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Due to the influence of the lotus seedpod’s shape, appearance, color, and growth environment, lotus seedpod de-
tection faces challenges such as low efficiency, low accuracy, and issues with false negatives and false positives. 
To address these problems, an improved lotus pod detection algorithm, FSM-YOLOv8, is proposed based on 
YOLOv8n. First, the C2f-Faster module reduces the number of model parameters while ensuring the structural 
feature extraction capability of the YOLOv8n network. Then, the SimAM attention mechanism is applied to 
the model feature extraction module, which enhances the multi-scale and spatial feature extraction capability 
of the model. Finally, MPDIoU is used as the boundary loss function to effectively solve the problem of low 
detection rate caused by the spatial overlap and occlusion of the lotus seedpods and lotus leaves. The research 
results indicate that the improved FSM-YOLOv8 achieves detection precision, recall rate, and mAP@0.5 of 
85.5%, 84.7%, and 88.7%, respectively, on the lotus seedpod detection dataset. Compared to the YOLOv8n mod-
el, this represents improvements of 1.1%, 0.8%, and 0.9%, with a 13.4% reduction in model parameters. The 
proposed algorithm enables rapid lotus seedpod detection in complex environments, meeting the recognition 
requirements for lotus seedpod harvesting robots during the picking process.
KEYWORDS: Lotus seedpod; YOLOv8; Detection; FasterNet; SimAM; MPDIOU.

1. Introduction
Lotus seedpod is an aquatic cash crop, rich in nutri-
ents and of high economic value. After thousands of 
years of careful cultivation and continuous develop-
ment in China, it has been widely planted in various 
places, and the production and export of lotus seed 
and lotus seedpod have ranked among the world’s top. 

Due to its huge market demand, the economic bene-
fits brought by lotus seedpod planting are very con-
siderable, showing vigorous development potential 
[20, 24]. The harvesting of lotus seedpods is mainly 
concentrated from June to October, with production 
peaking in July and August. In order to obtain the 
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most nutritious lotus seedpod, it is necessary to pick 
them when they are in full growth [23]. However, at 
present, China’s lotus seedpod picking is still mainly 
dependent on artificial completion, according to the 
Hangzhou West Lake fruit lotus cost statistics, the 
cost of artificial picking occupies more than 60% of 
the production cost. The manual picking method is 
inefficient and difficult to ensure the seasonality and 
freshness of lotus seedpods, which cannot meet the 
market demand. Therefore, it is crucial to realise the 
automation of lotus seedpod harvesting, which can 
not only solve all the problems of manual harvesting, 
but also significantly reduce the company’s produc-
tion cost, improve the harvesting efficiency and qual-
ity, and further enhance the competitiveness in the 
lotus seedpod market.
Detection, localization and tracking of lotus seedpods 
is the main research focus of the vision system of lo-
tus seedpod picking robots. The difficulty in testing 
the lotus seedpod lies in its unique visual character-
istics: the front of the lotus leaf is bright green and 
the back is slightly lighter in color, while the fresh 
lotus seedpod has a soft green color until the mature 
stage when it becomes lighter in color and similar to 
the color of the lotus leaf. The growing environment 
of the lotus seedpod is complex and changing. Due to 
the influence of the wind, the lotus seedpod swings 
irregularly, making it difficult to distinguish between 
the lotus leaf and the lotus seedpod. In particular, the 
corner of the lotus leaf is also similar in shape to the 
lotus seedpod when folded, and these factors combine 
to make detecting the height of the lotus seedpod a 
major challenge (Figure 1).
Target detection and tracking has opened up endless 
possibilities for modern agriculture, especially in tar-
get detection to achieve in-depth and extensive appli-
cation, significantly making up for the shortcomings 
of traditional detection methods. Most of these cut-
ting-edge technologies are built on the powerful cor-
nerstone of Convolutional Neural Networks (CNNs) 
and can be clearly divided into two camps based on 
their different processing strategies: two-stage de-
tectors, which are oriented to high-precision and 
nuanced target recognition; The other category, one-
stage detectors, focuses on efficiency and getting the 
job done faster. In agricultural applications, these two 
types of detectors have each demonstrated outstand-
ing performance and benefits.

Two-stage methods, such as the R-CNN family [4, 5, 
6, 19] and SPPNet [7], first locate the region of interest 
in the image and then detect objects from that region. 
Single-stage methods such as SSD [22], YOLO [16, 17, 
18, 1, 10, 12, 21], RetinaNet [14] and CenterNet [25] 
directly predict the target location and category, elim-
inating the region proposal step, which has greatly 
improved the detection efficiency, although the detec-
tion accuracy is slightly reduced. Jawaharlal Nehru et 
al. [11] improved the YOLO algorithm by improving 
the clustering algorithm, large data set weighting, 
multi-scale training, and optimising non-maximis-
ation to improve the model efficiency and verify its 
feasibility in target detection. However, the data body 
is single and the practicality is not strong. Li et al. [13] 
introduced GSConv module and V-GSCSP module to 
improve the accuracy and speed as well as the compu-
tational requirement. Yang et al. [9] enhanced the re-
ceptive field of YOLOv8 by introducing an improved 
version of the DBlock convolution and DWR module. 
By combining a multi-branch CA attention mecha-
nism and shared convolution, they optimized feature 
extraction and representation, significantly reducing 
the model parameters and improving the accuracy of 
object detection.
As deep learning algorithms continue to improve, 
fruit and vegetable detection has been fruitful, but en-
vironmental factors in the field are much more com-
plex than in laboratory conditions. In a lotus seedpod 
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Target detection and tracking has opened up 
endless possibilities for modern agriculture, 
especially in target detection to achieve in-depth 
and extensive application, significantly making up 
for the shortcomings of traditional detection 
methods. Most of these cutting-edge technologies 
are built on the powerful cornerstone of 
Convolutional Neural Networks (CNNs) and can 
be clearly divided into two camps based on their 
different processing strategies: two-stage 
detectors, which are oriented to high-precision 
and nuanced target recognition; The other 
category, one-stage detectors, focuses on efficiency 
and getting the job done faster. In agricultural 
applications, these two types of detectors have 
each demonstrated outstanding performance and 
benefits. 

Two-stage methods, such as the R-CNN family [4, 
5, 6, 19] and SPPNet [7], first locate the region of 
interest in the image and then detect objects from 
that region. Single-stage methods such as SSD [22], 

YOLO [16, 17, 18, 1, 10, 12, 21], RetinaNet [14] 
and CenterNet [25] directly predict the target 
location and category, eliminating the region 
proposal step, which has greatly improved 
the detection efficiency, although the 
detection accuracy is slightly reduced. 
Jawaharlal Nehru et al. [11] improved the 
YOLO algorithm by improving the clustering 
algorithm, large data set weighting, multi-
scale training, and optimising non-
maximisation to improve the model 
efficiency and verify its feasibility in target 
detection. However, the data body is single 
and the practicality is not strong. Li et al. [13] 
introduced GSConv module and V-GSCSP 
module to improve the accuracy and speed 
as well as the computational requirement. 
Yang et al. [9] enhanced the receptive field of 
YOLOv8 by introducing an improved 
version of the DBlock convolution and DWR 
module. By combining a multi-branch CA 
attention mechanism and shared 
convolution, they optimized feature 
extraction and representation, significantly 
reducing the model parameters and 
improving the accuracy of object detection. 

As deep learning algorithms continue to 
improve, fruit and vegetable detection has 
been fruitful, but environmental factors in 
the field are much more complex than in 
laboratory conditions. In a lotus seedpod 
planting environment, the growth position of 
the lotus leaves exhibits a range of levels, and 
the growth position of the lotus seedpod 
displays considerable variation in height. 
This results in a substantial amount of shade 
and overlap of the lotus seedpod, coupled 
with the ever-changing intensity of the light. 
Collectively, these factors present a 
significant challenge to the accuracy of 
identification and localization of the lotus 
seedpod. In addition to meeting the requisite 
specifications for mobile deployment, the 
Lotus seedpod picking device must also 
account for the real-time detection accuracy 
and speed. In this paper, the FSM-YOLOv8 
network modelling algorithm is designed to 
address these challenges. The algorithm 
mitigates the issues of high computational 
complexity inherent to the model, as well as 
the considerable number of parameters, and 
offers a swift and precise lotus seedpod 
recognition model for lotus seedpod picking 
robots with constrained computational 
resources. This enables them to adeptly 
navigate the multifarious challenges 
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planting environment, the growth position of the lotus 
leaves exhibits a range of levels, and the growth posi-
tion of the lotus seedpod displays considerable varia-
tion in height. This results in a substantial amount of 
shade and overlap of the lotus seedpod, coupled with 
the ever-changing intensity of the light. Collective-
ly, these factors present a significant challenge to the 
accuracy of identification and localization of the lotus 
seedpod. In addition to meeting the requisite speci-
fications for mobile deployment, the Lotus seedpod 
picking device must also account for the real-time 
detection accuracy and speed. In this paper, the FSM-
YOLOv8 network modelling algorithm is designed to 
address these challenges. The algorithm mitigates the 
issues of high computational complexity inherent to 
the model, as well as the considerable number of pa-
rameters, and offers a swift and precise lotus seedpod 
recognition model for lotus seedpod picking robots 
with constrained computational resources. This en-
ables them to adeptly navigate the multifarious chal-
lenges encountered in the actual picking environment.

2. YOLOv8 Network Modeling and 
Improvements
2.1. YOLOv8n Network Model 
The YOLO algorithm exhibits superior detection 
speed and more suitable deployment conditions than 
the two-stage target detection algorithm. YOLOv8 
separates the classification and localization branches 
without sharing parameters and modifies the detec-
tion head of the two tasks to a decoupled head struc-
ture, thereby alleviating the intrinsic conflict between 
feature data. The implementation of the anchorless 
frame concept in label assignment and loss function 
optimization facilitates enhanced consistency be-
tween classification and regression. The integration 
of DFL Loss and CIou Loss further enhances the 
model’s performance. The comprehensive structure 
of YOLOv8 is illustrated in Figure 2.
The YOLOv8n network model has undergone struc-
tural fine-tuning. The backbone of the network mod-
el employs the C2f module, derived from the CSPNet 
concept, which incorporates the ELAN design con-
cept of YOLOv7 [21] and the C3 module of YOLOv5. 
This results in an efficient C2f module. The model 

concludes with the introduction of the SPPF mod-
ule, which captures and fuses feature information 
at varying scales through the application of maxpool 
operations in parallel. The neck network plays a top-
down role in the model, integrating the extracted fea-
tures and later passing them to the recognition head. 
The model employs a cutting-edge feature fusion 
method, namely PAN-FPN, which effectively inte-
grates the strengths of path aggregation networks 
and feature pyramid networks. The PAN model is 
capable of incorporating high-resolution feature 
details on low-resolution feature maps, thereby en-
hancing the network’s perceptual capabilities. In 
contrast, FPN is capable of achieving effective fea-
ture fusion at varying scales through the use of top-
down and bottom-up pathways. The combination of 
the two enables the PAN-FPN to achieve multi-scale 
perception at multiple layers and feature fusion over 
a wider range of scales, Improved detection capabili-
ties. With regard to the output, YOLOv8n makes use 
of YOLOX’s head separation technique to decouple 
the classification and detection processes [3]. This 
technique mainly involves loss calculation and tar-
get detection frame screening, which directly im-
proves the accuracy and efficiency of centroid and 
bounding box detection.

This paper addresses the lotus seedpod harvesting 
requirements by optimizing the YOLOv8n algorithm 

Figure 2
YOLOv8n network architecture

 
 

 

encountered in the actual picking environment. 

2. YOLOv8 Network Modeling and 
Improvements 

2.1 YOLOv8n Network Model  

The YOLO algorithm exhibits superior detection 
speed and more suitable deployment conditions 
than the two-stage target detection algorithm. 
YOLOv8 separates the classification and 
localization branches without sharing parameters 
and modifies the detection head of the two tasks to 
a decoupled head structure, thereby alleviating the 
intrinsic conflict between feature data. The 
implementation of the anchorless frame concept in 
label assignment and loss function optimization 
facilitates enhanced consistency between 
classification and regression. The integration of 
DFL Loss and CIou Loss further enhances the 
model's performance. The comprehensive 
structure of YOLOv8 is illustrated in Figure 2. 

 
Figure 2 YOLOv8n network architecture. 

The YOLOv8n network model has undergone 
structural fine-tuning. The backbone of the 
network model employs the C2f module, derived 
from the CSPNet concept, which incorporates the 
ELAN design concept of YOLOv7 [21] and the C3 
module of YOLOv5. This results in an efficient C2f 
module. The model concludes with the 
introduction of the SPPF module, which captures 
and fuses feature information at varying scales 
through the application of maxpool operations in 
parallel. The neck network plays a top-down role 
in the model, integrating the extracted features and 
later passing them to the recognition head. The 
model employs a cutting-edge feature fusion 
method, namely PAN-FPN, which effectively 
integrates the strengths of path aggregation 
networks and feature pyramid networks. The PAN 
model is capable of incorporating high-resolution 

feature details on low-resolution feature 
maps, thereby enhancing the network's 
perceptual capabilities. In contrast, FPN is 
capable of achieving effective feature fusion 
at varying scales through the use of top-down 
and bottom-up pathways. The combination of 
the two enables the PAN-FPN to achieve 
multi-scale perception at multiple layers and 
feature fusion over a wider range of scales, 
Improved detection capabilities. With regard 
to the output, YOLOv8n makes use of 
YOLOX's head separation technique to 
decouple the classification and detection 
processes [3]. This technique mainly involves 
loss calculation and target detection frame 
screening, which directly improves the 
accuracy and efficiency of centroid and 
bounding box detection. 

This paper addresses the lotus seedpod 
harvesting requirements by optimizing the 
YOLOv8n algorithm and proposing the FSM-
YOLOv8 model. By introducing Fasterblock 
to enhance speed and integrating SimAM to 
construct the C2f-FS backbone module, the 
model strengthens feature extraction and 
localization capabilities. Additionally, the 
MPDIoU loss function is adopted to improve 
small object detection accuracy while 
significantly addressing occlusion and 
overlap issues. 

2.2 Improved Modeling of YOLOv8n 
Networks 

Since the C2f module in the YOLOv8n model 
suffers from parameter redundancy, large 
model size, and unsatisfactory performance 
on small target detection tasks, these factors 
together limit its effective use on mobile 
platforms. To overcome this limitation, we 
innovatively introduce the FSM-YOLOv8 
network model, which is clearly shown in 
Figure 3. The core design goal of this model is 
to realize the dual leaps of model 
lightweighting and small target detection 
accuracy improvement, so as to perfectly 
meet the deployment requirements of mobile 
devices. By carefully tuning the model 
architecture and parameter configurations, 
FSM-YOLOv8 not only maintains its efficient 
detection capability, but also drastically 
reduces the complexity and size of the model, 
ensuring its smooth operation in resource-
constrained mobile environments and 
demonstrating excellent performance and 
adaptability. 
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and proposing the FSM-YOLOv8 model. By introduc-
ing Fasterblock to enhance speed and integrating Si-
mAM to construct the C2f-FS backbone module, the 
model strengthens feature extraction and localization 
capabilities. Additionally, the MPDIoU loss function 
is adopted to improve small object detection accuracy 
while significantly addressing occlusion and overlap 
issues.

2.2. Improved Modeling of YOLOv8n Networks
Since the C2f module in the YOLOv8n model suffers 
from parameter redundancy, large model size, and 
unsatisfactory performance on small target detection 
tasks, these factors together limit its effective use on 
mobile platforms. To overcome this limitation, we 
innovatively introduce the FSM-YOLOv8 network 
model, which is clearly shown in Figure 3. The core 
design goal of this model is to realize the dual leaps 
of model lightweighting and small target detection 
accuracy improvement, so as to perfectly meet the 
deployment requirements of mobile devices. By care-
fully tuning the model architecture and parameter 
configurations, FSM-YOLOv8 not only maintains its 
efficient detection capability, but also drastically re-
duces the complexity and size of the model, ensuring 

Figure 3
Network structure diagram of FSM-YOLOv8
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In Figure 3, the structure of the FSM-YOLOv8 
network model highlights a comprehensive 
optimization strategy. Through the optimization of 
both the architecture and the loss function, FSM-
YOLOv8 significantly reduces computational costs 
while enhancing the ability to capture fine-grained 
features, thereby improving the model's detection 
accuracy and stability in complex field 
environments. Tailored to the practical needs of 
lotus seedpod detection, the model demonstrates 
exceptional robustness and adaptability, offering 
an efficient and reliable technical solution for field 
crop target detection. 

2.2.1 C2f-Faster Module 

To enhance the real-time monitoring capability of 
the lotus seedpod harvesting equipment, we have 
incorporated the efficient FasterNet network 
architecture. FasterNet [2] is a lightweight neural 
network designed to improve the efficiency of 
target detection, and its unique feature is the 
innovative introduction of a new convolutional 
module called Partial Convolution, as clearly 
shown in Figure 4. The overall structure of 
FasterNet is well-designed and divided into four 
hierarchical levels, each with a built-in Fasterblock 
module, and no additional embedding or merging 
layers are added between these levels to maintain 
architectural simplicity. The main function of the 
end of the network is feature transformation and 
classification, which is responsible for 
transforming the extracted high-level features into 
effective representations that can be used for 
classification and recognition, so as to successfully 
complete the task of real-time detection of lotus 
seed pods. The PConv layer is immediately 
followed by two 1×1 convolutional layers, which 
can fully exploit the feature information of each 

channel, and such a layout strategy allows the 
network to automatically focus on the central 
key areas of the input feature map and 
explore them in depth during the feature 
extraction process, thus capturing more 
feature information. central key areas during 
the feature extraction process, thus capturing 
richer and more accurate feature 
representations. 

One of the highlights of this structure is its 
excellent ability to deal with complex scenes 
(e.g. occluded regions in a lotus seedpod) 
while ensuring that the clarity and integrity 
of feature information is maintained. 
However, in the pursuit of building high-
performance neural networks, while 
normalization layers and activation layers are 
indispensable elements, normalization layers 
are highly sensitive to the distribution of 
input data. They automatically adjust the 
activation of output data, reducing the 
model's dependence on initial weights, 
ensuring the stability of mean and variance, 
and effectively alleviating the internal 
covariate shift phenomenon during training, 
thereby accelerating the convergence speed. 
Although they can stabilize the training 
process, excessive application may 
inadvertently limit the diversity of target 
feature expressions, thereby weakening the 
model's detection accuracy, and introducing 
unnecessary computational overhead, leading 
to a decrease in response speed. Based on this 
insight, FasterNet adopts a cautious but 
efficient strategy in its architectural design: 
the BN layer corrects the bias of the feature 
values in the right direction, which improves 
the speed of model inference. The non-linear 
property introduced by the activation 
function is a richer feature. 

The redesigned C2f-Faster module is 
illustrated in Figure 5. It features a significant 
structural advancement, whereby all 
bottleneck units within the conventional C2f 
module have been replaced with FasterBlock 
units. First of all, PConv (Partial Convolution) 
reduces the amount of computation and 
memory access by performing convolution 
operations only on a part of the input feature 
map. When the input data passes through the 
PConv layer, redundant feature information 
can be removed, which reduces the demand 
for computing power while increasing the 
computing speed. Subsequently, the feature 
map that has undergone preliminary feature 
extraction will flow through two 1×1 

its smooth operation in resource-constrained mobile 
environments and demonstrating excellent perfor-
mance and adaptability.
In Figure 3, the structure of the FSM-YOLOv8 net-
work model highlights a comprehensive optimization 
strategy. Through the optimization of both the archi-
tecture and the loss function, FSM-YOLOv8 signifi-
cantly reduces computational costs while enhancing 
the ability to capture fine-grained features, thereby 
improving the model’s detection accuracy and sta-
bility in complex field environments. Tailored to the 
practical needs of lotus seedpod detection, the model 
demonstrates exceptional robustness and adaptabili-
ty, offering an efficient and reliable technical solution 
for field crop target detection.

2.2.1. C2f-Faster Module
To enhance the real-time monitoring capability of the 
lotus seedpod harvesting equipment, we have incor-
porated the efficient FasterNet network architecture. 
FasterNet [2] is a lightweight neural network designed 
to improve the efficiency of target detection, and its 
unique feature is the innovative introduction of a new 
convolutional module called Partial Convolution, as 
clearly shown in Figure 4. The overall structure of 
FasterNet is well-designed and divided into four hier-
archical levels, each with a built-in Fasterblock mod-
ule, and no additional embedding or merging layers 
are added between these levels to maintain architec-
tural simplicity. The main function of the end of the 
network is feature transformation and classification, 
which is responsible for transforming the extracted 
high-level features into effective representations that 
can be used for classification and recognition, so as to 
successfully complete the task of real-time detection 
of lotus seed pods. The PConv layer is immediately 
followed by two 1×1 convolutional layers, which can 
fully exploit the feature information of each channel, 
and such a layout strategy allows the network to auto-
matically focus on the central key areas of the input 
feature map and explore them in depth during the fea-
ture extraction process, thus capturing more feature 
information. central key areas during the feature ex-
traction process, thus capturing richer and more ac-
curate feature representations.
One of the highlights of this structure is its excellent 
ability to deal with complex scenes (e.g. occluded 
regions in a lotus seedpod) while ensuring that the 
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clarity and integrity of feature information is main-
tained. However, in the pursuit of building high-per-
formance neural networks, while normalization 
layers and activation layers are indispensable ele-
ments, normalization layers are highly sensitive to 
the distribution of input data. They automatically 
adjust the activation of output data, reducing the 
model’s dependence on initial weights, ensuring the 
stability of mean and variance, and effectively al-
leviating the internal covariate shift phenomenon 
during training, thereby accelerating the conver-
gence speed. Although they can stabilize the train-
ing process, excessive application may inadvertent-
ly limit the diversity of target feature expressions, 
thereby weakening the model’s detection accuracy, 
and introducing unnecessary computational over-
head, leading to a decrease in response speed. Based 
on this insight, FasterNet adopts a cautious but effi-
cient strategy in its architectural design: the BN lay-
er corrects the bias of the feature values in the right 
direction, which improves the speed of model infer-
ence. The non-linear property introduced by the ac-
tivation function is a richer feature.
The redesigned C2f-Faster module is illustrated 
in Figure 5. It features a significant structural ad-
vancement, whereby all bottleneck units within the 
conventional C2f module have been replaced with 
FasterBlock units. First of all, PConv (Partial Convo-
lution) reduces the amount of computation and mem-
ory access by performing convolution operations only 
on a part of the input feature map. When the input 
data passes through the PConv layer, redundant fea-
ture information can be removed, which reduces the 
demand for computing power while increasing the 
computing speed. Subsequently, the feature map that 
has undergone preliminary feature extraction will 
flow through two 1×1 convolution layers in sequence. 
These two convolution layers are responsible for 
further refining the features, eliminating irrelevant 
information, and retaining only the effective fea-
tures that are crucial for subsequent processing. Ulti-
mately, through this series of efficient operations, the 
C2f-Faster module not only significantly reduces the 
number of 3×3 standard convolutions in the original 
C2f module, but also ensures that the model is able to 
fully and deeply exploit the information in each chan-
nel, while maintaining the diversity and richness of 
the feature representation (Figure 6).

2.2.2. SimAM Attention Mechanism Module
SimAM [8] can infer three-dimensional attention 
weights for feature maps, taking into account the infor-
mation of both channel dimension and spatial dimen-
sion. Compared with the traditional methods that only 
consider channel attention or spatial attention, it can 
capture the relationships between features more com-
prehensively, focus better on the key object features in 
the image, help the model learn more discriminative 
features, and thus improve the performance of the mod-
el in various visual tasks. When processing the feature 
map, the SimAM attention mechanism employs a min-
imum energy *

te   based evaluation method. It is used to 
accurately measure and highlight the importance of 
each target neuron by analysing the similarity between 
the neuron and its surrounding features, which can be 
applied to the model to accurately extract the feature 
information of the detection frame and the target. The 
lower the minimum energy, the greater the difference 

Figure 4
PConv structure

Figure 5
Faster Net Structure

Figure 6
C2f-Faster structure
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2.2.2 SimAM Attention Mechanism Module 

SimAM [8] can infer three-dimensional attention 
weights for feature maps, taking into account the 
information of both channel dimension and spatial 
dimension. Compared with the traditional 
methods that only consider channel attention or 
spatial attention, it can capture the relationships 
between features more comprehensively, focus 
better on the key object features in the image, help 
the model learn more discriminative features, and 
thus improve the performance of the model in 
various visual tasks. When processing the feature 
map, the SimAM attention mechanism employs a 
minimum energy *

te   based evaluation method. It 
is used to accurately measure and highlight the 
importance of each target neuron by analysing the 
similarity between the neuron and its surrounding 
features, which can be applied to the model to 
accurately extract the feature information of the 
detection frame and the target. The lower the 
minimum energy, the greater the difference 
between the neurons, and the more important the 
neurons are in the overall extraction of 
information, and therefore can also be indicated by 

the importance of the neurons, wherein *
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In Equation (4), multiplication by elements and E de-
notes the set of all minimum energies *

te . The sigmoid 
function limits the E-value between 0 and 1 to avoid 
vanishing gradients.
The SimAM attention mechanism is introduced at 
the backend, seamlessly integrated with FasterBlock 
to create the innovative FSBlock. This is then incor-
porated into the C2f module, resulting in the upgrad-
ed C2f-FSM (as shown in Figures 7-8).

2.2.3. MPDIOU Improvements
In the original YOLOv8 loss function, the overlap area 
between target bounding boxes determines their sim-
ilarity. This approach can lead to lower IoU values 
when handling partially occluded targets, which nega-
tively affects detection accuracy. In contrast, MPDIoU 
[15] addresses occlusion by focusing on the minimum 
distance between bounding boxes, enabling more ac-
curate target localization and improving positioning 
precision. Furthermore, MPDIoU refines the spatial 
distribution information of targets by considering the 
geometric relationships between bounding boxes, such 
as the distance between their centers and differences 
in aspect ratio. When targets are partially occluded, 
the original IoU method struggles to handle overlap-
ping regions, resulting in decreased detection accura-
cy. However, by incorporating geometric information, 
MPDIoU can more accurately estimate the boundaries 
of occluded targets, thereby reducing the impact of oc-
clusion on localization. In scenarios involving small 
target occlusion, the IoU calculation in the original loss 
function may not be sensitive enough to the occluded 
regions, leading to significant localization errors. In 
contrast, MPDIoU not only considers the overlapping 
area but also incorporates the geometric features of the 
bounding boxes, allowing the model to maintain high 
localization accuracy and robustness, even in cases of 
small targets or severe occlusion. When dealing with 
occluded regions, the original YOLOv8 loss function 
suffers from reduced IoU values, which can cause re-
gression targets to shift and impact detection results. 
However, MPDIoU, through its minimum point dis-
tance metric, effectively mitigates the negative impact 
of occlusion on the regression process, ensuring more 
accurate regression and ultimately improving detec-
tion stability and reliability in occluded environments. 
The structure is shown in Figure 9. 

 
 

 

convolution layers in sequence. These two 
convolution layers are responsible for further 
refining the features, eliminating irrelevant 
information, and retaining only the effective 
features that are crucial for subsequent processing. 
Ultimately, through this series of efficient 
operations, the C2f-Faster module not only 
significantly reduces the number of 3×3 standard 
convolutions in the original C2f module, but also 
ensures that the model is able to fully and deeply 
exploit the information in each channel, while 
maintaining the diversity and richness of the 
feature representation (Figure 6). 

 
Fig. 4 PConv structure 

 
Fig. 5 Faster Net Structure 

 
Figure 6 C2f-Faster structure. 

2.2.2 SimAM Attention Mechanism Module 

SimAM [8] can infer three-dimensional attention 
weights for feature maps, taking into account the 
information of both channel dimension and spatial 
dimension. Compared with the traditional 
methods that only consider channel attention or 
spatial attention, it can capture the relationships 
between features more comprehensively, focus 
better on the key object features in the image, help 
the model learn more discriminative features, and 
thus improve the performance of the model in 
various visual tasks. When processing the feature 
map, the SimAM attention mechanism employs a 
minimum energy *

te   based evaluation method. It 
is used to accurately measure and highlight the 
importance of each target neuron by analysing the 
similarity between the neuron and its surrounding 
features, which can be applied to the model to 
accurately extract the feature information of the 
detection frame and the target. The lower the 
minimum energy, the greater the difference 
between the neurons, and the more important the 
neurons are in the overall extraction of 
information, and therefore can also be indicated by 

the importance of the neurons, wherein *
te is 

defined as follows: 

( )
( )

2
*

2 2

ˆ4

ˆ ˆ2 2te
t

 

  

+
=

− + +
.                    （1） 

In Equation (1), where  is the canonical 
term; t for a channel-targeted neuron, ̂  is 
the average of all input characteristics on a 
channel, and is the variance of all input 
features on a channel; the expressions 
for 2̂ and ̂ are as follows: 

( )
22

1

1ˆ ˆM
ii

x
M

 
=

= −
      (2) 

1

1ˆ M
ii

x
M


=

= 
.             (3) 

In Equations (2)-(3), M All neurons; xi : 
neurons on specific channels; X ：Extended 
feature information for feature enhancement. 

1X sigmoid X
E

  =  
  .     (4) 
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and E denotes the set of all minimum 
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gradients. 

The SimAM attention mechanism is 
introduced at the backend, seamlessly 
integrated with FasterBlock to create the 
innovative FSBlock. This is then incorporated 
into the C2f module, resulting in the 
upgraded C2f-FSM (as shown in Figures 7-8). 
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and impact detection results. However, MPDIoU, 
through its minimum point distance metric, 
effectively mitigates the negative impact of 
occlusion on the regression process, ensuring more 
accurate regression and ultimately improving 
detection stability and reliability in occluded 
environments. The structure is shown in Figure 9.  
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The lotus seedpod image dataset was sourced 
from the lotus pond cultivation base in the He 
Tang planting area, located in Qianmu, 
Linping District, Hangzhou, Zhejiang 
Province, China. Image collection was 
conducted between July and October 2023, 
yielding a total of 3,000 images. Natural 
scenes are often characterized by intricate and 
diverse conditions, such as intense direct 
sunlight, soft diffused lighting, various 
shooting angles (including top-down, 
upward, and side views), and differing 
shooting distances.  

To enhance the model's generalization ability, 
reduce the risk of overfitting, and ensure 
diversity in the dataset, the original images 
were subjected to brightness adjustments, 
noise addition, mirror flipping, translation, 
and rotation. This augmented the dataset to 
6,000 images. These augmentation techniques 
generate new images with different 
characteristics while preserving the original 
semantic content. The training, validation, 
and test set proportions were set at 8:1:1. 
(Figure 10). 
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the square of the Euclidean distance of the true frame 
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2.3. Experimental Environment and Dataset
The lotus seedpod image dataset was sourced from 
the lotus pond cultivation base in the He Tang plant-
ing area, located in Qianmu, Linping District, Hang-
zhou, Zhejiang Province, China. Image collection was 
conducted between July and October 2023, yielding a 
total of 3,000 images. Natural scenes are often char-
acterized by intricate and diverse conditions, such as 
intense direct sunlight, soft diffused lighting, various 
shooting angles (including top-down, upward, and 
side views), and differing shooting distances. 
To enhance the model’s generalization ability, reduce 
the risk of overfitting, and ensure diversity in the 
dataset, the original images were subjected to bright-
ness adjustments, noise addition, mirror flipping, 

Table 1
Experimental environment and parameter settings

Project Version 
environment 

Parameter 
name

Parameter 
setting

GPU NVIDIA RTX 
3080 Batch Size 8 

CUDA Cuda12.1 Image Size 640

Python Python3.9 lr0 0.01

PyTorch Pytorch2.0.1 Optimizer SGD

Operating 
system Windows10 Epoch 300

translation, and rotation. This augmented the data-
set to 6,000 images. These augmentation techniques 
generate new images with different characteristics 
while preserving the original semantic content. The 
training, validation, and test set proportions were set 
at 8:1:1. (Figure 10).

Figure 10
Lotus seedpod data set image

2.4. Evaluation Metrics

To comprehensively evaluate the performance of the 
detection model, we employed widely recognized 
metrics such as model parameters, precision, recall, 
and mean average precision (mAP). Model parame-
ters reflect the complexity of the model, serving as a 
direct indicator of its structure. Precision is a stan-
dard value used to assess the model’s reliability and 
usability, representing the proportion of true posi-
tive detections among all positive detections. Recall, 
on the other hand, refers to the proportion of actu-
al targets that are correctly detected by the model. 
These metrics provide a well-rounded assessment 
of the model’s effectiveness and efficiency.

2.5. Model Selection and Field Experiments

YOLOv8n optimizes feature fusion and expression 
capabilities while maintaining its lightweight de-
sign, making it more adaptable in complex scenari-
os compared to YOLOv5n. The inference speed and 
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computational efficiency have been significantly 
improved, demonstrating exceptional performance, 
particularly in tasks requiring high real-time pro-
cessing. Additionally, YOLOv8n enhances deploy-
ment flexibility in embedded systems and edge com-
puting environments, effectively reducing hardware 
resource consumption while improving computa-
tional stability.
This study developed a lotus seedpod harvesting ex-
perimental system at Zhejiang Sci-Tech University, 
and the performance of the detection model was test-
ed (experimental scene shown in Figure 11). The sys-
tem utilizes a three-coordinate structure, consisting 
mainly of a PC, STM-32 controller, Intel RealSense 
L515 depth camera, and an end effector. The L515 
depth camera is mounted along the X-axis to capture 
lotus seedpod images from a top-down view, enabling 
visual detection in complex scenarios. The Jetson 
Xavier NX serves as the main controller, responsible 
for detecting harvestable lotus seedpods and calcu-
lating their 3D coordinates. The STM-32 controller 
works in coordination with the three-coordinate 
platform to control the end effector, executing the 
harvesting task.

Figure 11
Lotus Seedpod Harvesting Experimental Equipment

ed, with Experiment 1 being the base experiment 
YOLOv8n, the original model. Experiment 2 Replac-
ing Bottleneck in C2f with Fasterblock on the original 
YOLOv8n model. Experiment 3 Adding the SimAM 
attention mechanism to the end of the Fasterblock 
module. Experiment 4 introduces the use of MPDIoU 
as a replacement for CIoU Loss. Experiment 5 mod-
els the FSM-YOLOv8 algorithm, which has been de-
signed within the context of this paper.

Table 2
Results of ablation experiments

Model Precision/% Recall/% mAP@0.5/% Parameters/106

YOLOv8n 84.4 83.9 87.8 3.01 

+C2f-Fasternet 83.8 83.6 87.4 2.61 

+C2f-FS 84.9 84.1 87.9 2.61

+MPDIoU 84.6 84.3 87.8 3.01

Ours method 85.5 84.7 88.7 2.61

As shown in Table 2, the C2f-FasterNet module op-
timizes inference efficiency and computation speed, 
but in target detection tasks with complex back-
grounds, accuracy and recall decrease due to infor-
mation loss, reduced feature extraction capabili-
ty, and the trade-off introduced by the lightweight 
design. Therefore, by integrating SimAM after the 
C2f-Faster module, the model can more effectively 
focus on important features of the target by optimiz-
ing the attention distribution of feature channels. 
This enhancement improves the model’s ability to 
detect small targets, complex scenes, and occluded 
targets, resulting in an improvement in both accu-
racy and recall. By replacing the conventional loss 
function with the MPDIoU loss function, which 
is more suitable for small targets, and training the 
model for 300 iterations, FSM-YOLOv8 achieves 
improvements of 1.1%, 0.8%, and 0.9% in Precision, 
Recall, and mAP@0.5, respectively, on the lotus 
seedpod detection dataset. Furthermore, FSM-
YOLOv8 reduces model size while improving detec-
tion accuracy.

3. Analysis of Results
3.1. Ablation Experiment
To test the effectiveness of the improved detection 
algorithm, five sets of experiments are conduct-
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3.2. Comparative Experiment

In the same experimental setting, the FSM-YOLOv8 
lotus seedpod detection algorithm was compared with 
detection models such as YOLOX-tiny, YOLOv5n, 
YOLOv5s, YOLOv6, and YOLOv8n to further validate 
the model’s superiority. The results of the comparison 
experiment are presented in Table 3.
As shown in the table above, for lotus seedpod de-
tection, the optimized FSM-YOLOv8 algorithm 
achieves a precision of 85.5%, a recall of 84.7%, 
and a mean average precision (mAP@0.5) of 88.7%. 
This performance significantly surpasses that of 
mainstream object detection algorithms, including 
YOLOX-tiny, YOLOv5n, YOLOv6, YOLOv7-tiny, and 
YOLOv8n. Compared to YOLOX-tiny, YOLOv5n, 
YOLOv6, and YOLOv8n models, FSM-YOLOv8 re-
quires only 2.61MB of parameters. This not only 
improves training speed but also enhances overall 
performance.
Figure 12 compares the Recall, Precision, and 
mAP@0.5 curves between YOLOv8n and FSM-
YOLOv8. As can be seen from the figure, FSM-
YOLOv8 outperforms YOLOv8n in terms of Recall, 
Precision, and mAP metrics. Figure 13 presents the 
detection results of FSM-YOLOv8 applied to the 
original images of the lotus seedpod dataset. It is 
observable from Figure 13 that in rural settings, 
FSM-YOLOv8 achieves higher detection scores for 
small-sized targets, thereby mitigating the issue of 
missed detections to a certain extent.

Table 3
Comparative tests

Model Precision/% Recall/% mAP@0.5/% Parameters/106

YOLOX-tiny 79.4 80.6 83.1 5.1 

YOLOv5n 73.2 69.5 70.7 1.77 

YOLOv5s 84.7 84.4 84.5 7.03

YOLOv6 82.9 81.2 83.7 4.29

YOLOv8n 84.4 83.9 87.8 3.01

Ours method 85.5 84.7 88.7 2.61

Figure 12
Comparison of YOLOv8n and FSM-YOLOv8 curves
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5. Conclusions
This study proposes the FSM-YOLOv8 optimiza-
tion algorithm for lotus seedpod detection tasks. 

Figure 13
FSM-YOLOv8 detection effect

The model achieves deeper feature exploration in 
processing multi-channel information, enriching 
the diversity of feature extraction while improving 
efficiency and effectively reducing computational 
burden. With the introduction of a parameter-free 
attention mechanism, the model can accurately cap-
ture key features of the target bounding box. Through 
local self-similarity calculation, it effectively sup-
presses interfering features and concentrates com-
putational resources on extracting critical informa-
tion. To further optimize detection performance, the 
replacement of the loss function simplifies the com-
putation process while comprehensively improving 
regression accuracy and detection precision. Com-
pared to existing methods, FSM-YOLOv8 performs 
better in reducing false positives and false negatives, 
with relatively lower hardware resource demands. 
This approach holds potential for intelligent lotus 
seedpod harvesting tasks and provides a valuable 
reference for optimizing agricultural object detec-
tion technologies.
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