Information Technology and Control 2025/2/54

ITC 2 / 54 Embedding Numerical Features and Meta-Features in Tabular Deep Learning
Information Technology Received 2024/10/16 Accepted after revision 2024,/12/02

and Control

Vol. 54/ No. 2/ 2025 HOW TO CITE: Ma, X., Yao, B. (2025). Embedding Numerical Features and Meta-Features
pp. 662-681 in Tabular Deep Learning. Information Technology and Control, 54(2), 662-681. https://doi.
DOI 10.5755/]01.1t0.54.2.39134 org/10.5755/j01.itc.54.2.39134

Embedding Numerical
Features and Meta-Features
In Tabular Deep Learning

Xingyu Ma, Bin Yao
Department of Computer Science and Engineering, Shanghai Jiao Tong University, Dongchuan Road 800,
200240, Shanghai, China; e-mail: strive4g8@sjtu.edu.cn, yaobin@cs.sjtu.edu.cn

Corresponding author: yaobin@cs.sjtu.edu.cn

Tabular data is ubiquitous in real-world applications, and an increasing number of deep learning approach-
es have been developed for tabular data prediction. Among these approaches, embedding techniques serve
as both a common and essential component. However, the design of tabular embedding paradigms remains
relatively limited, and there is a lack of systematic evaluation regarding the performance of many existing
methods in specific scenarios. In this paper, we focus on embedding numerical features and meta-features.
To enrich the embedding methods for numerical features, we propose an ordering-oriented regularization
technique applicable to piecewise linear embeddings, along with an unsupervised feature grouping method
to facilitate partial embedding sharing. We demonstrate that these methods contribute to building more
efficient and lightweight embedding modules. Importantly, we highlight ordering and sharing as two prom-
ising directions in the design of embeddings for numerical features. Additionally, we address several eval-
uation gaps: we assess the robustness of existing embeddings for numerical features and evaluate a set of
general designs separately for data type embeddings and positional embeddings, providing insights into
their practical applications and further developments.

KEYWORDS: Embedding, Deep Learning, Tabular Data, Benchmark, Feature Engineering.

1.Introduction

Tabular data, structured with rows as samples and tabular data inference, deep learning methods have
columns as features, constitutes the foundation of yet to achieve the remarkable success exhibited in
many salient industrial applications such as click- unstructured data domains such as computer vision
through rate prediction [12], online patient moni- and natural language processing, often lagging be-
toring [47], and credit scoring [6]. In the context of hindtree-based ensemble models [4, 18, 32] in terms

Information Technology and Control

of both predictive accuracy and computational effi-
ciency [3, 10, 36]. However, due to their inherent dif-
ferentiability and their capability for representation
learning, neural networks exhibit numerous advan-
tages over non-deep models including multi-modal
learning [24, 35], transfer learning [23, 28], and con-
tinual learning [29, 40]. Therefore, there has been
an ongoing effort in developing deep learning ap-
proaches to break through their performance limits
on tabular tasks [9, 14, 16, 42, 49].

Embedding techniques are a common design el-
ement in tabular deep learning workflows. As il-
lustrated in Figure 1, the raw tabular data is first
transformed into dense, feature-independent em-
beddings, which are then fed into the primary model
to predict the target variable. Applying appropriate
embedding methods is effective in enhancing the
performance of tabular deep models. Unlike un-
structured data such as images and text, tabular data
is characterized by feature heterogeneity, with each
feature having its distinct source, type, and distri-
bution. This heterogeneity can create an intricate
input space that often results in non-smooth target
functions, making it particularly challenging for
deep models, especially on irregular datasets with
long-tail or skewed distributions [11, 27]. In such
cases, a sophisticated embedding scheme can be uti-
lized to map the raw feature space into a more homo-
geneous embedding space, which better aligns with
the inductive bias of deep models [2].

Figure 1

2025/2/54

Existing literature mostly adopts a prevalent em-
bedding paradigm, which embeds categorical fea-
tures using lookup tables and numerical features
using linear transformations, while few studies have
explored dedicated designs for embedding modules.
For example, concerning embeddings for numerical
features, Gorishniyetal. [8] propose piecewise linear
encoding and periodic encoding for application prior
to the linear transformation, while Yan et al. [43] use
a discretization algorithm to map continuous values
into specific magnitude tokens. Similarly, several
tabular works [43, 45-46] on large models explore
how to combine feature value embeddings with ad-
ditional embeddings targeting meta-features, such
as feature names and data types. However, there is
still a lack of established benchmark across differ-
ent design dimensions, which can confuse practi-
tioners when considering practical applications and
further development in tabular embedding domain.
Concretely, the two main limitations are identified
as follows: (1) There are several underemphasized
paradigms in embeddings for numerical features,
such as ordering-based regularization and embed-
ding sharing strategies; however, their effectiveness
has yet to be convincingly evaluated. Furthermore,
this underemphasis can result in certain valuable
designs remaining underexplored, leading to sub-
optimal performance. (2) For each type of meta-fea-
tures, different studies employ their own fusion de-
signs across various application scenarios. However,

An example of using a deep model with embedding layers for tabular data prediction. The figure illustrates the Titanic
dataset, with certain features omitted for simplicity in the presentation.

Embedding Layers

Embedding Space Main Model

| —

Predict

Tabular Dataset

1 2 891
o3
g 3 1 3
[=%
7]
L
g Male Female crsn Male
§
B~
E 22 38 T 32
~

7.25 71.2833 Ti-7/5)

<
3

Information Technology and Control

Figure 2

2025/2/54

Categorization of embedding techniques for numerical features. Vectorization-based embeddings apply individual linear
transformations to the encodings of each numerical feature. x/ represents the j-th numerical feature value from sample x,

v/ = (Vl/ , v{ Lo) denotes the encoding vector of x/, and e/ denotes the embedding vector of x/.

x (num) embeddings
x| x el
x? | x e’
X
(a) Vanilla Embeddings

under the supervised learning setting, there is a lack
of comprehensive summaries and systematic evalu-
ations of general fusion choices, making it difficult
for researchers to make informed decisions when
constructing embedding layers.

To fill these gaps, we conduct an experimental study
on embeddings for numerical features and meta-fea-
tures. (1) Regarding embeddings for numerical fea-
tures, we evaluate different ordering designs and
sharing strategies. First, we introduce the concept
of ordering in embedding techniques and provide a
formal definition. Based on this, we quantitatively
analyze certain embedding techniques that can pre-
serve a degree of ordering. In particular, we propose
a cosine-based regularization method applicable
to piecewise linear embeddings [8], which can im-
prove the performance of lightweight embeddings
that struggle to learn proper ordering. Next, we treat
shared embeddings not only as a necessity for specif-
ic application requirements but also as a regulariza-
tion approach that encodes inductive biases. From
this perspective, we identify three different embed-
ding-sharing strategies according to varying degrees
of sharing. We also propose an unsupervised feature
grouping method to realize partial embedding shar-
ing. Our experiments demonstrate that more efficient
andlightweight embeddings modules can be obtained
through partial or full sharing strategies. Moreover,
given that noise is an inevitable and non-negligible

encodings embeddings

(| v2 el]
X(num)/,q V_% X e% >—Z

x! L] J

x2 \ ’V_f % e% N
N e s

-~ X 7

(b) Vectorization-Based Embeddings

perturbation in tabular tasks [37, 44, 50], we address
the lack of robustness evaluations for existing em-
bedding techniques for numerical features. We show
that piecewise linear embeddings exhibit the stron-
gest noise resistance, whereas vanilla and periodic
embeddings [8], despite their initially superior per-
formance, deteriorate significantly as noise levels
increase. (2) For embeddings for meta-features, we
focus on the designs and evaluations of data type em-
beddings and positional embeddings. For data type
embeddings, we consider two fusion methods: an
additive mechanism and a gating mechanism. Like-
wise, we present a framework that enables positional
embeddings to model feature-specific information in
either the embedding space or the latent represen-
tation space for encoder-like models. Through fair
comparisons of different variants, we demonstrate
that various positional embedding designs can lead
to significant performance gains, while existing data
type embeddings offer no clear benefit.

In summary, we outline our main contributions as
follows:

1 We demonstrate that applying ordering-oriented
regularization techniques to ordering-deficient
embeddings for numerical features can improve
model performance.

2 We show that creating separate embeddings for
each numerical feature is not always the optimal

Information Technology and Control

approach; partial or full sharing of embeddings can
often result in more efficient and lightweight em-
bedding modules.

3 We present the performance of different embed-
dings for numerical features under varying noise
conditions, highlighting their robustness.

4 We demonstrate that, in general tabular tasks, data
type embeddings with additive or gating mecha-
nisms provide limited improvements, while posi-
tional embeddings yield noticeable gains.

2. Related Works

2.1. Tabular Deep Learning

In the early stages, a substantial body of tabular deep
learning research concentrated on using neural net-
works to mimic the inference process of tree-based
models to achieve better accuracy [17, 19, 31]. Over
time, inspired by the tremendous success of deep
learning in unstructured data domains, researchers
have introduced many powerful model architec-
tures and training paradigms to expand the arsenal
of tabular deep learning. Notably, the Transform-
er has emerged as a popular architecture choice
[3]. For instance, Gorishniy et al. [10] propose the
FT-Transformer, which employs Transformer as
the backbone and has been demonstrated competi-
tive performance across various datasets. Similarly,
Kossen et al. [22] introduce NPT, which leverages
self-attention mechanism to capture dependencies
both between features and between samples, en-
abling the model to make use of other samples for
inference. These Transformer-based models rely on
embedding techniques, which transform scalar fea-
ture values into learnable high-dimensional vectors.
Moreover, inspired by the success of language large
models (LLMs), many works have sought to pretrain
a general-purpose large model across multiple data-
sets [7, 13, 46, 49]. To this end, they must consider
how to establish a featurization protocol that is both
flexible in handling diverse features and effective
in practice. Specifically, they need to address how
to embed and serialize features with semantics and
quantities specific to each dataset before feeding
them into the Transformer-stacked backbone. The
challenges include, but are not limited to: (1) How to
embed numerical features, since existing LLMs are

2025/2/54

notoriously poor at understanding numerical con-
cepts [33]. () How to design a tokenization schema
that is more aligned with the tabular structure [46].
Overall, optimizing embedding techniques can ben-
efit the current research in tabular deep learning.

2.2. Embeddings for Tabular Data

Embedding methods are employed in many deep
learning works within the tabular data domain. For
most of these works, the go-to solution is embedding
categorical features using lookup tables and numeri-
cal features using linear transformations. TabTrans-
former [15] opts to exclude continuous features and
focuses solely on embedding categorical features. In
contrast, Gorishniy et al. [8] show that embedding
numerical features can benefit both Transform-
er-based and MLP-based models, and they also in-
troduce two competitive embedding methods for
numerical features. Borisov et al. [2] take a unique
path by mapping the original features into the latent
space of pretrained tree-based ensemble models, al-
lowing deep models to improve predictive accuracy
by utilizing these more homogeneous feature em-
beddings. In addition to the conventional embedding
of feature values, many works have also proposed
embedding designs targeting certain additional data
information. For example, some works embed data
types and then fuse them with feature value embed-
dings [22, 45]. Similarly, some works use “positional
embeddings” to model feature-specific information,
such as the additive bias embeddings [10, 49]. In the
context of large tabular models, a common practice
is to combine feature values with feature descrip-
tions for embeddings. CM2 [46], Unitab [45], and
TP-BERTa [43] aggregate the embedding sequences
within each sample and feature, rather than simply
forming sequences as in many other works, there-
by aiding the model to understand tabular data at
the cell level. In particular, TP-BERTa introduces a
discretization-based token embedding method for
numerical features, and these embeddings are con-
strained to preserve the relative magnitude of the
feature values via a specialized regularization ap-
proach. The method is also applicable to non-LLM:s.
However, in the context of supervised tabular tasks
without the use of large models, there remains con-
siderable scope for further exploration of available
embedding techniques. It is also worth noting that
embedding techniques are a relatively resource-in-

Information Technology and Control

tensive featurization method, and in some cases,
their cost can outweigh the benefits, particularly
when dealing with a large number of features.

3. Embedding Approaches for
Tabular Data

In this section, we begin by describing standard su-
pervised learning on tabular data and the role of em-
bedding techniques in addressing these tasks. Next,
we summarize existing embedding methods for nu-
merical features. Then we analyze various ordering
designs and explore different embedding-sharing
strategies. Finally, we present various designs for
data type embeddings and positional embeddings.

3.1. Preliminaries

We address tabular problems in the standard su-
pervised learning setting. Given a tabular task with
(-dimensional input variables X € X c R" and tar-
getvariable Y € Y < R, the goal is to develop a model
60to map from the input space to the target space, i.e.,
Jfp : X — Y.Inthe context of supervised learning, we
have a labeled dataset D = {(Xi .V)},'7:1, consisting
of ninstances i.i.d. sampled from the joint distribu-
tion P(X, Y). In practice, the dataset is usually split
into three disjoint subsets: D = D,,;, WD,,;; W Do
where D, is used for training, D, for hyperparame-
ter tuning and early stopping, and D, for final evalu-
ation on unseen data. With aloss function L guiding
the optimization, the learning process of model can
be formulated in Equation (1).

val

0" = argmin - > L(f(x).p) .)

0 n (x,y)eD,

train

Let x/ denote the j-th feature of sample x(1< j < /).
For those solutions using embeddings, the predictive
function can be rewritten as f, (x) = g(z] ,zz,---,z[")
, where 7/ = ¢(xj) e R? is the d-dimensional vector
transformed from x’ via the embedding function ¢(-),
and g(-) denotes the decision function of subsequent
layers. In a nutshell, these models follow the “em-
bedding-backbone” paradigm, with the embeddings
of each feature computed independently before mix-
ing them up in the backbone. Currently, the majority

2025/2/54

of backbone architectures can be categorized into
three types: MLP-like, ResNet-like, and Transform-
er-like architectures [10].

In this work, we focus on conventional supervised
learning for tabular data, where a single model is
trained from scratch on a single labeled dataset for
inference. This indicates that we exclude large mod-
els and embeddings pretrained on cross-datasets;
however, we adopt some general embedding designs
proposed in tabular large model studies, which are
simple enough to be affordable for standard models.
Note that, for the sake of simplicity, we use a uniform
embedding dimensionality for all features, even
though customizing the dimensionality for each fea-
ture could further enhance performance and reduce
memory costs [21, 34].

3.2. On Embeddings for Numerical Features
3.2.1. Revisiting Existing Methods

Numerical features often serve as a crucial compo-
nent of tabular data, and existing research has pro-
posed various embedding methods that significantly
boost model performance. Let J,, denote the index
set of numerical features. As shown in Figure 2, we
group existing embedding schemes for numerical
features into two distinct categories: vanilla em-
beddings and vectorization-based embeddings. The
first category is adopted in most works, where the
scalar numerical feature is element-wise multiplied
with an embedding vector. The second category first
vectorizes the scalar through a multi-dimensional
encoding strategy and then multiplies the resulting
vector by a learnable parameter matrix. For both
categories, a bias term can optionally be added de-
pending on implementation choices. Essentially, the
fundamental difference between the two approaches
lies in whether a multi-dimensional encoding is ap-
plied before performing the linear transformation.
Furthermore, based on different encoding strate-
gies, we list all available embeddings belonging to
the second category, including periodic embeddings,
piecewise linear embeddings (PLE), and token em-
beddings [43].

For a numerical feature indexed by j, e/ denotes the
embedding parameters and E’/ denotes its final em-
bedding. If necessary, the bias term e/, the encodings

v/ :(vlj,v{,---,v%), and the T+1 pre-specified bin

Information Technology and Control

edges {b/{ }Qll are provided. Formally, these embed-
ding methods can be described as follows.

1 Vanilla embedding. The embedding process is pre-
sented in Equation (2).

Ej:xj-ej+eé. @)
2 Piecewise linear embedding (PLE). The encoding

process is shown in Equation (3), and the embed-
ding process is presented in Equation (4).

0, if x/ <b/ and ¢ >1,

v/ =4 Lifx/ >b/ andt<T, @)
J_pi
x’ —=b .
—tL otherwise.
b/ =b/,
E/ =D /el +e]. @

t=1

3 Periodic embedding. The encoding process is
shown in Equation (5), and the embedding process
is the same with PLE (see in Equation (4)).

J — J] Jyd ... JoJ
p —(27[01)6 27wy x’ e 2mey X)

, 5)

v/ = concat [sin (p") ,COS (p")]
where 7 is always even, and ¢/ is initialized from a
normal distribution N(O,az) with hyperparameter o.

4 Token Embedding. The encoding process is shown
in Equation (6), and the embedding process is writ-
ten in Equation (7).

t+1° .
i (6)

i Lty <x/ </
v, =
0, otherwise.

T
E/ =x/ vae[) 7

t=1

Importantly, both PLE and token embedding ne-
cessitate a prior application of a binning algorithm,
typically using bin edges derived either from quan-

2025/2/54

tiles or the “C4.5 Discretization” algorithm [20], to
segment the continuous values. Concretely, to obtain
Tbins for a numerical feature indexed by J (J €J0um),
we need to generate a sequence of T+1 edges
{b]{ T+l such that the 7-th bin can be represented as

k=1
Btj = |:btj’btj+l)(1 sts T)'
b]{ = Quantile k ({xj}xepuam) ®
T+l

min x/,ifk =1,

XEDlrain
bl = 7] ifl<k<T, . ©
max x’,ifk=T+1.
xeD,

train

To achieve this, the former (quantile-based binning)
computes T+1 equally spaced quantiles between
0 and 1 as in Equation (8), while the latter (tar-
get-aware binning) selects thresholds by recursively
maximizing the impurity gain of splitting ranges for
target values in a greedy manner, i.e., the splitting
values of internal nodes in a decision tree trained

on {(x‘f,y)} . As a supervised approach, the tar-
XEDlmin

get-aware binning only ensures that the number of
thresholds does not exceed T-1 by limiting the max-

imum number of leaf nodes to T'. Let (T{ 7Y T%_l)

represent the thresholds in ascending order and the
target-aware binning method is formalized in Equa-
tion (9). In addition, token embeddings set bi’ =—©0
and b% .1 = +oo to ensure that any value can fall into a
bin. Notably, the “token embeddings” concept is not
directly introduced in the original paper. We decom-
pose its proposed Relative Magnitude Tokenization
(RMT) technique into two parts: the first part is the
embedding approach, which we refer to as “token
embeddings” since RMT first discretizes the numer-
ical values then embeds the resulting indices as to-
kens; the other part is the magnitude-aware regular-
ization term, which will be analyzed in the following
discussion about ordering. In our settings, we make
adjustments to allow for per-feature embeddings
and quantile-based binning, and determine the rec-
ommended configuration for standard tabular tasks
in Section 4.2.

668

Information Technology and Control

3.2.2. Ordering Analysis

Numerical features possess an inherent order, which
forms the foundation for ranking and arithmetic
operations. For instance, in the task of house price
prediction, it is often observed as a common heuris-
tic that larger houses tend to have higher prices. For
the embedding-based solutions, if the relative mag-
nitude of embeddings for “house area” feature can
be modeled explicitly in a certain way, it might help
models better understand the concept of house size
and thus capture the underlying rule. Therefore, the
effectiveness of designing embeddings for numerical
features to preserve their inherent ordering is worth
evaluating. It is also worth noting that the ordering
property is not exclusive to numerical features but
also applies to certain categorical features, such as
education level and satisfaction.

To further investigate this, we perform a quantitative
analysis. Mathematically, we can definethe ordering of
embeddings for numerical features as the consistent
relative magnitude relationships such that if any trip-
let of the original feature values follows x; <x, <Xx;,
the corresponding embedding vectors should also sat-
isfy Ap = p(¢(x1),¢(x3)) —p(¢(x1),qﬁ(xz))>O, where
p(+) is an arbitrary distance function. Note that we
omit the feature index j for simplicity. For a more
in-depth quantitative analysis of certain ordering
designs, we use the Euclidean distance as the default
distance function unless otherwise specified, and
denote ¢, t,, t, as the bin indices corresponding to x,,
X,, x; for binning-based embeddings (tl <t <4)
1 Vanilla Embeddings.

Ap = (x1 —x3)e—(x1 —xz)e = (x3 —xz)e >0

where e is a non-zero embedding. This ordering

also holds for other distance functions, such as

norm-based distance metrics.

2 RMT Regularization. RMT introduces a regular-
ization loss as in Equation (10), where the distance
function computes the Euclidean distance be-
tween the outputs of ¢, and e, via alinear layer fol-
lowed by layer normalization. If #,=¢,=t,, the case of
distance comparison is the same as vanilla embed-
ding. However, since the regularization maintains
ordering at the token level, the ordering between
more fine-grained embeddings for numerical fea-
tures, which are scaled by the original feature val-
ues, cannot be guaranteed.

2025/2/54

3 Piecewise Cosine Regularization (PCR). For the
original PLE, the case is the same as vanilla em-
bedding if ¢,=¢,=t,, otherwise extra constraints are
required to ensure the strict ordering. Specifically,
this method introduce a sufficient constraint that
the cosine value between each pair of bin embed-
ding vectors must be positive. To elucidate the
principles behind the cosine-based penalties, we
begin by presenting two foundational propositions.

Propositionl: Giventwovectorsets {p1 PPy, }
and {‘h,‘ha""qm}’ where Cos(pi,qj) >0 forall i

andj, the cosine between their respective positive
linear combinations remains positive. Formally,

. n mn
sign (cos Zizla,-p,- 5 ZFlﬂjqj'))

=sign| > > a8, (p;-q,) |>0, Va,. B, > 0.

i=1 j=1
Proposition 2: Given two vectors q and p where
cos(q, p)>0, the L, norm of their sum exceeds
that of either individual vector. Specifically,

q+p=1/q> +p’ +2qpcos(q.p) > q Next, we denote
Ae;, as the embedding margin between x, and x,.

11
Formally, ift,#¢,, Ae), = (1 -V,)et1 + Z;1+le, +v,. e

Ly

otherwise A612 =(vt2 —th)etl. A similar formu-

lation applies to Ae,; and Ae,;. Furthermore, we

can decompose Ae as Ae, = Ae,, + Ae,,. Accord-
ing to proposition 1, given that any pair of bin
embeddings (e, ej) satisfies cos(e,, ej)>0, we have
cos(Ae,,, Ae,;)>0. Then, by proposition 2, we ob-
tain Ap =Ae,; —Ae,>0. Based on this proof, we
propose a pairwise regularization loss, as shown
in Equation (11), to encourage the cosine values
between different pairs of bin embeddings to re-
main positive. Note that in practice we introduce
the hyperparameter Tre™ 0 to penalize embedding
pairs with low-magnitude cosine values, prevent-
ing degradation into vanilla embeddings.

Overall, vanilla embeddings inherently possess an
ordering property, while two regularizations can be
applied to token embeddings and PLE respectively
to achieve ordering. Both regularization techniques
consist of supervised loss and regularization loss
as expressed in Equation (12), where), e R acts as a
weighting term.

Information Technology and Control

h—t|—|f 1
42;“ = max(,o(etI €,)—p(e,1 e,)-s—W,O) (10)
Pe(éR = max(rreg-cos(ei,ej),O),Vl <L j<T (G5))
L=Lyp+ AL - 12)

3.2.3. Embedding-Sharing Strategies

In many cases, it is necessary for different numer-
ical features to share their embeddings, such as
when a lightweight embedding module is required
[9] or when a model is trained across datasets [43].
Formally, e; =e€,Vj€J,,,. Furthermore, we can
consider different embedding-sharing strategies
from the perspective of feature grouping: the two
paradigms can be described uniformly as features
within the same group sharing embeddings, where
the private strategy considers each feature as an
individual group and the fully shared one treats the
entire feature set J,,, as a single group. Naturally,
between the two extremes of sharing degree, there
exists a third paradigm, which groups a subset of
features. Embedding each feature separately offers
greater flexibility, while shared embeddings typi-
cally require fewer embedding parameters, a trend
that becomes more pronounced as the number of
numerical features increases. However, this sharing
introduces inductive biases, causing the model to
treat features within the same group more similarly,
as reflected in representations determined primar-
ily by value magnitudes and overlooking semantic
differences. Consider an extreme case where the
target variable is alinear combination of all features
with identical weights, indicating that each feature
has exactly the same influence on predicting the
target value. At this stage, there is no need to distin-
guish between the semantic meanings of features,
as only their values matter, and sharing embeddings
will not confuse models. Intuitively, it becomes
more reasonable to share features that exhibit a
more homogeneous role in interactions with other
features. Motivated by this insight, we propose an
unsupervised method for feature grouping, which
can automatically obtain feature groups without re-
lying on prior knowledge about the semantic mean-
ing of features. Specifically, we first compute the
Spearman correlation matrix of all numerical fea-

2025/2/54

tures, and then apply the KMeans algorithm [25] to
this matrix to obtain a specified number of clusters,
which correspond to groups of feature indices. In a
nutshell, this approach delineates the roles of dif-
ferent features within the dataset through the com-
putation of correlation coefficients, subsequently
employing clustering techniques to categorize more
homogeneous features into distinct groups, thereby
facilitating application to datasets with an arbitrary
number of features. The choice of using Spearman
over other correlation coefficients, such as Pear-
son or Kendall, is attributed to its relatively simple
computation and its ability to handle non-linear
relationships and outliers, thus effectively meeting
the requirements of most tabular tasks. However,
this method also has a notable limitation: it is con-
tingent upon the reliability of the correlation coef-
ficients, which may be affected by data quality and
the presence of confounding variables.

3.3. On Embeddings for Meta-Features

Apart from feature values, tabular data contains
numerous auxiliary pieces of information that
are essential for understanding the nature and
semantics of the features. For example, a feature
name like “income” may imply a relationship with
“spending habits”. Therefore, many embedding
methods for meta-features have been proposed,
and here we focus on the designs of data type em-
beddings and positional embeddings. Note that we
exclude the embeddings for feature descriptions
for two reasons: first, textualizing the embeddings
for feature descriptions tends to generate a long
sequence of tokens, which generally requires pro-
cessing by large models, a resource-expensive ap-
proach that is not feasible in many cases; second,
the method is also unsuitable for datasets with
anonymized features or non-descriptive feature
codes, such as Arabic symbols.

3.3.1. Data Type Embeddings

In general, features in tabular datasets can be cat-
egorized into three types: numerical, categorical
and binary (a special case of categorical features
containing only two values). Most embedding par-
adigms differentiate feature types solely by the ap-
proaches used for embedding feature values. How-
ever, some specialized designs introduce additional

Information Technology and Control

embedding modules to explicitly model data type in-
formation, integrating them with feature value em-
beddings through additive or gating mechanisms. To
elaborate, given the data type embedding E% for the
j-th feature drawn from a lookup table, the addition
mechanism can be expressed as E/+E%, With respect
to the gate mechanism, we introduce a lightweight
version, formulated as E/+Sigmoid(E% - W), where
W e R% ig a trainable parameter matrix, and the di-
mensionality of E/ and E% is equal.

3.3.2. Positional Embeddings

The traditional positional embeddings in the NLP
domain, which are designed to introduce sequential
information into models, do not align with the per-
mutation-invariant nature of tabular data. Here, the
positional embeddings refer to feature-specific em-
beddings uniquely identified by their indices. These
embeddings are expected to capture feature-depen-
dent information, helping models distinguish be-
tween different features and understand their rela-
tionships. Following the description, the individual
bias embeddings of each feature can be regarded as
a form of additive positional embedding. Moreover,
we propose a framework that incorporates various
positional embedding designs, as illustrated in Fig-
ure 3. In this framework, there are two choices to
fuse the positional embeddings with the main rep-
resentations, including addition and concatenation.
For the Transformer-based backbone, the positional
embeddings are additionally allowed to operate in
the latent space of the backbone outputs. Assume

Figure 3

A framework for diverse positional embeddings designs.
Only when the length of the output representations from
the backbone equals the number of features, such as in
a Transformer-based backbone, can the fusion modules
operate in the latent space. E/ denotes the embeddings of
the j-th feature.

Backbone

2025/2/54

that the main representations are d-dimensional
and the positional embeddings are d,, .-dimensional,
d equals d, if fused before passing into the back-
bone; otherwise, the representations first need to
be projected via a linear layer R?— R%. Therefore,
the common bias terms of embeddings for each fea-

ture can be viewed as the pre-add variant.

4. Experiment and Analysis

In this section, we commence by evaluating token
embeddings equipped with different simple differen-
tiable modules to determine a recommended config-
uration for practical applications. Subsequently, we
compare diverse embedding schemes across various
datasets, aiming to answer four key questions within
the standard learning setting: (1) How do different
designs for preserving ordering in embeddings for
numerical features affect model performance? (2)
Can partial or full sharing of embeddings for numer-
ical features lead to further improvements in per-
formance and cost efficiency? (3) How do existing
embeddings for numerical features perform under
varying noise conditions? (4) Can data type embed-
dings and positional embeddings each consistently
provide significant improvements? Finally, we com-
pare the best scores of different embedding methods
under various maximum rounds of hyperparameter
search, highlighting the differences in training costs
required to fully unleash their potential.

4.1. Experiment Setup
4.1.1. Datasets

We utilize a selection of popular benchmarks from
prior literature on tabular deep learning [9, 27]. To
be specific, these eight datasets are medium- and
large-scale, each containing at least 10,000 ob-
jects, representing diverse tabular problems with
regression and classification targets. Importantly,
we leverage four of them that consist solely of nu-
merical features for experiments on the evaluation
criteria, ensuring that all performance impacts are
derived from embeddings for numerical features.
When demonstrating the generality of effectiveness,
we use the full datasets. The main statistics of the
full datasets are listed in Table 1 and more details are
provided in Appendix A.2.

Information Technology and Control

Table 1

Dataset statistics. We use AUC (Area Under the ROC
Curve) as the metric for binary classification tasks and use
RMSE (Root Mean Square Error) for regression tasks.

Dataset #Object #]gflf;gl;t) Metric
EL 16,599 (18,0,0) AUC.
CA 20,640 (8,0,1) RMSE
HO 22,784 (16,0,0) RMSE
AD 48,842 6,1,7) AUC.
DI 53,940 (6,0,3) RMSE
HI 98,050 (28,0,0) AUC.
MI 130,064 (50,0,0) AUC.
BL 166,821 (4,2,3) RMSE

4.1.2. Data Preprocessing

We establish a common preprocessing protocol for
a fair comparison between models. For each dataset,
we treat nominal features with a cardinality of two as
binary features and the rest as categorical features.
We randomly sample 20% of the entire dataset as
D, then randomly select 20% of the remaining data
as D,,. To handle missing values, we impute each
numerical feature with the mean and treat missing
values in categorical features as a new category. Ad-
ditionally, we follow the normalization strategies in
the work of Gorishniy et al. [10], which apply quan-
tile-based transformation to numerical features and
z-score normalization to labels in regression tasks.

4.1.3. Tuning and Evaluation

To fully explore the potential of each model, we con-
duct thorough hyperparameter searches for individ-
ual tasks. Specifically, we use the TPEsampler in the
Optuna library [1] to run 320 hyperparameter opti-
mization (HPO) trials for each model. In each trial,
we run up to 1000 epochs, applying early stopping
with a patience of 16, and use the AdamW optimiz-
er [26], applying weight decay to all layers except
bias and normalization layers. We minimize mean
squared error for regression tasks and cross-entropy
for classification tasks, and adopt the default hyper-
parameter space from the corresponding works. The
details of tuning configurations are outlined in Ap-
pendix A.3. For each tuned hyperparameter config-
uration, we retrain 10 models with different random

2025/2/54

seeds and report their scores on the test set. Addi-
tionally, to assess the statistical significance of per-
formance differences, we apply the one-sided Wil-
coxon test [5] with p <0.05 for pairwise evaluations.

4.1.4. Models

The models follow the “embedding-backbone” par-
adigm, with three types of backbones—MLP, Res-
Net, and Transformer—which have been shown to
be competitive [10]. For all models, an embedding
layer with a bias term is used to process categorical
features. We distinguish the embedding layers of
different models by their embeddings for numerical
features. For simplicity, we follow the abbreviations
introduced by Gorishniy et al. [8], with some redef-
initions and additional symbols, as shown in Table
2. Unless otherwise specified, different embeddings
for numerical features use the recommended config-
uration , while the configurations of token embed-
dings will be studied in Section 4.2.

Table 2
Embedding notation and definitions.

Notation Definition
Lo A linear layer without a bias term
L Alinear layer with a bias term
R ReLU activation function
N No encoding
(corresponding to vanilla embeddings)
P Periodic encoding
QP Quantile-based piecewise linear encoding
TP Target-aware piecewise linear encoding
QT Quantile-based token encoding
TT Target-aware token encoding

4.2. Simple Differentiable Models Stop Token
Embeddings

Aside from the final multiplication operation, the
original token embeddings first discretize each
numerical value into its bin index and then di-
rectly use their corresponding embeddings, which
is equivalent to applying a linear transformation
without a bias term on the one-hot-like encoding
(see Section 3.2.1). In line with Gorishniy et al.

Information Technology and Control

[8], we evaluate different configurations of token
embeddings, where the encodings are followed by
various differentiable modules consisting of linear
layers and ReLU activation functions. Some of the
results are presented in Table 3, while the full data-
set is provided in Appendix 2.

‘We analyze the experimental data by isolating the ef-
fects of different choices of embedding modules, bin-
ning algorithms, and backbone architectures, while
keeping other components constant. We summarize
the main conclusions: (1) In terms of performance,
the LRLR configuration demonstrates a significant
advantage, while the others remain relatively com-
parable. However, despite its performance superi-
ority, the heavier LRLR setup incurs high overhead,
making it less suitable for scenarios requiring light-
weight embedding modules. For the other configu-
rations, their rankings are similar in most cases, ex-
cept under the ResNet-TT conditions, where LR and
L achieve noticeably second-best performances, re-
spectively (see Appendix B). Hence, the L° configura-
tion is recommended as the default choice for tasks
requiring a lighter embedding module. (2) There is
no clear preference between QT and TT. They per-
form similarly on most tasks, they perform on par in
most cases, with few exceptions: QT performs better
under the Transformer backbone on the AD dataset,
while TT performs better under the ResNet back-
bone on the HO dataset (see Appendix B). (3) There
is no clear preference between different backbones.
They perform similarly on most tasks, with the ex-
ception of the MLP consistently underperforming
on the CA dataset.

Figure 4

2025/2/54

4.3. Ordering Designs of Embeddings for
Numerical Features

To investigate the ordering property of embeddings
for numerical features, we begin by comparing the
performance of models with and without order-
ing-based regularization methods. Specifically, we
evaluate token embeddings with and without RMT
regularization, as well as the lightweight version of
PLE with and without PCR. As shown in Table 4, the
main takeaways include that (1) RMT regularization
proves ineffective in standard supervised learning
tasks. In most cases, it even undermines the perfor-
mance of the original token embeddings, with par-
ticularly adverse effects when applied to the Trans-
former backbone. These performance issues are not
due to insufficient hyperparameter tuning, as we ex-
tend the optimization rounds to 640 on the EI and
HO dataset with the Transformer backbone, without
observing any notable improvement. (2) PCR can
occasionally provide improvements; however, these
gains are not consistently maintained, as seen on the
HI dataset, where it can even lead to performance
degradation.

We scrutinize the cases where PCR has a positive
impact, and the loss curves in Figure 4 suggest that
PCR has the potential to accelerate convergence and
prevent overfitting. Furthermore, we apply PCR to
PLE with the recommended configuration. As pre-
sented in Table 4, the models with and without PCR
perform nearly equally. This raises a key question:
do we really need explicit constraints to achieve the
ordering of embeddings? To address this, we con-

The loss curves in PCR-effective cases. The subplots (a) and (b) show the results of MLP-QP-L° on the HO dataset with/
without PCR, respectively. Similarly, the subplots (c¢) and (d) show the results of Transformer-QP-L° on the EL dataset with/
without PCR. The red curves represent validation losses, and the blue curves represent training losses.

i — Standard Loss 08
it —== PCR Loss

—— Standard Loss 0.6
Y ——= PCR Loss (74,0.4488)

(33, 0.4266) 04

—— Standard Loss
—— Standard Loss

y (90,0.322)
g 02
(47,0.2821)

0.0 0.0

0.60
Standard Loss

PCR Loss
Standard Loss
PCR Loss

(155,0.4780)

p

(161,0.4717)

—— Standard Loss

—— Standard Loss
0.55

(15,0.4844)
0.50

Cross Entropy

(31,0.4382)
0.40

0 10 20 30 40 50 0 20 40 60 80
Epochs Epochs

(@ ()

50 100 150 10 20 30
Epochs Epochs

© @

Information Technology and Control

Figure 5

2025/2/54

The t-SNE [38] visualization of segment embeddings for the first feature from models trained on the HO dataset with seed=0.
The subplots (a) and (b) correspond to MLP-QP-L° without/with PCR, respectively. The subplots (c) and (d) correspond to
MLP-QP-LR without/with PCR, respectively. The color bar shows the segment IDs aligned with their relative magnitudes.

3 2 Y.‘ 100 > 100 '::1 " -
J.:. 0'.. : \ 60
< 50 50 %0
\ 50
:; .‘o: 0 4 0 N 40 60
°'f -50 -50 \3 » 40
o® v, 20
e 100 100 10 20
: 0 0
(@) (b) © (D

Table 3

Results of models using quantile-based token embeddings with different differentiable modules. The averaged metric values
are reported, with standard deviations provided in Appendix B. Comparisons are made within each group. As a result, the top
results are in bold, and the averaged ranks are reported. Notations: Tindicates AUC, |indicates RMSE.

Model EL{ CA| HO| AD? DI} HIt MIp BL| | Avg Rank
MLP-QT-L° 0.6987 | 05024 | 03431 | 0.7788 | 05426 & 07203 | 09379 | 03542 @ 20+07
MLP-QT-L 0.6929 0.5111 0.3346 0.7759 0.5436 0.7187 0.9388 | 0.3540 | 21+0.9

MLP-QT-L°R 0.6769 0.5197 0.3374 | 0.7775 0.5411 0.7178 0.9381 | 0.3543 | 2.2+12
MLP-QT-LR 0.6765 0.5094 0.3370 0.7816 0.5446 0.7216 0.9372 | 0.3535 21+0.8
MLP-QT-LRLR 0.7000 @ 0.4873 0.3372 0.7807 @ 0.5367 | 0.7233 0.9370 | 0.3534 12+04
ResNet-QT-L° 0.6961 04858 0.3359 @ 0.7809 0.5413 0.7264 @ 0.9392 | 03541 15+05
ResNet-QT-L 0.7049 04876 0.3356 0.7747 0.5392 0.7267 | 0.9401 | 0.3542 @ 15+05
ResNet-QT-L°R 0.7013 0.4885 0.3354 0.7769 @ 0.5326 0.7265 0.9387 | 0.3542 | 1.6+0.7
ResNet-QT-LR 0.6971 04865 0.3400 0.7779 | 0.5360 0.7265 0.9401 0.3534 15+05
ResNet-QT-LRLR 0.7056 = 0.4710 0.3385 0.7751 0.5405 0.7285 | 0.9391 | 0.3534 12+04
Transformer-QT-L.° 0.6904 04903 0.3473 0.7820 | 0.5368 07206 | 0.9401 | 0.3540 @ 16+07
Transformer-QT-L 0.6811 0.4877 0.3436 0.7744 0.5489 0.7233 | 0.9404 | 0.3553 16+07
Transformer-QT-L°R 0.6905 04910 0.3339 0.7710 0.5392 @ 0.7239 0.9377 | 0.3600 | 1.6+0.7
Transformer-QT-LR | 0.7001 | 04891 | 0.3380 | 07708 | 05470 | 0.7257 | 09377 | 0.3550 @ 16+05
Transformer-QT-LRLR | 0.6953 & 0.4844 @ 0.3333 @ 0.7799 0.5504 0.7241 | 0.9397 | 0.3621 11+0.3

duct an in-depth analysis from two perspectives:
(1) we visualize some embedding results for each
segment across different models for the first numer-
ical feature. As shown in Figure 5, even without bias
terms, PLE still learn a degree of ordering. However,
this ordering is limited, as the arrangement of points
does not strictly follow the ideal color transition,

and a few points deviate from the principal pattern.
Adding differentiable layers enables the embeddings
to learn a more desirable ordering, with adjacent
points following a more orderly progression along
the color spectrum. At the same time, the regular-
ization enforces stricter alignment, as reflected in
the more concentrated point distributions. (2) We

Table 4

Information Technology and Control

2025/2/54

Results of models applying and not applying ordering-based regularizations to corresponding embeddings. Pairwise
comparisons are made between models with and without the application of regularizations, and the better results are in bold.
Here, we only present the results for embeddings using quantile-based binning, while the results with target-aware binning
are provided in Appendix B. Specifically, the last two groups of data illustrate the effect of applying PCR to well-configured

PLE. Notations follow Table 3.

Model

MLP-QT-L°
MLP-QT-L° (w/ RMT reg.)

Transformer-QT-L1.°

Transformer-QT-L°(w/RMT reg.)

MLP-QP-L°
MLP-QP-L° (w/ PCR)

Transformer-QP-L°
Transformer-QP-L°(w/ PCR)

MLP-QP-LR
MLP-QP-LR (w/ PCR)

MLP-TP-LR
MLP-TP-LR (w/PCR)

Table 5

EL1

0.6987
0.6908

0.6904
0.5000

0.6869
0.6891

0.6845
0.6922

0.6863
0.6890

0.6980
0.6993

HO|

0.3431
0.3376

0.3473
0.5141

0.3383
0.3329

0.3494
0.3467

0.3411
0.3900

0.3339
0.3356

HIt

0.7203
0.7204

0.7206
0.5430

0.7230
0.7162

0.7275
0.7221

0.7201
0.7221

0.7260
0.7246

MIp

0.9379
0.9386

0.9401
0.6368

0.9365
0.9389

0.9368
0.9397

0.9349
0.9384

0.9355
0.9384

Results of models applying different sharing strategies to various embeddings for numerical features. “Corr-grouped”
refers to correlation-based feature grouping, “order-grouped” denotes order-based feature grouping, and “bin-grouped”
denotes bin-count-based feature grouping. Comparisons are made within each group, with better results shown in bold.

Notations follow Table 3.

Model

MLP-V-LR
MLP-V-LR (corr-grouped)
MLP-V-LR (shared)

Transformer-V-LR

Transformer-V-LR (corr-grouped)

Transformer-V-LR (shared)

MLP-QT-L°
MLP-QT-L° (corr-grouped)
MLP-QT-L° (shared)

MLP-QP-LR
MLP-QP-LR (corr-grouped)
MLP-QP-LR (shared)

MLP-P-LR
MLP-P-LR (corr-grouped)
MLP-P-LR (shared)

MLP-TT-L° (corr-grouped)
MLP-TT-L° (order-grouped)
MLP-TT-L° (bin-grouped)

EL?

0.7107+9.347e-03
0.7051+4.289e-03
0.7053+6.294e-03

0.6970+1.402e-02
0.6732+8.170e-03
0.5000+0.000e+00

0.6987+4.655e-03
0.6881+8.355e-03
0.7069+8.160e-03

0.6863+5.662e-03
0.6839+5431e-03
0.697315.351e-03

0.7001+7.951e-03
0.7110+4.181e-03
0.7097+5.287e-03

0.6901+6.110e-03
0.6780+5.609e-03
0.6835+4.822e-03

HO|

0.3278+2.966e-03
0.3268+3.800e-03
0.3285+2.318e-03

0.3371+2.542e-03
0.3716+1483e-03
0.5131£8.941e-04

0.3431+6.141e-03
0.3390+2.383e-03
0.3482+3444e-03

0.3411+8.960e-04
0.3393+2.374e-03
0.3399+2.834e-03

0.3311+3.313e-03
0.3273+4.416e-03
0.3272+2.714e-03

0.3387+2.126e-03
0.3418+3.132e-03
0.3440+2.313e-03

HIp

0.7240+1.309e-03
0.7235+1.689e-03
0.7208+9.911e-04

0.7272+2.056e-03
0.6579+2.495e-03
0.5443+2.823e-03

0.720318.848e-04
0.7197+1.780e-03
0.7136+3.006e-03

0.7201+2.805e-03
0.7230+2.732e-03
0.7209+5.658e-04

0.7285+1.452e-03
0.7283+2.803e-03
0.7254+1.614e-03

0.7227+5.539e-04
0.7207+1.120e-03
0.7216+1.815e-03

MIp

0.9393+2.390e-03
0.9393+2.304e-03
0.9398+1.801e-03

0.9380+1.425e-03
0.9303+1.712e-03
0.6403+4.262e-03

0.9379+4.293e-04
0.9377+6.130e-04
0.9376+5.734e-04

0.9349+1.983e-03
0.9373+1.822e-03
0.8512+1.756e-01

0.939716.867e-04
0.9411+2.544e-03
0.896511.322e-01

0.9377+6.369e-04
0.9373+6.867e-04
0.9356+7.872e-04

Information Technology and Control

further conduct feature reconstruction experiments
on the trained embeddings. Specifically, we froze the
embeddings and added a shallow decoder consist-
ing of two linear layers, then trained the models to
reconstruct the original feature values. The results
show that the performance of embeddings trained
with PCR was significantly worse than those trained
without it (see Appendix B). This indicates that the
regularization narrows the ability of the embed-
dings to capture the characteristics of the original
data, due to their insufficient expressiveness caused
by constraining the angles between embedding vec-
tors. Overall, PCR helps PLE embeddings maintain
stricter ordering, providing the gains observed in
Figure 4; however, this comes at the cost of reduced
expressiveness. For well-configured PLE, which can
already achieve good ordering, PCR is often unnec-
essary. On the other hand, for more lightweight PLE,
which are more prone to failure in maintaining or-
dering, it is crucial to weigh the tradeoff between the
benefits and the loss that PCR introduces.

4 4. Sharing Strategies of Embeddings for
Numerical Features

We compare the performance of models employing
different sharing strategies across various embed-
ding techniques. The grouping method based on
feature correlations (described in Section 3.2.3) is
used, with the number of groups set to half of the
total number of features. The experimental results
are presented in Table 5, and the key conclusions are
summarized as follows: (1) For the MLP backbone,
there are numerous opportunities to achieve more
lightweight embedding modules by partially or ful-
ly sharing feature embeddings, without sacrificing
performance—and in many cases, even improving
it—when using different embedding techniques
across various datasets. (2) For the Transformer
backbone, shared feature embeddings can severely
degrade model performance, or even lead to com-
plete failure. Since the self-attention mechanism re-
lies on differences between input vectors to compute
attention weights, overly similar inputs can result
in uniform attention distributions, making it diffi-
cult to differentiate between features. Moreover, we
conduct an ablation study by designing two simple
alternative grouping strategies based on the original
feature order and the number of bins. Concretely,

2025/2/54

the order-based grouping divides features evenly ac-
cording to their indices. The bin-count-based group-
ing applies only to embeddings using target-aware
binning, as these techniques sometimes produce
different number of bins for different features. This
method groups features with similar bin counts to-
gether, effectively reducing the total number of em-
beddings. We evaluate the effects of applying the dif-
ferent grouping algorithms. As shown in Table 5, the
correlation-based feature grouping method demon-
strates clear superiority. Furthermore, we can apply
different grouping ratios to this method to fine-tune
the sharing level, spanning from full to no sharing.
In practical applications, the grouping ratio can be
treated as a hyperparameter, and hyperparameter
optimization can be used to identify the optimal
sharing strategy configuration.

4.5. Robustness of Embeddings for
Numerical Features

We introduce various types of noise into the test sets
of the datasets, at different proportions, to assess the
performance of embedding methods for numerical
features under high-interference conditions. More
concretely, we experiment with three types of noise—
Gaussian noise, swap noise, and zero-out noise [41]—
with each type applied in proportions ranging from
0 to 0.5 at intervals of 0.1. Given the noise ratio p, we
generate a binomial mask m~Bernoulli(p) with the
same shape as sample x, indicating the positions of
the noisy features. Then the corrupted version is com-
puted as X = (1 - m) Ox+mOnoise. With respect to
noise types, swap noise shuffles the original data along
the columns, while zero-out noise substitutes the orig-
inal values with zeros. Gaussian noise is implemented

. . 2 2 2
as noise~N (0,d1ag(0'1 ,05 5,07)) where o; rep-

resents the standard deviation of the j-th numerical
feature (1 <j< ﬁ). Overall, all types of noise cause
significant distortion to the affected data, requiring
the embedding techniques to be as robust as possible
to such substantial perturbations. Due to space lim-
itations, a subset of the data supporting our conclu-
sions is visualized in Figure 6. The full experimental
data is available in Appendix B for readers seeking
more comprehensive evidence.

We focus on the performance degradation of differ-
ent embeddings, with the key findings as follows:
Among all embedding methods, (1) periodic embed-

Information Technology and Control

dings exhibit the weakest robustness against noise.
While the periodic activation functions generally
map inputs at lower frequencies, with c, initial-
ized from a Gaussian distribution with a mean of
0 (see Section 3.2.1), they tend to favor higher di-
mensions (the hyperparameter T), which increas-
es their sensitivity to variations in feature values;
(2) vanilla embeddings display better robustness
than periodic embeddings alone, which is expected
since they directly multiply feature values by the
embedding vectors; (3) PLE, benefiting from the
weighted summation of multiple bin embeddings,
show the strongest resistance to noise; (4) token
embeddings exhibit performance variability across
datasets, showing the strongest resistance to noise
on the EI dataset while ranking last on the remain-
ing datasets. Additionally, we note that (1) the ap-
plication of the Transformer backbone consistent-
ly leads to improvements over the MLP backbone
when using vanilla embeddings; (2) swap noise is a
relatively safe form of noise, which can introduce
a certain level of challenge without causing cata-
strophic interference, distinguishing it from the
Gaussian noise observed on the MI dataset and ze-
ro-out noise on the HO dataset (see Appendix B).
This also provides empirical evidence supporting

Figure 6

2025/2/54

the superiority of column-shuffle-based data aug-
mentation [48].

4.6. Evaluating Data Type and Positional
Embeddings

We evaluate the effectiveness of several designs
for meta feature embeddings. To be more precise,
we use the additive and gating variant of the data
type embeddings, and the various designs for po-
sitional embeddings (see Section 3.3.2). The main
takeaways include that (1) for existing designs, it
is generally not necessary to use extra embeddings
for data types (see Table 6). Regarding the fusion
mechanism of embeddings for data types, the gat-
ing mechanism outperforms simple addition, and
in few cases, it can even result in significant perfor-
mance improvements. (2) In addition to the com-
monly used bias terms, other positional embedding
designs also demonstrate strong competitiveness.
Among them, the bias terms (“pre-add” variant)
take the lead, which is in line with Gorishniy et al.
[10], while the “post-concat” variant lags behind
(see Table 7). Overall, this indicates that adding in-
dividual positional embeddings for each feature is
often an effective practice.

Performance of different models under various noise conditions across multiple datasets, with ribbons representing the

standard deviation using different random seeds.

0.70

AUC. (Swap Noise on EL)

AUC. (Swap Noise on HI)

0.60

0.58

AUC. (Gaussian Noise on EL)

0.72

0.70

0.68

0.66

0.62

AUC. (Gaussian Noise on HI)

0.60

0.0 0.1 0.2 0.3

Noise Ratio

0.4 0.5 0.0 0.1 0.2 0.3

Noise Ratio
—e— MLP-V-LR
—=— MLP-QP-LR

—+— MLP-P-LR
MLP-QT-L°

- -a--

0.0 0.1 0.2 0.3

Noise Ratio

0.4 0.5 0.1 0.2 0.3

Noise Ratio

04 0.5

--4-- Transformer-P-LR

+-- Transformer-QT-L°

Transformer-V-LR
Transformer-QP-LR

Information Technology and Control

Table 6

2025/2/54

Results of models applying different strategies for data type embeddings. Embet,, denotes data type embeddings.

Comparisons are made within each group, with better results shown in bold. The standard deviations are provided in

Appendix B. Notations follow Table 3.

Model EL?T

MLP-V-LR 0.7107
MLP-V-LR (w/ additive Embed,,) 0.6950
MLP-V-LR (w/ gating Embed,,) 0.7098
Transformer-V-LR 0.6970
Transformer-V-LR (w/ additive Embed,,) | 0.6833
Transformer-V-LR (w/ gating Embed,,) 0.6974

CA|
0.4893
05124
0.4898
0.4745
0.5105
04806

HO|
0.3278
0.3335
0.3267
0.3371
0.3512
0.3428

AD?T
0.7655
0.7628
0.7649
0.7687
0.7647
0.7656

DI}
0.5567
0.5533
0.5560
0.5434
0.5517
0.5410

HI{
0.7240
07202
0.7229
07272
07211
0.7287

MI7
0.9393
0.9395
0.9395
0.9380
0.9341
0.9383

BL|
0.3527
0.3566
0.3540
0.3511
0.3554
0.3563

Table 7

Results of models applying different strategies for positional embeddings. Top results are in bold. The standard deviations are

provided in Appendix B. Notations follow Table 3.

Model ELT CA| HO| AD? DI| HIT MI?T BL|]E?:fk
Transformer-V-L°R 0.6962 | 04859 @ 0.3364 | 0.7657 | 0.5477 | 0.7284 0.9389 | 0.3575 | 2.0+1.0
Transformer-V-L°R (w/ pre-concat) | 0.7016 | 04923 | 0.3307 | 07698 & 0.5461 | 0.7285 | 0.9376 | 0.3525 | 1.8+0.8
Transformer-V-L°R (w/ pre-add) 0.7034 | 04790 | 0.3345 | 0.7702 | 0.5481 | 0.7302 0.9399 0.3510 | 15+0.5
Transformer-V-L°R (w/ post-concat) = 0.6965 | 04892 | 0.3531 | 0.7721 | 0.5385 | 0.7235 | 0.9373 | 0.3496 | 2.0+1.0
Transformer-V-L°R (w/ post-add) 0.7041 0.4727 | 03469 | 0.7732 | 0.5392 | 07239 | 0.9367 | 0.3494 | 1.5+0.7

Table 8

Minimum Validation Loss with Different Maximum HPO Rounds on the HI dataset.

Models 80 160 240 320
MLP-V-LR 0.5292 0.5287 0.5283 0.5282
MLP-QT-L° 0.5448 0.5406 0.5373 0.5365
MLP-TT-L° 0.5410 0.5402 0.5366 0.5353

MLP-QP-LR 0.5324 0.5323 0.5323 0.5323
MLP-TP-LR 0.5288 0.5266 0.5263 0.5263
MLP-P-LR 0.5252 0.5230 0.5224 0.5223

4.7. HPO Rounds of Embeddings for
Numerical Features

In our experiments, we conduct 320 rounds of HPO,
since we found that the commonly used 100-round
search in previous works [8-10] often fails to identi-
fy hyperparameter configurations that fully unlock
the potential of models. We report the minimum
loss values observed within the first 80, 160, 240 and
320 rounds of HPO for models employing different

embedding methods for numerical features. Table
8 shows the results of the MLP backbones on the
HI dataset, with complete data provided in Appen-
dix B for reference. Our observations are as follows:
(1) Even after 160 rounds, additional HPO rounds
can still significantly improve the optimal scores for
many algorithms. (2) Compared to other methods, the
token embedding method is more heavily dependent
on HPO. Since token embeddings often yield higher

Information Technology and Control

loss values during training, failure to sufficiently re-
duce the loss through HPO can result in a model with
catastrophic predictive performance. This makes to-
ken embeddings particularly costly in terms of train-
ing, which poses a significant limitation for practical
use. In contrast, vanilla embeddings generally require
fewer HPO rounds, and combined with their simpler
embedding computation, they offer significant advan-
tages in terms of training overhead.

5. Conclusion and Future Work

In this paper, we explored tabular embeddings for
numerical features and meta-features. We identified
two underexplored design directions of embeddings
for numerical features: ordering-oriented regular-
ization techniques and embedding sharing strat-
egies. Based on these directions, we proposed two
specific designs and demonstrated that appropriate
embedding designs, guided by ordering and sharing
principles, can indeed enhance both the effective-
ness and efficiency of models. Additionally, we ad-
dressed several evaluation gaps in existing research.
Specifically, we assessed the robustness of existing
embeddings for numerical features, as well as the ef-
fectiveness of data type embeddings and positional
embeddings in general tabular tasks.

This work points to several promising directions for
future research. For instance, the proposed PCR is
merely one sufficient condition for achieving piece-
wise linear embeddings; however, there are numer-
ous feasible regularization constraints that can be
explored to enhance ordering while providing embed-
dings with a higher degree of freedom. Moreover, we
have only introduced a straightforward feature group-
ing strategy, which has notable limitations due to its
heavy reliance on the reliability of feature correlation
coefficients. Therefore, developing more stable and
effective feature grouping methods, as well as metrics
to indicate when embeddings sharing should occur, is
worthwhile. Lastly, embedding techniques have lim-
ited capacity for handling high-dimensional features,
especially in datasets with a large number of numer-
ical features, where excessive embedding parameters
can significantly burden the model. Thus, developing
a well-designed embedding sharing strategy can be
the key to alleviating this issue in the future.

2025/2/54

Appendix A

Implementation Details

A.1.Datasets

We use eight datasets available at the OpenML re-
pository [39], along with their default tasks. Specif-
ically, the datasets with their OpenML dataset IDs
are: EL (Elavators, ID: 845), CA (California Housing,
ID: 43939), HO (House 16H, ID: 574), AD (Adult, ID:
45068), DI (Diamonds, ID: 42225), HI (Higgs, ID:
4532), MI (MiniBooNE, ID: 41150), BL (Black Fri-
day, ID: 41540).

A.2. Computing Environment

All experiments were conducted using the PyTorch
framework, version 2.1.2 [30]. We ran the hyperpa-
rameter optimization on any available hardware,
and evaluated the tuned models on NVIDIA RTX
4090 GPU (24GB).

A.3. HPO Space

We mostly follow the hyperparameter tuning config-
urations recommended by the original papers. Sub-
sequently, we detail the hyperparameter space for
each component individually.

Optimizer. The space depends on the backbone.

1 For MLP or ResNet, the weight decay is either set
to O or sampled from a log-uniform distribution
over [1e-6, 1e-3]. The learning rate is sampled from
alog-uniform distribution over [5e-5, 0.005].

2 For Transformer, the weight decay is sampled
from a log-uniform distribution over [le-6, le-4].
The learning rate is sampled from a log-uniform
distribution over [1e-5, 1e-3].

Backbone.

1 For MLP models, the layer number was sampled
uniformly from integer values between 1 and 16,
while the layer size was selected from integers
ranging from 1to 1024. The dropout rate was either
disabled (set to 0) or sampled uniformly from the
interval [0, 0.5], and the embedding dimensionality
was chosen from integers between 1 and 128.

2 For ResNet, the layer number varied between 1
and 8, with layer sizes sampled from integers in
[32, 512]. Similar to MLP, the dropout rate could
be disabled or sampled from [0, 0.5]. Additional

Information Technology and Control

architectural parameters included a hidden factor
(sampled from [1, 4]), hidden dimensionality ([0,
3]), hidden dropout rate ([0, 0.5]), and embedding
dimensionality (integers in [1, 128]).

3 Transformer models employed between 1 and 4
layers, with distinct dropout rates: residual drop-
out was either disabled or sampled from [0, 0.2],
attention dropout from [0, 0.5], and FFN dropout
from [0, 0.5]. The FFN factor varied in [2/3, 8/3],
while embedding dimensionality was selected
from integer value between 96 and 512 in incre-
ments of 8 randomly.

Embedding. Embedding configurations included
binning algorithms with the number of bins varying
between 2 and 256. Target-aware binning incorpo-

References

1. Akiba, T, Sano, S., Yanase, T., Ohta, T., Koyama, M.
Optuna: A Next-Generation Hyperparameter Opti-
mization Framework. Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, 2019, 2623-2631. https://doi.
org/10.1145/3292500.3330701

2. Borisov, V., Broelemann, K., Kasneci, E., Kasneci, G.
DeepTLF: Robust Deep Neural Networks for Hetero-
geneous Tabular Data. International Journal of Data
Science and Analytics, 2023, 16(1), 85-100. https://doi.
org/10.1007/s41060-022-00350-z

3. Borisov, V.,, Leemann, T., Sefiler, K., Haug, J., Pawelczyk,
M., Kasneci, G. Deep Neural Networks and Tabular
Data: A Survey. IEEE Transactions on Neural Networks
and Learning Systems, 2022, 35(6), 7499-7519. https://
doi.org/10.1109/TNNLS.2022.3229161

4. Chen, T. Guestrin, C. XGBoost: A Scalable Tree
Boosting System. Proceedings of the 22nd ACM SIG-
KDD International Conference on Knowledge Dis-
covery and Data Mining, 2016, 785-794. https://doi.
org/10.1145/2939672.2939785

5. Conover, W. J. Practical Nonparametric Statistics. John
Wiley & Sons, 1999.

6. Dastile, X.,, Celik, T., Potsane, M. Statistical and
Machine Learning Models in Credit Scoring: A
Systematic Literature Survey. Applied Soft Com-
puting, 2020, 91, 106263. https://doi.org/10.1016/j.
as0¢.2020.106263

2025/2/54

rated two parameters: minimum samples per leaf
node (integers in [1, 128]) and periodic encoding
scale (log-uniform in [0.01, 100]).

Regularization. For RMT regularization, .. is
sampled fron an uniform distribution over [0.01, 1].
For PCR, 4, is sampled fron an uniform distribution

over [0.01, 100].

Appendix B

Extended Experiment Results

The full results are available at

https://github.com/OrangeMooon/TabEmbedExp/
blob/main/full_results.xlsx.

7. Dinh, T, Zeng, Y., Zhang, R., Lin, Z., Gira, M., Rajput, S.,
Sohn, J., Papailiopoulos, D., Lee, K. LIFT: Language-In-
terfaced Fine-Tuning for Non-Language Machine
Learning Tasks. Advances in Neural Information Pro-
cessing Systems, 2022, 35,11763-11784.

8. Gorishniy, Y., Rubachev, 1., Babenko, A. On Embeddings
for Numerical Features in Tabular Deep Learning. Ad-
vances in Neural Information Processing Systems,
2022, 35,24991-25004.

9. Gorishniy, Y., Rubacheyv, 1., Kartashev, N., Shlenskii, D.,
Kotelnikov, A., Babenko, A. TabR: Tabular Deep Learn-
ing Meets Nearest Neighbors. International Confer-
ence on Learning Representations, 2024.

10. Gorishniy, Y., Rubachev, 1., Khrulkov, V., Babenko, A.
Revisiting Deep Learning Models for Tabular Data.
Advances in Neural Information Processing Systems,
2021, 34,18932-18943.

11. Grinsztajn, L., Oyallon, E., Varoquaux, G. Why Do Tree-
Based Models Still Outperform Deep Learning on Typi-
cal Tabular Data? Advances in Neural Information Pro-
cessing Systems, 2022, 35, 507-520.

12. Guo, H,, Tang, R, Ye, Y., Li, Z., He, X. DeepFM: A Fac-
torization-Machine Based Neural Network for CTR
Prediction. Proceedings of the 26th International Joint
Conference on Artificial Intelligence, 2017, 1725-1731.
https://doi.org/10.24963/ijcai.2017/239

13. Hegselmann, S., Buendia, A., Lang, H., Agrawal, M.,
Jiang, X., Sontag, D. TabLLM: Few-Shot Classification

680

14.

15.

16.

17.

18.

19.

20.

2L

22.

23.

24.

Information Technology and Control

of Tabular Data with Large Language Models. Interna-
tional Conference on Artificial Intelligence and Statis-
tics, 2023, 5549-5581.

Hollmann, N., Miiller, S., Eggensperger, K., Hutter, F.
TabPFN: A Transformer That Solves Small Tabular
Classification Problems in a Second. International
Conference on Learning Representations, 2023.

Huang, X., Khetan, A., Cvitkovic, M., Karnin, Z. Tab-
Transformer: Tabular Data Modeling Using Contex-
tual Embeddings. arXiv preprint, arXiv:2012.06678,
2020.

Kadra, A., Lindauer, M., Hutter, F., Grabocka, J. Well-
Tuned Simple Nets Excel on Tabular Datasets. Advanc-
es in Neural Information Processing Systems, 2021, 34,
23928-23941.

Katzir, L., Elidan, G., El-Yaniv, R. Net-DNF: Effective
Deep Modeling of Tabular Data. International Confer-
ence on Learning Representations, 2020.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W.,,
Ye, Q., Liu, T. Y. LightGBM: A Highly Efficient Gradient
Boosting Decision Tree. Advances in Neural Informa-
tion Processing Systems, 2017, 30, 3146-3154.

Ke, G., Xu, Z., Zhang, J., Bian, J.,, Liu, T. Y. DeepGBM: A
Deep Learning Framework Distilled by GBDT for On-
line Prediction Tasks. Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, 2019, 384-394. https://doi.
org/10.1145/3292500.3330858

Kohavi, R., Sahami, M. Error-Based and Entro-
py-Based Discretization of Continuous Features.
KDD, 1996, 114-119.

Kong, S., Cheng, W., Shen, Y., Huang, L. AutoSRH: An
Embedding Dimensionality Search Framework for
Tabular Data Prediction. IEEE Transactions on Knowl-
edge and Data Engineering, 2022, 35(7), 6673-6686.
https://doi.org/10.1109/TKDE.2022.3186387

Kossen, J., Band, N., Lyle, C., Gomez, A. N., Rainforth, T.,
Gal, Y. Self-Attention Between Datapoints: Going Be-
yond Individual Input-Output Pairs in Deep Learning.
Advances in Neural Information Processing Systems,
2021, 34, 28742-28756.

Levin, R., Cherepanova, V., Schwarzschild, A., Bansal,
A., Bruss, C. B., Goldstein, T., Wilson, A. G., Goldblum,
M. Transfer Learning with Deep Tabular Models. The
Eleventh International Conference on Learning Rep-
resentations, 2023.

Liu, Q., Hu, J., Xiao, Y., Zhao, X., Gao, J., Wang, W,, Li, Q.,
Tang, J. Multimodal Recommender Systems: A Survey.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

2025/2/54

ACM Computing Surveys, 2024, 57(2), 1-17. https://doi.
org/10.1145/3695461

Lloyd, S. Least Squares Quantization in PCM. IEEE
Transactions on Information Theory, 1982, 28(2), 129-
137. https://doi.org/10.1109/TIT.1982.1056489

Loshchilov, I., Hutter, F. Decoupled Weight Decay Reg-
ularization. International Conference on Learning Rep-
resentations, 2019.

MecElfresh, D., Khandagale, S., Valverde, J., Prasad C,
V., Ramakrishnan, G., Goldblum, M., White, C. When
Do Neural Nets Outperform Boosted Trees on Tabular
Data? Advances in Neural Information Processing Sys-
tems, 2024, 36, 76336-76369.

Nam, J., Tack, J., Lee, K., Lee, H., Shin, J. STUNT: Few-
Shot Tabular Learning with Self-Generated Tasks from
Unlabeled Tables. International Conference on Learn-
ing Representations, 2023.

Parisi, G. I, Kemker, R., Part, J. L., Kanan, C., Wermter,
S. Continual Lifelong Learning with Neural Networks:
A Review. Neural Networks, 2019, 113, 54-71. https://
doi.org/10.1016/j.neunet.2019.01.012

Paszke, A., Gross, S., Massa, F., et al. PyTorch: An Imper-
ative Style, High-Performance Deep Learning Library.
Advances in Neural Information Processing Systems,
2019, 32.

Popov, S., Morozov, S., Babenko, A. Neural Oblivious De-
cision Ensembles for Deep Learning on Tabular Data.
International Conference on Learning Representa-
tions, 2019.

Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A.
V., Gulin, A. CatBoost: unbiased boosting with categor-
ical features. Advances in Neural Information Process-
ing Systems, 2018, 31.

Qian, J., Wang, H., Li, Z., Li, S., Yan, X. Limitations
of Language Models in Arithmetic and Symbolic In-
duction. The 61st Annual Meeting of the Associa-
tion for Computational Linguistics, 2023. https://doi.
org/10.18653/v1/2023.acl-long.516

Qu, Y., Chen, T., Nguyen, Q. V. H., Yin, H. Budgeted Em-
bedding Table for Recommender Systems. Proceedings
of the 17th ACM International Conference on Web
Search and Data Mining, 2024, 557-566. https://doi.
org/10.1145/3616855.3635778

Salvi, M., Loh, H. W,, Seoni, S., Barua, P. D., Garcia, S.,
Molinari, F., Acharya, U. R. Multi-Modality Approach-
es for Medical Support Systems: A Systematic Review
of the Last Decade. Information Fusion, 2024, 103,
102134. https://doi.org/10.1016/j.inffus.2023.102134

36.

37.

38.

39.

40.

41.

42.

43.

Information Technology and Control

Shwartz-Ziv, R., Armon, A. Tabular Data: Deep Learn-
ing Is Not All You Need. Information Fusion, 2022, 81,
84-90. https://doi.org/10.1016/j.inffus.2021.11.011

Twala, B. Impact of Noise on Credit Risk Predic-
tion: Does Data Quality Really Matter? Intelligent
Data Analysis, 2013, 17(6), 1115-1134. https://doi.
org/10.3233/IDA-130623

Van der Maaten, L., Hinton, G. Visualizing Data Us-
ing t-SNE. Journal of Machine Learning Research,
2008, 9(11).

Vanschoren, J., Van Rijn, J. N.,, Bischl, B., Torgo, L.
OpenML: Networked Science in Machine Learning.
ACM SIGKDD Explorations Newsletter, 2014, 15(2),
49-60. https://doi.org/10.1145/2641190.2641198

Wang, L., Zhang, X., Su, H., Zhu, J. A Comprehensive
Survey of Continual Learning: Theory, Method and Ap-
plication. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2024, 46(8), 5362-5383. https://
doi.org/10.1109/TPAMI.2024.3367329

Wang, Z., Sun, J. TransTab: Learning Transferable
Tabular Transformers Across Tables. Advances in
Neural Information Processing Systems, 2022, 35,
2902-2915.

Wu, J., Chen, S., Zhao, Q., Sergazinov, R., Li, C., Liu, S.,
Zhao, C., Xie, T., Guo, H., Ji, C., Cociorva, D., Brunzell,
H. SwitchTab: Switched Autoencoders Are Effective
Tabular Learners. Proceedings of the AAAI Conference
on Artificial Intelligence, 2024, 38(14), 15924-15933.
https://doi.org/10.1609/aaai.v38i14.29523

Yan, J., Zheng, B, Xu, H., Zhu, Y., Chen, D., Sun, J., Wu,
J.,Chen, J. Making Pre-Trained Language Models Great

44,

45.

46.

47.

48.

49.

50.

2025/2/54

on Tabular Prediction. International Conference on
Learning Representations, 2024.

Yang, J., Triendl, H., Soltan, A. A., Prakash, M., Clifton,
D. A. Addressing Label Noise for Electronic Health Re-
cords: Insights from Computer Vision for Tabular Data.
BMC Medical Informatics and Decision Making, 2024,
24(1), 183. https://doi.org/10.1186/s12911-024-02581-5

Yang, Y., Wang, Y., Liu, G., Wu, L., Liu, Q. UniTabE: A
Universal Pretraining Protocol for Tabular Foundation
Model in Data Science. International Conference on
Learning Representations, 2024.

Ye, C., Lu, G.,, Wang, H,, Li, L., Wu, S., Chen, G., Zhao,
J. Towards Cross-Table Masked Pretraining for
Web Data Mining. Proceedings of the ACM on Web
Conference 2024, 2024, 4449-4459. https://doi.
org/10.1145/3589334.3645707

Yeéche, H., Dresdner, G., Locatello, F., Hiiser, M., Ratsch,
G. Neighborhood Contrastive Learning Applied to On-
line Patient Monitoring. International Conference on
Machine Learning, 2021, 11964-11974.

Yoon, J., Zhang, Y., Jordon, J., Van der Schaar, M. VIME:
Extending the Success of Self- and Semi-Supervised
Learning to Tabular Domain. Advances in Neural Infor-
mation Processing Systems, 2020, 33,11033-11043.

Zhu, B, Shi, X, Erickson, N, Li, M., Karypis, G., Shoaran,
M. XTab: Cross-Table Pretraining for Tabular Trans-
formers. Proceedings of Machine Learning Research,
2023,202,43181-43204.

Zhu, X., Wu, X. Class Noise vs. Attribute Noise: A Quan-
titative Study. Artificial Intelligence Review, 2004, 22,
177-210. https://doi.org/10.1007/s10462-004-0751-8

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

