Decomposition (VMD)

Variational Mode Decomposition (VMD) is an in-
novative, non-recursive technique for decomposing 
time series data. This method simplifies the initial 
prediction challenge by breaking down the time se-
ries into several subsequences, allowing for inde-
pendent modeling of each. The VMD operates like 
Empirical Mode Decomposition (EMD) and Ensem-
ble Empirical Mode Decomposition (EEMD) ap-
proaches, as it adaptively divides the input sequence 
into K components [13].
However, unlike the EMD and EEMD, which may re-
tain multiple frequency components within each se-
quence, the VMD is advantageous because it ensures 
that the resultant decomposition of each subsequence 
is characterized by a restricted bandwidth and a dis-
tinct center frequency. This uniqueness arises from 
the constraints placed by the VMD during the cal-
culation of the K subsequences, which continuously 
updates and fine-tunes the bandwidth and center fre-
quency of each component. The computation for the 
bandwidth of the sequence component uk is carried 
out through the following steps: (i) apply the Hilbert 

transform to derive the corresponding analytic sig-
nal uk, yielding a one-sided spectrum; (ii) utilize the 
exponential operator to modulate each component's 
spectrum into the baseband; and (iii) determine the 
bandwidth of each mode by calculating the squared 
norms of the gradients of the demodulated signals. 
Consequently, the constrained variational problem 
can be expressed as follows:
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where uk,t denotes the kth sequence component at time 
t. wk denotes the center frequency of the kth sequence 
component. δ (t) denotes the Dirac δ-distribution. (*) 
denotes the convolution operator. xinit,t denotes the 
original sequence at time t. (s.t.) refers to the con-
straint part of the optimization problem in Equation 
(6), which indicates that the sum of the several se-
quence components is equal to the original sequence.
The VMD algorithm is capable of breaking down 
highly complex original runoff data into several 
components of reduced complexity [20]. This trans-
formation enables the prediction model to more ef-
fectively capture essential features and minimize 
the impact of noise. Nonetheless, a challenge asso-
ciated with the VMD algorithm is to select appropri-
ate values for the decomposition parameter K and 
the penalty factor α. Using unsuitable parameters 
for K and α could adversely affect the accuracy of 
the final predictions. In the research, we propose a 
multi-strategy enhancement of the Hunter-Prey Op-
timization, which is an Improved Hunter-Prey Opti-
mization (IHPO) algorithm aimed at identifying the 
optimal values for both  K and α.

3.3 IHPO
3.3.1 Standard HPO
The Hunter-Prey Optimization (HPO) algorithm, 
introduced in 2022, is an intelligent optimization 
technique inspired by the hunting behaviors of pred-
ators pursuing their targets, consisting of 2 popula-
tions: hunters and prey. Hunters focus on attacking 
prey that are located at greater distances from the 
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main prey population. In response, hunters adjust 
their positions toward the remote prey, while the 
prey move toward safer locations. When compared 
to other similar algorithms, the HPO demonstrates 
substantial exploration and exploitation capabili-
ties, improving its convergence accuracy and global 
optimization effectiveness. The principles underly-
ing this algorithm are outlined as follows:
1 Initialize the population

(               )(1, )ix rand d UB LB LB=                   · – +  , (7)

where xi characterizes the position of the hunter or 
prey, LB, UB and d characterizes the minimum, maxi-
mum, and dimension of the variable.
2 Search and utilization mechanisms
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where P represents a random vector representing the 
variable numbers. 1R

→
 and 3R

→
 represent random vectors 

in the range [0,1].  R2 represents random numbers in 
the range [0,1]. Z represents the adaptive parameter.  
IDX represents the index number of the vector satis-
fying the condition. Eq represents the balance param-
eter of exploration and exploitation as expressed in 
Equation (9)
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where Ti and Tmax represent the current number of it-
erations and the maximum number of iterations.
Calculate the average value μ for all positions as:

1

1 n

i
i

x
n

=

= ∑μ →
. (10)

Compute the Euclidean distance  D(i)
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where ,i jx and j represent the individual

position of the population and the mean value of
the position.
If the average position and maximum distance are
calculated once per iteration, the algorithm will
experience a delayed convergence, so a decreasing
mechanism is proposed:

best ROUND( )qL E N ,
(12)

where N represents population size.
Calculate the prey position again:

pse bestiP x D L
.

(13)

When a prey is attacked, it will try to escape to a
safe location to enhance its chances of survival,
and the hunter may choose another prey, thus the
hunter and the prey are selected dynamically.

pos( ) 5( 1) () 0.5 2 () 2(1 ) ( ) () ,i i q j i q ix t x t EZP x t E Z j x t R (14)

4 5( 1) cos 2 ( ) ,i g g ix t B E Z R B x t R
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(15)

where gB represents global optimum. ( )ix t and

( 1)ix t represent the current position and next
iteration position of hunter/prey. 5 0,1R

represent random numbers. � represents a
regulation parameter. Equations (14) (15)
represent the updating expressions of the hunter
position and the prey position.
In the HPO framework, various updating methods
are chosen randomly based on a probabilistic
parameter �. The rules governing the hunters are
primarily focused on global search strategies,
whereas the updating approach for the prey leans
towards local exploitation. During the global
search phase, hunters progressively shift toward
the average position of the entire population.
Conversely, in the local exploitation phase, prey
moves randomly within the vicinity of the global
optimum. This updating behavior tends to favor
local exploitation, which often results in an
inadequate mechanism to escape from local
optimal solutions. After multiple iterations are
run, if the algorithm does not alter the location of
the local optimum, the population can quickly
converge to this local optimum, leading to a
stagnation phase in the algorithm s performance.
To address the limitations of the conventional
HPO, the research introduces a multi strategy

improved HPO algorithm.
3.3.2 Improvements in the Algorithm
(1) The set of good points to initialize
populations
In the HPO, initial populations are generated
by randomization. Since the random
numbers generated by the system are not
completely random, uneven distribution of
populations may occur. To prevent this type
of initialized population from being too
aggregated, which may cause the algorithm
to fall into local optimum prematurely, the
IHPO adopts the set of good points to
initialize the population. Let sG be a unit
cube in s dimensional space, if sr G , the
shape
is: 1 2( ) ( ), ( ), , ( ) , 1n sP k r k r k r k k n , n
represents the number of points, and its
deviation n satisfies 1,qn E r n ,

where ,qE r is a constant related to r and

�� only, then ( )nP is called the good point
set and r is the good point. Initializing the
population by the set of good points allows
the initial population to be evenly distributed
in the search space, thus covering more
search range. The population is initialized as
in Equation (16).

( ) i
i j j j jj UB LB r LBx

.
(16)

(3) Search optimization
In the HPO, the population is dynamically
and gradually transitioned from a global
search to a local exploitation phase by using
a nonlinear stochastic sinusoidal parameter
. calculated as:

22 sin( / ) 1 2 1t T r . (17)

In this study, 2 [0,1)r represents a random
variable, while is utilized to modify the
slope of the nonlinear curve, specifically set
to 0.2 . Additionally, within the HPO
framework, the parameter governs the
updating step for the population. Equation
(18) facilitates the adjustment of , which
linearly decreases the value of from 1 to
0.02. If decreases too rapidly during the
initial phase, it may result in insufficient
global search capabilities for the algorithm.
Conversely, if the decrease is too slow in the
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optimum. This updating behavior tends to favor
local exploitation, which often results in an
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run, if the algorithm does not alter the location of
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converge to this local optimum, leading to a
stagnation phase in the algorithm s performance.
To address the limitations of the conventional
HPO, the research introduces a multi strategy

improved HPO algorithm.
3.3.2 Improvements in the Algorithm
(1) The set of good points to initialize
populations
In the HPO, initial populations are generated
by randomization. Since the random
numbers generated by the system are not
completely random, uneven distribution of
populations may occur. To prevent this type
of initialized population from being too
aggregated, which may cause the algorithm
to fall into local optimum prematurely, the
IHPO adopts the set of good points to
initialize the population. Let sG be a unit
cube in s dimensional space, if sr G , the
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represents the number of points, and its
deviation n satisfies 1,qn E r n ,

where ,qE r is a constant related to r and

�� only, then ( )nP is called the good point
set and r is the good point. Initializing the
population by the set of good points allows
the initial population to be evenly distributed
in the search space, thus covering more
search range. The population is initialized as
in Equation (16).
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(3) Search optimization
In the HPO, the population is dynamically
and gradually transitioned from a global
search to a local exploitation phase by using
a nonlinear stochastic sinusoidal parameter
. calculated as:
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In this study, 2 [0,1)r represents a random
variable, while is utilized to modify the
slope of the nonlinear curve, specifically set
to 0.2 . Additionally, within the HPO
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(18) facilitates the adjustment of , which
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safe location to enhance its chances of survival,
and the hunter may choose another prey, thus the
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�� only, then ( )nP is called the good point
set and r is the good point. Initializing the
population by the set of good points allows
the initial population to be evenly distributed
in the search space, thus covering more
search range. The population is initialized as
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represent the updating expressions of the hunter
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parameter �. The rules governing the hunters are
primarily focused on global search strategies,
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towards local exploitation. During the global
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moves randomly within the vicinity of the global
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local exploitation, which often results in an
inadequate mechanism to escape from local
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run, if the algorithm does not alter the location of
the local optimum, the population can quickly
converge to this local optimum, leading to a
stagnation phase in the algorithm s performance.
To address the limitations of the conventional
HPO, the research introduces a multi strategy

improved HPO algorithm.
3.3.2 Improvements in the Algorithm
(1) The set of good points to initialize
populations
In the HPO, initial populations are generated
by randomization. Since the random
numbers generated by the system are not
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of initialized population from being too
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�� only, then ( )nP is called the good point
set and r is the good point. Initializing the
population by the set of good points allows
the initial population to be evenly distributed
in the search space, thus covering more
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a stagnation phase in the algorithm's performance. 
To address the limitations of the conventional HPO, 
the research introduces a multi-strategy improved 
HPO algorithm.

3.3.2  Improvements in the Algorithm
(1) The set of good points to initialize populations
In the HPO, initial populations are generated by ran-
domization. Since the random numbers generated 
by the system are not completely random, uneven 
distribution of populations may occur. To prevent 
this type of initialized population from being too ag-
gregated, which may cause the algorithm to fall into 
local optimum prematurely, the IHPO adopts the 
set of good points to initialize the population. Let 
Gs be a unit cube in s-dimensional space, if 
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represent random numbers. � represents a
regulation parameter. Equations (14) (15)
represent the updating expressions of the hunter
position and the prey position.
In the HPO framework, various updating methods
are chosen randomly based on a probabilistic
parameter �. The rules governing the hunters are
primarily focused on global search strategies,
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search phase, hunters progressively shift toward
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local exploitation, which often results in an
inadequate mechanism to escape from local
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run, if the algorithm does not alter the location of
the local optimum, the population can quickly
converge to this local optimum, leading to a
stagnation phase in the algorithm s performance.
To address the limitations of the conventional
HPO, the research introduces a multi strategy
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3.3.2 Improvements in the Algorithm
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populations may occur. To prevent this type
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deviation n satisfies 1,qn E r n ,

where ,qE r is a constant related to r and

�� only, then ( )nP is called the good point
set and r is the good point. Initializing the
population by the set of good points allows
the initial population to be evenly distributed
in the search space, thus covering more
search range. The population is initialized as
in Equation (16).
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(3) Search optimization
In the HPO, the population is dynamically
and gradually transitioned from a global
search to a local exploitation phase by using
a nonlinear stochastic sinusoidal parameter
. calculated as:
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In this study, 2 [0,1)r represents a random
variable, while is utilized to modify the
slope of the nonlinear curve, specifically set
to 0.2 . Additionally, within the HPO
framework, the parameter governs the
updating step for the population. Equation
(18) facilitates the adjustment of , which
linearly decreases the value of from 1 to
0.02. If decreases too rapidly during the
initial phase, it may result in insufficient
global search capabilities for the algorithm.
Conversely, if the decrease is too slow in the
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mechanism is proposed:
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where N represents population size.
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parameter �. The rules governing the hunters are
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search phase, hunters progressively shift toward
the average position of the entire population.
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optimum. This updating behavior tends to favor
local exploitation, which often results in an
inadequate mechanism to escape from local
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run, if the algorithm does not alter the location of
the local optimum, the population can quickly
converge to this local optimum, leading to a
stagnation phase in the algorithm s performance.
To address the limitations of the conventional
HPO, the research introduces a multi strategy
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numbers generated by the system are not
completely random, uneven distribution of
populations may occur. To prevent this type
of initialized population from being too
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where ,qE r is a constant related to r and

�� only, then ( )nP is called the good point
set and r is the good point. Initializing the
population by the set of good points allows
the initial population to be evenly distributed
in the search space, thus covering more
search range. The population is initialized as
in Equation (16).
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(3) Search optimization
In the HPO, the population is dynamically
and gradually transitioned from a global
search to a local exploitation phase by using
a nonlinear stochastic sinusoidal parameter
. calculated as:
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In this study, 2 [0,1)r represents a random
variable, while is utilized to modify the
slope of the nonlinear curve, specifically set
to 0.2 . Additionally, within the HPO
framework, the parameter governs the
updating step for the population. Equation
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linearly decreases the value of from 1 to
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initial phase, it may result in insufficient
global search capabilities for the algorithm.
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space, thus covering more search range. The popula-
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represent the updating expressions of the hunter
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populations may occur. To prevent this type
of initialized population from being too
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set and r is the good point. Initializing the
population by the set of good points allows
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and gradually transitioned from a global
search to a local exploitation phase by using
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represent random numbers. � represents a
regulation parameter. Equations (14) (15)
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where gB represents global optimum. ( )ix t and

( 1)ix t represent the current position and next
iteration position of hunter/prey. 5 0,1R

represent random numbers. � represents a
regulation parameter. Equations (14) (15)
represent the updating expressions of the hunter
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In the HPO framework, various updating methods
are chosen randomly based on a probabilistic
parameter �. The rules governing the hunters are
primarily focused on global search strategies,
whereas the updating approach for the prey leans
towards local exploitation. During the global
search phase, hunters progressively shift toward
the average position of the entire population.
Conversely, in the local exploitation phase, prey
moves randomly within the vicinity of the global
optimum. This updating behavior tends to favor
local exploitation, which often results in an
inadequate mechanism to escape from local
optimal solutions. After multiple iterations are
run, if the algorithm does not alter the location of
the local optimum, the population can quickly
converge to this local optimum, leading to a
stagnation phase in the algorithm s performance.
To address the limitations of the conventional
HPO, the research introduces a multi strategy

improved HPO algorithm.
3.3.2 Improvements in the Algorithm
(1) The set of good points to initialize
populations
In the HPO, initial populations are generated
by randomization. Since the random
numbers generated by the system are not
completely random, uneven distribution of
populations may occur. To prevent this type
of initialized population from being too
aggregated, which may cause the algorithm
to fall into local optimum prematurely, the
IHPO adopts the set of good points to
initialize the population. Let sG be a unit
cube in s dimensional space, if sr G , the
shape
is: 1 2( ) ( ), ( ), , ( ) , 1n sP k r k r k r k k n , n
represents the number of points, and its
deviation n satisfies 1,qn E r n ,

where ,qE r is a constant related to r and

�� only, then ( )nP is called the good point
set and r is the good point. Initializing the
population by the set of good points allows
the initial population to be evenly distributed
in the search space, thus covering more
search range. The population is initialized as
in Equation (16).

( ) i
i j j j jj UB LB r LBx

.
(16)

(3) Search optimization
In the HPO, the population is dynamically
and gradually transitioned from a global
search to a local exploitation phase by using
a nonlinear stochastic sinusoidal parameter
. calculated as:

22 sin( / ) 1 2 1t T r . (17)

In this study, 2 [0,1)r represents a random
variable, while is utilized to modify the
slope of the nonlinear curve, specifically set
to 0.2 . Additionally, within the HPO
framework, the parameter governs the
updating step for the population. Equation
(18) facilitates the adjustment of , which
linearly decreases the value of from 1 to
0.02. If decreases too rapidly during the
initial phase, it may result in insufficient
global search capabilities for the algorithm.
Conversely, if the decrease is too slow in the

 represents a random variable, 
while ω is utilized to modify the slope of the nonlinear 
curve, specifically set to ω = –0.2. Additionally, with-
in the HPO framework, the parameter ρ governs the 
updating step for the population. Equation (18) facil-
itates the adjustment of ρ, which linearly decreases 
the value of ρ from 1 to 0.02. If ρ decreases too rapidly 
during the initial phase, it may result in insufficient 
global search capabilities for the algorithm. Con-
versely, if the decrease is too slow in the later phases, 
it can compromise the accuracy of local development. 

The enhanced parameter ρ is updated as indicated in 
Equation (18):

  

later phases, it can compromise the accuracy of
local development. The enhanced parameter is
updated as indicated in Equation (18):

1 cos( / )t T . (18)

3.4 IHPO VMD Based Feature Extraction
In the process of the VMD decomposing time
series data related to highway traffic flow, the
predefined number of modal decompositions and
the penalty factor play a crucial role in
determining the effectiveness of the
decomposition. An inappropriate number of
decompositions can lead to over decomposition or
under decomposition, which may result in the
intrinsic mode function (IMF) components falling
outside the suitable bandwidth if the penalty
factor is set incorrectly. Consequently, this paper
employs the IHPO algorithm to fine tune the
parameter combination ,K for the VMD.
Figure 1 presents its flow chart.

Figure 1 The feature extraction process steps are
based on the IHPO VMD algorithm.

Step 1: Initialization of Parameters: Specify the
population size, the number of iterations, and the
initial positions of the prey, and establish the
upper and lower bounds. Additionally, input the
time series data related to highway traffic flow.
Step 2: Fitness Function: Utilize sample entropy as
the fitness function to assess the effectiveness of
the VMD decomposition. This involves calculating

the fitness score and determining the initial
optimal position for the hunter.
Step 3: Update the adaptive and equilibrium
parameters to update the hunter position xi(t
+ 1) when 5R and xi(t + 1) shows the
prey position when 5R .
Step 4: Calculate the contemporary hunter
fitness, filter the global optimal fitness score
and the optimal individual position, and
loop iteration until the end to output the
optimal parameter combination ,K .

Step 5: Perform the VMD decomposition of
the time series data according to the
optimized parameter combinations to obtain
the final IMF components.
Step 6: The sample entropy of each IMF
component is resolved, and the eigenvectors
are formed together with the quantized
values of the factors influencing highway
traffic.  

4. Feature Classification Based
on LSTM Informer Model
4.1 Principles of Informer
The Informer model leverages a neural
network framework for predicting highway
traffic flow, effectively capturing temporal
correlations in traffic data. It employs a
probabilistic sparse self attention mechanism
to identify the most significant queries,
which helps lower the computational
complexity associated with the self attention
matrix. Additionally, self attention
distillation is utilized to reduce the
dimensionality and the number of
parameters in the network, addressing issues
related to excessive memory consumption
caused by multilayer network stacking [7].
Furthermore, the Informer model generates
all predicted values using a generative
decoder in a single computation, enhancing
prediction speed and mitigating the risk of
cumulative error growth that can occur when
predictions are iteratively accumulated.
Figure 2 depicts the structure of the Informer
model featuring an encoder that processes
numerous long sequence inputs, which
undergo 2 main operations [17]: probabilistic
sparse self attention and self attention
distillation. These operations extract the most
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sic mode function (IMF) components falling outside 
the suitable bandwidth if the penalty factor is set in-
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Step 1: Initialization of Parameters: Specify the pop-
ulation size, the number of iterations, and the initial 
positions of the prey, and establish the upper and low-
er bounds. Additionally, input the time series data re-
lated to highway traffic flow. 
Step 2: Fitness Function: Utilize sample entropy as 
the fitness function to assess the effectiveness of the 
VMD decomposition. This involves calculating the 
fitness score and determining the initial optimal po-
sition for the hunter.
Step 3: Update the adaptive and equilibrium parame-
ters to update the hunter position xi(t + 1) when R5 < β 
and xi(t + 1) shows the prey position when R5 > β.
Step 4: Calculate the contemporary hunter fitness, 
filter the global optimal fitness score and the optimal 
individual position, and loop iteration until the end to 
output the optimal parameter combination [K, α].
Step 5: Perform the VMD decomposition of the time 
series data according to the optimized parameter 
combinations to obtain the final IMF components.
Step 6: The sample entropy of each IMF component 
is resolved, and the eigenvectors are formed together 
with the quantized values of the factors influencing 
highway traffic. 

4. Feature Classification Based on 
LSTM-Informer Model

4.1 Principles of Informer
The Informer model leverages a neural network 
framework for predicting highway traffic flow, ef-
fectively capturing temporal correlations in traffic 
data. It employs a probabilistic sparse self-atten-
tion mechanism to identify the most significant 
queries, which helps lower the computational com-
plexity associated with the self-attention matrix. 
Additionally, self-attention distillation is utilized 
to reduce the dimensionality and the number of pa-
rameters in the network, addressing issues related 
to excessive memory consumption caused by mul-
tilayer network stacking [7].
Furthermore, the Informer model generates all pre-
dicted values using a generative decoder in a single 
computation, enhancing prediction speed and mit-
igating the risk of cumulative error growth that can 

occur when predictions are iteratively accumulated. 
Figure 2 depicts the structure of the Informer model 
featuring an encoder that processes numerous long 
sequence inputs, which undergo 2 main operations 
[17]: probabilistic sparse self-attention and self-at-
tention distillation. These operations extract the 
most critical attention signals, significantly shrinking 
the network size while employing layer stacking to 
bolster robustness. This results in an attention fea-
ture map that is then sent to the decoder's multi-head 
attention module.
The decoder accepts long sequences, filling the pre-
dicted values with zeros. The inputs to the decoder 
are masked using multi-head probabilistic sparse 
self-attention, after which multi-head attention cal-
culates a weighted combination with the attention 
feature map produced by the encoder. This process 
allows for direct prediction of multi-step output 
results. Finally, the decoder's output is processed 
through a fully connected layer, transforming the 
high-dimensional output of the Informer model into 
a format that aligns with the specific prediction re-
quirements.

4.2 LSTM-Informer Model
To enhance prediction capabilities, conventional 
self-attention mechanisms necessitate quadratic 

Figure 2 
The components of the structure of the proposed 
Informer model
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dot product calculations and consume substantial 
memory, which significantly hampers the speed of 
output predictions for lengthy sequences. In sim-
ilarity computations, conventional self-attention 
often struggles with overly focusing on irrelevant 
details while neglecting essential information. To 
address these issues and accelerate the prediction 
process for long sequences, probabilistic sparse 
self-attention is employed. Initially, the input se-
quence matrix is transformed into 3 distinct matri-
ces: the query, the key, and the value es expressed in 
Equation (19).
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To enhance prediction capabilities, conventional
self attention mechanisms necessitate quadratic
dot product calculations and consume substantial
memory, which significantly hampers the speed of
output predictions for lengthy sequences. In
similarity computations, conventional self
attention often struggles with overly focusing on
irrelevant details while neglecting essential
information. To address these issues and
accelerate the prediction process for long
sequences, probabilistic sparse self attention is
employed. Initially, the input sequence matrix is
transformed into 3 distinct matrices: the query, the
key, and the value es expressed in Equation (19).
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where , ,O P Q represent the query, key, and
value matrices, respectively. I denotes the
input matrix.

, ,O P QW W W show the weight matrices,

respectively.
Secondly, the key matrix P is sampled to
obtain the sampled matrix P , and then the
M value regarding P is found for the ith row
io of the query matrix O .
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where ,iM o P denotes an indicator for

evaluating the importance of io . The larger
the value of ,iM o P , the more important io

is. T
jp represents the jth line of P . d

denotes the scaling factor and d represents
the number of columns of P , pL denotes the

number of rows of P . Then, u io is found
with the largest value of M, these u io are

formed into a new query matrix O , and the
score value T /i jo dp about P is calculated

for O .
Finally, the probabilistic sparse self attention
is obtained as follows:

T
( , , ) SoftmaxA

d
OPO P Q Q

.
(21)

Utilizing multiple probabilistic sparse self
attention mechanisms can enhance the
model s capability to handle long sequence
prediction tasks by allowing parameter
sharing across these mechanisms while
maintaining a low computational cost.

M 1 2( , , ) Concat , , , cA H H HO P Q .
(22)

M ( , , )A O P Q represents the multi head
probabilistic sparse self attention. cH
denotes the c th “head”, ( , , )c c c cH A O P Q .

, ,c c cO P Q are the , ,O P Q
matrices of the c th “head”, respectively.
The LSTM Informer model is developed, as
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AM(O, P, Q) represents the multi-head probabilistic 
sparse self-attention. Hc denotes the c-th “head”, 
Hc = A(Oc, Pc, Qc). Oc, Pc, Qc are the O, P, Q matrices of 
the c-th “head”, respectively.
The LSTM-Informer model is developed, as illus-
trated in Figure 3. Initially, the feature vector data 
representing the time series of highway traffic flow 
is fed into the LSTM model. Following in-depth fea-
ture learning and position encoding, a multi-head 
probabilistic sparse self-attention mechanism fo-
cuses on the evolving features of the vector. Sub-
sequently, maximum pooling and one-dimensional 
convolution are applied to remove redundant com-
binations from the final output feature maps. Final-
ly, another application of multi-head probabilistic 
sparse self-attention emphasizes the important fea-
tures and the decoder of the Informer model is ad-
justed to utilize a fully connected layer, yielding the 
ultimate predictions.

Figure 3 
The structure of the LSTM-Informer model
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1: Input: Time series data X
2: Initialize parameters:
3: LSTM parameters (hidden layer size, learning rate, 
number of layers, etc.)
4: Informer pa rameters (sequence length, number of  
attention heads, etc.)

5: Preprocess data:
6: Normalize time series data X
7: Create training and testing datasets
8: Generate sequences of fixed length for LSTM input

9: Define LSTM model:
10: Initialize LSTM layer(s)
11: Initialize the output layer (Dense layer)

12: Train LSTM model:
13: For each epoch:
14: For each batch in training data:
15: Forward pass:
16: Input sequence into LSTM layers
17: Obtain LSTM output (hidden states)
18: Compute loss (e.g., Mean Squared Error) between  
predicted and actual values
-19: Backward pass:
20: Compute gradients
21: Update weights using an optimizer (e.g., Adam)
22: (Optional) Validate on the validation set

23: Prepare LSTM output for Informer:
24: Extract the final hidden states from the LSTM
25: (Optional) Concatenate LSTM outputs with addition-
al features

26: Define Informer model:
27: Initialize Informer encoder with multi-head  
attention layers
28: Initialize decoder layers for prediction

29: Train Informer model:
30: For each epoch:
31: For each batch in training data:
32: Forward pass:
33: Input LSTM outputs into the Informer encoder
34: Apply attention mechanism to extract features
35: Pass through decoder layers to generate predictions
36: Compute loss (e.g., Mean Squared Error) between  
predicted and actual values
37: Backward pass:
38: Compute gradients
39: Update weights using an optimizer (e.g., Adam)
40: (Optional) Validate on the validation set

41: Make predictions:
42: For test data:
43: Input test sequences into the trained LSTM
44: Obtain the LSTM outputs
45: Input the LSTM outputs into the trained Informer model
46: Generate final predictions

47: Output: Predicted values Y

48: Evaluate model performance:
49: Calculate prediction accuracy (MAPE, RMSE)
50: Visualize a comparison between predicted and  
actual results

4.3 Highway Traffic Prediction Process Based 
on LSTM-Informer Model

The procedure for predicting highway traffic flow us-
ing the LSTM-Informer model is outlined as follows:
1 Initially, the feature vector sequence generated 

by IHPO-VMD undergoes Kalman filtering to re-
move redundancy, followed by normalization pre-
processing.

2 Next, the data is fed into the LSTM model to ex-
tract temporal features. These features are then 
input into the Informer model's encoder, where 
positional encoding is applied. The model employs 

Table 1 
The pseudo-code of the LSTM-Informer

a multi-criteria probabilistic sparse self-attention 
mechanism to focus on the evolving characteris-
tics, followed by maximum pooling and one-di-
mensional convolution to eliminate redundant 
combinations from the final output feature maps.

3 Lastly, the multi-head probabilistic sparse 
self-attention mechanism is applied again to con-
centrate on the feature vectors. Additionally, the 
decoder of the Informer model is modified to in-
corporate a fully connected layer, which produces 
the final predictions.

The pseudo-code of the LSTM-Informer is shown in 
Table 1.

Model 1: The LSTM-Informer
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5. Experimental Analysis

5.1 Experimental Environment  
and Data Processing
The dataset utilized in the experiments includes 
traffic flow data, vehicle trajectory information, 
weather conditions, and attributes related to road 
and network connectivity at a highway toll station, 
as provided by KDD CUP 2017. The data is sampled 
at 5-minute intervals, resulting in daily generated 
288 entries. The vehicle trajectory data encom-
passes travel information from intersections A to C 
leading to the toll station. The traffic flow records 
document vehicles passing through the toll gates, 
with only those entering the highway allowed at 
toll gate No. 2; here, “0” indicates outbound vehi-
cles while “1” signifies inbound ones. Weather data 
comprises features such as humidity levels and 
rainfall. The data sampling period spans from Sep-
tember 19, 2016, to October 24, 2016. To maintain 
higher prediction accuracy, holiday data was ex-
cluded, as traffic patterns during the National Day 
holiday significantly differ from regular periods. 
Missing data was addressed using linear interpo-
lation, while the Min-Max normalization method 
was applied to standardize the dataset.
Figure 4 shows the map of the traffic flow data for a 
certain day. The curve illustrates that the daily traffic 

flow at a tollgate shows a strong correlation between 
work and rest, showing a clear morning and evening 
peak, with a relatively large flow during the day and 
an overall smaller flow at night. The NPCA was per-
formed on the correlation factors of highway traffic 
flow data to reduce the dimensionality of the data to 
filter out the 3 main factors of adjacent toll intersec-
tions, vehicle models, and air temperature.
In this paper, the experiments are performed on a 
computer model Intel(R) Core(TM) i9-12900H CPU 
@ 5.0GHz with 16GB of RAM, and the simulation 
software used is Matlab 2023A.

5.2 Evaluation Metrics
To assess the accuracy of the predictions, the mean 
absolute percentage error (MAPE) and root mean 
square error (RMSE) are utilized for evaluation. 
Equations (23)-(24) provide formulas.
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where predictedX and realX represent the predicted

value and the actual score of highway traffic flow,
respectively.
5.3 Analysis of Experimental Results
Due to the randomness and volatility of the
highway traffic flow data, when using the VMD
method to decompose its data, the IHPO is
selected to optimize the system to determine the
optimal score of the number of decomposition
models K=7. The scores of the other parameters
are set as follows: Penalty Factor �=92867, so the
highway traffic flow in Figure 4 will be
decomposed by the VMD decomposition to attain
the decomposition results as shown in Figure 5.
The sample entropy of IMFs obtained by the VMD
decomposition is resolved and the feature vectors
are formed together with other principal
components, which are employed to input into the
LSTM Informer
model.
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The highway traffic flow for a specific day in
the test set is now predicted. The feature
vector, derived from the extracted data,
serves as the input for the LSTM
Informer prediction model. This process
results in the freeway traffic flow prediction
curve illustrated in Figure
6.
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where Xpredicted and Xreal represent the predicted value 
and the actual score of highway traffic flow, respec-
tively.

5.3 Analysis of Experimental Results
Due to the randomness and volatility of the highway 
traffic flow data, when using the VMD method to de-
compose its data, the IHPO is selected to optimize 
the system to determine the optimal score of the 
number of decomposition models K=7. The scores 
of the other parameters are set as follows: Penalty 
Factor α=92867, so the highway traffic flow in Fig-
ure 4 will be decomposed by the VMD decomposi-
tion to attain the decomposition results as shown in 
Figure 5. The sample entropy of IMFs obtained by 
the VMD decomposition is resolved and the feature 
vectors are formed together with other principal 
components, which are employed to input into the 
LSTM-Informer model.

Figure 4 
A map of traffic flow data for a certain day

 

 

26: Define Informer model:
27: Initialize Informer encoder with
multi head attention layers
28: Initialize decoder layers for
prediction

29: Train Informer model:
30: For each epoch:
31: For each batch in training data:
32: Forward pass:
33: Input LSTM outputs into the
Informer encoder
34: Apply attention mechanism to
extract features
35: Pass through decoder layers to
generate predictions
36: Compute loss (e.g., Mean Squared
Error) between predicted and actual
values
37: Backward pass:
38: Compute gradients
39: Update weights using an
optimizer (e.g., Adam)
40: (Optional) Validate on the
validation set

41: Make predictions:
42: For test data:
43: Input test sequences into the
trained LSTM
44: Obtain the LSTM outputs
45: Input the LSTM outputs into the
trained Informer model
46: Generate final predictions

47: Output: Predicted values Y

48: Evaluate model performance:
49: Calculate prediction accuracy
(MAPE, RMSE)
50: Visualize a comparison between
predicted and actual results

5. Experimental Analysis
5.1 Experimental Environment and Data
Processing
The dataset utilized in the experiments includes
traffic flow data, vehicle trajectory information,

weather conditions, and attributes related to
road and network connectivity at a highway
toll station, as provided by KDD CUP 2017.
The data is sampled at 5 minute intervals,
resulting in daily generated 288 entries. The
vehicle trajectory data encompasses travel
information from intersections A to C leading
to the toll station. The traffic flow records
document vehicles passing through the toll
gates, with only those entering the highway
allowed at toll gate No. 2; here, “0” indicates
outbound vehicles while “1” signifies
inbound ones. Weather data comprises
features such as humidity levels and rainfall.
The data sampling period spans from
September 19, 2016, to October 24, 2016. To
maintain higher prediction accuracy, holiday
data was excluded, as traffic patterns during
the National Day holiday significantly differ
from regular periods. Missing data was
addressed using linear interpolation, while
the Min Max normalization method was
applied to standardize the dataset.
Figure 4 shows the map of the traffic flow
data for a certain day. The curve illustrates
that the daily traffic flow at a tollgate shows
a strong correlation between work and rest,
showing a clear morning and evening peak,
with a relatively large flow during the day
and an overall smaller flow at night. The
NPCA was performed on the correlation
factors of highway traffic flow data to reduce
the dimensionality of the data to filter out the
3 main factors of adjacent toll intersections,
vehicle models, and air
temperature.

Figure 4 A map of traffic flow data for a
certain day
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Figure 6 The predictions of traffic flow in 5
minute intervals

Figure 6 depicts the predictions by the proposed
method closely aligned with the actual scores,
exhibiting only minor deviations in the peak and
through values of the highway traffic flow. To
demonstrate the efficacy of the proposed approach,
the MAPE and RMSE scores are compared with
those of VMD LSTM, VMD Informer, VMD
LSTM Informer, and HPO VMD LSTM Informer.
Table 2 presents the results.

Table 2 The comparison of the experimental
results

Models MAPE
(%) RMSE

VMD LSTM 28.76 19.84
VMD Informer 23.45 17.65
VMD LSTM
Informer

19.57 12.64

HPO VMD LSTM
Informer

14.64 8.64

IHPO VMD LSTM
Informer

8.09 2.84

Table 2 presents that it is evident that the IHPO
VMD LSTM Informer model achieves the highest
prediction accuracy among the 4 assessed models.
Specifically, the results of the VMD LSTM
Informer outperform those of both VMD LSTM
and VMD Informer. This suggests that the LSTM
Informer demonstrates superior feature
classification capabilities for highway traffic flow
data. Moreover, the incorporation of the Informer
effectively addresses the limitations of the LSTM
in extracting features from time series data,
leading to a higher prediction accuracy for the

LSTM Informer when compared to
employing the LSTM or Informer alone.
Additionally, the IHPO approach introduced
in this paper enhances the learning
performance of the LSTM Informer,
addressing the drawbacks of the
conventional HPO methods and significantly
boosting prediction accuracy. In conclusion,
the IHPO VMD LSTM Informer is well
suited for predicting highway traffic flow,
offering both higher accuracy and more
robust practical applications in engineering
settings.

6. Discussion
Decomposition methods, commonly
implemented in time series analysis, often
encounter 2 significant challenges: mode
mixing and the boundary problem [4, 24, 16,
27]. Mode mixing occurs when distinct
frequency components are inadequately
separated within the intrinsic mode functions
(IMFs), leading to the mixing of high
frequency fluctuations such as sudden
vehicle surges in traffic flow with long term
trends like average daily traffic patterns. This
amalgamation complicates the analysis, as it
becomes challenging to isolate and interpret
these critical components effectively. Also,
the resulting IMFs can misrepresent the
underlying dynamics of the system,
potentially leading to inaccurate predictions.
On the other hand, the boundary problem
arises from the inherent limitations of
decomposition methods that rely heavily on
local signal properties. These methods often
struggle with the edges of the time series,
resulting in artifacts or distortions at the
beginning and end of the decomposed
signals. In the context of highway flow traffic
prediction, such inaccuracies can adversely
affect the reliability of predictions at critical
points, such as the start and end of a
forecasting period. If the boundary effects are
not managed properly, they can introduce
significant errors, undermining the overall
model s efficacy.
To address these issues, the proposed
approach incorporates several strategies.
First, we employ advanced decomposition
techniques that utilize adaptive algorithms,
which are designed to mitigate mode mixing

The highway traffic flow for a specific day in the test 
set is now predicted. The feature vector, derived from 
the extracted data, serves as the input for the LSTM
Informer prediction model. This process results in 
the freeway traffic flow prediction curve illustrated in 
Figure 6.
Figure 6 depicts the predictions by the proposed meth-
od closely aligned with the actual scores, exhibiting 
only minor deviations in the peak and through values 
of the highway traffic flow. To demonstrate the efficacy 
of the proposed approach, the MAPE and RMSE scores 
are compared with those of VMD-LSTM, VMD-In-
former, VMD-LSTM-Informer, and HPO-VMD-
LSTM-Informer. Table 2 presents the results.
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The decomposition of the highway traffic 
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The highway traffic flow for a specific day in
the test set is now predicted. The feature
vector, derived from the extracted data,
serves as the input for the LSTM
Informer prediction model. This process
results in the freeway traffic flow prediction
curve illustrated in Figure
6.

Figure 6 
The predictions of traffic flow in 5-minute intervals

Models MAPE (%) RMSE

VMD-LSTM 28.76 19.84

VMD-Informer 23.45 17.65

VMD-LSTM-Informer 19.57 12.64

HPO-VMD-LSTM-Informer 14.64 8.64

IHPO-VMD-LSTM-Informer 8.09 2.84

Table 2 
The comparison of the experimental results

Table 2 presents that it is evident that the IH-
PO-VMD-LSTM-Informer model achieves the high-
est prediction accuracy among the 4 assessed models. 
Specifically, the results of the VMD-LSTM-Informer 
outperform those of both VMD-LSTM and VMD-In-
former. This suggests that the LSTM-Informer 
demonstrates superior feature classification capa-
bilities for highway traffic flow data. Moreover, the 
incorporation of the Informer effectively addresses 
the limitations of the LSTM in extracting features 
from time-series data, leading to a higher prediction 
accuracy for the LSTM-Informer when compared to 
employing the LSTM or Informer alone. Additionally, 
the IHPO approach introduced in this paper enhanc-
es the learning performance of the LSTM-Informer, 
addressing the drawbacks of the conventional HPO 
methods and significantly boosting prediction accu-
racy. In conclusion, the IHPO-VMD-LSTM-Informer 
is well-suited for predicting highway traffic flow, of-
fering both higher accuracy and more robust practical 
applications in engineering settings.
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6. Discussion
Decomposition methods, commonly implemented 
in time series analysis, often encounter 2 significant 
challenges: mode mixing and the boundary problem 
[4, 24, 16, 27]. Mode mixing occurs when distinct fre-
quency components are inadequately separated with-
in the intrinsic mode functions (IMFs), leading to the 
mixing of high-frequency fluctuations such as sudden 
vehicle surges in traffic flow with long-term trends 
like average daily traffic patterns. This amalgamation 
complicates the analysis, as it becomes challenging to 
isolate and interpret these critical components effec-
tively. Also, the resulting IMFs can misrepresent the 
underlying dynamics of the system, potentially lead-
ing to inaccurate predictions.
On the other hand, the boundary problem arises from 
the inherent limitations of decomposition methods 
that rely heavily on local signal properties. These 
methods often struggle with the edges of the time 
series, resulting in artifacts or distortions at the be-
ginning and end of the decomposed signals. In the 
context of highway flow traffic prediction, such in-
accuracies can adversely affect the reliability of pre-
dictions at critical points, such as the start and end of 
a forecasting period. If the boundary effects are not 
managed properly, they can introduce significant er-
rors, undermining the overall model's efficacy.
To address these issues, the proposed approach in-
corporates several strategies. First, we employ ad-
vanced decomposition techniques that utilize adap-
tive algorithms, which are designed to mitigate mode 
mixing by enhancing the separation of frequency 
components. For instance, using the VMD can help 
enhance the distinction between IMFs, ensuring 
that each mode captures a specific frequency range 
without overlap.
In addition, to resolve the boundary problem, we 
adopt the IHPO to realize the adaptive optimiza-
tion of the VMD and reduce the influence of the 
boundary effect, which also makes the learning of 
the LSTM-Informer more thorough and the training 
more adequate. These strategies help ensure that the 
decomposed components are less prone to distortion, 
resulting in more accurate and reliable predictions of 
the entire time series. By effectively addressing these 
common problems, the proposed approach improves 

the robustness and accuracy of traffic flow prediction, 
which ultimately leads to better decision-making and 
resource allocation in traffic management.

7. Conclusion
To address the challenges of fluctuating highway traf-
fic flow and inadequate prediction accuracy, we have 
developed a new prediction method called the IH-
PO-VMD-LSTM-Informer to predict highway traffic 
flow. Highways are critical transportation means and 
a smooth traffic flow is required especially for short 
periods covering an interval from 1 to 15 minutes 
when abrupt changes occur. To manage those short 
fluctuations, more data-oriented approaches are re-
quired to deal with the intrinsic characteristics of 
highway traffic flow such as nonlinearity, high uncer-
tainty, and non-stationarity.
To predict more accurately, the proposed meth-
od  IHPO-VMD-LSTM-Informer is composed of 4 
different approaches. Initially, we perform dimen-
sionality reduction using the NPCA, apply the VMD 
to decompose highway traffic flow data, and incor-
porate the IHPO algorithm to effectively tackle the 
issues of both excessive and insufficient decompo-
sition, which are often the result of manual param-
eter tuning. This approach facilitates the feature 
extraction from time-series data. Furthermore, the 
proposed model combines the LSTM network with 
the Informer model, ultimately achieving accurate 
predictions for freeway traffic flow. Experimen-
tal results demonstrate that the proposed method 
outperforms other prediction models in accuracy, 
thereby offering valuable insights for the intelligent 
management of highways.
The limitations of the research can be summarized 
as follows: 1. the optimization method of the IHPO 
is heuristic. The performance of other heuristic 
methods should be checked. 2. In addition to using 
MAPE and RMSE, other prediction metrics such as 
R2 should be used. 3. A benchmark data set or more 
data sets should be used to better assess the pro-
posed model.
In our future work, we plan to implement several 
robustness checks to enhance the reliability of the 
proposed model. Specifically, we will introduce syn-
thetic noise and run simulations with missing data 
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to assess how the model performs under uncertain 
conditions. This will allow us to gauge its robustness 
and generalizability in practical applications. Addi-
tionally, we will conduct a comprehensive sensitivity 
analysis of the model's hyperparameters, including 
the number of layers and learning rates. By system-
atically varying these parameters and observing the 
resulting impacts on model performance, we aim to 

verify the consistency and stability of the proposed 
model across different configurations. This dual ap-
proach of robustness testing and sensitivity analysis 
will provide valuable insights into the model's resil-
ience and guide future refinements.
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