
Information Technology and Control 2025/1/5416

Multi-Dimensional 
Temporal Feature Fusion 
and Density Perception 
for Time Series 
Clustering 

ITC 1/54
Information Technology  
and Control
Vol. 54 / No. 1/ 2025
pp. 16-31
DOI 10.5755/j01.itc.54.1.38771

Multi-Dimensional Temporal Feature Fusion and Density  
Perception for Time Series Clustering 

Received 2024/09/10 Accepted after revision 2024/12/16

HOW TO CITE: Gao, J., Guo, Y., Li, C., Wang, H., Zhao, X., Li, T., Li, X. (2025). Multi-Dimensional 
Temporal Feature Fusion and Density Perception for Time Series Clustering. Information 
Technology and Control, 54(1), 16-31. https://doi.org/10.5755/j01.itc.54.1.38771

Corresponding authors: Xinxiao Zhao (e-mail: xinxiao.zhao1985@gmail.com) and  
                                                           Teng Li (e-mail: liteng@sdu.edu.cn)

Jie Gao  
Software College, Shandong University, Jinan, Shandong, China PR;  
Shandong Institute of Metrology, Jinan, Shandong, China PR

Yunzhen Guo  
Software College, Shandong University, Jinan, Shandong, China PR

Congwei Li
Shandong Institute of Metrology, Jinan, Shandong, China PR

Haocong Wang  
Software College, Shandong University, Jinan, Shandong, China PR

Xinxiao Zhao  
Weifang University, Weifang, Shandong, China PR

Teng Li  
Informatization Office, Shandong University, Jinan, Shandong, China PR

Xueqing Li  
Software College, Shandong University, Jinan, Shandong, China PR

mailto:obodovskiy58@gmail.com


17Information Technology and Control 2025/1/54

In the field of data mining and knowledge discovery, clustering algorithms have emerged as a powerful tool for un-
supervised learning. However, when they are applied to time series data, some distinctive challenges emerge. The 
representation of time series data, which is often vast and high-dimensional. They need to be effectively reduced 
in dimension before the clustering process while ensuring that important information is retained. Furthermore, 
existing clustering methods encounter difficulties when dealing with variable density distributions. In response 
to these challenges, we present the Density-based Clustering Model for Time Series (DCMD). This module seam-
lessly integrates a temporal representation module named Multi-dimensional Representation Fusion (MDR) 
module, and a clustering module named K-Nearest Neighbor Weighted (NNW) clustering module. The MDR 
module is used to simplify those time series retains critical features by reducing data dimensions, ensuring and 
accuracy. This module adopts the PLR and PPA method to represent the original time series respectively and con-
catenates two representation results to one fusion representation for this time series. After that, the NNW mod-
ule regards time series as data points and evaluates the local data point (K-Nearest data points) densities of them. 
Then, for each time series, we consider its local data point density and the distance to its K-nearest neighboring 
data points and use this to calculate its local density value. Finally, the cluster centers can be chosen according to 
this value. Rigorous benchmark evaluations validate the superiority of our approach.
KEYWORDS: Data mining, Time series clustering, Feature representation, Local density estimation.

1. Introduction
With the relentless growth of data, extracting hid-
den insights from massive datasets is paramount 
[38, 47, 28]. In comparison to alternative data mining 
algorithms [7, 21, 22], clustering methods are distin-
guished by their unsupervised nature and capacity to 
directly group analogous features into clusters, inde-
pendent of the availability of category labels, and thus 
have attracted continuous attention and in-depth re-
search from the scientific community [45, 30, 31]. As 
for Time series clustering, which is a complex and piv-
otal research area in the field of time series data min-
ing [34]. To efficiently group time series into distinct 
clusters by identifying their similarities, we leverage 
the foundational principles of time series correlation 
representation and employ similarity measurement 
as the core mechanism for unsupervised learning. 
Clustering algorithms broadly fall into categories 
such as partition-based, grid-based, hierarchical, 
model-based, and density-based methods [43, 46, 51].
Despite significant progress in time series clustering 
research, several enduring challenges persist. First-
ly, there’s the need to enhance clustering efficiency 
[11, 20]. Time series data is often vast and high-di-
mensional, making traditional clustering techniques 
slow and cumbersome. Overcoming this challenge 
demands proficient data representation that can ef-
fectively capture essential aspects of the original 
time series, reducing data dimensions without com-
promising efficiency. Achieving a balance between 

data representation and efficient clustering poses a 
complex challenge [29]. Secondly, improving accura-
cy is crucial. Existing methods primarily rely on par-
titioning and density-based approaches. Partitioning 
methods are sensitive to noisy data, potentially lead-
ing to unsatisfactory results [50]. Density-based tech-
niques excel in finding clusters with various shapes 
but struggle when dealing with variable or uneven 
density distributions [61]. This leads to difficulties 
in accurately identifying cluster centers, resulting in 
suboptimal clustering precision. Addressing these 
challenges is crucial to fully realize the potential of 
time series clustering in diverse applications.
In terms of enhancing clustering efficiency, research-
ers have dedicated their efforts to refining time series 
representation techniques [19, 57, 14]. Various ap-
proximate representation algorithms have emerged 
from these efforts, encompassing the Discrete Wave-
let Transform (DWT) [48], Singular Value Decompo-
sition (SVD) [32], Piecewise Linear Representation 
(PLR) [35], and Piecewise Aggregate Approximation 
(PAA) [41]. Among these, PLR and PAA have gained 
recognition as widely adopted methods in the field 
of time series data mining. PLR involves segmenting 
a given time series into contiguous subsegments and 
then using a sequence of linear functions to approx-
imate each of these discrete subsegments. Notably, 
PLR distinguishes itself with several advantageous 
traits, including a lower index dimension, resulting in 
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a concise representation [13]. On the other hand, PAA 
works by dividing the time series into segmented se-
quences of equal length and utilizing the mean value 
of each segment to represent the original time series 
[12]. This process effectively reduces the dimension-
ality of the data while retaining essential information.
In terms of improving clustering accuracy, researchers 
have introduced a wide array of clustering methods 
from various perspectives. Among these methodol-
ogies, the K-means algorithm holds a distinguished 
position as one of the most renowned partition-based 
clustering techniques [40]. It operates by necessitating 
a priori specification of the cluster count and then it-
eratively forming clusters based on distinct objective 
functions. In stark contrast, the field of density clus-
tering introduces a versatile paradigm capable of un-
covering clusters within datasets of arbitrary shapes. 
Notably, this paradigm dispenses with the need for 
predefined cluster counts, showcasing remarkable re-
silience in the presence of noisy data. In the domain of 
density-based clustering, the Density-Based Spatial 
Clustering of Applications with Noise (DBSCAN) al-
gorithm stands out prominently [52].
In 2014, a significant breakthrough in clustering 
emerged through the pioneering work of Rodriguez 
and Laio [42], resulting in the ingenious Fast Search 
and Density Peaks Clustering algorithm (DPC). What 
sets this algorithm apart is its operation with a single 
parameter, simplifying its application. DPC is built 
upon two fundamental assumptions: firstly, it as-
sumes that the density of a cluster’s core exceeds that 
of its surrounding points. Secondly, it relies on the ob-
servation that the distance between the cluster center 
and the point with the highest density is significantly 
large. The methodology of DPC involves calculating 
both local density (ρ) and distance (ζ) using a prede-
fined cutoff distance. These calculations lead to the 
creation of a two-dimensional decision graph, which 
helps identify clustering centers and guides the allo-
cation of remaining data points into their respective 
clusters. While DPC offers the advantages of simplic-
ity and speed, it does come with certain limitations. 
Its clustering effectiveness primarily depends on 
the parameters of local density (ρ) and distance (ζ). 
Additionally, DPC faces challenges when handling 
datasets with complex structures, particularly those 
characterized by uneven density distributions and in-
tricate manifold configurations.

This study introduces a novel time series clustering 
approach based on the fusion of multiple temporal 
representations. This methodology involves the ex-
traction of key features from diverse perspectives 
within the time series data. As shown in Figure 1, by 
amalgamating these multiple representations, we 
create a comprehensive time series representation, 
striving to preserve vital information while reducing 
data dimensions for enhanced clustering efficiency. 
Furthermore, we have improved the regional density 
calculation method as a significant contribution. This 
improvement is particularly beneficial when dealing 
with time series that exhibit variable density distri-
butions or uneven density patterns. It enables more 
precise identification of cluster centers, resulting in 
higher precision clustering outcomes.
This work makes several significant contributions, 
which are summarized as follows:
1 We introduce the Temporal Density Clustering 

Model Based on Multi-Dimensional Feature Fusion 
(DCMD). This model integrates a temporal repre-
sentation module and a temporal clustering module, 
aligning well with the requirements of clustering 
tasks in terms of both efficiency and accuracy.

2 We propose a novel method for time series repre-
sentation called the Time Series Multi-Dimen-
sional Representation Fusion Method (MDR). 
By leveraging elements from PLR and PAA tech-
niques and incorporating key change points within 
time series data, MDR effectively retains essential 
information from the original time series while re-
ducing data dimensions, thereby enhancing clus-
tering efficiency.

3 We design the K-Nearest Neighbor Weighted Clus-
tering Method (NNW), a unique density cluster-
ing algorithm. NNW assigns distinct weights to 
each K-nearest neighbor and incorporates these 
weights into regional density calculations. This 
innovation allows for a more efficient reflection of 
regional distribution characteristics within time 
series data, considering both local and global data 
distribution, ultimately leading to improved clus-
tering performance.

4 To validate the effectiveness of our proposed meth-
od, we conduct a comprehensive evaluation across a 
wide range of benchmark time series datasets. The 
experimental results clearly illustrate the superior 
performance and effectiveness of our approach in 
the field of time series clustering applications.
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2. Related Work
Clustering algorithms are fundamental components 
of unsupervised data mining, offering valuable in-
sights across diverse applications [26, 37, 76]. These 
algorithms, grouping similar data points together, 
have proven to be indispensable in numerous do-
mains. They can be broadly categorized into sever-
al types, with their strengths and limitations. One 
category of clustering algorithms is partition-based 
methods, such as K-Means and K-Medoids. These 
methods are relatively intuitive and easy to imple-
ment. However, they are sensitive to noisy data and 
are particularly effective at detecting clusters with 
round or spherical shapes [46]. One significant ad-
vantage of hierarchical clustering is that it does not 
require the pre-definition of the number of clusters. 
Instead, it reveals the hierarchical relationships be-
tween clusters, providing a more comprehensive view 
of the data structure. However, these methods often 
come with higher computational complexity [51]. 

Figure 1
Schematic representation of the processing of time series Ti through the model

Density-based methods form a third category. Like 
hierarchical methods, they don’t necessitate speci-
fying the number of clusters in advance. Moreover, 
density-based algorithms can identify clusters with 
arbitrary shapes, making them versatile in capturing 
complex data patterns. However, their performance 
can be sensitive to the threshold parameters used [9]. 
Beyond these primary categories, various specialized 
clustering approaches exist, addressing specific data 
characteristics and analytical needs.
Within the domain of density-based clustering, sig-
nificant strides have been made in enhancing tradi-
tional algorithms and introducing novel approaches. 
These developments have greatly expanded the capa-
bilities of density-based clustering for various appli-
cations. One noteworthy category of density-based 
clustering methods is based on Density-Peak-based 
Clustering (DPC) algorithms. These algorithms 
were introduced to efficiently identify cluster cen-
ters by locating density peaks in the data distribu-
tion. An exemplar of this class is the “Clustering by 
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fast search and find of density peaks” (CFSFDP) al-
gorithm proposed by Rodriguez et al. [42]. CFSFDP 
has gained widespread recognition for its ability to 
effectively detect clusters of arbitrary shapes within 
large-scale datasets. Importantly, CFSFDP achieves 
this with low computational complexity and high 
efficiency, making it particularly well-suited for the 
processing of big data. Furthermore, in the context 
of dealing with large-scale noisy datasets, robust 
clustering algorithms have been explored. These 
algorithms leverage the concept of density peaks 
to detect cluster centers and assign data points to 
clusters. Notably, they incorporate a fuzzy weighted 
K-nearest neighbors (KNN) [17] strategy to enhance 
robustness in the presence of noise. This approach 
improves the clustering performance when con-
fronted with noisy and complex datasets, making it 
a valuable addition to the toolkit of density-based 
clustering techniques. Overall, the advancements 
in density-based clustering algorithms, especially 
those centered around density peaks, have signifi-
cantly expanded the applicability of these methods, 
allowing them to effectively address clustering chal-
lenges in large-scale, noisy, and complex datasets. 
In the realm of density-based clustering, Zheng et 
al. [75] proposed an approximate nearest neighbor 
search method for multiple distance functions with 
a single index. An adaptive method was presented in 
[44] for clustering, where heat-diffusion is used to 
estimate density and cutoff distance is simplified. In 
[42], an adaptive density-based clustering algorithm 
was introduced in spatial databases with noise, 
which uses a novel adaptive strategy for neighbor 
selection based on spatial object distribution to 
improve clustering accuracy. Aiming at clustering 
ensemble, an automatic clustering approach was in-
troduced via outward statistical testing on density 
metrics in [55]. Yu et al. [63] proposed an adaptive 
ensemble framework for semi-supervised clustering 
solutions. Yu et al. [64] introduced an incremental 
semi-supervised clustering ensemble approach for 
high-dimensional data clustering.
Compared with existing clustering algorithms, the 
K-Nearest Neighbor Weighted Clustering Method pro-
posed in this paper can more accurately identify clus-
ters with variable density distribution or uneven densi-
ty distribution, based on shrinking the data dimensions. 
This ensures high efficiency and accuracy in clustering.

2. Proposed Method
In addressing the limitations of the DPC algorithm, 
which is significantly influenced by variables and less 
effective in clustering regions with variable or uneven 
density distributions, we propose a time series clus-
tering method based on time series multi-representa-
tion fusion (DCMD). This method involves extracting 
main time series features from multiple perspectives, 
leading to the realization of a fused time series rep-
resentation. Our approach aims to retain key feature 
information in time series while reducing data dimen-
sionality, thus ensuring efficient clustering. Addition-
ally, we have enhanced the regional density calculation 
method to more accurately identify the cluster center 
and achieve higher precision clustering, particularly 
for time series with variable density distribution or 
uneven density distribution. Table 1 summarizes some 
key notations used throughout the rest of this paper. 

Table 1
Notations and their definitions

Notation Definition

P A time series set containing n time series elements.

Ti The ith time series in P. 

vj,i The jth element of Ti. 

KPp The pth key change point in a KP set.

CAVp The importance weight of KPp.

Ti–plr The PLR series of Ti.

gx The xth element of Ti–plr.

Ti–paa The PAA series of Ti.

ax The xth element of Ti–paa.

MDRplr The PLR series for all elements in P.

MDRpaa The PAA series for all elements in P.

Pd
The MDR series set for P, which contains n ele-
ment d1, d2, …, dn.

di
The MDR series of Ti, which is concatenated by 
Ti–plr and Ti–paa.

NNPi The nearest neighbor proximity (NNP) of di.

Δi The nearest neighbor estimate (NNE) of di.

Θk, i The importance of di ’s kth nearest neighbor for di.

Γk, i 
The weighted neighbor importance (WNI) of di’s 
kth nearest neighbor for di.

ρi The local density of di.
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2.1. Temporal Representation Module
Definition 1. For a set of time series P ={T1, T2,…,Tn}, 
each element  Ti contains m ordered real values de-
noted as Ti = {v1, i,… vj, i,… vm, i}, where 1 ≤ i ≤ n, 1 ≤ j ≤ m. 
vj, i represents the jth time series point in Ti.
Definition 2. Key Change Point. For time series Ti, a 
key change point (KP) in time series Ti is a data point 
that satisfies one of the conditions outlined in Equa-
tion (1).

6 
 

clustering. 

3. Proposed Method 
In addressing the limitations of the DPC algorithm, 
which is significantly influenced by variables and 
less effective in clustering regions with variable or 
uneven density distributions, we propose a time se-
ries clustering method based on time series multi-
representation fusion (DCMD). This method in-
volves extracting main time series features from 
multiple perspectives, leading to the realization of 
a fused time series representation. Our approach 
aims to retain key feature information in time series 
while reducing data dimensionality, thus ensuring 
efficient clustering. Additionally, we have en-
hanced the regional density calculation method to 
more accurately identify the cluster center and 
achieve higher precision clustering, particularly for 
time series with variable density distribution or un-
even density distribution. Table 1 summarizes 
some key notations used throughout the rest of this 
paper.  

Table 1 Notations and their definitions. 
Notation Definition 

𝑃𝑃𝑃𝑃 A time series set containing n time se-
ries elements. 

𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 The ith time series in 𝑃𝑃𝑃𝑃.  
𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗,𝑖𝑖𝑖𝑖 The jth element of 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖.  
𝐾𝐾𝐾𝐾𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝 The pth key change point in a KP set. 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝 The importance weight of 𝐾𝐾𝐾𝐾𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝. 
𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 The PLR series of 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖. 
𝑔𝑔𝑔𝑔𝑥𝑥𝑥𝑥 The xth element of 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 

𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 The PAA series of 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖. 
𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥 The xth element of 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 The PLR series for all elements in 𝑃𝑃𝑃𝑃. 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 The PAA series for all elements in 𝑃𝑃𝑃𝑃. 

𝑃𝑃𝑃𝑃𝑑𝑑𝑑𝑑 The 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 series set for 𝑃𝑃𝑃𝑃, which con-
tains n element 𝑑𝑑𝑑𝑑1, 𝑑𝑑𝑑𝑑2, …, 𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛. 

𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 The 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 series of 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖, which is concat-
enated by 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  and 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 . 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 The nearest neighbor proximity 
(NNP) of 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖. 

Δ𝑖𝑖𝑖𝑖  The nearest neighbor estimate (NNE) 
of 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖. 

Θ𝑘𝑘𝑘𝑘,𝑖𝑖𝑖𝑖 The importance of 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 ’s kth nearest 
neighbor for 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖. 

 Γ𝑘𝑘𝑘𝑘,𝑖𝑖𝑖𝑖 The weighted neighbor importance 
(WNI) of 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖’s kth nearest neighbor for 
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖. 

𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖 The local density of 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖. 

3.1. Temporal Representation Module 

Definition 1.  For a set of time series 𝑃𝑃𝑃𝑃 =
{𝑇𝑇𝑇𝑇1,𝑇𝑇𝑇𝑇2, … ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛}, each element 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖  contains 𝑚𝑚𝑚𝑚  or-
dered real values denoted as 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 =
{𝑣𝑣𝑣𝑣1,𝑖𝑖𝑖𝑖 , … 𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗,𝑖𝑖𝑖𝑖 , … 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚,𝑖𝑖𝑖𝑖} , where 1 ≤ 𝑖𝑖𝑖𝑖 ≤ 𝑛𝑛𝑛𝑛 , 1 ≤ 𝑗𝑗𝑗𝑗 ≤
𝑚𝑚𝑚𝑚. 𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗,𝑖𝑖𝑖𝑖 represents the jth time series point in 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 . 

Definition 2. Key Change Point. For time se-
ries 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 , a key change point (KP) in time series 
𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖  is a data point that satisfies one of the con-
ditions outlined in Equation (1). 

𝐾𝐾𝐾𝐾𝑃𝑃𝑃𝑃 =

⎩
⎪
⎨

⎪
⎧
𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗−1,𝑖𝑖𝑖𝑖 < 𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗,𝑖𝑖𝑖𝑖 > 𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖
𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗−1,𝑖𝑖𝑖𝑖 < 𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗,𝑖𝑖𝑖𝑖 = 𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖
𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗−1,𝑖𝑖𝑖𝑖 = 𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗,𝑖𝑖𝑖𝑖 > 𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖
𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗−1,𝑖𝑖𝑖𝑖 > 𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗,𝑖𝑖𝑖𝑖 < 𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖
𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗−1,𝑖𝑖𝑖𝑖 > 𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗,𝑖𝑖𝑖𝑖 = 𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖
𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗−1,𝑖𝑖𝑖𝑖 = 𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗,𝑖𝑖𝑖𝑖 < 𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖

    (1) 

According to Definition 2 and the conditions 
specified in Equation (1), there are six differ-
ent types of KPs in the time series 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 , including 
all local extremes and inflection points. Dur-
ing the flow of the sequence into the temporal 
characterization module, all KPs in 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖  will be 
fully identified. However, these KPs contrib-
ute differently to the main temporal character-
ization of 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 . It is necessary to evaluate the im-
portance of these identified KPs and rank 
them in descending order of their criticality, 
the more critical KPs ranked higher, the more 
significant contribution to the identification of 
𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 . The criticality of a KP can be quantified us-
ing the Criticality Assessment Value (CAV), 
as defined in Definition 3. 

Definition 3. Criticality Assessment Value 
(CAV). The criticality of the KPs was assessed 
by calculating the vertical distance between 
the KPs and the mean of the sequence 𝑇𝑇𝑇𝑇𝚤𝚤𝚤𝚤� . The 
importance weight of the 𝑝𝑝𝑝𝑝 th ( 1 ≤ 𝑝𝑝𝑝𝑝 ≤ 𝑚𝑚𝑚𝑚 ) 
trend turning point 𝐾𝐾𝐾𝐾𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝  is denoted as 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝 . 
The calculation formula is shown in Equation 
(2). 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝 = �𝑇𝑇𝑇𝑇𝚤𝚤𝚤𝚤� − 𝐾𝐾𝐾𝐾𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝�.      (2) 

The KPs undergo a process of criticality as-
sessment, where each point is assigned a 
CAV. They are subsequently arranged in de-
scending order based on these values, grant-
ing higher priority to points with higher criti-
cality assessment value. Once we establish the 
desired number of time series segments, the 
segmentation points for each 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖  are chosen 
from the KPs according to their prioritization. 

(1)

According to Definition 2 and the conditions specified 
in Equation (1), there are six different types of KPs in 
the time series Ti, including all local extremes and in-
flection points. During the flow of the sequence into 
the temporal characterization module, all KPs in Ti 
will be fully identified. However, these KPs contribute 
differently to the main temporal characterization of 
Ti. It is necessary to evaluate the importance of these 
identified KPs and rank them in descending order of 
their criticality, the more critical KPs ranked higher, 
the more significant contribution to the identification 
of Ti. The criticality of a KP can be quantified using 
the Criticality Assessment Value (CAV), as defined in 
Definition 3.
Definition 3. Criticality Assessment Value (CAV). 
The criticality of the KPs was assessed by calculating 
the vertical distance between the KPs and the mean 
of the sequence Ti

–. The importance weight of the pth  
(1 ≤ p ≤ m) trend turning point KPp is denoted as CAVp. 
The calculation formula is shown in Equation (2).
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clustering. 

3. Proposed Method 
In addressing the limitations of the DPC algorithm, 
which is significantly influenced by variables and 
less effective in clustering regions with variable or 
uneven density distributions, we propose a time se-
ries clustering method based on time series multi-
representation fusion (DCMD). This method in-
volves extracting main time series features from 
multiple perspectives, leading to the realization of 
a fused time series representation. Our approach 
aims to retain key feature information in time series 
while reducing data dimensionality, thus ensuring 
efficient clustering. Additionally, we have en-
hanced the regional density calculation method to 
more accurately identify the cluster center and 
achieve higher precision clustering, particularly for 
time series with variable density distribution or un-
even density distribution. Table 1 summarizes 
some key notations used throughout the rest of this 
paper.  

Table 1 Notations and their definitions. 
Notation Definition 

𝑃𝑃𝑃𝑃 A time series set containing n time se-
ries elements. 

𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 The ith time series in 𝑃𝑃𝑃𝑃.  
𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗,𝑖𝑖𝑖𝑖 The jth element of 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖.  
𝐾𝐾𝐾𝐾𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝 The pth key change point in a KP set. 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝 The importance weight of 𝐾𝐾𝐾𝐾𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝. 
𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 The PLR series of 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖. 
𝑔𝑔𝑔𝑔𝑥𝑥𝑥𝑥 The xth element of 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 

𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 The PAA series of 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖. 
𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥 The xth element of 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 The PLR series for all elements in 𝑃𝑃𝑃𝑃. 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 The PAA series for all elements in 𝑃𝑃𝑃𝑃. 

𝑃𝑃𝑃𝑃𝑑𝑑𝑑𝑑 The 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 series set for 𝑃𝑃𝑃𝑃, which con-
tains n element 𝑑𝑑𝑑𝑑1, 𝑑𝑑𝑑𝑑2, …, 𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛. 

𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 The 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 series of 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖, which is concat-
enated by 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  and 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 . 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 The nearest neighbor proximity 
(NNP) of 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖. 

Δ𝑖𝑖𝑖𝑖  The nearest neighbor estimate (NNE) 
of 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖. 

Θ𝑘𝑘𝑘𝑘,𝑖𝑖𝑖𝑖 The importance of 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 ’s kth nearest 
neighbor for 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖. 

 Γ𝑘𝑘𝑘𝑘,𝑖𝑖𝑖𝑖 The weighted neighbor importance 
(WNI) of 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖’s kth nearest neighbor for 
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖. 

𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖 The local density of 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖. 

3.1. Temporal Representation Module 

Definition 1.  For a set of time series 𝑃𝑃𝑃𝑃 =
{𝑇𝑇𝑇𝑇1,𝑇𝑇𝑇𝑇2, … ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛}, each element 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖  contains 𝑚𝑚𝑚𝑚  or-
dered real values denoted as 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 =
{𝑣𝑣𝑣𝑣1,𝑖𝑖𝑖𝑖 , … 𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗,𝑖𝑖𝑖𝑖 , … 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚,𝑖𝑖𝑖𝑖} , where 1 ≤ 𝑖𝑖𝑖𝑖 ≤ 𝑛𝑛𝑛𝑛 , 1 ≤ 𝑗𝑗𝑗𝑗 ≤
𝑚𝑚𝑚𝑚. 𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗,𝑖𝑖𝑖𝑖 represents the jth time series point in 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 . 

Definition 2. Key Change Point. For time se-
ries 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 , a key change point (KP) in time series 
𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖  is a data point that satisfies one of the con-
ditions outlined in Equation (1). 

𝐾𝐾𝐾𝐾𝑃𝑃𝑃𝑃 =

⎩
⎪
⎨

⎪
⎧
𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗−1,𝑖𝑖𝑖𝑖 < 𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗,𝑖𝑖𝑖𝑖 > 𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖
𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗−1,𝑖𝑖𝑖𝑖 < 𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗,𝑖𝑖𝑖𝑖 = 𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖
𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗−1,𝑖𝑖𝑖𝑖 = 𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗,𝑖𝑖𝑖𝑖 > 𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖
𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗−1,𝑖𝑖𝑖𝑖 > 𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗,𝑖𝑖𝑖𝑖 < 𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖
𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗−1,𝑖𝑖𝑖𝑖 > 𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗,𝑖𝑖𝑖𝑖 = 𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖
𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗−1,𝑖𝑖𝑖𝑖 = 𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗,𝑖𝑖𝑖𝑖 < 𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖

    (1) 

According to Definition 2 and the conditions 
specified in Equation (1), there are six differ-
ent types of KPs in the time series 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 , including 
all local extremes and inflection points. Dur-
ing the flow of the sequence into the temporal 
characterization module, all KPs in 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖  will be 
fully identified. However, these KPs contrib-
ute differently to the main temporal character-
ization of 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 . It is necessary to evaluate the im-
portance of these identified KPs and rank 
them in descending order of their criticality, 
the more critical KPs ranked higher, the more 
significant contribution to the identification of 
𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 . The criticality of a KP can be quantified us-
ing the Criticality Assessment Value (CAV), 
as defined in Definition 3. 

Definition 3. Criticality Assessment Value 
(CAV). The criticality of the KPs was assessed 
by calculating the vertical distance between 
the KPs and the mean of the sequence 𝑇𝑇𝑇𝑇𝚤𝚤𝚤𝚤� . The 
importance weight of the 𝑝𝑝𝑝𝑝 th ( 1 ≤ 𝑝𝑝𝑝𝑝 ≤ 𝑚𝑚𝑚𝑚 ) 
trend turning point 𝐾𝐾𝐾𝐾𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝  is denoted as 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝 . 
The calculation formula is shown in Equation 
(2). 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝 = �𝑇𝑇𝑇𝑇𝚤𝚤𝚤𝚤� − 𝐾𝐾𝐾𝐾𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝�.      (2) 

The KPs undergo a process of criticality as-
sessment, where each point is assigned a 
CAV. They are subsequently arranged in de-
scending order based on these values, grant-
ing higher priority to points with higher criti-
cality assessment value. Once we establish the 
desired number of time series segments, the 
segmentation points for each 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖  are chosen 
from the KPs according to their prioritization. 

(2)

The KPs undergo a process of criticality assessment, 
where each point is assigned a CAV. They are subse-
quently arranged in descending order based on these 
values, granting higher priority to points with higher 
criticality assessment value. Once we establish the 
desired number of time series segments, the segmen-
tation points for each Ti are chosen from the KPs ac-
cording to their prioritization.

Definition 4. According to Definitions 2 and 3, all the 
KPs have been identified completely and sorted in the 
descending order of their CAVs, to form an ordered 
KP set named Skp. Depending on the needs of the prob-
lem, a different number of points from the Skp will be 
selected as the KP for the MDRplr.
Definition 5. Assuming that k points are selected 
from the SKP, the time series Ti will be divided into 
k-1 segments, we sequentially link the points, for each 
connecting line segment, we compute its respective 
gradient. The bth segment is calculated as shown in 
formula (5), denoted as gb. The result after the time 
series Ti is represented by the MDRplr is Ti–plr = {g1, … 
gb,… gk–1}, where 1 ≤ b ≤ k – 1..
For the time series D, the characterization after  
MDRplr is shown in Equation (3).
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Definition 4. According to Definitions 2 and 3, all 
the KPs have been identified completely and sorted 
in the descending order of their CAVs, to form an 
ordered KP set named 𝑆𝑆𝑆𝑆𝑘𝑘𝑘𝑘𝑝𝑝𝑝𝑝. Depending on the needs 
of the problem, a different number of points from 
the 𝑆𝑆𝑆𝑆𝑘𝑘𝑘𝑘𝑝𝑝𝑝𝑝 will be selected as the KP for the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 . 

Definition 5. Assuming that 𝑘𝑘𝑘𝑘 points are selected 
from the 𝑆𝑆𝑆𝑆𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾, the time series 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖  will be divided into 
𝑘𝑘𝑘𝑘 − 1 segments, we sequentially link the points, for 
each connecting line segment, we compute its re-
spective gradient. The bth segment is calculated as 
shown in formula (5), denoted as 𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏. The result af-
ter the time series 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖  is represented by the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  
is 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = {𝑔𝑔𝑔𝑔1, …𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏 , …𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘−1}, where 1 ≤ 𝑏𝑏𝑏𝑏 ≤ 𝑘𝑘𝑘𝑘 − 1. 

For the time series 𝑀𝑀𝑀𝑀 , the characterization after 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  is shown in Equation (3). 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =

⎩
⎨

⎧
𝑇𝑇𝑇𝑇1−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = {𝑔𝑔𝑔𝑔1, …𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏 , …𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘−1}
𝑇𝑇𝑇𝑇2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = {𝑔𝑔𝑔𝑔1, …𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏 , …𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘−1}

…
𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = {𝑔𝑔𝑔𝑔1, …𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏 , …𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘−1}

   (3) 

Definition 6. According to the above definition, the 
representation part of 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  is completed. Simi-
larly, if we average the time series 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖  into 𝑞𝑞𝑞𝑞 − 1 seg-
ments, the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 result for the 𝑐𝑐𝑐𝑐th segment is de-
noted as 𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐, representing the average of all data in 
the 𝑐𝑐𝑐𝑐th segment. Then the average value of each 
segment is used as a representation in MDR, and 
the representation result is 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
{𝑎𝑎𝑎𝑎1, … 𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 , … , 𝑎𝑎𝑎𝑎𝑞𝑞𝑞𝑞−1} , where 1 ≤ 𝑐𝑐𝑐𝑐 ≤ 𝑞𝑞𝑞𝑞 − 1 . For the 
time series 𝑃𝑃𝑃𝑃, the characterization after 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is 
represented as shown in Equation (4). 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =

⎩
⎨

⎧
𝑇𝑇𝑇𝑇1−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = {𝑎𝑎𝑎𝑎1, …𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 , …𝑎𝑎𝑎𝑎𝑞𝑞𝑞𝑞−1}
𝑇𝑇𝑇𝑇2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = {𝑎𝑎𝑎𝑎1, …𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 , … 𝑎𝑎𝑎𝑎𝑞𝑞𝑞𝑞−1}

…
𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = {𝑎𝑎𝑎𝑎1, … 𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 , …𝑎𝑎𝑎𝑎𝑞𝑞𝑞𝑞−1}

  (4) 

The final time series obtained after 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is shown 
in Equation (5). 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =

⎩
⎨

⎧
𝑇𝑇𝑇𝑇1 = {𝑔𝑔𝑔𝑔1, …𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏 , …𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘−1, 𝑎𝑎𝑎𝑎1, … 𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 , …𝑎𝑎𝑎𝑎𝑞𝑞𝑞𝑞−1}
𝑇𝑇𝑇𝑇2 = {𝑔𝑔𝑔𝑔1, …𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏 , …𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘−1, 𝑎𝑎𝑎𝑎1, … 𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 , …𝑎𝑎𝑎𝑎𝑞𝑞𝑞𝑞−1}

…
𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛 = {𝑔𝑔𝑔𝑔1, …𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏 , …𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘−1, 𝑎𝑎𝑎𝑎1, … 𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 , … 𝑎𝑎𝑎𝑎𝑞𝑞𝑞𝑞−1}

 (5) 

The before and after changes after 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  pro-
cessing are shown in Figure 2. Figure 2(a) repre-
sents the original data, and the characterization re-
sults are shown as the red dashed line in Figure 
2(b). In this figure, 8 KPs are taken to characterize 
the data. 

 

(a) Time series data before 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 . 

 

(b) Time series data after 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 . 
Figure 2 Schematic diagram of 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  char-
acterization method.  

3.2.  Temporal Clustering Module 

The results obtained from MDR are concate-
nated to generate the n-dimensional latent 
representation 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖  of the time series 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 . Subse-
quently, the data are clustered using the po-
tential representation 𝑃𝑃𝑃𝑃𝑑𝑑𝑑𝑑 = {𝑑𝑑𝑑𝑑1,𝑑𝑑𝑑𝑑2, …𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛} of all 
the data. 
Definition 7. Nearest Neighbor Proximity 
(NNP). Within a given dataset denoted as 𝑀𝑀𝑀𝑀𝑑𝑑𝑑𝑑, 
the Nearest Neighbor Proximity (NNP) of any 
data point 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 represents the mean distance be-
tween 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 and its K-Nearest neighbors. The cal-
culation is shown in Equation (6). We denote 
the NNP of 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 as 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 . The NNP serves as a 
valuable indicator in data analysis, offering 
insights into the inherent structure and clus-
tering tendencies within a dataset. Specifi-
cally, it reflects the degree of proximity or 
closeness between data points by quantifying 
the distances between each data point and its 
nearest neighbors. In essence, NNP illumi-
nates the local density variations within the 
dataset, shedding light on regions where data 

(3)

Definition 6. According to the above definition, the 
representation part of MDRplr is completed. Similar-
ly, if we average the time series Ti into q–1 segments, 
the MDRpaa result for the cth segment is denoted as 
ac, representing the average of all data in the cth seg-
ment. Then the average value of each segment is used 
as a representation in MDR, and the representation 
result is Ti–paa ={a1 ,… ac, …, aq–1}, where 1 ≤ c ≤ q – 1. For 
the time series P, the characterization after MDRpaa is 
represented as shown in Equation (4).
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Definition 4. According to Definitions 2 and 3, all 
the KPs have been identified completely and sorted 
in the descending order of their CAVs, to form an 
ordered KP set named 𝑆𝑆𝑆𝑆𝑘𝑘𝑘𝑘𝑝𝑝𝑝𝑝. Depending on the needs 
of the problem, a different number of points from 
the 𝑆𝑆𝑆𝑆𝑘𝑘𝑘𝑘𝑝𝑝𝑝𝑝 will be selected as the KP for the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 . 

Definition 5. Assuming that 𝑘𝑘𝑘𝑘 points are selected 
from the 𝑆𝑆𝑆𝑆𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾, the time series 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖  will be divided into 
𝑘𝑘𝑘𝑘 − 1 segments, we sequentially link the points, for 
each connecting line segment, we compute its re-
spective gradient. The bth segment is calculated as 
shown in formula (5), denoted as 𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏. The result af-
ter the time series 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖  is represented by the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  
is 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = {𝑔𝑔𝑔𝑔1, …𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏 , …𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘−1}, where 1 ≤ 𝑏𝑏𝑏𝑏 ≤ 𝑘𝑘𝑘𝑘 − 1. 

For the time series 𝑀𝑀𝑀𝑀 , the characterization after 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  is shown in Equation (3). 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =

⎩
⎨

⎧
𝑇𝑇𝑇𝑇1−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = {𝑔𝑔𝑔𝑔1, …𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏 , …𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘−1}
𝑇𝑇𝑇𝑇2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = {𝑔𝑔𝑔𝑔1, …𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏 , …𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘−1}

…
𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = {𝑔𝑔𝑔𝑔1, …𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏 , …𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘−1}

   (3) 

Definition 6. According to the above definition, the 
representation part of 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  is completed. Simi-
larly, if we average the time series 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖  into 𝑞𝑞𝑞𝑞 − 1 seg-
ments, the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 result for the 𝑐𝑐𝑐𝑐th segment is de-
noted as 𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐, representing the average of all data in 
the 𝑐𝑐𝑐𝑐th segment. Then the average value of each 
segment is used as a representation in MDR, and 
the representation result is 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
{𝑎𝑎𝑎𝑎1, … 𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 , … , 𝑎𝑎𝑎𝑎𝑞𝑞𝑞𝑞−1} , where 1 ≤ 𝑐𝑐𝑐𝑐 ≤ 𝑞𝑞𝑞𝑞 − 1 . For the 
time series 𝑃𝑃𝑃𝑃, the characterization after 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is 
represented as shown in Equation (4). 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =

⎩
⎨

⎧
𝑇𝑇𝑇𝑇1−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = {𝑎𝑎𝑎𝑎1, …𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 , …𝑎𝑎𝑎𝑎𝑞𝑞𝑞𝑞−1}
𝑇𝑇𝑇𝑇2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = {𝑎𝑎𝑎𝑎1, …𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 , … 𝑎𝑎𝑎𝑎𝑞𝑞𝑞𝑞−1}

…
𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = {𝑎𝑎𝑎𝑎1, … 𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 , …𝑎𝑎𝑎𝑎𝑞𝑞𝑞𝑞−1}

  (4) 

The final time series obtained after 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is shown 
in Equation (5). 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =

⎩
⎨

⎧
𝑇𝑇𝑇𝑇1 = {𝑔𝑔𝑔𝑔1, …𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏 , …𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘−1, 𝑎𝑎𝑎𝑎1, … 𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 , …𝑎𝑎𝑎𝑎𝑞𝑞𝑞𝑞−1}
𝑇𝑇𝑇𝑇2 = {𝑔𝑔𝑔𝑔1, …𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏 , …𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘−1, 𝑎𝑎𝑎𝑎1, … 𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 , …𝑎𝑎𝑎𝑎𝑞𝑞𝑞𝑞−1}

…
𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛 = {𝑔𝑔𝑔𝑔1, …𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏 , …𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘−1, 𝑎𝑎𝑎𝑎1, … 𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 , … 𝑎𝑎𝑎𝑎𝑞𝑞𝑞𝑞−1}

 (5) 

The before and after changes after 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  pro-
cessing are shown in Figure 2. Figure 2(a) repre-
sents the original data, and the characterization re-
sults are shown as the red dashed line in Figure 
2(b). In this figure, 8 KPs are taken to characterize 
the data. 

 

(a) Time series data before 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 . 

 

(b) Time series data after 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 . 
Figure 2 Schematic diagram of 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  char-
acterization method.  

3.2.  Temporal Clustering Module 

The results obtained from MDR are concate-
nated to generate the n-dimensional latent 
representation 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖  of the time series 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 . Subse-
quently, the data are clustered using the po-
tential representation 𝑃𝑃𝑃𝑃𝑑𝑑𝑑𝑑 = {𝑑𝑑𝑑𝑑1,𝑑𝑑𝑑𝑑2, …𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛} of all 
the data. 
Definition 7. Nearest Neighbor Proximity 
(NNP). Within a given dataset denoted as 𝑀𝑀𝑀𝑀𝑑𝑑𝑑𝑑, 
the Nearest Neighbor Proximity (NNP) of any 
data point 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 represents the mean distance be-
tween 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 and its K-Nearest neighbors. The cal-
culation is shown in Equation (6). We denote 
the NNP of 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 as 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 . The NNP serves as a 
valuable indicator in data analysis, offering 
insights into the inherent structure and clus-
tering tendencies within a dataset. Specifi-
cally, it reflects the degree of proximity or 
closeness between data points by quantifying 
the distances between each data point and its 
nearest neighbors. In essence, NNP illumi-
nates the local density variations within the 
dataset, shedding light on regions where data 

(4)

The final time series obtained after MDR is shown in 
Equation (5).
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Definition 4. According to Definitions 2 and 3, all 
the KPs have been identified completely and sorted 
in the descending order of their CAVs, to form an 
ordered KP set named 𝑆𝑆𝑆𝑆𝑘𝑘𝑘𝑘𝑝𝑝𝑝𝑝. Depending on the needs 
of the problem, a different number of points from 
the 𝑆𝑆𝑆𝑆𝑘𝑘𝑘𝑘𝑝𝑝𝑝𝑝 will be selected as the KP for the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 . 

Definition 5. Assuming that 𝑘𝑘𝑘𝑘 points are selected 
from the 𝑆𝑆𝑆𝑆𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾, the time series 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖  will be divided into 
𝑘𝑘𝑘𝑘 − 1 segments, we sequentially link the points, for 
each connecting line segment, we compute its re-
spective gradient. The bth segment is calculated as 
shown in formula (5), denoted as 𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏. The result af-
ter the time series 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖  is represented by the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  
is 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = {𝑔𝑔𝑔𝑔1, …𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏 , …𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘−1}, where 1 ≤ 𝑏𝑏𝑏𝑏 ≤ 𝑘𝑘𝑘𝑘 − 1. 

For the time series 𝑀𝑀𝑀𝑀 , the characterization after 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  is shown in Equation (3). 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =

⎩
⎨

⎧
𝑇𝑇𝑇𝑇1−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = {𝑔𝑔𝑔𝑔1, …𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏 , …𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘−1}
𝑇𝑇𝑇𝑇2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = {𝑔𝑔𝑔𝑔1, …𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏 , …𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘−1}

…
𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = {𝑔𝑔𝑔𝑔1, …𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏 , …𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘−1}

   (3) 

Definition 6. According to the above definition, the 
representation part of 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  is completed. Simi-
larly, if we average the time series 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖  into 𝑞𝑞𝑞𝑞 − 1 seg-
ments, the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 result for the 𝑐𝑐𝑐𝑐th segment is de-
noted as 𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐, representing the average of all data in 
the 𝑐𝑐𝑐𝑐th segment. Then the average value of each 
segment is used as a representation in MDR, and 
the representation result is 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
{𝑎𝑎𝑎𝑎1, … 𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 , … , 𝑎𝑎𝑎𝑎𝑞𝑞𝑞𝑞−1} , where 1 ≤ 𝑐𝑐𝑐𝑐 ≤ 𝑞𝑞𝑞𝑞 − 1 . For the 
time series 𝑃𝑃𝑃𝑃, the characterization after 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is 
represented as shown in Equation (4). 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =

⎩
⎨

⎧
𝑇𝑇𝑇𝑇1−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = {𝑎𝑎𝑎𝑎1, …𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 , …𝑎𝑎𝑎𝑎𝑞𝑞𝑞𝑞−1}
𝑇𝑇𝑇𝑇2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = {𝑎𝑎𝑎𝑎1, …𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 , … 𝑎𝑎𝑎𝑎𝑞𝑞𝑞𝑞−1}

…
𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = {𝑎𝑎𝑎𝑎1, … 𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 , …𝑎𝑎𝑎𝑎𝑞𝑞𝑞𝑞−1}

  (4) 

The final time series obtained after 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is shown 
in Equation (5). 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =

⎩
⎨

⎧
𝑇𝑇𝑇𝑇1 = {𝑔𝑔𝑔𝑔1, …𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏 , …𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘−1, 𝑎𝑎𝑎𝑎1, … 𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 , …𝑎𝑎𝑎𝑎𝑞𝑞𝑞𝑞−1}
𝑇𝑇𝑇𝑇2 = {𝑔𝑔𝑔𝑔1, …𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏 , …𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘−1, 𝑎𝑎𝑎𝑎1, … 𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 , …𝑎𝑎𝑎𝑎𝑞𝑞𝑞𝑞−1}

…
𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛 = {𝑔𝑔𝑔𝑔1, …𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏 , …𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘−1, 𝑎𝑎𝑎𝑎1, … 𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 , … 𝑎𝑎𝑎𝑎𝑞𝑞𝑞𝑞−1}

 (5) 

The before and after changes after 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  pro-
cessing are shown in Figure 2. Figure 2(a) repre-
sents the original data, and the characterization re-
sults are shown as the red dashed line in Figure 
2(b). In this figure, 8 KPs are taken to characterize 
the data. 

 

(a) Time series data before 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 . 

 

(b) Time series data after 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 . 
Figure 2 Schematic diagram of 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  char-
acterization method.  

3.2.  Temporal Clustering Module 

The results obtained from MDR are concate-
nated to generate the n-dimensional latent 
representation 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖  of the time series 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 . Subse-
quently, the data are clustered using the po-
tential representation 𝑃𝑃𝑃𝑃𝑑𝑑𝑑𝑑 = {𝑑𝑑𝑑𝑑1,𝑑𝑑𝑑𝑑2, …𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛} of all 
the data. 
Definition 7. Nearest Neighbor Proximity 
(NNP). Within a given dataset denoted as 𝑀𝑀𝑀𝑀𝑑𝑑𝑑𝑑, 
the Nearest Neighbor Proximity (NNP) of any 
data point 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 represents the mean distance be-
tween 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 and its K-Nearest neighbors. The cal-
culation is shown in Equation (6). We denote 
the NNP of 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 as 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 . The NNP serves as a 
valuable indicator in data analysis, offering 
insights into the inherent structure and clus-
tering tendencies within a dataset. Specifi-
cally, it reflects the degree of proximity or 
closeness between data points by quantifying 
the distances between each data point and its 
nearest neighbors. In essence, NNP illumi-
nates the local density variations within the 
dataset, shedding light on regions where data 

(5)

The before and after changes after MDRplr processing 
are shown in Figure 2. Figure 2(a) represents the orig-
inal data, and the characterization results are shown 
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as the red dashed line in Figure 2(b). In this figure, 8 
KPs are taken to characterize the data.

Figure 2
Schematic diagram of MDPplr characterization method

(a) Time series data before MDPplr

(b) Time series data after MDPplr
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Definition 4. According to Definitions 2 and 3, all 
the KPs have been identified completely and sorted 
in the descending order of their CAVs, to form an 
ordered KP set named 𝑆𝑆𝑆𝑆𝑘𝑘𝑘𝑘𝑝𝑝𝑝𝑝. Depending on the needs 
of the problem, a different number of points from 
the 𝑆𝑆𝑆𝑆𝑘𝑘𝑘𝑘𝑝𝑝𝑝𝑝 will be selected as the KP for the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 . 

Definition 5. Assuming that 𝑘𝑘𝑘𝑘 points are selected 
from the 𝑆𝑆𝑆𝑆𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾, the time series 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖  will be divided into 
𝑘𝑘𝑘𝑘 − 1 segments, we sequentially link the points, for 
each connecting line segment, we compute its re-
spective gradient. The bth segment is calculated as 
shown in formula (5), denoted as 𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏. The result af-
ter the time series 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖  is represented by the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  
is 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = {𝑔𝑔𝑔𝑔1, …𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏 , …𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘−1}, where 1 ≤ 𝑏𝑏𝑏𝑏 ≤ 𝑘𝑘𝑘𝑘 − 1. 

For the time series 𝑀𝑀𝑀𝑀 , the characterization after 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  is shown in Equation (3). 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =

⎩
⎨

⎧
𝑇𝑇𝑇𝑇1−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = {𝑔𝑔𝑔𝑔1, …𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏 , …𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘−1}
𝑇𝑇𝑇𝑇2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = {𝑔𝑔𝑔𝑔1, …𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏 , …𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘−1}

…
𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = {𝑔𝑔𝑔𝑔1, …𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏 , …𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘−1}

   (3) 

Definition 6. According to the above definition, the 
representation part of 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  is completed. Simi-
larly, if we average the time series 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖  into 𝑞𝑞𝑞𝑞 − 1 seg-
ments, the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 result for the 𝑐𝑐𝑐𝑐th segment is de-
noted as 𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐, representing the average of all data in 
the 𝑐𝑐𝑐𝑐th segment. Then the average value of each 
segment is used as a representation in MDR, and 
the representation result is 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
{𝑎𝑎𝑎𝑎1, … 𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 , … , 𝑎𝑎𝑎𝑎𝑞𝑞𝑞𝑞−1} , where 1 ≤ 𝑐𝑐𝑐𝑐 ≤ 𝑞𝑞𝑞𝑞 − 1 . For the 
time series 𝑃𝑃𝑃𝑃, the characterization after 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is 
represented as shown in Equation (4). 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =

⎩
⎨

⎧
𝑇𝑇𝑇𝑇1−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = {𝑎𝑎𝑎𝑎1, …𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 , …𝑎𝑎𝑎𝑎𝑞𝑞𝑞𝑞−1}
𝑇𝑇𝑇𝑇2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = {𝑎𝑎𝑎𝑎1, …𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 , … 𝑎𝑎𝑎𝑎𝑞𝑞𝑞𝑞−1}

…
𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = {𝑎𝑎𝑎𝑎1, … 𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 , …𝑎𝑎𝑎𝑎𝑞𝑞𝑞𝑞−1}

  (4) 

The final time series obtained after 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is shown 
in Equation (5). 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =

⎩
⎨

⎧
𝑇𝑇𝑇𝑇1 = {𝑔𝑔𝑔𝑔1, …𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏 , …𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘−1, 𝑎𝑎𝑎𝑎1, … 𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 , …𝑎𝑎𝑎𝑎𝑞𝑞𝑞𝑞−1}
𝑇𝑇𝑇𝑇2 = {𝑔𝑔𝑔𝑔1, …𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏 , …𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘−1, 𝑎𝑎𝑎𝑎1, … 𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 , …𝑎𝑎𝑎𝑎𝑞𝑞𝑞𝑞−1}

…
𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛 = {𝑔𝑔𝑔𝑔1, …𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏 , …𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘−1, 𝑎𝑎𝑎𝑎1, … 𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 , … 𝑎𝑎𝑎𝑎𝑞𝑞𝑞𝑞−1}

 (5) 

The before and after changes after 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  pro-
cessing are shown in Figure 2. Figure 2(a) repre-
sents the original data, and the characterization re-
sults are shown as the red dashed line in Figure 
2(b). In this figure, 8 KPs are taken to characterize 
the data. 

 

(a) Time series data before 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 . 

 

(b) Time series data after 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 . 
Figure 2 Schematic diagram of 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  char-
acterization method.  

3.2.  Temporal Clustering Module 

The results obtained from MDR are concate-
nated to generate the n-dimensional latent 
representation 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖  of the time series 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 . Subse-
quently, the data are clustered using the po-
tential representation 𝑃𝑃𝑃𝑃𝑑𝑑𝑑𝑑 = {𝑑𝑑𝑑𝑑1,𝑑𝑑𝑑𝑑2, …𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛} of all 
the data. 
Definition 7. Nearest Neighbor Proximity 
(NNP). Within a given dataset denoted as 𝑀𝑀𝑀𝑀𝑑𝑑𝑑𝑑, 
the Nearest Neighbor Proximity (NNP) of any 
data point 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 represents the mean distance be-
tween 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 and its K-Nearest neighbors. The cal-
culation is shown in Equation (6). We denote 
the NNP of 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 as 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 . The NNP serves as a 
valuable indicator in data analysis, offering 
insights into the inherent structure and clus-
tering tendencies within a dataset. Specifi-
cally, it reflects the degree of proximity or 
closeness between data points by quantifying 
the distances between each data point and its 
nearest neighbors. In essence, NNP illumi-
nates the local density variations within the 
dataset, shedding light on regions where data 
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Definition 4. According to Definitions 2 and 3, all 
the KPs have been identified completely and sorted 
in the descending order of their CAVs, to form an 
ordered KP set named 𝑆𝑆𝑆𝑆𝑘𝑘𝑘𝑘𝑝𝑝𝑝𝑝. Depending on the needs 
of the problem, a different number of points from 
the 𝑆𝑆𝑆𝑆𝑘𝑘𝑘𝑘𝑝𝑝𝑝𝑝 will be selected as the KP for the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 . 

Definition 5. Assuming that 𝑘𝑘𝑘𝑘 points are selected 
from the 𝑆𝑆𝑆𝑆𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾, the time series 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖  will be divided into 
𝑘𝑘𝑘𝑘 − 1 segments, we sequentially link the points, for 
each connecting line segment, we compute its re-
spective gradient. The bth segment is calculated as 
shown in formula (5), denoted as 𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏. The result af-
ter the time series 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖  is represented by the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  
is 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = {𝑔𝑔𝑔𝑔1, …𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏 , …𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘−1}, where 1 ≤ 𝑏𝑏𝑏𝑏 ≤ 𝑘𝑘𝑘𝑘 − 1. 

For the time series 𝑀𝑀𝑀𝑀 , the characterization after 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  is shown in Equation (3). 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =

⎩
⎨

⎧
𝑇𝑇𝑇𝑇1−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = {𝑔𝑔𝑔𝑔1, …𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏 , …𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘−1}
𝑇𝑇𝑇𝑇2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = {𝑔𝑔𝑔𝑔1, …𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏 , …𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘−1}

…
𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = {𝑔𝑔𝑔𝑔1, …𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏 , …𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘−1}

   (3) 

Definition 6. According to the above definition, the 
representation part of 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  is completed. Simi-
larly, if we average the time series 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖  into 𝑞𝑞𝑞𝑞 − 1 seg-
ments, the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 result for the 𝑐𝑐𝑐𝑐th segment is de-
noted as 𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐, representing the average of all data in 
the 𝑐𝑐𝑐𝑐th segment. Then the average value of each 
segment is used as a representation in MDR, and 
the representation result is 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
{𝑎𝑎𝑎𝑎1, … 𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 , … , 𝑎𝑎𝑎𝑎𝑞𝑞𝑞𝑞−1} , where 1 ≤ 𝑐𝑐𝑐𝑐 ≤ 𝑞𝑞𝑞𝑞 − 1 . For the 
time series 𝑃𝑃𝑃𝑃, the characterization after 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is 
represented as shown in Equation (4). 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =

⎩
⎨

⎧
𝑇𝑇𝑇𝑇1−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = {𝑎𝑎𝑎𝑎1, …𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 , …𝑎𝑎𝑎𝑎𝑞𝑞𝑞𝑞−1}
𝑇𝑇𝑇𝑇2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = {𝑎𝑎𝑎𝑎1, …𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 , … 𝑎𝑎𝑎𝑎𝑞𝑞𝑞𝑞−1}

…
𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = {𝑎𝑎𝑎𝑎1, … 𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 , …𝑎𝑎𝑎𝑎𝑞𝑞𝑞𝑞−1}

  (4) 

The final time series obtained after 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is shown 
in Equation (5). 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =

⎩
⎨

⎧
𝑇𝑇𝑇𝑇1 = {𝑔𝑔𝑔𝑔1, …𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏 , …𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘−1, 𝑎𝑎𝑎𝑎1, … 𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 , …𝑎𝑎𝑎𝑎𝑞𝑞𝑞𝑞−1}
𝑇𝑇𝑇𝑇2 = {𝑔𝑔𝑔𝑔1, …𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏 , …𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘−1, 𝑎𝑎𝑎𝑎1, … 𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 , …𝑎𝑎𝑎𝑎𝑞𝑞𝑞𝑞−1}

…
𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛 = {𝑔𝑔𝑔𝑔1, …𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏 , …𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘−1, 𝑎𝑎𝑎𝑎1, … 𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 , … 𝑎𝑎𝑎𝑎𝑞𝑞𝑞𝑞−1}

 (5) 

The before and after changes after 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  pro-
cessing are shown in Figure 2. Figure 2(a) repre-
sents the original data, and the characterization re-
sults are shown as the red dashed line in Figure 
2(b). In this figure, 8 KPs are taken to characterize 
the data. 

 

(a) Time series data before 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 . 

 

(b) Time series data after 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 . 
Figure 2 Schematic diagram of 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  char-
acterization method.  

3.2.  Temporal Clustering Module 

The results obtained from MDR are concate-
nated to generate the n-dimensional latent 
representation 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖  of the time series 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 . Subse-
quently, the data are clustered using the po-
tential representation 𝑃𝑃𝑃𝑃𝑑𝑑𝑑𝑑 = {𝑑𝑑𝑑𝑑1,𝑑𝑑𝑑𝑑2, …𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛} of all 
the data. 
Definition 7. Nearest Neighbor Proximity 
(NNP). Within a given dataset denoted as 𝑀𝑀𝑀𝑀𝑑𝑑𝑑𝑑, 
the Nearest Neighbor Proximity (NNP) of any 
data point 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 represents the mean distance be-
tween 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 and its K-Nearest neighbors. The cal-
culation is shown in Equation (6). We denote 
the NNP of 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 as 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 . The NNP serves as a 
valuable indicator in data analysis, offering 
insights into the inherent structure and clus-
tering tendencies within a dataset. Specifi-
cally, it reflects the degree of proximity or 
closeness between data points by quantifying 
the distances between each data point and its 
nearest neighbors. In essence, NNP illumi-
nates the local density variations within the 
dataset, shedding light on regions where data 

2.2. Temporal Clustering Module
The results obtained from MDR are concatenated to 
generate the n-dimensional latent representation di 
of the time series Ti. Subsequently, the data are clus-
tered using the potential representation Pd = {d1, d2, … 
dn} of all the data..
Definition 7. Nearest Neighbor Proximity (NNP). 
Within a given dataset denoted as Dd, the Nearest 
Neighbor Proximity (NNP) of any data point di rep-
resents the mean distance between di  and its K-Near-
est neighbors. The calculation is shown in Equation 
(6). We denote the NNP of di as NNPi. The NNP 
serves as a valuable indicator in data analysis, offer-
ing insights into the inherent structure and clustering 
tendencies within a dataset. Specifically, it reflects 
the degree of proximity or closeness between data 
points by quantifying the distances between each 
data point and its nearest neighbors. In essence, NNP 
illuminates the local density variations within the 

dataset, shedding light on regions where data points 
are densely clustered as well as areas where they are 
more dispersed. This proximity metric aids in identi-
fying potential clusters, outliers, and the overall dis-
tribution of data points within the feature space.
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points are densely clustered as well as areas where 
they are more dispersed. This proximity metric aids 
in identifying potential clusters, outliers, and the 
overall distribution of data points within the fea-
ture space. 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 = 1
𝐾𝐾𝐾𝐾
∑ �∑ (𝑣𝑣𝑣𝑣𝑥𝑥𝑥𝑥,𝑒𝑒𝑒𝑒 − 𝑣𝑣𝑣𝑣𝑥𝑥𝑥𝑥,𝑔𝑔𝑔𝑔)2,𝑚𝑚𝑚𝑚

𝑥𝑥𝑥𝑥=1
𝐾𝐾𝐾𝐾
𝑘𝑘𝑘𝑘=1    (6) 

where 𝐾𝐾𝐾𝐾  represents the number of nearest neigh-
bors, 𝑣𝑣𝑣𝑣𝑥𝑥𝑥𝑥,𝑒𝑒𝑒𝑒 represents the 𝑒𝑒𝑒𝑒th data in the time series 
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sity, revealing the extent to which data points are 
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clusters or groups of similar data points. Con-
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The Local Density values of all time series are 
computed and then sorted in descending or-
der. Subsequently, based on the desired num-
ber of clusters C, the top C points from the Lo-
cal Density ranking are selected as the final 
cluster centers. 
The Local Density serves as a valuable metric 
that encapsulates the density characteristics of 
data points within a given region. It reflects 
the concentration of data points around a par-
ticular point of interest, providing insights 
into the local data distribution. In essence, Lo-
cal Density helps identify the prominence of 
specific data points within their local neigh-
borhoods, highlighting their significance in 
the context of clustering and pattern recogni-
tion tasks. 

4. Experiments 
The model proposed in this paper designs the 
Temporal Representation Module and the 
Temporal Clustering Module mainly for the 
problems of efficiency and accuracy that exist 
in time series clustering, and therefore experi-
ments are carried out for the clustering accu-
racy and clustering time. We first summarize 
the necessary experimental environment set-
tings in Table 2. 

Table 2 Details of the experimental environ-
ment settings. 

Name Configuration 
CPU 24 vCPU AMD EPYC 7642 48-

Core Processor 
GPU Nvidia GeForce RTX 2080Ti 
Memory 32GB DDR4 RAM 
Hard Disk 1TB NVMe SSD 
Operating Sys-
tem 

Ubuntu 20.04 LTS 

Python Frame-
work 

PyTorch 1.11.0 

 
Datasets. To evaluate the performance of our 

, (6)

where K represents the number of nearest neighbors, 
vx, e represents the eth data in the time series dx, and m 
denotes the dimensional size of di.
Definition 8. Nearest Neighbor Estimate (NNE). 
In the context of data point di within the dataset Pd, 
the Nearest Neighbor Estimate (NNE) is represented 
as Δi. It stands in inverse proportion to the NNP. The 
calculation is shown in Equation (7). 
The NNE serves as a reflection of the local data densi-
ty, revealing the extent to which data points are dense-
ly packed or sparse in localized areas of the feature 
space. By calculating the density of data points with-
in a defined neighborhood or region around each data 
point, NNE effectively identifies regions of high data 
density, helping to uncover clusters or groups of sim-
ilar data points. Conversely, it highlights regions with 
lower density, indicating potential outliers or areas of 
reduced data concentration. Based on NNE, we can de-
duce the Weighted Neighbor Importance (WNI).
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The Local Density values of all time series are 
computed and then sorted in descending or-
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ber of clusters C, the top C points from the Lo-
cal Density ranking are selected as the final 
cluster centers. 
The Local Density serves as a valuable metric 
that encapsulates the density characteristics of 
data points within a given region. It reflects 
the concentration of data points around a par-
ticular point of interest, providing insights 
into the local data distribution. In essence, Lo-
cal Density helps identify the prominence of 
specific data points within their local neigh-
borhoods, highlighting their significance in 
the context of clustering and pattern recogni-
tion tasks. 

4. Experiments 
The model proposed in this paper designs the 
Temporal Representation Module and the 
Temporal Clustering Module mainly for the 
problems of efficiency and accuracy that exist 
in time series clustering, and therefore experi-
ments are carried out for the clustering accu-
racy and clustering time. We first summarize 
the necessary experimental environment set-
tings in Table 2. 

Table 2 Details of the experimental environ-
ment settings. 
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Memory 32GB DDR4 RAM 
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Operating Sys-
tem 

Ubuntu 20.04 LTS 

Python Frame-
work 
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Datasets. To evaluate the performance of our 

(7)

Definition 9.   Weighted Neighbor Importance 
(WNI). The importance of each K-Nearest neighbor 
Nk,i relative to data point di is determined by multi-
plying its NNE by the reciprocal of its distance from 
di , which is denoted as Θk,i. After obtaining Θk,i, the 
Weighted Neighbor Importance (WNI) of Nk,i is cal-
culated as the product of the NNE Δk,i, denoted as Γk,i.
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cluster centers. 
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Definition 10. Local Density. The Local Density of di 
is determined by combining the NNE of di with the av-
erage importance weights Γk,i of its K-Nearest neigh-
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The Local Density values of all time series are 
computed and then sorted in descending or-
der. Subsequently, based on the desired num-
ber of clusters C, the top C points from the Lo-
cal Density ranking are selected as the final 
cluster centers. 
The Local Density serves as a valuable metric 
that encapsulates the density characteristics of 
data points within a given region. It reflects 
the concentration of data points around a par-
ticular point of interest, providing insights 
into the local data distribution. In essence, Lo-
cal Density helps identify the prominence of 
specific data points within their local neigh-
borhoods, highlighting their significance in 
the context of clustering and pattern recogni-
tion tasks. 

4. Experiments 
The model proposed in this paper designs the 
Temporal Representation Module and the 
Temporal Clustering Module mainly for the 
problems of efficiency and accuracy that exist 
in time series clustering, and therefore experi-
ments are carried out for the clustering accu-
racy and clustering time. We first summarize 
the necessary experimental environment set-
tings in Table 2. 
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Core Processor 
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Memory 32GB DDR4 RAM 
Hard Disk 1TB NVMe SSD 
Operating Sys-
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Datasets. To evaluate the performance of our 
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The model proposed in this paper designs the 
Temporal Representation Module and the 
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problems of efficiency and accuracy that exist 
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ments are carried out for the clustering accu-
racy and clustering time. We first summarize 
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The Local Density values of all time series are com-
puted and then sorted in descending order. Subse-
quently, based on the desired number of clusters C, 
the top C points from the Local Density ranking are 
selected as the final cluster centers.
The Local Density serves as a valuable metric that en-
capsulates the density characteristics of data points 
within a given region. It reflects the concentration of 
data points around a particular point of interest, pro-
viding insights into the local data distribution. In es-
sence, Local Density helps identify the prominence of 
specific data points within their local neighborhoods, 
highlighting their significance in the context of clus-
tering and pattern recognition tasks.

3. Experiments
The model proposed in this paper designs the Temporal 
Representation Module and the Temporal Clustering 
Module mainly for the problems of efficiency and accu-
racy that exist in time series clustering, and therefore 
experiments are carried out for the clustering accuracy 
and clustering time. We first summarize the necessary 
experimental environment settings in Table 2.

Table 2
Details of the experimental environment settings

Name Configuration

CPU 24 vCPU AMD EPYC 7642 48-Core 
Processor

GPU Nvidia GeForce RTX 2080Ti
Memory 32GB DDR4 RAM
Hard Disk 1TB NVMe SSD
Operating System Ubuntu 20.04 LTS
Python Framework PyTorch 1.11.0

Datasets. To evaluate the performance of our DTC 
method, we utilized the benchmark UCR Time series 
Classification Archive datasets [5]. Table 3 presents 
a brief summarization of the characteristics of these 
datasets. Since we are using these datasets as unla-
beled data, we combine the training and test datasets 
for all UCR datasets for all experiments in this study.

Baseline Method. We compare the results of our 
DCMD model with the following clustering methods:
1 K-means [4]: This model first randomly generates 

the initial clustering centers and divides the class 
clusters using the distance as the criterion for sim-
ilarity measure; subsequently, iteratively updates 
the clustering centers and the allocation of the 
remaining points using the average value of each 
class cluster.

2  K-means++ [33]: This model improves the initial 
clustering center selection for K-means by using 
the adaptive sampling scheme of D2 −Sampling, 
which makes the initial clustering center more rea-
sonable; the clustering is subsequently completed 
by using the same iterative scheme as K-means.

3 AFK−MC2 [2]: This model uses the Markov Chain 
Monte Carlo (MCMC) method to approximate the 
D2 −Sampling process of K-means++, which does 
not need to recalculate the distance matrix repeat-
edly and improves the clustering efficiency while 
guaranteeing good clustering results.

4 DPC [42]: This model proposes a density-based 
clustering method, which considers that the clus-
ter center should have the following characteris-
tics: a higher density than its neighbors; and a rel-
atively large distance from the point with higher 
density; the cluster center is determined based on 
the above two characteristics, and subsequently 
each non-center point is assigned to the cluster in 
which the point nearest to it and with a higher den-
sity than it is located.

5 DADC [3]: This model proposes a domain adaptive 
density clustering method based on KNN density, 
which can effectively detect the peaks of domain 
density of data points in different density regions, 
and determine the clustering centers based on the 
decision parameters formed by the domain density 
and the distance to the points with higher density.

6 Extreme clustering [59]: This model proposes a 
new density clustering criterion: clustering based 
on extreme values, i.e., the density extreme value 
point in the neighborhood is identified as the clus-
tering center. The main difference between peak 
clustering and extreme value clustering is that the 
extreme value clustering center has the largest 
density in the neighborhood, which can ensure that 
there is no cross-region between the neighbors of 
the clustering center.
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Table 3
Statistics of the used time series datasets.

Dataset Type Train Test Length Classes

Beef Spectro 30 30 471 5
CBF Simulated 30 900  128 3
ChlorineConcentration Sensor 467 3840 166 3
CinCECGTorso Sensor 40 1380 1639 4
DistalPhalanxOutlineAgeGroup Image 139 400 81 3
DistalPhalanxTW Image 400 139 80 6
ECG5000 ECG 500 4500 140 5
FaceFour Image 24 88 350 4
Haptics Motion 155 308 1092 5
LargeKitchenAppliances Device 375 375 720 3
MedicalImages Image 381 760 99 10
MiddlePhalanxTW Image 399 154 80 5
MiddlePhalanxOutlineAgeGroup Image 400 154 80 3
Plane Sensor 105 105 144 7
ScreenType Device 375 375 720 3
SmallKitchenAppliances Device 375 375 720 3
StarLightCurves Sensor 1000 8236 1024 3
Trace Sensor 100 100 275 4
Worms Motion 181 77 900 5

Evaluation Metrics. We employ Receiver Operating 
Characteristics (ROC) [10] and the area under the 
curve (AUC) as our evaluation metrics.

4.1. Clustering Accuracy Comparison Results
We conduct comparison experiments between our 
method DCMD and 6 baseline competitors on 19 
benchmark datasets. The corresponding experimen-
tal results are listed in Table 4 and Figure 3. Accord-
ing to these results, we can find our proposed DCMD 
model achieves the highest accuracy on 16 selected 
datasets, the highest number of optimal times among 
all the compared models, and achieves a significant 
improvement relative to other methods on many data-
sets such as CBF, Trace, and Worms, which are usual-
ly characterized by high complexity and noise, and the 
superior performance of the DCMD model further 
demonstrates its superiority in handling complex 
time series data. The reason is listed as our proposed 
multi-dimensional representation fusion can retain 
essential information from the original time series to 
strengthen temporal representation learning capabil-
ity, therefore significantly improving clustering accu-

racy. Overall, these result comparisons clearly show 
that the superior performance of the DCMD model in 
terms of clustering accuracy makes it the best choice 
for current time series clustering tasks. 

4.2. Clustering Efficiency Comparison 
Results
The running times of our method and baseline com-
petitors on the benchmark datasets are listed in Table 
5. Moreover, we visualize corresponding experimental 
results in Figure 4. According to these results, we can 
clearly find that our DCMD model has a lower running 
time than the other models and a higher overall run-
ning efficiency. On datasets such as LargeKitchenAp-
pliances and SmallKitchenAppliances, the running 
efficiency has a clear advantage. Although the run effi-
ciency is close to Extreme Clustering, the DCMD mod-
el outperforms Extreme Clustering in terms of cluster-
ing accuracy. The reasons are listed as follows: 1) our 
proposed feature fusion strategy can reduce original 
data dimensions to accelerate temporal representation 
and 2) our proposed neighbor weighted clustering can 
efficiently reflect the regional distribution relationship 
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Table 4
The comparison of clustering accuracy between our model and other algorithms on 19 datasets

Dataset K-means K-means++ AFK-MC2 DPC DADC Extreme Clustering DCMD

Beef 0.293 0.300 0.313 0.333 0.433 0.233 0.442

CBF 0.480 0.562 0.493 0.500 0.567 0.467 0.667

ChlorineConcentration 0.468 0.379 0.396 0.458 0.465 0.465 0.567

CinCECGTorso 0.405 0.455 0.510 0.400 0.475 0.650 0.600

DistalPhalanxOutlineAgeGroup 0.643 0.715 0.535 0.538 0.572 0.803 0.805

DistalPhalanxTW 0.533 0.600 0.536 0.565 0.480 0.745 0.735

ECG5000 0.707 0.628 0.670 0.548 0.526 0.916 0.814

FaceFour 0.467 0.625 0.608 0.583 0.417 0.583 0.625

Haptics 0.289 0.341 0.353 0.297 0.297 0.265 0.355

LargeKitchenAppliances 0.365 0.411 0.378 0.467 0.464 0.413 0.483

MedicalImages 0.336 0.317 0.349 0.283 0.320 0.517 0.517

MiddlePhalanxTW 0.400 0.527 0.528 0.398 0.541 0.517 0.556

MiddlePhalanxOutlineAgeGroup 0.593 0.702 0.689 0.690 0.505 0.613 0.725

Plane 0.350 0.560 0.600 0.419 0.500 0.686 0.705

ScreenType 0.347 0.371 0.364 0.392 0.393 0.350 0.405

SmallKitchenAppliances 0.342 0.373 0.383 0.507 0.515 0.395 0.515

StarLightCurves 0.570 0.570 0.570 0.605 0.530 0.577 0.667

Trace 0.542 0.551 0.544 0.338 0.539 0.540 0.660

Worms 0.307 0.282 0.293 0.376 0.320 0.326 0.470

Figure 3
Clustering accuracy of our model vs other models on 10 datasets
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Figure 4
Clustering time of our model vs other models on 10 datasets

Table 5
The comparison of clustering efficiency between our model and other algorithms on 19 datasets

Dataset K-means K-means++ AFK-MC2 DPC DADC Extreme Clustering DCMD

Beef 0.083 0.115 0.102 0.074 0.091 0.002 0.002

CBF 0.006 0.014 0.200 0.097 0.067 0.002 0.002

ChlorineConcentration 0.019 0.021 0.025 0.397 0.658 0.049 0.035

CinCECGTorso 0.202 0.199 0.148 0.116 0.143 0.003 0.002

DistalPhalanxOutlineAgeGroup 0.027 0.016 0.016 0.333 0.517 0.031 0.026

DistalPhalanxTW 0.051 0.049 0.043 0.318 0.545 0.032 0.026

ECG5000 0.029 0.119 0.319 0.452 0.751 0.053 0.036

FaceFour 0.054 0.066 0.065 0.063 0.127 0.002 0.002

Haptics 0.373 0.388 0.417 0.116 0.134 0.017 0.006

LargeKitchenAppliances 0.812 0.661 0.683 0.300 0.463 0.062 0.032

MedicalImages 0.039 0.141 0.082 0.286 0.457 0.027 0.024

MiddlePhalanxTW 0.138 0.098 0.137 0.314 1.446 0.026 0.026

MiddlePhalanxOutlineAgeGroup 0.039 0.161 0.022 0.336 0.527 0.031 0.033

Plane 3.632 4.468 4.260 0.081 0.384 0.005 0.004

ScreenType 0.548 0.588 0.556 0.285 0.441 0.056 0.031

SmallKitchenAppliances 0.568 0.582 0.587 0.287 0.722 0.062 0.026

StarLightCurves 15.369 22.926 20.137 1.591 4.785 0.536 0.119

Trace 2.508 2.802 2.678 0.080 0.130 0.005 0.003

Worms 0.466 0.468 0.524 0.118 0.165 0.021 0.008

11 
 

DistalPhal-
anxTW 

0.533 0.600 0.536 0.565 0.480 0.745 0.735 

ECG5000 0.707 0.628 0.670 0.548 0.526 0.916 0.814 

FaceFour 0.467 0.625 0.608 0.583 0.417 0.583 0.625 

Haptics 0.289 0.341 0.353 0.297 0.297 0.265 0.355 

LargeKitchenAp-
pliances 

0.365 0.411 0.378 0.467 0.464 0.413 0.483 

MedicalImages 0.336 0.317 0.349 0.283 0.320 0.517 0.517 

MiddlePh-
alanxTW 

0.400 0.527 0.528 0.398 0.541 0.517 0.556 

MiddlePh-
alanxOutlin-
eAgeGroup 

0.593 0.702 0.689 0.690 0.505 0.613 0.725 

Plane 0.350 0.560 0.600 0.419 0.500 0.686 0.705 

ScreenType 0.347 0.371 0.364 0.392 0.393 0.350 0.405 

SmallKitchenAp-
pliances 

0.342 0.373 0.383 0.507 0.515 0.395 0.515 

StarLightCurves 0.570 0.570 0.570 0.605 0.530 0.577 0.667 

Trace 0.542 0.551 0.544 0.338 0.539 0.540 0.660 

Worms 0.307 0.282 0.293 0.376 0.320 0.326 0.470 
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of similar features, thus boosting clustering efficiency. 
In general, these impressive runtime efficiency results 
not only emphasize the efficiency of the DCMD model 
in processing largescale time series data but also pro-
vide strong support for processing large-scale data in a 
limited time. 

5. Conclusion
In this paper, we propose a novel temporal density clus-
tering model (DCMD), which integrates a temporal rep-
resentation module and a temporal clustering module 
to enhance both efficiency and accuracy. Concretely, 
our temporal representation module effectively retains 
essential feature information during dimensionality 
reduction, while the clustering module can accelerate 
regional density calculation efficiently. Comprehensive 
evaluations on benchmark datasets demonstrate the 
effectiveness and superiority of our approach, highlight-
ing its potential applications across various domains. 

In the future, we plan to deepen and widen our work 
from the following four aspects: 1) we intend to inte-
grate the necessary Implicit Scale Correspondence 
Learning [56], information fusion strategies [54], and 
Fine-grained feature fusion network [36, 39] into our 
model to improve clustering accuracy. 2) We will in-
corporate the graph convolutional metric learning 
[73, 74], temporal state perception [27], and online 
KNN join processing [18] [67] into our model to ac-
celerate temporal representation, whereby boosting 
the overall efficiency. 3) We plan to introduce auto-
matic component identification [6, 24], variational 
rectification inference [53] into our model to enhance 
the precision of clustering, especially in the face of 
noisy data [49]. And 4) we desire to adopt our model 
as a useful data preprocessing tool into a wide range 
of time series application scenarios, such as time se-
ries similarity search [65, 69], temporal anomaly de-
tection [70, 66], and sequential cross-domain recom-
mendation [62, 72].
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