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The primary challenge in trawl fishing lies in its limited selectivity, resulting in highly diverse fish catches with 
severe mixed-species issues. The catches from trawl fishing require manual sorting, leading to low work effi-
ciency and high labor demands. In order to tackle this issue, the present study introduces an enhanced version 
of the DWR module by utilizing DilatedReparamBlock convolution, introducing a novel dilated convolution 
module. This module is integrated into the YOLOv8 model, enhancing its capacity to capture features from 
the enlarged receptive field in the upper network layers. Furthermore, a new attention mechanism based on a 
multi-branch structure with the CA attention mechanism is incorporated into the YOLOv8 model. This atten-
tion mechanism fully extracts image features, enhances feature representation, strengthens the generation of 
offsets and sampling weights, and improves the accuracy of target recognition. Lightweight improvements to 
the detection head are achieved through the use of shared convolutions, ultimately resulting in a significant 
reduction in the number of model parameters. Our empirical findings indicate that the refined model exhibits 
a 2.2% enhancement in mAP@0.5 when benchmarked against the initial YOLOv8 model, Offering a significant 
reference for the advancement of an effective embedded system for fish sorting.
KEYWORDS: fish catch sorting, object detection, YOLOv8 model, improved YOLOv8 model.

1. Introduction
Presently, trawling stands as the dominant marine 
fishing technique, comprising around 60% of the 
entire marine catch. The catch of trawling is ex-

tremely diverse, encompassing not only various bot-
tom-dwelling fish but also mid-water and surface 
fish, crustaceans, cephalopods, shellfish, and more. 
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Additionally, the composition of catches varies sig-
nificantly across different marine regions [1,16]. The 
most significant issue with trawling is its low selec-
tivity, which results in a highly diverse catch composi-
tion and severe mixed-species catches. The harvested 
catches require manual sorting [28], and the process 
of sorting fish catches often consumes considerable 
time and labor.
Deep learning techniques have found extensive appli-
cation in item detection assignments, including re-
search focused on the classification and detection of 
fish, shellfish, and crayfish, as exemplified by studies 
conducted by Villon et al. [24] used a Convolutional 
Neural Network (CNN) to detect underwater fish, 
achieving an accuracy rate of 94.6%, which is great-
er than the hand-operated detection rate of 89.3%. 
Cui et al. [2] applied deep learning techniques to the 
detection of fish in murky seawater and established 
a detection model suitable for underwater fish. Feng 
et al. [4] employed an enhanced Faster RCNN for the 
purposes of classifying and detecting shellfish, en-
abling it to detect shellfish in different scenarios with 
an identification accuracy nearly 4% higher than the 
original model. Clearly, deep learning-based object 
detection algorithms have attained satisfactory out-
comes in the domains of classification and grading 
recognition. In contrast, research on applying deep 
learning algorithms to fish catch sorting and detec-
tion remains a gap. After investigation, it is found that 
the industry currently lacks automatic and efficient 
fish catch sorting equipment and related research 
based on deep learning networks.
A central challenge in object detection lies in accu-
rately identifying multiple objects of various cate-
gories within an image, while also providing precise 
location information pertaining to their bounding 
boxes [29]. Previously, object detection primarily re-
lied on handcrafted features and conventional ma-
chine learning techniques, including Support Vector 
Machines (SVM) [13] and Haar cascades [9]. None-
theless, advancements in deep learning have led to 
notable achievements in object detection, especially 
following the introduction of algorithms such as Fast-
er RCNN [19], which was proposed by Ren et al., and 
the SSD algorithm proposed by Liu et al. [15]. These 
advancements have attracted considerable attention, 
owing to their remarkable recognition outcomes on 
publicly available datasets.

As shown in Figure 1, the fish catch dataset is signifi-
cantly different from public datasets, and traditional 
approaches struggle with accurately classifying and 
detecting fish catches. This is primarily due to the issue 
of varying scales in different images, where severe oc-
clusion between fish catches is a major problem. Addi-
tionally, the complexity of the environment poses nu-
merous challenges for recognition, as fish catch images 
often include water bodies, which confuse differentia-
tion [17]. The interaction of natural light fluctuations 
further exacerbates these issues, leading to changes in 
image properties that hinder the extraction and detec-
tion of image features. Secondly, as the sorting system 
serves as an embedded system, it is necessary to de-
crease the quantity of algorithm parameters to meet 
the requirements of the embedded system.
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This paper focuses on the problem of fish catch sorting and detection. Based on the YOLOv8 network 
framework, a new dilated convolution module and attention mechanism are designed and integrated into 
the backbone network, along with a lightweight detection head. This improved YOLOv8 network 
architecture is integrated into a custom fish catch sorting dataset to obtain an enhanced YOLOv8 
classification and detection model algorithm, which enables the detection of target fish catches, thereby 
accurately and rapidly detecting different fish catches. 

The algorithm proposed in this paper is more effective than traditional algorithms in extracting image 
features from multiple scales, enhancing feature representation, and is better suited for scenes with dense 
objects and severe occlusion. In response to the application requirements of embedded systems, the 
algorithm presented in this paper has fewer parameters and faster detection speed compared to traditional 
algorithms. 

 
2. Improve the YOLOv8 Model 
2.1. Overall Framework Improvement 
2.1.1. YOLOv8 Framework 

Illustrated in Figure 2, the network architecture of YOLOv8 primarily comprises three components: 
Backbone, Neck, and Head. The Backbone mainly extracts features, while the Neck fuses these feature maps 
from various Backbone stages to boost their representational power; in YOLOv8, the Head component 
primarily handles the assignments of detecting and categorizing objects. 
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YOLOv8 network framework. 
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This paper focuses on the problem of fish catch sort-
ing and detection. Based on the YOLOv8 network 
framework, a new dilated convolution module and at-
tention mechanism are designed and integrated into 
the backbone network, along with a lightweight de-
tection head. This improved YOLOv8 network archi-
tecture is integrated into a custom fish catch sorting 
dataset to obtain an enhanced YOLOv8 classification 
and detection model algorithm, which enables the de-
tection of target fish catches, thereby accurately and 
rapidly detecting different fish catches.
The algorithm proposed in this paper is more effective 
than traditional algorithms in extracting image features 
from multiple scales, enhancing feature representa-
tion, and is better suited for scenes with dense objects 
and severe occlusion. In response to the application 
requirements of embedded systems, the algorithm pre-
sented in this paper has fewer parameters and faster de-
tection speed compared to traditional algorithms.
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2. Improve the YOLOv8 Model
2.1. Overall Framework Improvement
2.1.1. YOLOv8 Framework
Illustrated in Figure 2, the network architecture of 
YOLOv8 primarily comprises three components: 
Backbone, Neck, and Head. The Backbone mainly 
extracts features, while the Neck fuses these feature 
maps from various Backbone stages to boost their 
representational power; in YOLOv8, the Head compo-
nent primarily handles the assignments of detecting 
and categorizing objects.

redesigns the object detection framework by merg-
ing the DilatedReparamBlock convolution with the 
DWR module to construct a novel dilated convolution 
module. This module replaces all C2f modules in the 
backbone of the original YOLOv8 network frame-
work. The attention mechanism module devised in 
this study is incorporated into the backbone, and the 
detection head receives lightweight enhancements. 
Figure 3 displays the enhanced network framework, 
where the purple-shaded box highlights the substi-
tuted dilated convolution module (WFR module), 
the red background box represents the introduced at-
tention mechanism module(MCSA module), and the 
yellow-green background box denotes the replaced 
lightweight detection head.
When an image is input into the WFR module, the 
WFR module first performs initial processing on the 
image through its multi-scale feature extraction ca-
pabilities, generating a feature map rich in contex-
tual information. Subsequently, the MCSA attention 
mechanism processes the feature map, adjusting the 
network’s focus on different regions, enhancing im-
portant features, and strengthening the generation of 
offset values for each convolutional window and sam-
pling weights at different positions within the win-
dow, making the model more accurate in subsequent 

Figure 2
YOLOv8 network framework

2.1.2. Improved YOLOv8 Framework
In actual fish sorting and detection, the YOLOv8 net-
work framework still has some deficiencies in aspects 
such as dense fish targets, mutual occlusion between 
catches, feature extraction of multiple targets, and 
limitations on parameter quantity in embedded sys-
tems. This study presents a range of enhancements 
to the YOLOv8 network framework, aiming to tackle 
these issues.
To enhance detection accuracy, this study introduces 
YOLOv8-WML, an enhanced model for fish sorting 
and detection that builds upon YOLOv8. This study 

Figure 3
Improved YOLOv8 network framework
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target recognition and classification tasks. Finally, 
the lightweight detection head further processes the 
feature map using shared convolutions and normal-
ization layers to generate category predictions for the 
targets.
Addressing the issue of mutual occlusion between 
objects, the framework proposed in this paper re-
places the C2f module with the WFR module in the 
backbone network. The WFR module utilizes dilated 
re-parameterized convolution to expand the recep-
tive field, enabling the model to extract features over 
a larger spatial range and thus better handle densely 
packed and occluded targets. Additionally, the MCSA 
attention mechanism is introduced into the backbone 
network. This mechanism helps the model more ac-
curately locate targets in cases of occlusion and over-
lap by capturing attention information in the spatial 
dimension. For the problem of multi-target feature 
extraction, the WFR module enhances the model’s 
feature extraction capabilities at different scales 
through a multi-branch structure design and seman-
tic residualization methods, enabling the model to 
better handle multi-target scenarios. The MCSA at-
tention mechanism improves the model’s ability to 
recognize multiple targets in complex scenes through 
global and local feature fusion. To address the limita-
tions on the number of parameters in embedded sys-
tems, the framework in this paper lightens the detec-
tion head. The improved detection head significantly 
reduces the number of parameters and computation-
al load by using shared convolutions, and increases 
detection speed by employing normalization layers.

2.2. Replacement of Backbone Network 
Framework Module
2.2.1. Dilation-wise Residual Module
Figure 4 illustrates the DWR (Dilation-wise Residu-
al) module, a multi-branch design aimed at improving 
multi-scale feature extraction. This module integrates 
the principles of dilated convolutions alongside resid-
ual connections, targeting the difficulties of extract-
ing multi-scale features in applications like real-time 
semantic segmentation [25].

2.2.2. Wide-Field Residual Module Proposed in 
This Study
The DWR module is primarily applicable to the 
high-level structures of a network and has limited 

effectiveness in enhancing feature extraction capa-
bilities in the lower and middle levels of the network. 
Therefore, this paper introduces dilated re-param-
eterized convolutions [3] in combination with the 
DWR module to design a new multi-branch dilated 
convolution module, intended to enhance the model’s 
multi-scale feature extraction capability across vari-
ous network levels.
As shown in Figure 5, the newly designed module is 
named the “Wide-Field Residual (WFR)” module. 
Based on the multi-branch architecture of the DWR 
module [25], in this module, dilated convolutions 
with dilation rates of 3 and 5 are substituted with di-
lated re-parameterized convolutions that employ di-
lation rates of 5 and 7. The latter introduces dilation 
factors, allowing the convolution kernels to expand 
the receptive field without elevating computational 
complexity. This facilitates the extraction of features 
from a larger range, thereby capturing richer contex-
tual information [3].
The module initially uses three 3×3 convolutions for 
preliminary feature extraction. Subsequently, each 
branch generates relevant residual features from the 
input features through a Batch Normalization (BN) 
layer and a ReLU layer, which is referred to as re-
gional residualization [6]. Regional residualization 

Figure 4
DWR module
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produces a series of concise regional feature maps in 
simplified form for the subsequent semantic residual-
ization. The feature representation obtained through 
regional residualization is denoted as f, and its ex-
pression is given by:

 
𝑓𝑓 = ReLU(BN(𝐹𝐹�)). (1) 

The formula includes F3, which denotes a 3×3 convolution function, BN, representing Batch Normalization, 
and ReLU, which serves as the activation function.  

Thereafter, dilated depthwise convolutions with a dilation rate of 1 and dilated reparameterized 
convolutions are applied separately to perform morphological filtering on regional features of varying sizes. 
This process is referred to as semantic residualization, which aids in reducing redundant information in the 
feature maps and highlights key features. The expressions for obtaining the feature representations f1, f2, and 
f3 through semantic residualization are:
 

𝑓𝑓� = d�DConv(𝑓𝑓) (2) 
𝑓𝑓� = d�DRBConv(𝑓𝑓) (3) 
𝑓𝑓� = d�DRBConv(𝑓𝑓). (4) 

 

In Equation (2), d1DConv represents a dilated depthwise convolution with a dilation rate of 1; in Equation 
(3), d5DRBConv represents a dilated re-parameterized convolution with a dilation rate of 5; in Equation (4), 
d7DRBConv represents a dilated re-parameterized convolution with a dilation rate of 7.After acquiring 
multi-scale context information through morphological filtering, multiple outputs are concatenated and 
processed with BN. Pointwise convolution is employed to combine features and generate the ultimate 
residual. The ultimate residual is incorporated into the input feature map to formulate a stronger and more 
extensive feature representation. The output y is represented as:
 

𝑦𝑦(�) = 𝐹𝐹��BN([𝑓𝑓�, 𝑓𝑓�, 𝑓𝑓�])� + 𝑥𝑥. (5) 
 

In Equation (5), F1 represents a 1×1 convolution function, BN stands for Batch Normalization, and [f1, f2, f3] 
indicates the concatenation of the three feature maps f1, f2, and f3 along the channel dimension, with x being 
the given input.  

In this module, three branches generate feature maps f1, f2, and f3 containing information at different scales 
through two steps of regional residualization and semantic residualization. By concatenating these feature 
maps, features from different scales are fused together to form a feature map that includes richer contextual 
information. This fusion helps the model capture key features at different scales, enhancing the feature 
representation capability. Subsequently, the feature map undergoes Batch Normalization (BN) processing, 
which normalizes the channels of the feature map so that the input data distribution of each batch has the 
same mean and variance, thereby accelerating the training speed. Finally, point-wise convolution is applied 
to further fuse the feature map, combining information from multiple channels to form a new feature 
representation. This process can be regarded as cross-channel information exchange, which aids in 
generating more representative features. 

Since establishing connections directly over large spatial spans through convolution is always more 
challenging, and long-span connections require the assistance of short-span connections, small receptive 
fields at each stage are always crucial. Therefore, the first branch's output channel count is increased to 
double the amount of the other branches. 
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Wide-Field Residual module. 
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In Equation (2), d1DConv represents a dilated depth-
wise convolution with a dilation rate of 1; in Equation 
(3), d5DRBConv represents a dilated re-parameter-
ized convolution with a dilation rate of 5; in Equa-
tion (4), d7DRBConv represents a dilated re-param-
eterized convolution with a dilation rate of 7.After 
acquiring multi-scale context information through 
morphological filtering, multiple outputs are concate-
nated and processed with BN. Pointwise convolution 
is employed to combine features and generate the ul-
timate residual. The ultimate residual is incorporated 
into the input feature map to formulate a stronger and 
more extensive feature representation. The output y 
is represented as:
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fields at each stage are always crucial. Therefore, the first branch's output channel count is increased to 
double the amount of the other branches. 
 
Figure 5 
Wide-Field Residual module. 
 

(5)

In Equation (5), F1 represents a 1×1 convolution func-
tion, BN stands for Batch Normalization, and [f1, f2, f3] 
indicates the concatenation of the three feature maps 
f1, f2, and f3 along the channel dimension, with x being 
the given input. 

In this module, three branches generate feature maps 
f1, f2, and f3 containing information at different scales 
through two steps of regional residualization and se-
mantic residualization. By concatenating these fea-
ture maps, features from different scales are fused 
together to form a feature map that includes richer 
contextual information. This fusion helps the mod-
el capture key features at different scales, enhancing 
the feature representation capability. Subsequently, 
the feature map undergoes Batch Normalization (BN) 
processing, which normalizes the channels of the fea-
ture map so that the input data distribution of each 
batch has the same mean and variance, thereby accel-
erating the training speed. Finally, point-wise convo-
lution is applied to further fuse the feature map, com-
bining information from multiple channels to form a 
new feature representation. This process can be re-
garded as cross-channel information exchange, which 
aids in generating more representative features.
Since establishing connections directly over large 
spatial spans through convolution is always more 

Figure 5
Wide-Field Residual module



Information Technology and Control 2024/4/531296

challenging, and long-span connections require the 
assistance of short-span connections, small receptive 
fields at each stage are always crucial. Therefore, the 
first branch’s output channel count is increased to 
double the amount of the other branches.

2.3. Introduction of Attention Mechanism
2.3.1. Squeeze-and-Excitation Attention
Illustrated in Figure 6, the SE attention mechanism, 
alternatively referred to as the Squeeze-and-Exci-
tation mechanism, revolves around the core idea of 
reallocating information between channels by learn-
ing an attention weight vector that represents the 
relationships among channels. This enhances the 
network’s focus on important feature channels [10]. 
Nevertheless, the SE attention mechanism solely 
focuses on the channel dimension for attention and 
fails to capture attention in the spatial dimension.

Figure 6
SE attention module

Despite its potential, the CA attention mechanism is 
burdened by an extensive parameter count, rendering 
it impractical for deployment in embedded systems.

2.3.3. Multi-channel Spatial Attention Proposed 
in This Study
Attention mechanisms have become a key technolo-
gy in deep learning models, optimizing model perfor-
mance by adjusting the network’s focus on different 
parts. However, current attention mechanisms, like 
CBAM (Convolutional Block Attention Module) and 
SE attention, often employ global max pooling or av-
erage pooling in handling channel attention, poten-
tially resulting in the loss of spatial details [18]. On 
the other hand, despite the CA attention mechanism 
taking spatial information into account, its substan-
tial computational complexity restricts its utilization 
in large-scale networks [5, 22, 27].
In response to the aforementioned deficiencies, as 
illustrated in Figure 8, this paper introduces an inno-
vative attention mechanism coined as “Multi-channel 
Spatial Attention” (MCSA). This attention mechanism 
can effectively extract features from each channel with 

2.3.2. Coordinate Attention
Illustrated in Figure 7, the CA attention mechanism, 
alternatively termed as the Coordinate Attention 
mechanism, is a spatial attention mechanism that 
can effectively enhance the neural network model’s 
focus on important features in the feature map[8]. 

Figure 7
CA attention module
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a relatively small quantity of parameters, accurately 
capture the spatial relationships between different 
channels, and enhance the generation of offsets and 
sampling weights. Unlike the CA and SE attention 
mechanisms, the MCSA attention mechanism embeds 
precise positional information at the initial stage, re-
tains the global features of spatial information through 
global pooling. Additionally, it diminishes the overall 
count of model parameters. This allows the subsequent 
attention calculations to fully utilize these spatial de-
tails and global features with a smaller number of pa-
rameters, and enhances the generation of offsets for 
each convolutional window and sampling weights for 
different positions within the window.

Figure 8
Multi-channel Spatial Attention module

As shown in Figure 9, this attention mechanism retains 
global average pooling while decomposing it into one-
to-one feature encoding operations. Specifically, for a 
given input x, while performing global average pooling, 
two spatial pooling kernels, specifically (H, 1) and (1, 
W), are utilized to encode each channel along the hori-
zontal and vertical axes, respectively. For a given height 
h in channel c, the output is formulated as follows:
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𝑧𝑧��(w) =
1
H � 𝑥𝑥�(j, w).

�����

 (7) 

Equations (6)-(7) individually accumulate features across two distinct spatial directions, producing a set of 
feature maps that are sensitive to direction. By doing so, these transformations enable the attention module 
to grasp extensive dependencies in one spatial direction while retaining exact positional details in the other. 
This capability assists the model in precisely pinpointing objects of interest. Equations (6)-(7) attain a 
comprehensive receptive field while embedding accurate positional details. The attention module sends the 
aggregated feature map generated by Equation (7) into the Permute function to rearrange the dimensions 
of the feature vectors, adapting to subsequent convolution operations. This facilitates improved 
organization and processing of feature data, allowing the model to learn the inherent structure of the data 
more efficiently [26]. Subsequently, it concatenates this with the aggregated feature map generated by 
Equation (6) and sends them to a shared 1×1 convolutional transformation function F1 for further 
transformation and fusion of information from these two feature maps, obtaining the feature representation 
f: 

𝑓𝑓 = 𝐹𝐹�([𝑧𝑧�, Permute(𝑧𝑧�)]) (8) 

In Equation (8), F1 represents a 1×1 convolutional function. The role of the Permute function is to adjust the 
dimension order of the tensor. The notation [zh, Permute(zw)] indicates the concatenation of the two feature 
maps, zh and zw, along the channel dimension. f is a feature representation that integrates precise positional 
information and inter-channel relationships. 

The attention module functions in two steps on the feature representation f, which encompasses spatial 
information extending both horizontally and vertically. Initially, the split function is utilized to divide the 
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of information from these two feature maps, obtaining 
the feature representation f:
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In Equation (8), F1 represents a 1×1 convolutional 
function. The role of the Permute function is to adjust 
the dimension order of the tensor. The notation [zh, 

Permute(zw)] indicates the concatenation of the two 
feature maps, zh and zw, along the channel dimension. f 
is a feature representation that integrates precise po-
sitional information and inter-channel relationships.
The attention module functions in two steps on the 
feature representation f, which encompasses spatial 
information extending both horizontally and vertically. 
Initially, the split function is utilized to divide the fea-
ture representation f into two separate tensors accord-
ing to the spatial dimension. Subsequently, the feature 
representation f is passed through a common 1×1 con-
volutional transformation function, F1, which serves to 
thoroughly extract feature data both horizontally and 
vertically by processing along these two directions, we 
obtain the intermediate feature representation f1:

feature representation f into two separate tensors according to the spatial dimension. Subsequently, the 
feature representation f is passed through a common 1×1 convolutional transformation function, F1, which 
serves to thoroughly extract feature data both horizontally and vertically by processing along these two 
directions, we obtain the intermediate feature representation f1: 
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In Equation (9), F1 represents a 1×1 convolutional function. 

The attention module feeds the obtained intermediate feature representation f1 into a sigmoid activation 
function and then uses a split function to divide f1, obtaining the attention weights gh on the height 
dimension and gw on the width dimension of the feature map. The expressions for gh and gw are shown in 
Equations (10)-(11), respectively: 

𝑔𝑔� = Sigmoid(𝑓𝑓�
�) (10) 

𝑔𝑔� = Sigmoid(𝑓𝑓�
�). (11) 

In Equations (10)-(11), the activation function employed is the Sigmoid function. 

The obtained attention weights gh and gw are then multiplied with the two separate tensors obtained in the 
first step to achieve weighted processing, resulting in more refined attention weights Gh and Gw. The 
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In the third branch, the attention module utilizes global average pooling on the feature map, aiming to 
capture the essential spatial information while effectively decreasing the number of model parameters [20, 
21]. For a given input x, the squeeze step for the c channel can be represented as:
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In Equation (14), H represents the height and W indicates the width of the feature map. The element xc(i,j) 
is positioned on the input feature map, where i and j correspond to the horizontal and vertical coordinates 
of this element, individually. 

The obtained feature representation is then fed into a shared 1×1 convolutional transformation function F1 
to obtain the feature representation f2:
 

𝑓𝑓� = 𝐹𝐹�(𝑧𝑧�). (15) 

In Equation (15), F1 represents a 1×1 convolutional function. 

The intermediate feature representation f1 undergoes processing through the Sigmoid activation function, 
followed by a mean operation. This is done to normalize the intermediate feature representation f1, resulting 
in a tensor with the same quantity of channels as the input x. Subsequently, this normalized tensor is 
multiplied with the feature representation f2 to obtain the global attention weight gc, which is expressed in 
Equation (16) as follows:
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In Equation (16), the Mean function represents the operation of calculating the mean, and Sigmoid is the 
activation function. 

This attention module multiplies the attention weights Gh, Gw, and gc obtained from the three branches to 
produce the output yc of the attention module, which is represented as:
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In Equation (9), F1 represents a 1×1 convolutional 
function.
The attention module feeds the obtained intermedi-
ate feature representation f1 into a sigmoid activation 
function and then uses a split function to divide f1, 
obtaining the attention weights gh on the height di-
mension and gw on the width dimension of the feature 
map. The expressions for gh and gw are shown in Equa-
tions (10)-(11), respectively:
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In Equations (10)-(11), the activation function em-
ployed is the Sigmoid function.
The obtained attention weights gh and gw are then 
multiplied with the two separate tensors obtained in 
the first step to achieve weighted processing, result-
ing in more refined attention weights Gh and Gw. The 
expressions for Gh and Gw are shown in Equations 
(12)-(13), respectively:
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Figure 9
Simplified Diagram of MCSA Module



1299Information Technology and Control 2024/4/53
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2.4. Lightweight Detection Head

2.4.1. YOLOv8 Detection Head
The detection head in YOLOv8 is vital for object 
detection and accounts for 1/5 of the computation-
al load within the model framework. The “Detect” 
component corresponds to the detection head part 
of YOLOv8, comprising two distinct branches, as de-
picted in Figure 10.

The two branches of the YOLOv8 detection head ex-
tract information through two 3×3 convolutions and 
a 1×1 convolution, respectively. Ultimately, they de-
termine the bounding box regression loss (denoted 
as Bounding Box.loss) and the classification loss (de-
noted as Cls.loss or Classification Loss), each being 
calculated separately. After the three layers of convo-
lution, a for loop is employed to traverse each of the 
three channels, which markedly raises the computa-
tional load and parameter count of the detection head.

2.4.2. Light Conv Detect Proposed in This Study
As depicted in Figure 11, the aim is to decrease both the 
number of parameters and the computational burden 
associated with the detection head, this paper designs 
a new detection head named Light Conv Detect (LCD). 
In each branch, the detection head feeds the feature 
map into a 1×1 convolution (Conv-GN), which consists 
of a convolutional layer and a normalization layer. The 
convolutional layer is tasked with learning the spatial 
relationships among the input features. Meanwhile, 
the normalization layer standardizes the output of the 
convolutional layer, aiming to expedite the training 
process and enhance the model’s generalization capa-
bilities. The Conv-GN convolution can enhance the de-
tection head’s ability in localization and classification. 
After being transformed by the 1×1 Conv-GN convolu-
tion, the feature maps on each branch are input into a 
3×3 shared convolution (Conv-GN). After being trans-
formed by this convolution, the feature maps are then 
fed into another 3×3 shared convolution (Conv-GN). 
These two 3×3 convolutions share the same convolu-
tional parameters, thereby achieving efficient feature 
extraction and object detection. This procedure has 
the ability to significantly reduce the number of param-
eters, all while preserving a high degree of precision[7]. 
Upon extracting the feature information from the fea-
ture maps, three shared classification convolutions 
(Conv-Cls) are utilized to produce the category predic-
tions for the targets, and the feature maps are convert-

Figure 10
YOLOv8 Detection Head branch
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ed into category probability distributions through this 
convolutional transformation function. By using clas-
sification convolutions (Conv-Cls) for convolutional 
transformation at different scales, the detection head 
achieves accurate classification of targets of different 
sizes. The detection head uses three shared regression 
convolutions (Conv-Reg) to predict the position infor-
mation of the targets (such as bounding box coordi-
nates), and the classification convolutions (Conv-Cls) 
and regression convolutions (Conv-Reg) used here 
share parameters. While using shared convolutions, to 
tackle the problem of varying target scales identified 
by individual detection heads, a scaling layer (Scale) is 
employed to adjust the feature maps, ensuring unifor-
mity in the target scales detected across all heads. By 
using shared convolutions and convolutional param-
eter sharing, the detection head significantly decreas-
es the parameter count and computational load with 
minimal loss of accuracy, making the model lighter and 
improving the speed of object detection.

3. Self-Defined Dataset
The effectiveness of the fish catch classification and 
detection algorithm introduced in this study is as-
sessed using a customized dataset (https://github.
com/tiange120/self-dataset). This dataset initially 
comprises 9,000 images and is augmented to 12,000 
images through methods such as flipping and crop-
ping. It covers ten different major economic fish 
catches: golden pomfret, silver pomfret, Pacific sau-
ry, swimming crab, whelk, red snapper, codfish, sar-
dine, Pacific bluefin tuna, and skipjack tuna. Using 
Make Sense software, manually classify and annotate 
the given objects, and mark their bounding boxes. As 
shown in Figure 12, it presents an example from this 
dataset. The dataset is partitioned into training, vali-
dation, and testing subsets with a ratio of 7:2:1, aimed 
at evaluating the performance of the YOLOv8-WML 
network framework.

3.1. Add Noise Processing

To prevent overfitting, noise is added to the images 
transformed through methods such as flipping and 
cropping. As shown in Figure 13, salt and pepper 
noise, Gaussian noise, and Poisson noise are added 
to some images to simulate the potential interfer-
ences that images may encounter in real-time detec-
tion. By adding different types of noise, the complex-
ity and diversity of the dataset can be increased. This 
aids the model in moving beyond mere dependence 
on specific features of the training data, enabling it 
to learn how to extract useful feature information 
from a broader range of data, thereby enhancing the 
model’s generalization ability and robustness.

Figure 11
Light Conv Detect

Figure 12
Some fish catch images from the Self-Defined dataset
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3.2. Histogram Equalization Processing
Histogram equalization processing is applied to imag-
es with uneven grayscale distribution due to lighting 
issues, which can cause blurred object textures, color 
distortion, and weakened features. As shown in Figure 

Figure 13
Comparison of Image with Noise Addition Processing

(a) Original fish catch image (b) Image after noise addition processing

14, histogram equalization processing can enhance 
the image’s contrast by adjusting its grayscale distri-
bution, thereby expanding its dynamic range [11]. This 
enhancement of contrast reduces color distortion and 
shadowing in the image, making it clearer and helping 
the model capture more useful feature information [17].

Figure 14
Image contrast after histogram equalization processing and its histogram comparison

(a) Original fish catch image (b) Image after histogram equalization processing

(c) Original image histogram (d) Equalized Histogram
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Figure 15
Enhance image contrast through sharpening processing

3.3. Sharpening Process
Enhance the sharpness of the image, particularly in ar-
eas where object contours are indistinct and features 
appear blurred due to shaking. Figure 15 illustrates 
that sharpening can accentuate the edges and contours 
within the image, thereby enhancing the high-frequen-
cy information [12]. This augmentation facilitates the 
model’s ability to capture and detect pivotal features in 
the image, as well as to distinguish between various ob-
jects and regions within intricate backgrounds.

4. Model Training
4.1. Environmental Setup
The hardware environment used in this study is an 
NVIDIA GeForce RTX 3070Ti graphics card with 
Ubuntu 20.04 GPU drivers; the software environment 
used is Python 3.8.16 and torch 1.13.0 + cu117. All ex-
periments are set to train for 500 epochs, and training 
will be stopped early if there is no significant improve-
ment in average precision after 50 epochs. In the pro-
cess of model training, specific parameters are estab-
lished: the batch size is designated as 24, the learning 
rate is fixed at 0.01, the SGD momentum is assigned a 
value of 0.937, and the optimizer weight decay is set to 
0.0005. All remaining training parameters adhere to 
the default settings specified in the YOLOv8s model.

4.2. Training Results of the Model Validation Set
The model is configured for 500 training rounds, and 
the training process will cease automatically if no no-

(a) Original fish catch image (b) Image after sharpening process

table enhancement in average accuracy is observed. 
After the 152nd training round, the YOLOv8-WML 
model achieved training results on the custom data-
set. Figure 16 displays various performance metrics 
for both the training set and the validation set.
Figure 16 illustrates the bounding box loss curve, the 
object loss curve, and the classification loss curve for 
the enhanced YOLOv8 model, depicted in the first 
three columns. The three curves depicted in the initial 
three columns exhibit the loss trend, with the hori-
zontal axis denoting the training rounds and the ver-
tical axis indicating the aggregate loss value. As can be 
seen from the curves, with the progression of training 
rounds, the overall loss value continues to decrease and 
eventually stabilizes. The findings of the experiments 
indicate that the YOLOv8-WML model presented in 
this paper displays satisfactory levels of fitting capabil-
ity, stability, and precision. The last two columns dis-
play the accuracy curve and the mean accuracy curve. 
The horizontal axis signifies the number of training 
rounds, while the vertical axis denotes both the accu-
racy rate and the average accuracy rate. The last two 
columns feature curves that assess object detection 
performance based on varying confidence thresholds; 
a value closer to 1 on these curves signifies a higher lev-
el of confidence demonstrated by the model.
Figure 17 displays a confusion matrix that depicts the 
prediction accuracy of the YOLOv8-WML model for 
the 10 categories of fish catches in the custom data-
set. Furthermore, it demonstrates the connection 
between the predicted categories and their corre-
sponding accuracy rates. Figure 16 displays a confu-
sion matrix where the columns denote the predicted 
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Figure 16
Performance metrics of the YOLOv8-WML model

Figure 17
The confusion matrix of the YOLOv8-WML model
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categories, the rows denote the actual labels, and the 
diagonal elements indicate the prediction accuracy. 
Figure 16 reveals that the YOLOv8-WML model at-
tains elevated accuracy levels across all categories.
Figure 18 illustrates that as the recall rate rises, the 
precision also experiences an accelerated rate of 
change. The PR curve of the YOLOv8-WML model 
closely hugs the upper right corner, signifying its high 
recall and precision rates. The considerable area be-
neath the PR curve indicates that the YOLOv8-WML 
model exhibits good performance. The PR curve’s 
smoothness suggests a consistent balance between 
recall and precision within the YOLOv8-WML model.

Figure 19
The F1-Confidence Curve of the YOLOv8-WML Model

Figure 18
The PR curve of the YOLOv8-WML model

As illustrated in Figure 19, the F1 score typically rises 
and then falls with an increase in confidence, reflect-
ing the model’s transition from being overly cautious to 
overly confident. The F1-confidence curve in Figure 19 
comprehensively evaluates the model’s precision and 
recall in classification tasks by calculating the F1 score 

at different confidence thresholds. This aids in assess-
ing the model’s performance at various confidence lev-
els and the differences in classification difficulty among 
different categories. The horizontal axis represents con-
fidence, ranging from 0 to 1, indicating the level of cer-
tainty in the model’s prediction that a sample belongs to 
a certain category. The vertical axis denotes the F1 score, 
which is the harmonic mean of precision and recall, 
used to gauge the accuracy of the model’s classification. 
The multiple colored lines in Figure 19 depict the trends 
of F1 scores for different categories as confidence varies. 
For all classes, when the confidence level is 0.304, the F1 
score reaches 0.83, indicating that the model performs 
exceptionally well at this confidence level.

4.3. Ablation Experiment
To evaluate the effectiveness and reliability of the 
YOLOv8 enhancement scheme across various as-
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pects, and to gauge how they contribute to perfor-
mance improvements by systematically withdrawing 
these enhancements, we carried out an ablation study. 
Table 1 displays the experimental outcomes obtained 
from the validation set, utilizing the Self-Defined 
dataset.
From Table 1, although the performance of the 
YOLOv8-WML model decreased due to the replace-
ment of the LCD detection head, the combination of 
the WFR module and the MCSA module brought per-
formance improvements compared to the baseline. 
This is attributed to the complementarity of these 
three technologies. The WFR module can extract 
more detailed features at multiple scales, while the 
MCSA module can accurately capture spatial rela-
tionships between different channels and enhance 
feature representations, thereby compensating for 
the performance degradation caused by the LCD de-
tection head. The lightweight convolutional detection 
head is designed to meet the parameter constraints of 
embedded systems. By minimizing the use of shared 
convolutions, it effectively reduces the number of 
model parameters. Throughout this process, efforts 
are made to minimize the impact on model perfor-
mance, thereby achieving an ideal balance between 
model complexity and accuracy. By leveraging the 
complementarity of these three technologies, the en-
hanced model boosts overall performance and accel-
erates computational speed, proving advantageous 
for real-time object detection.
Table 1’s first row showcases the detection results 
of the original YOLOv8 model, serving as the exper-
imental baseline. The second row displays the out-
comes following the integration of the WFR module, 
capable of capturing intricate features across various 

scales and enhancing the receptive field for each net-
work. When the WFR module is integrated, it leads 
to an enhancement of 4.7% in mAP@0.5 and 5.6% in 
mAP@0.5:0.95 compared to the baseline YOLOv8 
model. The third row presents the findings after in-
troducing the MCSA module, an attention module 
that divides channels into three, decomposes global 
pooling into one-to-one feature encoding operations 
while retaining global pooling, aiming to fully extract 
features from each channel with a smaller number 
of parameters and accurately capture spatial rela-
tionships between different channels. In contrast to 
the initial YOLOv8 model, there is a 1.8% increase in 
mAP@0.5 and a 2.3% boost in mAP@0.5:0.95. The 
fourth row shows the findings of replacing the detec-
tion head with the LCD detection head. This findings 
in a notable reduce in the quantity of parameters and 
computational load, achieved through the utilization 
of shared convolutions. When comparing the modi-
fied YOLOv8 to its initial counterpart, it’s noted that 
while mAP@0.5 decreases by 2.9% and mAP@0.5:0.95 
by 2.6%, there is a significant 18% reduction in pa-
rameter count and a 16.9% decrease in computational 
load. The fifth row presents the experimental findings 
when using both the WMR module and the MCSA 
module. When compared to the baseline, there is a 
6.2% enhancement in mAP@0.5 and a 6.3% improve-
ment in mAP@0.5:0.95. The last row displays the ul-
timate outcomes of the fish sorting detection model 
introduced in this paper, achieving improvements of 
2.2% and 3.7% in mAP@0.5 and mAP@0.5:0.95 indi-
vidually, and the quantity of parameters and compu-
tational load reduced by 16.63% and 13.03% respec-
tively. The experimental results demonstrate herein 
validate the assertion of this paper, namely that the 

WFR MCS LCD mAP@0.5 mAP@0.5:0.95 parameters GFLOPs

0.839 0.649 11127906 28.4

√ 0.886 0.705 11844252 29.5

√ 0.857 0.672 11293605 29.0

√ 0.810 0.623 9124781 23.6

√ √ 0.901 0.712 12010151 30.2

√ √ √ 0.861 0.686 9277570 24.7

Table 1
Ablation experiment table for the YOLOv8-WML model
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YOLOv8-WML model enhances detection accuracy 
and expedites the detection process, while simultane-
ously diminishing the parameter count and alleviat-
ing the computational burden.

5. Comparative Experiment
5.1. Analysis of Experimental Outcomes 
Across Various Datasets
In order to assess the model’s generalization capa-
bility, comparative experiments were performed 
utilizing the publicly available dataset FishKnowl-

Figure 20
Performance comparison between the YOLOv8-WML model and the YOLOv8 model

edge. This dataset bears resemblance to the custom 
dataset, as they both depict scenarios characterized 
by densely packed biological entities, targets at mul-
tiple scales, and instances that may partially obscure 
one another[14]. The FishKnowledge dataset con-
sists of 8723 training images, 2111 validation images, 
and 1123 testing images. The YOLOv8-WML model, 
which we propose, underwent training and testing 
in conjunction with the YOLOv8 model. The findings 
are illustrated in Figure 20.
The results are presented in Figure 20, the YOLOv8-
WML model achieved favorable findings on the pub-
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lic dataset. Compared with the YOLOv8 model, it 
not only exhibited higher mAP@0.5 and mAP@0.95 
function curves but also demonstrated significantly 
lower distribution focal loss (dfl_loss) and classifica-
tion loss (cls_loss) function curves. This suggests that 
the YOLOv8-WML model exhibits superior detection 
accuracy, characterized by diminished positional dis-
parities between the anticipated bounding boxes and 
the actual ones, as well as reduced inconsistencies be-
tween the predicted categories and the genuine cate-
gories. The findings of the experiment indicate that 
the YOLOv8-WML model shows outstanding per-
formance and can be efficiently utilized in scenarios 
characterized by dense biological entities, multiple 
scales, and potential occlusion.
As shown in Figure 21, a comparison is made between 
the recognition results of real-world scenarios, the 
YOLOv8s model, and the YOLOv8s-WML model on 
a public dataset. The results clearly demonstrate that 
the YOLOv8s-WML model outperforms the YOLOv8s 
model in terms of performance. The YOLOv8s-WML 
model effectively reduces the miss rate and false 
alarm rate, enhances accuracy and computational 

Figure 21
Comparison of Image Detection Results on Public Datasets

(a) Real Image Labels (b) Image Detected by YOLOv8s Model (c) Image Detected by YOLOv8s-
WML Model

speed, and decreases the number of parameters. The 
experiments indicate that the proposed YOLOv8s-
WML model possesses good generalization capabili-
ties [23] . Through the synergistic effects of the WFR 
module and the MCSA attention mechanism, it can 
effectively identify other marine species in different 
environments.

5.2. Contrasting Experiments and Outcomes 
Across Various Models
This paper will compare the findings of different mod-
els in the experiment from aspects such as precision, 
recall values, mAP values, F1 values and fps values. All 
experiments were conducted on a Self-Defined data-
set, with the YOLOv8s model as the baseline. Table 2 
displays the experimental results, indicating that the 
YOLOv8s-WML model, designed for fish sorting detec-
tion, reached an mAP@0.5 score of 86.1%. This score 
notably surpasses that of the original YOLOv8s model, 
demonstrating a significant advantage. It is 1.1% high-
er than the Faster-RCNN model [19], 0.4% higher than 
the SSD model [15], and 3.7% higher than the YOLOv5s 
model. Furthermore, the YOLOv8s-WML model 

Table 2
Performance comparison table of different models

Model Precision Recall mAP@0.5 mAP@0.95 F1 FPS(f/s)

Faster-RCNN 0.728 0.885 0.850 0.661 0.799 37.2

SSD 0.750 0.871 0.857 0.668 0.806 88.5

YOLOv5s 0.779 0.802 0.824 0.636 0.800 162.7

YOLOv8s 0.803 0.799 0.839 0.649 0.801 140.8

YOLOv8s-WML 0.825 0.820 0.861 0.686 0.822 223.1



Information Technology and Control 2024/4/531308

Figure 22
Comparison of Image Detection Results

achieved an F1 score of 0.822, which is 2.6% higher 
than that of the YOLOv8s model, 2.5% higher than the 
YOLOv5s model, 1.9% higher than the SSD model, and 
2.8% higher than the Faster-RCNN model. The experi-
mental results indicate that the model proposed in this 
paper exhibits better performance.
In order to showcase the superior accuracy of the 
YOLOv8s-WML model presented in this study, a se-
lection of images was made from the Self-Defined 
dataset. As shown in Figure 22, the fish sorting de-
tection results for real scenes, the YOLOv8s model, 
and the YOLOv8s-WML model are presented. When 
dealing with dense, overlapping, and varied-scale tar-
gets, the YOLOv8s-WML model notably surpasses 
the YOLOv8s model. It excels at minimizing missed 
detections and false positives, enhancing precision 
and processing speed, while also reducing parame-
ter count and computational burden. This essentially 
meets the requirements of fish sorting detection tasks 
and has more practical application value.

6. Conclusions and Future Work
The fish catch sorting and detection model proposed 
in this paper addresses common challenges in trawl 
fishing catch sorting video images, such as dense 
scenes, mutual occlusion, and multi-scale scenarios. 
Addressing these Difficulties, the present paper pro-
poses a range of novel methodologies. Specifically, In 
the YOLOv8 network architecture, the C2f module lo-
cated in its backbone is substituted by the WFR mod-
ule. The WFR module enhances the model’s ability 
to extract features in multi-scale scenarios, thereby 
improving the detection precision of the model. An 
innovative attention mechanism, named MCSA, is 

(a) Real Image Labels (b) Image Detected by YOLOv8s Model (c) Image Detected by YOLOv8s-
WML Model

introduced. The MCSA attention mechanism can ef-
fectively derive features from various channels with a 
smaller quantity of parameters, accurately capture the 
spatial relationships between different channels, and 
simultaneously enhance the generation of offsets and 
sampling weights. The detection head has undergone 
lightweight optimizations, resulting in enhanced mod-
el performance, a decreased number of parameters, re-
duced computational load, and faster detection speed. 
Techniques for enhancing images are utilized to tackle 
the problem of low-quality original video images, ul-
timately leading to improved input image quality and 
subsequent enhancement of the model’s performance.
However, despite the numerous advantages demon-
strated by the YOLOv8-WML model in experiments, 
there are still some limitations that need further im-
provement and refinement in future work. In the exper-
iments, while the Lightweight Convolutional Detection 
Head (LCD) significantly reduced the model parame-
ters, it also led to a decrease in classification accuracy. 
Future work can explore more efficient model light-
weighting methods, striving to maintain the model’s 
classification accuracy while reducing the number of 
parameters. For instance, more sophisticated pruning 
strategies, knowledge distillation techniques, or low-
rank factorization methods can be considered to find a 
better balance between model lightweighting and per-
formance preservation. Additionally, while the current 
custom dataset covers various types of economically 
important fish catches, the diversity and scale of the 
dataset are still limited, potentially failing to compre-
hensively reflect the complex situations encountered 
in actual marine fishing, thereby affecting the model’s 
generalization ability. In the future, the dataset can be 
further expanded to increase its complexity and diver-
sity, enhancing the model’s generalization capability.
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