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Unmanned surface vehicles (USVs) are increasingly being applied in water environment protection and 
management. A primary function is recognizing and detecting floating objects in aquatic environments. 
However, water surface floating object detection from USVs faces challenges such as high scene complexity, 
including sunlight reflection and shoreline reflections, in addition to identifying small objects. To tack-
le these issues, this study presents an improved YOLOv8s method for water surface floating object detec-
tion, named PSP-YOLOv8s. Firstly, we integrated the original C2f module with the Polarized Self-Attention 
(PSA) mechanism to design the C2f-PSA structure, thereby improving the model's ability to extract fea-
tures in intricate environments. Secondly, we add a detection head specialized for small objects by fusing 
deep and shallow features, which effectively reduces the miss rate for small objects. Meanwhile, the Partial 
Convolution (PConv) technique is used to reconstruct the detection head, making the model lightweight. 
Finally, the Wise-IoUv3(WIoUv3) loss function is introduced to mitigate the impact of low-quality an-
chor frames in complex environments. Experimental results demonstrate that PSP-YOLOv8s achieves im-
provements of 4.3% in AP, 3.8% in AP50, and a significant 12.9% in APS on the self-constructed USV-WSFO 
dataset. The model's parameters, computational overhead, and size were reduced by 8.1%, 4.2%, and 2.8%, 
respectively. The proposed model's generalization capability is further validated through experiments on 
the Orca dataset and field trials. This work extends the application of vision technology in USVs, providing 
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1. Introduction
Floating objects are commonly found in ponds, lakes, 
rivers, and oceans, contributing significantly to water 
pollution [23]. Common examples of floating debris, 
such as bottles and plastic bags, not only disrupt the 
ecological balance of water bodies but also endanger 
aquatic ecosystems and human well-being [12]. As 
water pollution continues to worsen, the need for 
effective methods to detect and remove floating ob-
jects from water surfaces has become more urgent. 
Traditional approaches to managing surface floating 
debris primarily rely on manual labor, which is both 
inefficient and costly [27]. However, due to the rapid 
progress in artificial intelligence technologies and 
convolutional neural networks, unmanned surface 
vehicles (USVs) have demonstrated great potential 
for water quality monitoring and surface objects 
removal [1, 9]. Consequently, water surface object 
detection is becoming increasingly crucial for USVs 
and their aquatic vision applications. 
Detecting floating objects in water remains a challenge 
for autonomous waste collection systems like USVs. 
Elements such as water surface fluctuations, sunlight 
reflections, and shoreline reflections contribute to 
significant background clutter. Additionally, the small 
size of floating objects and the fact that distant objects 
appear smaller in RGB images due to the wide viewing 
angle of the USV camera further complicate detection 
[5]. These factors can result in undetected objects.
Previous research has made significant progress in de-
tecting waterborne objects [13, 26], with many studies 
focusing primarily on improving detection accuracy. 
However, these efforts often neglect the computational 
efficiency and lightweight design of detection algorithms 
in practical applications. In particular, on resource-con-
strained USVs, balancing computational efficiency with 
detection accuracy remains a critical issue to resolve. 
This study provides a lightweight approach based 
on YOLOv8 for detecting floating objects on water 
surfaces, aiming to balance accuracy and speed. The 
algorithm effectively locates and identifies floating 
objects, greatly aiding in the conservation of water 
resources and environmental protection.

significant support for water resource and ecosystem protection. Code is available at https://github.com/
hongh07/PSP-YOLOv8s.
KEYWORDS: USV application, Object detection, Small object, YOLOv8s, Floating object detection.

In summary, the primary contributions of this arti-
cle are outlined as follows:
1	 We constructed an inland water surface float-

ing object dataset from the viewpoint of a USV, 
named the USV-WSFO dataset, containing 1200 
accurately labeled images of eight different types 
of water floaters.

2	 We propose an algorithm called PSP-YOLOv8s for 
water float detection in USVs. In YOLOv8s, we de-
veloped the C2f-PSA module to improve the back-
bone network's feature extraction performance in 
challenging environments. Meanwhile, the origi-
nal detection layer was improved by incorporating 
a layer that specifically focuses on small objects, 
enhancing its ability to collect feature information 
from them. The detection head was reconstructed 
by introducing a lightweight partial convolution. 
Finally, the WIoUv3 loss function is employed to 
prioritize the general mass anchor frame. 

3	 We evaluated the PSP-YOLOv8s algorithm against 
eight other deep learning models on both the 
homemade USV-WSFO dataset and the publicly 
available FloW-Img dataset. Significant improve-
ments in performance, cost-efficiency, and model 
complexity are demonstrated by the experimental 
findings of the PSP-YOLOv8s approach. 

 

2. Related Work 
2.1. Object Detection
The objective of object detection, one of computer vi-
sion's numerous crucial tasks, is to recognize specific 
object categories in images [39]. Two primary advance-
ments in object detection have occurred over the past 
two decades. Before 2014, object detection depended 
on traditional methods that employed manually con-
structed features and sliding windows. Convolutional 
Neural Networks (CNNs) are now widely regarded as 
the benchmark in deep learning for object detection 
[43]. Traditional methods primarily relied on the Vi-
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ola-Jones detector [34], the Histogram of Oriented 
Gradients (HOG) detector [7], and the Deformable 
Part-based Model (DPM) [8]. These methods often 
suffered from poor accuracy and efficiency, as feature 
extraction and candidate region scaling were manually 
designed [40]. Deep convolutional networks, leverag-
ing their strong discriminative ability and capacity to 
learn from data, have significantly advanced object de-
tection, improving both accuracy and efficiency.
There are mainly two categories of object detectors 
that utilize deep learning [17]. Two-stage detectors, 
including R-CNN [11], Fast R-CNN [10], Faster 
R-CNN[25] and Mask R-CNN [14], attain high-pre-
cision detection via region proposals and CNN-
based classification. In contrast, one-stage detectors 
provide benefits such as expedited detection speed 
and reduced model size [24], exemplified by algo-
rithms like OverFeat [29], the YOLO series [31, 35, 
37], SSD [22] and CornerNet [18].
Thanks to its optimized network architecture and 
efficient computational modules, YOLOv8 achieves 
high accuracy with a small model size and reduced 
computational resource requirements, making it 
stand out among one-stage detectors [15]. These fea-
tures make it particularly well-suited for object de-
tection on USVs. Based on this, this study proposes 
an improved YOLOv8s algorithm for water surface 
floating object detection. 

2.2. Object Detection for USVs
Vision-based methods are commonly used to detect 
surface objects for USVs in marine environments. 
Wang et al. [38] introduced the Marine Vessel Detec-
tion Dataset (MVDD13), which serves as essential 
support for object detection in USVs. The dataset 
comprises 35,474 images spanning 13 distinct vessel 
categories. Zhang et al. [41] introduced an improved 
version of YOLOv5, specifically designed for object 
detection on USVs in complex marine environments. 
By integrating the Ghost and Transformer modules, 
this approach optimizes feature extraction and mini-
mizes model complexity. Consequently, the accuracy 
increases by 1.3%, and the model size is compressed 
to 12.24 MB. Cai et al. [2] employed the Multi-mod-
al Marine Obstacle Detection Dataset2 (MODD2) 
to assess the performance of their proposed light-
weight water-obstacle detection network, LWDNet. 
Their results demonstrate that LWDNet significant-
ly enhances image inference speed while maintain-

ing water-obstacle detection accuracy at a compara-
ble level. Additionally, Wang et al. [36] proposed the 
Shuffle-High-Resolution-Net (SHR det). This model 
incorporates an enhanced Shuffle Block, a small fea-
ture fusion module, and the Focal Efficient Intersec-
tion over Union loss. It is optimized for incremental 
few-shot detection and small object identification 
on the sea surface. USVs in inland waters are garner-
ing increasing attention due to their potential appli-
cations. As an example, the first dataset (FLoW) for 
floating waste detection was created by Cheng et al. 
[6]. It is collected from the perspective of USVs oper-
ating in real-world inland waters under various con-
ditions. Sravanthi et al. [30] validated their proposed 
low-cost method for detecting weeds in complex in-
land water environments using their own datasets, 
which included floating plants, small cluster plants, 
and birds, as well as OSF datasets. Currently, there 
is a paucity of studies regarding inland water object 
detection with USV platforms.

2.3. Object Detection of Water Surface 
Floating Objects

More researchers are using deep learning for floating 
object detection. For instance, Van et al. [33] utilized a 
dataset derived from footage captured by cameras in-
stalled on bridges across five distinct river locations 
in Jakarta, Indonesia. They employed Faster R-CNN 
to identify regions potentially containing plastic 
floating objects. Chen et al. [4] established 26 fixed 
CCD cameras along river sections in Deqing City, 
Zhejiang Province, China, to capture floating objects 
on the water, primarily including fishing boats, water 
hyacinths, floating weeds, and plastic bottles. They 
proposed the SSD-FT algorithm to tackle challeng-
es such as complex detection scenarios and varying 
sizes of floating objects. Li et al. [19] curated a dataset 
encompassing floating waste commonly found in nat-
ural water bodies, primarily including plastic bottles, 
cans, tetra packs, and plastic bags. To enhance the ef-
ficiency and accuracy of detecting and managing ob-
jects in water, they later proposed an improved deep 
learning method based on Faster R-CNN to facilitate 
effective identification and categorization of float-
ing litter. Jang et al. [16] utilized Unmanned Aerial 
Vehicles (UAVs) imagery coupled with an optimized 
YOLOv5n model to detect floating objects. The en-
hanced model was evaluated on Jetson Nano, reach-
ing a mean average precision (mAP) of 87.2%.
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3. Methodology 
3.1. Overview of the Proposed Model
In 2023, the Ultralytics team released YOLOv8, which 
offers significant improvements in both performance 
and efficiency over previous versions. This algorithm 
employs a single-stage detector architecture that in-
tegrates a lightweight backbone network with effi-
cient detection heads, enabling fast target detection 
and localization. The primary difference between 
YOLOv8 and YOLOv5 is that YOLOv8's backbone 
network is more lightweight and supports a richer 
gradient flow, as a result of substituting the C3 mod-
ule with the C2f module. The pooling layer uses SPPF 
instead of the traditional SPP, effectively reducing 
computational costs and improving efficiency. The 
Neck component of the network incorporates PANet, 
which integrates feature information across multiple 
levels. The detection head follows YOLOX's decou-
pled head design. Additionally, YOLOv8 features an 
Anchor-Free structure that adapts to different object 

sizes, enhancing detection accuracy. It maintains a 
stable network architecture across all versions, with 
model sizes (N, S, M, L, and X) adjustable through 
specific scaling factors. These characteristics con-
tribute to YOLOv8’s efficiency and flexibility, making 
it well-suited for detecting floating objects on USV 
platforms, even in challenging environments with 
complex backgrounds and numerous small objects. 
Therefore, this paper proposes the PSP-YOLOv8s al-
gorithm, an enhancement of YOLOv8. The main im-
provement strategies include (1) incorporating the 
PSA mechanism into the C2f module before the SPPF 
in the YOLOv8s backbone to improve convolution-
al feature extraction; (2) establishing a small object 
detection head to enhance YOLOv8s’s capability in 
capturing small object features; (3) employing PConv 
to reconstruct the detection head, reducing compu-
tational overhead and storage costs; and(4) utilizing 
WIoUv3 to prioritize general mass object frames, 
thereby enhancing model convergence speed and ac-
curacy. Figure 1 illustrates the upgraded network ar-
chitecture in detail. 

Figure 1 
Diagram of PSP-YOLOv8s network structure.
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3.2. Enhanced Feature Extraction via C2f-
PSA Module
To solve the difficulties given by complex back-
grounds, such as sunlight reflection and shoreline 
reflections, and to overcome the limitations of the 
original YOLOv8 algorithm's feature extraction in 
these environments, we introduce the Polarized 
Self-Attention (PSA)  mechanism [21]. This mecha-
nism effectively captures the contextual dependen-
cies between adjacent regions in the feature maps, as 
depicted in Figure 2.
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As shown in Figure 3, this study designs the feature 
extraction module C2f-PSA by integrating the PSA 
and C2f modules. In the bottleneck of C2f, the PSA 
module is inserted following the second 3×3 
convolution. The C2f-PSA architecture is employed 
to augment the model's comprehension of the 
image's context and intricate spatial interactions. As 
a result, the model is more proficient in detecting 
objects floating on the water surface in intricate 
natural environments.  
Figure 3 
Diagram of C2f-PSA structure.  

 

Considering the characteristics of floating objects 
observed in this study, we noted that small objects 
with variable morphology account for more than 
half of the USV-WSFO and FloW-Img datasets. We 
also found that the primary feature of small objects 
is predominantly distributed in the shallow feature 
map. However, the original YOLOv8s model 
utilizes a large downsampling factor, which 
compromises the retention of feature information 
for small objects after downsampling three times. 
The baseline model's P3, P4, and P5 detection layers 
provide feature maps of different sizes (80 × 80, 40 
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of varying sizes. However, this design uses a 
minimum detection head size of 80 × 80 for each 
grid in the image, resulting in a receptive field of 
only 8 × 8. With images sized at 640 × 640, several 
little objects measuring less than 8 × 8 may result in 
erroneous or overlooked detections. 

As shown in Figure 4, this issue was resolved by 
integrating a small object detection layer into 
YOLOv8s. We augmented the network by 
concatenating the 80×80 scaled feature map from 
the second layer of the backbone network with the 
80×80 up-sampled feature map from the neck layer, 
resulting in a 160×160 feature map with improved 
resolution. The 160×160 feature map was 
subsequently combined with the corresponding 
feature map produced by the initial C2f module in 
the backbone architecture. Finally, the integrated 
feature maps improved feature information 
extraction from small objects, and they were fed 
into the brain structure for detection and 
classification tasks.  
Figure 4 

Small object detection head. 

 

Due to the constraints of computing and storage 
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As shown in Figure 3, this study designs the feature 
extraction module C2f-PSA by integrating the PSA 
and C2f modules. In the bottleneck of C2f, the PSA 
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volution. The C2f-PSA architecture is employed to 
augment the model's comprehension of the image's 
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jects floating on the water surface in intricate natu-
ral environments. 
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Figure 3   
Diagram of C2f-PSA structure. 
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3.3. Additional Detection Layer for Small 
Objects
Considering the characteristics of floating objects 
observed in this study, we noted that small objects 
with variable morphology account for more than 
half of the USV-WSFO and FloW-Img datasets. We 
also found that the primary feature of small objects 
is predominantly distributed in the shallow feature 
map. However, the original YOLOv8s model utilizes a 
large downsampling factor, which compromises the 
retention of feature information for small objects af-
ter downsampling three times. The baseline model's 
P3, P4, and P5 detection layers provide feature maps 
of different sizes (80 × 80, 40 × 40, and 20 × 20, re-
spectively) to identify targets of varying sizes. How-
ever, this design uses a minimum detection head size 
of 80 × 80 for each grid in the image, resulting in a 
receptive field of only 8 × 8. With images sized at 640 
× 640, several little objects measuring less than 8 × 8 
may result in erroneous or overlooked detections.
As shown in Figure 4, this issue was resolved by inte-
grating a small object detection layer into YOLOv8s. 
We augmented the network by concatenating the 
80×80 scaled feature map from the second layer 
of the backbone network with the 80×80 up-sam-
pled feature map from the neck layer, resulting in a 
160×160 feature map with improved resolution. The 
160×160 feature map was subsequently combined 
with the corresponding feature map produced by the 
initial C2f module in the backbone architecture. Fi-
nally, the integrated feature maps improved feature 

Figure 4   
Small object detection head.

information extraction from small objects, and they 
were fed into the brain structure for detection and 
classification tasks. 

3.4. Reconstructed Detection Head
Due to the constraints of computing and storage re-
sources on USVs, floating object detection methods 
must reconcile model complexity with real-time 
performance. The incorporation of a small object 
detection head significantly raises the model's com-
putational cost. To resolve this matter, we intro-
duce a lightweight Partial Convolution (PConv)[3] 
technique to design the PConv-head, which reduces 
unnecessary computational and storage demands 
while  accelerating inference speed, without sacri-
ficing detection accuracy. The PConv-Head struc-
ture is illustrated in Figure 5.

Figure 5   
Diagram of PConv-Head structure. 

The diagram illustrating conventional convolution 
and partial convolution is presented in Figure 6. A 
quarter of the input channels undergo convolution in 
PConv, while the other channels are left unchanged. 
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Subsequently, the output is obtained by concatenat-
ing the processed 1/4 channels with the unchanged 
channels. This design allows for better utilization of 
correlations and redundancies between features.
The floating point operations per second (FLOPS) of 
conventional convolution is:

  

 PSAP(X)=Zch+Z
sp

=Ach(X) chX+Asp(X) spX. (5) 

As shown in Figure 3, this study designs the feature 
extraction module C2f-PSA by integrating the PSA 
and C2f modules. In the bottleneck of C2f, the PSA 
module is inserted following the second 3×3 
convolution. The C2f-PSA architecture is employed 
to augment the model's comprehension of the 
image's context and intricate spatial interactions. As 
a result, the model is more proficient in detecting 
objects floating on the water surface in intricate 
natural environments.  
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 FLOPSPConv
FLOPSConv

= cp
2

c2 = 1
16

, (8) 

where h and w signify the height and width of the 
feature map, respectively; c indicates the number of 
channels in the standard convolution feature map, 
while cp represents the number of channels in the 
partial convolution operation. As shown in 
Equation (8), PConv's computational cost is just 
1/16 of regular convolution, greatly reducing the 
computational burden. Therefore, the incorporation 
of the PConv structure leads to a substantial 
reduction in both computational and parametric 
quantities in the improved model.  

YOLOv8s adopts a decoupling head design to 
partition the feature channels into bounding box 
coordinate regression and object classification.  In 
the head, a 3×3 convolution is employed to convert 
the feature layer's channel count Cx

i  from the neck 
into C1 for localization and C2 for classification. 
Subsequently, the localization task's output 
channels are set to 4×reg_max, where each feature 
point represents the bounding box centroid (x, y) 
along with its width (w) and height (h) for parameter 
adjustment. For the classification task, the output 
channel count is denoted by CN, representing the 
categories of floating objects detected. By replacing 
the first 3×3 convolutional layer of the original 
detection head with a PConv structure, the PConv-
Head effectively reduces computational load and 
parameter count, while preserving image details. 
This modification enhances both the model's 
functionality and performance. We applied the 
PConv-Head to reconstruct all four detection heads.  
3.5. Improvement of the Loss Function 
The bounding box regression loss in YOLOv8 is 
calculated by combining DFL and CIoU losses. The 
DFL loss measures the probabilistic difference 
between predicted and ground-truth boxes using 
cross-entropy. On the other hand, CIoU loss 
quantifies the discrepancy between the true and 
predicted frames to improve the overall frame 
prediction. The formula for CIoU [42] is shown 
below:  

 LCIoU=1-IoU+
2 b+bgt

c2 v (9) 

 v= 4
2 arctan wgt

hgt -arctan w
h

 (10) 

 = v
(1-IoU)+v

, (11) 

where IoU quantifies the intersection between the 
true and predicted bounding boxes; b and bgt are 
their centroids;  represents the Euclidean distance 
between them; c denotes the diagonal distance of 
the smallest enclosing region containing both 
boxes; wgt and hgt are the ground truth box's width 
and height, while w and h are those of the predicted 
box;  and v act as trade-off parameters, assessing 
aspect ratio consistency.  

Complete Intersection over Union (CIoU) 
incorporates dimensional factors of predicted and 
ground truth bounding boxes, including overlap 
area, center-of-mass distance, and aspect ratio. 
However, training data often contain low-quality 
samples, and geometric variables like aspect ratio 
and center-of-mass distance can further amplify 
their negative effects. Consequently, CIoU 
inadequately balances complicated and simple 
samples, hence diminishing the model's detection 
capability. Rather than using CIoU, this study 
adopts Wise-IoUv3(WIoUv3) [32] to mitigate this 
issue. WIoUv3, built on a dynamic non-monotonic 
focusing mechanism, uses outliers  instead of IoU 
and dynamically allocates gradient gains. This can 
improve floating object detection by making high-
quality anchor frames more competitive and 
reducing the negative effects of gradients induced 
by low-quality samples. The WIoUv3 expression is 
as follows: 

 = LIoU
*

LIoU
0 + ) , LIoU=1-IoU (12) 

 LWIoUv3=rRWIoULIoU , r= -  (13) 

 RWIoU=exp
x-xgt

2
+ y-ygt

2

, (14) 

where * indicates the separation of Wg and Hg from 
the computational map; LIoU is the average value of 
LIoU  ;  quantifies outliers, where smaller values 
indicate higher anchor frame quality, leading to 
greater gradient gain; r is the non-monotonic 
focusing coefficient, and  are hyperparameters 
tailored to different models and datasets. 

Figure 7 shows a schematic of WIoUv3 parameters.  
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Sketch map of WIoUv3.  
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YOLOv8s adopts a decoupling head design to parti-
tion the feature channels into bounding box coordi-
nate regression and object classification.  In the head, 
a 3×3 convolution is employed to convert the feature 
layer's channel count Ci

x  from the neck into C1 for 
localization and C2 for classification. Subsequent-
ly, the localization task's output channels are set to 
4×reg_max, where each feature point represents the 
bounding box centroid (x, y) along with its width (w) 
and height (h) for parameter adjustment. For the 
classification task, the output channel count is de-
noted by CN, representing the categories of floating 
objects detected. By replacing the first 3×3 convo-
lutional layer of the original detection head with a 
PConv structure, the PConv-Head effectively reduc-
es computational load and parameter count, while 
preserving image details. This modification enhanc-
es both the model's functionality and performance. 
We applied the PConv-Head to reconstruct all four 
detection heads. 

3.5. Improvement of the Loss Function

The bounding box regression loss in YOLOv8 is cal-
culated by combining DFL and CIoU losses. The DFL 
loss measures the probabilistic difference between 
predicted and ground-truth boxes using cross-en-
tropy. On the other hand, CIoU loss quantifies the 
discrepancy between the true and predicted frames 
to improve the overall frame prediction. The formu-
la for CIoU [42] is shown below: 
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Figure 8 
(a) Exterior view of the unmanned surface vehicle;  
(b) Internal details of the unmanned surface vehicle
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Figure 9 
Sample of USV-WSFO Dataset.

depicts the vehicle. The data collection occurred at 
various times and under diverse lighting conditions 
to mitigate the impact of variables such as illumina-
tion on detection accuracy. We collected 1200 im-
ages, all labeled using labelImg, after data cleaning. 
The annotations were then stored in YOLO format. 
The dataset collected from the river section of Fuzhou 
City, Fujian Province, China, is designated as the Un-
manned Surface Vehicle Water Surface Floating Ob-
jects Dataset (USV-WSFO Dataset).  It includes eight 
categories of water surface floating objects: Bottle, 
Plastic bag, Foam board, Leaf, Branch, Boat, Others 
(unclassifiable monolithic garbage), and Mixed gar-
bage. A sample dataset is shown in Figure 9.
Data augmentation improves the detection model's 
ability to generalize by increasing the amount and 
variety of training data. In our study, the USV-WSFO 
dataset underwent random contrast adjustment, 
image rotation, horizontal flipping, random gamma 
transformation, and Gaussian noise addition. The 
resolution of the augmented images was consistently 
established at 1280×720. Figure 10 displays examples 
of images prior to and subsequent to augmentation. 
Following the augmentation process, the dataset ex-
panded to 10,800 images. The images in the dataset 
were categorized into three sections: training, valida-
tion, and testing, with the breakdown shown in Table 
1. The training set contained 6,480 images, the valida-
tion set 2,160 images, and the testing set 2,160 images. 
The images were randomly assigned to each group to 
ensure a diverse selection in each subset.

Figure10 
Samples of the data augmentations.

Class Number of Images Number of Instances

Train 6480 28146

Val 2160 9705

Test 2160 9372

Table 1
Details of the USV-WSFO dataset.
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4.1.2. FloW-Img Dataset
We validated our model using the FloW-Img data-
set to enhance its generalizability. This dataset, 
a subset of the FloW dataset developed by ORCA, 
consists of 2000 images exclusively featuring the 
'bottle' category. The FloW dataset itself is the 
first open-source collection for detecting floating 
objects from USVs in real-world inland waterway 
conditions. The dataset was subdivided into three 
sections for this study: a training set with 1200 im-
ages, a validation set with 200 images, and a test set 
with 400  images. 

4.1.3. Statistical Analysis of USV- WSFO and 
FloW-Img
According to the COCO evaluation criteria[20], ob-
jects are categorized into small objects (area < 322), 
medium objects (322 < area < 962), and large objects 
(area > 962). We counted the number of targets of dif-
ferent sizes in the USV-WSFO dataset and the FloW-
Img dataset, as shown in Figure 11. The findings 
demonstrate that, in both datasets, more than fifty 
percent of the targets are small objects. Additional-
ly, the distribution pattern of target sizes is similar 
across the training, validation, and test sets. These 
findings contribute to understanding the character-
istics of water surface objects and aid in the develop-
ment of more effective detection algorithms.

4.2. Experimental Details
4.2.1. Experimental Settings
The experiment used an NVIDIA GeForce RTX 3070 
GPU, along with Python 3.8 and PyTorch 1.7.1 frame-
works. The YOLOv8s model was trained using pre-
trained weights from the VOC dataset. A detailed ex-
perimental setup is provided in Table 2. Stochastic 
gradient descent (SGD) with momentum was used as 
the optimization algorithm for both the YOLOv8s mod-
el and its variants during training. The initial learning 
rate was set to 0.01, with momentum and weight decay 
coefficients of 0.937 and 0.0005, respectively. The num-
ber of iterations was set to 200. Due to the 8GB memory 
limitation of a single GPU, a batch size of 16 was chosen 
to ensure consistency with comparative studies.

Figure 11 
(a) Object box area statistics in the USV-WSFO dataset; (b) Object box area statistics in the FloW-Img dataset. 'Instances' 
represents the number of detected floating objects, while 'small', 'medium', and 'large' indicate different object size categories 
based on bounding box area. 

(a) (b) 

Item Name

Operating system Windows10

GPU NVIDIA GeForce RTX 3070

RAM 8GB

Deep learning framework PyTorch (1.7.1)

Interpreter Python (3.8.18)

CUDA version CUDA (11.0.1)

CUDNN version CUDNN (8.0.5)

Table 2
Experimental environment configuration.
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4.2.2. Evaluation Indicators
We evaluated various object detection methods us-
ing a range of metrics. The primary statistic is AP 
(Average Precision), which is the average of AP val-
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module. The results, using YOLOv8s as the baseline, 
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According to the analysis results in Table 3, firstly, on 
the USV-WSFO dataset, we observed that the origi-
nal YOLOv8s achieved an AP of 65.8%, an AP50 of 
91.7%, and an APS of 43.7%. Introducing the C2f-PSA 
module to improve YOLOv8s to YOLOv8s_C2f-PSA 
improved its AP by 1.6%, AP50 by 0.7%, and APS by 
1.3%. Subsequently, the network structure was mod-
ified by incorporating a small object detection head 
into YOLOv8s, resulting in YOLOv8s_small, which 
exhibited an increase in AP by 4%, AP50 by 3.4%, and 
APS by 11.9%. But now, compared to the original, the 
model's computational overhead has increased by 
32.6%. To address this issue, the PConv-Head was 
devised, which successfully mitigated the model's 
complexity. The resulting model, YOLOv8s_small_
PCHead, effectively balances speed and accuracy, 
maintaining an FPS of 64.3 and achieving 3.3% im-

Methods AP
(%)

AP50

(%)
AP75

(%)
APS

(%)
APM

(%)
APL

(%)
FPS
(f/s)

Params
(M)

Model 
Size

(MB)

FLOPS
(G)

YOLOv8s 65.8 91.7 72.3 43.7 74.7 88.7 64.7 11.1 21.4 28.5

YOLOv8s_C2f-PSA 67.4 92.4 74.4 45.0 76.2 88.9 47.8 11.3 22.8 28.6

YOLOv8s_small 69.8 95.1 79.5 55.6 76.0 85.0 57.9 10.9 21.0 37.8

YOLOv8s_PCHead 62.9 89.8 70.9 40.8 72.1 85.0 68.1 9.6 18.5 21.5

YOLOv8s_WIoU 66.7 91.9 74.5 44.3 75.9 88.9 66.3 11.1 21.4 28.5

YOLOv8s_small_PCHead 68.9 95.0 78.4 53.8 74.8 83.1 64.3 10.1 19.5 27.2

YOLOv8s_small_PCHead_WIoU 68.7 95.3 79.5 56.0 74.3 84.1 64.1 10.1 19.5 27.2

PSP-YOLOv8s (Ours) 70.1 95.5 80.4 56.6 75.6 84.2 61.5 10.2 20.8 27.3

Table 3
Effects of each module on the USV-WSFO dataset.
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provement in AP50 by 3.3% over the original model. 
Finally, replacing CIoU with WIoUv3 led to the de-
velopment of YOLOv8s_WIoU, which increased AP, 
AP50, and APS by 0.9%, 0.2%, and 0.6%, respectively.
In our experiments, the PSP-YOLOv8s model out-
performed all other models, achieving the highest 
scores in AP, AP50, AP75, and APS metrics, with results 
of 70.1%, 95.5%, 80.4%, and 56.6%, respectively. Com-
pared to YOLOv8s, the improvements are notable: 
AP increased by 4.3%, AP50 by 3.8%, AP75 by 8.1%, and 
APS by 12.9%. Furthermore, the parameters, model 
size, and computing overhead diminished by 8.1%, 
2.8%, and 4.2%, respectively, compared to the original 
model. Achieving an optimal balance between preci-
sion and real-time efficiency, the improved YOLOv8s 
model effectively tackles the challenges of complex 
backgrounds and small objects within USV imagery. 

4.4. Comparisons with State-of-the-Arts
4.4.1. Results on USV-WSFO
To assess the suitability of the PSP-YOLOv8 mod-
el for detecting floating objects, we quantitatively 
compared its performance against that of the origi-
nal YOLOv8s model and several popular algorithms, 
including Faster R-CNN, RetinaNet, CenterNet, 
SSD-ResNet50, SSD-MobileNetV2, YOLOv7, and 
YOLOX, using the USV-WSFO dataset.  
The results, presented in Table 4, show that the en-
hanced YOLOv8s model significantly improves in AP, 
AP50, AP75, APS, and APM over the baseline YOLOv8s 
model and other competing algorithms such as Fast-

er R-CNN and RetinaNet. The improved YOLOv8s 
algorithm model surpasses other algorithms with an 
AP of 70.1% and an AP50 of 95.5%. Particularly note-
worthy is its remarkable improvement in small ob-
ject detection, with APS values increasing by 40.7%, 
34.6%, 32.7%, 49.5%, 55.9%, 22.1%, 30.6%, and 12.9%, 
compared to Faster R-CNN, RetinaNet, Center-
Net, SSD-ResNet50, SSD-MobileNetV2, YOLOv7, 
YOLOX, and YOLOv8s, respectively. Although the 
model exhibits slightly reduced speed compared to 
the original YOLOv8s, which may be attributed to al-
terations in the network structure, its overall perfor-
mance surpasses that of the compared algorithms. 
Figure 12 displays visualization results of the USV-
WSFO dataset obtained using both the YOLOv8s and 
PSP-YOLOv8s models. Our approach improves object 
detection accuracy and resilience by successfully re-
ducing instances of misdetection and omission.
Table 5 presents a comparison of the PSP-YOLOv8s 
model, the original YOLOv8s, and mainstream algo-
rithms, including Faster R-CNN, RetinaNet, Center-
Net, SSD-ResNet50, SSD-MobileNetV2, YOLOv7, 
and YOLOX, on the USV-WSFO dataset in terms of 
AP50 for different object categories. Our method con-
sistently outperforms other comparable approaches 
across all categories. Notably, the most significant 
accuracy improvements are observed for the 'bottle,' 
'plastic bag,' and 'leaf' categories, which are charac-
terized by an abundance of small objects. This fur-
ther validates the applicability of our model for de-
tecting small objects.  

Methods Backbone AP
(%)

AP50

(%)
AP75

(%)
APS

(%)
APM

(%)
APL

(%)
FPS
(f/s)

Faster R-CNN Vgg-16 31.4 64.0 25.5 15.9 38.5 50.9 14.3

RetinaNet ResNet-50 39.6 67.2 39.5 22.0 49.4 58.6 15.0

CenterNet ResNet-50 45.6 84.9 42.0 23.9 51.2 70.4 40.5

SSD ResNet-50 17.9 36.9 14.9 7.1 21.7 42.9 61.0

SSD MobileNet-V2 7.6 21.3 4.0 0.7 5.8 31.2 79.2

YOLOv7 CSPDarknet-53 54.4 89.2 57.8 34.5 58.2 77.0 57.5

YOLOX CSPDarknet-53 44.2 85.9 39.7 26.0 49.5 68.0 48.7

YOLOv8s CSPDarknet-53 65.8 91.7 72.3 43.7 74.7 88.7 64.7

PSP-YOLOv8s(Ours) CSPDarknet-53 70.1 95.5 80.4 56.6 75.6 84.2 61.5

Table 4
Comparisons with other methods on the USV-WSFO dataset.
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4.4.2. Results on FloW-Img
We compared the enhanced YOLOv8s method with 
other popular approaches, including Faster R-CNN, 
RetinaNet, CenterNet, SSD-ResNet50, SSD-Mobile-
NetV2, YOLOv7, YOLOX, and YOLOv8s, using the 
FloW-Img dataset. This comparison further validat-
ed the robustness of our method, with the numerical 
results of the metrics presented in Table 6. Despite 
the FloW dataset containing only one class of objects, 
namely, the 'bottle' class, our model outperforms oth-
ers in the AP, AP50, AP75, and APS metrics, with AP50 
reaching 88.8%. 

Table 5
Comparison of different categories in the USV-WSFO Dataset with other methods.

Methods
AP50 (%) All

(%)bottle plastic-bag foam-board leaf branch boat others mixed-garbage

Faster R-CNN 56.4 62.6 74.9 67.1 55.7 76.4 55.9 62.6 64.0

RetinaNet 52.5 70.8 76.2 69.8 59.0 83.4 62.3 63.6 67.2

CenterNet 80.9 76.1 87.6 85.5 83.3 91.4 81.6 92.7 84.9

SSD-ResNet50 14.9 40.1 46.4 42.0 28.6 68.4 26.4 28.8 36.9

SSD-MobileNetV2 4.7 15.5 23.4 23.6 14.3 49.7 6.6 32.4 21.3

YOLOv7 87.3 85.8 93.1 89.5 84.6 93.0 84.7 95.3 89.2

YOLOX 78.5 81.3 91.4 87.2 80.9 92.6 80.7 94.2 85.9

YOLOv8s 87.9 84.2 95.7 92.6 92.2 97.3 86.3 97.3 91.7

PSP-YOLOv8s (Ours) 94.3 93.2 96.5 96.6 94.5 97.4 94.2 97.5 95.5

(a)

(b)

Figure 12 
Comparison of detection outcomes between YOLOv8s and PSP-YOLOv8s. The detection outcomes of YOLOv8s are 
presented at the top, while the results of our method are displayed at the bottom. 

Figure 13 displays some visualization results for the 
FloW dataset. Our method effectively distinguish-
es each bottle and generates high-quality bounding 
boxes even for small objects located at a distance, as 
compared to YOLOv8s.  

4.5. Experimental Validation of Floating 
Object Detection

The floating object detection experiment was conduct-
ed in a pond on the Fuzhou University campus, where 
bottles were placed randomly as test targets. Utilizing 
the bidirectional communication capabilities of Web-
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Socket, we enabled data exchange between the USV, 
cloud server, and user side. The PSP-YOLOv8s model 
was encapsulated in ONNX format and deployed to 
the user side, where images are received in real time 

Methods Backbone AP
(%)

AP50

(%)
AP75

(%)
APS

(%)
APM

(%)
APL

(%)
FPS
(f/s)

Faster R-CNN Vgg-16 40.4 82.9 33.5 27.5 53.3 62.7 14.9

RetinaNet ResNet-50 45.3 87.0 40.8 30.7 57.8 75.0 15.5

CenterNet ResNet-50 37.7 80.7 30.5 28.7 54.6 90.0 40.9

SSD ResNet-50 8.4 23.1 3.9 3.8 14.4 20.0 50.5

SSD MobileNet-V2 15.2 43.9 7.9 5.0 29.9 44.7 81.7

YOLOv7 CSPDarknet-53 46.7 86.4 45.3 34.3 57.1 76.4 79.4

YOLOX CSPDarknet-53 36.6 77.8 28.7 26.9 55.1 90.0 50.0

YOLOv8s CSPDarknet-53 47.6 86.9 46.6 34.0 59.8 75.1 74.2

PSP-YOLOv8s (Ours) CSPDarknet-53 48.0 88.8 46.9 34.8 59.4 74.5 72.6

Table 6
Comparisons with other methods on the FloW-Img dataset. 

(a)

(b)

Figure 13 
Comparison of detection outcomes between YOLOv8s and PSP-YOLOv8s. The detection outcomes of YOLOv8s are 
presented at the top, while the results of our method are displayed at the bottom.

via the Flask framework, and the model is invoked for 
recognition. Experimental results show that our mod-
el achieves 87.06% accuracy in identifying floating ob-
jects, as illustrated in Figure 14.
 

Figure 14 
Field measurement results of floating object detection.
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5. Discussion
We illustrate and examine the outcomes of the method 
we propose for detecting floating objects utilizing Gra-
dient-weighted Class Activation Mapping(Grad-CAM) 
[28] ,  a technique designed to enhance the interpret-
ability of deep learning models. It uses the gradient 
information of a class to flow to the last convolutional 
layer, producing a category-specific map that reveals 
the model's region of interest on the image.
Figure 15 presents several examples of Grad-CAM 
visualizations comparing the PSP-YOLOv8s and 
YOLOv8s models. It is evident that our model accu-
rately identifies floating objects on the water surface 
and generates precise bounding boxes around them. 
Nonetheless, the Grad-CAM visualizations from the 
baseline model exhibit diminished accuracy, fre-
quently extending to regions beyond the water sur-
face objects and being vulnerable to solar reflections 
and water waves. Conversely, the Grad-CAM visual-
ization of our method is more focused and accurate-
ly highlights the key features of floating objects. 

Figure 15 
Grad-CAM comparison of PSP-YOLOv8s and YOLOv8s.

However, there are still some shortcomings in this 
work. For example, the impact of seasonal variations 
on surface floating object detection and the appli-
cability of unmanned surface vehicle operations at 
night have not been considered. Future work could 
focus on achieving more accurate localization of 
water surface floating objects through multi-sensor 
fusion, incorporating technologies such as millime-
ter-wave radar and infrared cameras, which could 
further enhance detection performance.

6. Conclusions
In this paper, we design a lightweight model for de-
tecting floating objects on USVs, PSP-YOLOv8s, 
which successfully solves the challenges of back-
ground complexity and small target identification 
in surface floating object detection. The method 
improves YOLOv8 by integrating the PSA atten-
tion mechanism into the C2f module preceding the 
SPPF layer within the backbone, forming the C2f-
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PSA module. This enhancement boosts feature ex-
traction efficiency in challenging environments. We 
also added a new small object detection head, which 
significantly reduces the small object leakage rate. 
Meanwhile, the four detection heads are redesigned 
using the lightweight PConv-Head, which effective-
ly reduces the computational overhead and storage 
cost of the model. Finally, we adopt WIoUv3 instead 
of CIoU to focus on the anchor frame with general 
quality. The ablation experiments show that all four 
improvement strategies are significantly effective, 
with AP and AP50 improved by 4.3% and 3.8%, re-
spectively, and the improvement in small target de-
tection is particularly significant, with APS improved 
by 12.9%. Furthermore, the parameters, model size, 
and computing overhead were diminished by 8.1%, 
2.8%, and 4.2%, respectively. Comparative experi-
ments show that PSP-YOLOv8s outperforms eight 

mainstream algorithms on both the USV-WSFO 
and FLoW-Img datasets, achieving an AP of 70.1% 
and AP50 of 95.5% on the USV-WSFO dataset, and 
an AP of 48% and AP50 of 88.8% on the FLoW-Img 
dataset. Our method demonstrates its effectiveness 
in detecting floating objects from USVs, with poten-
tial for further optimization and application in more 
complex scenarios. 
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