
1291Information Technology and Control 2024/4/53

Fish Catch Sorting and
Detection Model Improved
Based on YOLOv8 Model

ITC 4/53
Information Technology
and Control
Vol. 53 / No. 4/ 2024
pp. 1291-1310
DOI 10.5755/j01.itc.53.4.38761

Fish Catch Sorting and Detection Model Improved Based on YOLOv8 Model

Received 2024/09/10 Accepted after revision 2024/12/02

HOW TO CITE: Yang, P., Shi, T., Yuan, Y., Jiang, H. (2024). Fish Catch Sorting and Detection Model
Improved Based on YOLOv8 Model. Information Technology and Control, 53(4), 1291-1310. https://
doi.org/10.5755/j01.itc.53.4.38761

Ping Yang, Tiange Shi, Youdong Yuan, Hanbing Jiang
School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China;
e-mails: YANGping_lz@163.com (Yang); 222085501039@lut.edu.cn (Shi); 222080204006@lut.edu.cn (Yuan);
222080204004@lut.edu.cn (Jiang)
Ping Yang and Tiange Shi contributed equally to this work, they are both first authors.

Corresponding author: Tiange Shi, e-mail: 222085501039@lut.edu.cn

The primary challenge in trawl fishing lies in its limited selectivity, resulting in highly diverse fish catches with
severe mixed-species issues. The catches from trawl fishing require manual sorting, leading to low work effi-
ciency and high labor demands. In order to tackle this issue, the present study introduces an enhanced version
of the DWR module by utilizing DilatedReparamBlock convolution, introducing a novel dilated convolution
module. This module is integrated into the YOLOv8 model, enhancing its capacity to capture features from
the enlarged receptive field in the upper network layers. Furthermore, a new attention mechanism based on a
multi-branch structure with the CA attention mechanism is incorporated into the YOLOv8 model. This atten-
tion mechanism fully extracts image features, enhances feature representation, strengthens the generation of
offsets and sampling weights, and improves the accuracy of target recognition. Lightweight improvements to
the detection head are achieved through the use of shared convolutions, ultimately resulting in a significant
reduction in the number of model parameters. Our empirical findings indicate that the refined model exhibits
a 2.2% enhancement in mAP@0.5 when benchmarked against the initial YOLOv8 model, Offering a significant
reference for the advancement of an effective embedded system for fish sorting.
KEYWORDS: fish catch sorting, object detection, YOLOv8 model, improved YOLOv8 model.

1. Introduction
Presently, trawling stands as the dominant marine
fishing technique, comprising around 60% of the
entire marine catch. The catch of trawling is ex-

tremely diverse, encompassing not only various bot-
tom-dwelling fish but also mid-water and surface
fish, crustaceans, cephalopods, shellfish, and more.

Information Technology and Control 2024/4/531292

Additionally, the composition of catches varies sig-
nificantly across different marine regions [1,16]. The
most significant issue with trawling is its low selec-
tivity, which results in a highly diverse catch composi-
tion and severe mixed-species catches. The harvested
catches require manual sorting [28], and the process
of sorting fish catches often consumes considerable
time and labor.
Deep learning techniques have found extensive appli-
cation in item detection assignments, including re-
search focused on the classification and detection of
fish, shellfish, and crayfish, as exemplified by studies
conducted by Villon et al. [24] used a Convolutional
Neural Network (CNN) to detect underwater fish,
achieving an accuracy rate of 94.6%, which is great-
er than the hand-operated detection rate of 89.3%.
Cui et al. [2] applied deep learning techniques to the
detection of fish in murky seawater and established
a detection model suitable for underwater fish. Feng
et al. [4] employed an enhanced Faster RCNN for the
purposes of classifying and detecting shellfish, en-
abling it to detect shellfish in different scenarios with
an identification accuracy nearly 4% higher than the
original model. Clearly, deep learning-based object
detection algorithms have attained satisfactory out-
comes in the domains of classification and grading
recognition. In contrast, research on applying deep
learning algorithms to fish catch sorting and detec-
tion remains a gap. After investigation, it is found that
the industry currently lacks automatic and efficient
fish catch sorting equipment and related research
based on deep learning networks.
A central challenge in object detection lies in accu-
rately identifying multiple objects of various cate-
gories within an image, while also providing precise
location information pertaining to their bounding
boxes [29]. Previously, object detection primarily re-
lied on handcrafted features and conventional ma-
chine learning techniques, including Support Vector
Machines (SVM) [13] and Haar cascades [9]. None-
theless, advancements in deep learning have led to
notable achievements in object detection, especially
following the introduction of algorithms such as Fast-
er RCNN [19], which was proposed by Ren et al., and
the SSD algorithm proposed by Liu et al. [15]. These
advancements have attracted considerable attention,
owing to their remarkable recognition outcomes on
publicly available datasets.

As shown in Figure 1, the fish catch dataset is signifi-
cantly different from public datasets, and traditional
approaches struggle with accurately classifying and
detecting fish catches. This is primarily due to the issue
of varying scales in different images, where severe oc-
clusion between fish catches is a major problem. Addi-
tionally, the complexity of the environment poses nu-
merous challenges for recognition, as fish catch images
often include water bodies, which confuse differentia-
tion [17]. The interaction of natural light fluctuations
further exacerbates these issues, leading to changes in
image properties that hinder the extraction and detec-
tion of image features. Secondly, as the sorting system
serves as an embedded system, it is necessary to de-
crease the quantity of algorithm parameters to meet
the requirements of the embedded system.

recognition. In contrast, research on applying deep learning algorithms to fish catch sorting and detection
remains a gap. After investigation, it is found that the industry currently lacks automatic and efficient fish
catch sorting equipment and related research based on deep learning networks.

A central challenge in object detection lies in accurately identifying multiple objects of various categories
within an image, while also providing precise location information pertaining to their bounding boxes [29].
Previously, object detection primarily relied on handcrafted features and conventional machine learning
techniques, including Support Vector Machines (SVM) [13] and Haar cascades [9]. Nonetheless,
advancements in deep learning have led to notable achievements in object detection, especially following
the introduction of algorithms such as Faster RCNN [19], which was proposed by Ren et al., and the SSD
algorithm proposed by Liu et al. [15]. These advancements have attracted considerable attention, owing to
their remarkable recognition outcomes on publicly available datasets.

As shown in Figure 1, the fish catch dataset is significantly different from public datasets, and traditional
approaches struggle with accurately classifying and detecting fish catches. This is primarily due to the issue
of varying scales in different images, where severe occlusion between fish catches is a major problem.
Additionally, the complexity of the environment poses numerous challenges for recognition, as fish catch
images often include water bodies, which confuse differentiation [17]. The interaction of natural light
fluctuations further exacerbates these issues, leading to changes in image properties that hinder the
extraction and detection of image features. Secondly, as the sorting system serves as an embedded system,
it is necessary to decrease the quantity of algorithm parameters to meet the requirements of the embedded
system.

Figure 1

Trawl fishing catch.

This paper focuses on the problem of fish catch sorting and detection. Based on the YOLOv8 network
framework, a new dilated convolution module and attention mechanism are designed and integrated into
the backbone network, along with a lightweight detection head. This improved YOLOv8 network
architecture is integrated into a custom fish catch sorting dataset to obtain an enhanced YOLOv8
classification and detection model algorithm, which enables the detection of target fish catches, thereby
accurately and rapidly detecting different fish catches.

The algorithm proposed in this paper is more effective than traditional algorithms in extracting image
features from multiple scales, enhancing feature representation, and is better suited for scenes with dense
objects and severe occlusion. In response to the application requirements of embedded systems, the
algorithm presented in this paper has fewer parameters and faster detection speed compared to traditional
algorithms.

2. Improve the YOLOv8 Model
2.1. Overall Framework Improvement
2.1.1. YOLOv8 Framework

Illustrated in Figure 2, the network architecture of YOLOv8 primarily comprises three components:
Backbone, Neck, and Head. The Backbone mainly extracts features, while the Neck fuses these feature maps
from various Backbone stages to boost their representational power; in YOLOv8, the Head component
primarily handles the assignments of detecting and categorizing objects.

Figure 2

YOLOv8 network framework.

Figure 1
Trawl fishing catch

This paper focuses on the problem of fish catch sort-
ing and detection. Based on the YOLOv8 network
framework, a new dilated convolution module and at-
tention mechanism are designed and integrated into
the backbone network, along with a lightweight de-
tection head. This improved YOLOv8 network archi-
tecture is integrated into a custom fish catch sorting
dataset to obtain an enhanced YOLOv8 classification
and detection model algorithm, which enables the de-
tection of target fish catches, thereby accurately and
rapidly detecting different fish catches.
The algorithm proposed in this paper is more effective
than traditional algorithms in extracting image features
from multiple scales, enhancing feature representa-
tion, and is better suited for scenes with dense objects
and severe occlusion. In response to the application
requirements of embedded systems, the algorithm pre-
sented in this paper has fewer parameters and faster de-
tection speed compared to traditional algorithms.

1293Information Technology and Control 2024/4/53

2. Improve the YOLOv8 Model
2.1. Overall Framework Improvement
2.1.1. YOLOv8 Framework
Illustrated in Figure 2, the network architecture of
YOLOv8 primarily comprises three components:
Backbone, Neck, and Head. The Backbone mainly
extracts features, while the Neck fuses these feature
maps from various Backbone stages to boost their
representational power; in YOLOv8, the Head compo-
nent primarily handles the assignments of detecting
and categorizing objects.

redesigns the object detection framework by merg-
ing the DilatedReparamBlock convolution with the
DWR module to construct a novel dilated convolution
module. This module replaces all C2f modules in the
backbone of the original YOLOv8 network frame-
work. The attention mechanism module devised in
this study is incorporated into the backbone, and the
detection head receives lightweight enhancements.
Figure 3 displays the enhanced network framework,
where the purple-shaded box highlights the substi-
tuted dilated convolution module (WFR module),
the red background box represents the introduced at-
tention mechanism module(MCSA module), and the
yellow-green background box denotes the replaced
lightweight detection head.
When an image is input into the WFR module, the
WFR module first performs initial processing on the
image through its multi-scale feature extraction ca-
pabilities, generating a feature map rich in contex-
tual information. Subsequently, the MCSA attention
mechanism processes the feature map, adjusting the
network’s focus on different regions, enhancing im-
portant features, and strengthening the generation of
offset values for each convolutional window and sam-
pling weights at different positions within the win-
dow, making the model more accurate in subsequent

Figure 2
YOLOv8 network framework

2.1.2. Improved YOLOv8 Framework
In actual fish sorting and detection, the YOLOv8 net-
work framework still has some deficiencies in aspects
such as dense fish targets, mutual occlusion between
catches, feature extraction of multiple targets, and
limitations on parameter quantity in embedded sys-
tems. This study presents a range of enhancements
to the YOLOv8 network framework, aiming to tackle
these issues.
To enhance detection accuracy, this study introduces
YOLOv8-WML, an enhanced model for fish sorting
and detection that builds upon YOLOv8. This study

Figure 3
Improved YOLOv8 network framework

Information Technology and Control 2024/4/531294

target recognition and classification tasks. Finally,
the lightweight detection head further processes the
feature map using shared convolutions and normal-
ization layers to generate category predictions for the
targets.
Addressing the issue of mutual occlusion between
objects, the framework proposed in this paper re-
places the C2f module with the WFR module in the
backbone network. The WFR module utilizes dilated
re-parameterized convolution to expand the recep-
tive field, enabling the model to extract features over
a larger spatial range and thus better handle densely
packed and occluded targets. Additionally, the MCSA
attention mechanism is introduced into the backbone
network. This mechanism helps the model more ac-
curately locate targets in cases of occlusion and over-
lap by capturing attention information in the spatial
dimension. For the problem of multi-target feature
extraction, the WFR module enhances the model’s
feature extraction capabilities at different scales
through a multi-branch structure design and seman-
tic residualization methods, enabling the model to
better handle multi-target scenarios. The MCSA at-
tention mechanism improves the model’s ability to
recognize multiple targets in complex scenes through
global and local feature fusion. To address the limita-
tions on the number of parameters in embedded sys-
tems, the framework in this paper lightens the detec-
tion head. The improved detection head significantly
reduces the number of parameters and computation-
al load by using shared convolutions, and increases
detection speed by employing normalization layers.

2.2. Replacement of Backbone Network
Framework Module
2.2.1. Dilation-wise Residual Module
Figure 4 illustrates the DWR (Dilation-wise Residu-
al) module, a multi-branch design aimed at improving
multi-scale feature extraction. This module integrates
the principles of dilated convolutions alongside resid-
ual connections, targeting the difficulties of extract-
ing multi-scale features in applications like real-time
semantic segmentation [25].

2.2.2. Wide-Field Residual Module Proposed in
This Study
The DWR module is primarily applicable to the
high-level structures of a network and has limited

effectiveness in enhancing feature extraction capa-
bilities in the lower and middle levels of the network.
Therefore, this paper introduces dilated re-param-
eterized convolutions [3] in combination with the
DWR module to design a new multi-branch dilated
convolution module, intended to enhance the model’s
multi-scale feature extraction capability across vari-
ous network levels.
As shown in Figure 5, the newly designed module is
named the “Wide-Field Residual (WFR)” module.
Based on the multi-branch architecture of the DWR
module [25], in this module, dilated convolutions
with dilation rates of 3 and 5 are substituted with di-
lated re-parameterized convolutions that employ di-
lation rates of 5 and 7. The latter introduces dilation
factors, allowing the convolution kernels to expand
the receptive field without elevating computational
complexity. This facilitates the extraction of features
from a larger range, thereby capturing richer contex-
tual information [3].
The module initially uses three 3×3 convolutions for
preliminary feature extraction. Subsequently, each
branch generates relevant residual features from the
input features through a Batch Normalization (BN)
layer and a ReLU layer, which is referred to as re-
gional residualization [6]. Regional residualization

Figure 4
DWR module

1295Information Technology and Control 2024/4/53

produces a series of concise regional feature maps in
simplified form for the subsequent semantic residual-
ization. The feature representation obtained through
regional residualization is denoted as f, and its ex-
pression is given by:

𝑓𝑓 = ReLU(BN(𝐹𝐹�)). (1)

The formula includes F3, which denotes a 3×3 convolution function, BN, representing Batch Normalization,
and ReLU, which serves as the activation function.

Thereafter, dilated depthwise convolutions with a dilation rate of 1 and dilated reparameterized
convolutions are applied separately to perform morphological filtering on regional features of varying sizes.
This process is referred to as semantic residualization, which aids in reducing redundant information in the
feature maps and highlights key features. The expressions for obtaining the feature representations f1, f2, and
f3 through semantic residualization are:

𝑓𝑓� = d�DConv(𝑓𝑓) (2)
𝑓𝑓� = d�DRBConv(𝑓𝑓) (3)
𝑓𝑓� = d�DRBConv(𝑓𝑓). (4)

In Equation (2), d1DConv represents a dilated depthwise convolution with a dilation rate of 1; in Equation
(3), d5DRBConv represents a dilated re-parameterized convolution with a dilation rate of 5; in Equation (4),
d7DRBConv represents a dilated re-parameterized convolution with a dilation rate of 7.After acquiring
multi-scale context information through morphological filtering, multiple outputs are concatenated and
processed with BN. Pointwise convolution is employed to combine features and generate the ultimate
residual. The ultimate residual is incorporated into the input feature map to formulate a stronger and more
extensive feature representation. The output y is represented as:

𝑦𝑦(�) = 𝐹𝐹��BN([𝑓𝑓�, 𝑓𝑓�, 𝑓𝑓�])� + 𝑥𝑥. (5)

In Equation (5), F1 represents a 1×1 convolution function, BN stands for Batch Normalization, and [f1, f2, f3]
indicates the concatenation of the three feature maps f1, f2, and f3 along the channel dimension, with x being
the given input.

In this module, three branches generate feature maps f1, f2, and f3 containing information at different scales
through two steps of regional residualization and semantic residualization. By concatenating these feature
maps, features from different scales are fused together to form a feature map that includes richer contextual
information. This fusion helps the model capture key features at different scales, enhancing the feature
representation capability. Subsequently, the feature map undergoes Batch Normalization (BN) processing,
which normalizes the channels of the feature map so that the input data distribution of each batch has the
same mean and variance, thereby accelerating the training speed. Finally, point-wise convolution is applied
to further fuse the feature map, combining information from multiple channels to form a new feature
representation. This process can be regarded as cross-channel information exchange, which aids in
generating more representative features.

Since establishing connections directly over large spatial spans through convolution is always more
challenging, and long-span connections require the assistance of short-span connections, small receptive
fields at each stage are always crucial. Therefore, the first branch's output channel count is increased to
double the amount of the other branches.

Figure 5
Wide-Field Residual module.

(1)

The formula includes F3, which denotes a 3×3 convo-
lution function, BN, representing Batch Normaliza-
tion, and ReLU, which serves as the activation func-
tion.

Thereafter, dilated depthwise convolutions with a
dilation rate of 1 and dilated reparameterized convo-
lutions are applied separately to perform morpholog-
ical filtering on regional features of varying sizes. This
process is referred to as semantic residualization,
which aids in reducing redundant information in the
feature maps and highlights key features. The expres-
sions for obtaining the feature representations f1, f2,
and f3 through semantic residualization are:

𝑓𝑓 = ReLU(BN(𝐹𝐹�)). (1)

The formula includes F3, which denotes a 3×3 convolution function, BN, representing Batch Normalization,
and ReLU, which serves as the activation function.

Thereafter, dilated depthwise convolutions with a dilation rate of 1 and dilated reparameterized
convolutions are applied separately to perform morphological filtering on regional features of varying sizes.
This process is referred to as semantic residualization, which aids in reducing redundant information in the
feature maps and highlights key features. The expressions for obtaining the feature representations f1, f2, and
f3 through semantic residualization are:

𝑓𝑓� = d�DConv(𝑓𝑓) (2)
𝑓𝑓� = d�DRBConv(𝑓𝑓) (3)
𝑓𝑓� = d�DRBConv(𝑓𝑓). (4)

In Equation (2), d1DConv represents a dilated depthwise convolution with a dilation rate of 1; in Equation
(3), d5DRBConv represents a dilated re-parameterized convolution with a dilation rate of 5; in Equation (4),
d7DRBConv represents a dilated re-parameterized convolution with a dilation rate of 7.After acquiring
multi-scale context information through morphological filtering, multiple outputs are concatenated and
processed with BN. Pointwise convolution is employed to combine features and generate the ultimate
residual. The ultimate residual is incorporated into the input feature map to formulate a stronger and more
extensive feature representation. The output y is represented as:

𝑦𝑦(�) = 𝐹𝐹��BN([𝑓𝑓�, 𝑓𝑓�, 𝑓𝑓�])� + 𝑥𝑥. (5)

In Equation (5), F1 represents a 1×1 convolution function, BN stands for Batch Normalization, and [f1, f2, f3]
indicates the concatenation of the three feature maps f1, f2, and f3 along the channel dimension, with x being
the given input.

In this module, three branches generate feature maps f1, f2, and f3 containing information at different scales
through two steps of regional residualization and semantic residualization. By concatenating these feature
maps, features from different scales are fused together to form a feature map that includes richer contextual
information. This fusion helps the model capture key features at different scales, enhancing the feature
representation capability. Subsequently, the feature map undergoes Batch Normalization (BN) processing,
which normalizes the channels of the feature map so that the input data distribution of each batch has the
same mean and variance, thereby accelerating the training speed. Finally, point-wise convolution is applied
to further fuse the feature map, combining information from multiple channels to form a new feature
representation. This process can be regarded as cross-channel information exchange, which aids in
generating more representative features.

Since establishing connections directly over large spatial spans through convolution is always more
challenging, and long-span connections require the assistance of short-span connections, small receptive
fields at each stage are always crucial. Therefore, the first branch's output channel count is increased to
double the amount of the other branches.

Figure 5
Wide-Field Residual module.

(2)

𝑓𝑓 = ReLU(BN(𝐹𝐹�)). (1)

The formula includes F3, which denotes a 3×3 convolution function, BN, representing Batch Normalization,
and ReLU, which serves as the activation function.

Thereafter, dilated depthwise convolutions with a dilation rate of 1 and dilated reparameterized
convolutions are applied separately to perform morphological filtering on regional features of varying sizes.
This process is referred to as semantic residualization, which aids in reducing redundant information in the
feature maps and highlights key features. The expressions for obtaining the feature representations f1, f2, and
f3 through semantic residualization are:

𝑓𝑓� = d�DConv(𝑓𝑓) (2)
𝑓𝑓� = d�DRBConv(𝑓𝑓) (3)
𝑓𝑓� = d�DRBConv(𝑓𝑓). (4)

In Equation (2), d1DConv represents a dilated depthwise convolution with a dilation rate of 1; in Equation
(3), d5DRBConv represents a dilated re-parameterized convolution with a dilation rate of 5; in Equation (4),
d7DRBConv represents a dilated re-parameterized convolution with a dilation rate of 7.After acquiring
multi-scale context information through morphological filtering, multiple outputs are concatenated and
processed with BN. Pointwise convolution is employed to combine features and generate the ultimate
residual. The ultimate residual is incorporated into the input feature map to formulate a stronger and more
extensive feature representation. The output y is represented as:

𝑦𝑦(�) = 𝐹𝐹��BN([𝑓𝑓�, 𝑓𝑓�, 𝑓𝑓�])� + 𝑥𝑥. (5)

In Equation (5), F1 represents a 1×1 convolution function, BN stands for Batch Normalization, and [f1, f2, f3]
indicates the concatenation of the three feature maps f1, f2, and f3 along the channel dimension, with x being
the given input.

In this module, three branches generate feature maps f1, f2, and f3 containing information at different scales
through two steps of regional residualization and semantic residualization. By concatenating these feature
maps, features from different scales are fused together to form a feature map that includes richer contextual
information. This fusion helps the model capture key features at different scales, enhancing the feature
representation capability. Subsequently, the feature map undergoes Batch Normalization (BN) processing,
which normalizes the channels of the feature map so that the input data distribution of each batch has the
same mean and variance, thereby accelerating the training speed. Finally, point-wise convolution is applied
to further fuse the feature map, combining information from multiple channels to form a new feature
representation. This process can be regarded as cross-channel information exchange, which aids in
generating more representative features.

Since establishing connections directly over large spatial spans through convolution is always more
challenging, and long-span connections require the assistance of short-span connections, small receptive
fields at each stage are always crucial. Therefore, the first branch's output channel count is increased to
double the amount of the other branches.

Figure 5
Wide-Field Residual module.

(3)

𝑓𝑓 = ReLU(BN(𝐹𝐹�)). (1)

The formula includes F3, which denotes a 3×3 convolution function, BN, representing Batch Normalization,
and ReLU, which serves as the activation function.

Thereafter, dilated depthwise convolutions with a dilation rate of 1 and dilated reparameterized
convolutions are applied separately to perform morphological filtering on regional features of varying sizes.
This process is referred to as semantic residualization, which aids in reducing redundant information in the
feature maps and highlights key features. The expressions for obtaining the feature representations f1, f2, and
f3 through semantic residualization are:

𝑓𝑓� = d�DConv(𝑓𝑓) (2)
𝑓𝑓� = d�DRBConv(𝑓𝑓) (3)
𝑓𝑓� = d�DRBConv(𝑓𝑓). (4)

In Equation (2), d1DConv represents a dilated depthwise convolution with a dilation rate of 1; in Equation
(3), d5DRBConv represents a dilated re-parameterized convolution with a dilation rate of 5; in Equation (4),
d7DRBConv represents a dilated re-parameterized convolution with a dilation rate of 7.After acquiring
multi-scale context information through morphological filtering, multiple outputs are concatenated and
processed with BN. Pointwise convolution is employed to combine features and generate the ultimate
residual. The ultimate residual is incorporated into the input feature map to formulate a stronger and more
extensive feature representation. The output y is represented as:

𝑦𝑦(�) = 𝐹𝐹��BN([𝑓𝑓�, 𝑓𝑓�, 𝑓𝑓�])� + 𝑥𝑥. (5)

In Equation (5), F1 represents a 1×1 convolution function, BN stands for Batch Normalization, and [f1, f2, f3]
indicates the concatenation of the three feature maps f1, f2, and f3 along the channel dimension, with x being
the given input.

In this module, three branches generate feature maps f1, f2, and f3 containing information at different scales
through two steps of regional residualization and semantic residualization. By concatenating these feature
maps, features from different scales are fused together to form a feature map that includes richer contextual
information. This fusion helps the model capture key features at different scales, enhancing the feature
representation capability. Subsequently, the feature map undergoes Batch Normalization (BN) processing,
which normalizes the channels of the feature map so that the input data distribution of each batch has the
same mean and variance, thereby accelerating the training speed. Finally, point-wise convolution is applied
to further fuse the feature map, combining information from multiple channels to form a new feature
representation. This process can be regarded as cross-channel information exchange, which aids in
generating more representative features.

Since establishing connections directly over large spatial spans through convolution is always more
challenging, and long-span connections require the assistance of short-span connections, small receptive
fields at each stage are always crucial. Therefore, the first branch's output channel count is increased to
double the amount of the other branches.

Figure 5
Wide-Field Residual module.

(4)

In Equation (2), d1DConv represents a dilated depth-
wise convolution with a dilation rate of 1; in Equation
(3), d5DRBConv represents a dilated re-parameter-
ized convolution with a dilation rate of 5; in Equa-
tion (4), d7DRBConv represents a dilated re-param-
eterized convolution with a dilation rate of 7.After
acquiring multi-scale context information through
morphological filtering, multiple outputs are concate-
nated and processed with BN. Pointwise convolution
is employed to combine features and generate the ul-
timate residual. The ultimate residual is incorporated
into the input feature map to formulate a stronger and
more extensive feature representation. The output y
is represented as:

𝑓𝑓 = ReLU(BN(𝐹𝐹�)). (1)

The formula includes F3, which denotes a 3×3 convolution function, BN, representing Batch Normalization,
and ReLU, which serves as the activation function.

Thereafter, dilated depthwise convolutions with a dilation rate of 1 and dilated reparameterized
convolutions are applied separately to perform morphological filtering on regional features of varying sizes.
This process is referred to as semantic residualization, which aids in reducing redundant information in the
feature maps and highlights key features. The expressions for obtaining the feature representations f1, f2, and
f3 through semantic residualization are:

𝑓𝑓� = d�DConv(𝑓𝑓) (2)
𝑓𝑓� = d�DRBConv(𝑓𝑓) (3)
𝑓𝑓� = d�DRBConv(𝑓𝑓). (4)

In Equation (2), d1DConv represents a dilated depthwise convolution with a dilation rate of 1; in Equation
(3), d5DRBConv represents a dilated re-parameterized convolution with a dilation rate of 5; in Equation (4),
d7DRBConv represents a dilated re-parameterized convolution with a dilation rate of 7.After acquiring
multi-scale context information through morphological filtering, multiple outputs are concatenated and
processed with BN. Pointwise convolution is employed to combine features and generate the ultimate
residual. The ultimate residual is incorporated into the input feature map to formulate a stronger and more
extensive feature representation. The output y is represented as:

𝑦𝑦(�) = 𝐹𝐹��BN([𝑓𝑓�, 𝑓𝑓�, 𝑓𝑓�])� + 𝑥𝑥. (5)

In Equation (5), F1 represents a 1×1 convolution function, BN stands for Batch Normalization, and [f1, f2, f3]
indicates the concatenation of the three feature maps f1, f2, and f3 along the channel dimension, with x being
the given input.

In this module, three branches generate feature maps f1, f2, and f3 containing information at different scales
through two steps of regional residualization and semantic residualization. By concatenating these feature
maps, features from different scales are fused together to form a feature map that includes richer contextual
information. This fusion helps the model capture key features at different scales, enhancing the feature
representation capability. Subsequently, the feature map undergoes Batch Normalization (BN) processing,
which normalizes the channels of the feature map so that the input data distribution of each batch has the
same mean and variance, thereby accelerating the training speed. Finally, point-wise convolution is applied
to further fuse the feature map, combining information from multiple channels to form a new feature
representation. This process can be regarded as cross-channel information exchange, which aids in
generating more representative features.

Since establishing connections directly over large spatial spans through convolution is always more
challenging, and long-span connections require the assistance of short-span connections, small receptive
fields at each stage are always crucial. Therefore, the first branch's output channel count is increased to
double the amount of the other branches.

Figure 5
Wide-Field Residual module.

(5)

In Equation (5), F1 represents a 1×1 convolution func-
tion, BN stands for Batch Normalization, and [f1, f2, f3]
indicates the concatenation of the three feature maps
f1, f2, and f3 along the channel dimension, with x being
the given input.

In this module, three branches generate feature maps
f1, f2, and f3 containing information at different scales
through two steps of regional residualization and se-
mantic residualization. By concatenating these fea-
ture maps, features from different scales are fused
together to form a feature map that includes richer
contextual information. This fusion helps the mod-
el capture key features at different scales, enhancing
the feature representation capability. Subsequently,
the feature map undergoes Batch Normalization (BN)
processing, which normalizes the channels of the fea-
ture map so that the input data distribution of each
batch has the same mean and variance, thereby accel-
erating the training speed. Finally, point-wise convo-
lution is applied to further fuse the feature map, com-
bining information from multiple channels to form a
new feature representation. This process can be re-
garded as cross-channel information exchange, which
aids in generating more representative features.
Since establishing connections directly over large
spatial spans through convolution is always more

Figure 5
Wide-Field Residual module

Information Technology and Control 2024/4/531296

challenging, and long-span connections require the
assistance of short-span connections, small receptive
fields at each stage are always crucial. Therefore, the
first branch’s output channel count is increased to
double the amount of the other branches.

2.3. Introduction of Attention Mechanism
2.3.1. Squeeze-and-Excitation Attention
Illustrated in Figure 6, the SE attention mechanism,
alternatively referred to as the Squeeze-and-Exci-
tation mechanism, revolves around the core idea of
reallocating information between channels by learn-
ing an attention weight vector that represents the
relationships among channels. This enhances the
network’s focus on important feature channels [10].
Nevertheless, the SE attention mechanism solely
focuses on the channel dimension for attention and
fails to capture attention in the spatial dimension.

Figure 6
SE attention module

Despite its potential, the CA attention mechanism is
burdened by an extensive parameter count, rendering
it impractical for deployment in embedded systems.

2.3.3. Multi-channel Spatial Attention Proposed
in This Study
Attention mechanisms have become a key technolo-
gy in deep learning models, optimizing model perfor-
mance by adjusting the network’s focus on different
parts. However, current attention mechanisms, like
CBAM (Convolutional Block Attention Module) and
SE attention, often employ global max pooling or av-
erage pooling in handling channel attention, poten-
tially resulting in the loss of spatial details [18]. On
the other hand, despite the CA attention mechanism
taking spatial information into account, its substan-
tial computational complexity restricts its utilization
in large-scale networks [5, 22, 27].
In response to the aforementioned deficiencies, as
illustrated in Figure 8, this paper introduces an inno-
vative attention mechanism coined as “Multi-channel
Spatial Attention” (MCSA). This attention mechanism
can effectively extract features from each channel with

2.3.2. Coordinate Attention
Illustrated in Figure 7, the CA attention mechanism,
alternatively termed as the Coordinate Attention
mechanism, is a spatial attention mechanism that
can effectively enhance the neural network model’s
focus on important features in the feature map[8].

Figure 7
CA attention module

1297Information Technology and Control 2024/4/53

a relatively small quantity of parameters, accurately
capture the spatial relationships between different
channels, and enhance the generation of offsets and
sampling weights. Unlike the CA and SE attention
mechanisms, the MCSA attention mechanism embeds
precise positional information at the initial stage, re-
tains the global features of spatial information through
global pooling. Additionally, it diminishes the overall
count of model parameters. This allows the subsequent
attention calculations to fully utilize these spatial de-
tails and global features with a smaller number of pa-
rameters, and enhances the generation of offsets for
each convolutional window and sampling weights for
different positions within the window.

Figure 8
Multi-channel Spatial Attention module

As shown in Figure 9, this attention mechanism retains
global average pooling while decomposing it into one-
to-one feature encoding operations. Specifically, for a
given input x, while performing global average pooling,
two spatial pooling kernels, specifically (H, 1) and (1,
W), are utilized to encode each channel along the hori-
zontal and vertical axes, respectively. For a given height
h in channel c, the output is formulated as follows:

As shown in Figure 9, this attention mechanism retains global average pooling while decomposing it into
one-to-one feature encoding operations. Specifically, for a given input x, while performing global average
pooling, two spatial pooling kernels, specifically (H, 1) and (1, W), are utilized to encode each channel along
the horizontal and vertical axes, respectively. For a given height h in channel c, the output is formulated as
follows:

𝑧𝑧��(h) =
1
W � 𝑥𝑥�

�����

(h, i). (6)

Likewise, the representation of the output for the c channel at a specific width w is given as:

𝑧𝑧��(w) =
1
H � 𝑥𝑥�(j, w).

�����

 (7)

Equations (6)-(7) individually accumulate features across two distinct spatial directions, producing a set of
feature maps that are sensitive to direction. By doing so, these transformations enable the attention module
to grasp extensive dependencies in one spatial direction while retaining exact positional details in the other.
This capability assists the model in precisely pinpointing objects of interest. Equations (6)-(7) attain a
comprehensive receptive field while embedding accurate positional details. The attention module sends the
aggregated feature map generated by Equation (7) into the Permute function to rearrange the dimensions
of the feature vectors, adapting to subsequent convolution operations. This facilitates improved
organization and processing of feature data, allowing the model to learn the inherent structure of the data
more efficiently [26]. Subsequently, it concatenates this with the aggregated feature map generated by
Equation (6) and sends them to a shared 1×1 convolutional transformation function F1 for further
transformation and fusion of information from these two feature maps, obtaining the feature representation
f:

𝑓𝑓 = 𝐹𝐹�([𝑧𝑧�, Permute(𝑧𝑧�)]) (8)

In Equation (8), F1 represents a 1×1 convolutional function. The role of the Permute function is to adjust the
dimension order of the tensor. The notation [zh, Permute(zw)] indicates the concatenation of the two feature
maps, zh and zw, along the channel dimension. f is a feature representation that integrates precise positional
information and inter-channel relationships.

The attention module functions in two steps on the feature representation f, which encompasses spatial
information extending both horizontally and vertically. Initially, the split function is utilized to divide the

(6)

Likewise, the representation of the output for the c
channel at a specific width w is given as:

Information Technology and Control 2024/4/531298

As shown in Figure 9, this attention mechanism retains global average pooling while decomposing it into
one-to-one feature encoding operations. Specifically, for a given input x, while performing global average
pooling, two spatial pooling kernels, specifically (H, 1) and (1, W), are utilized to encode each channel along
the horizontal and vertical axes, respectively. For a given height h in channel c, the output is formulated as
follows:

𝑧𝑧��(h) =
1
W � 𝑥𝑥�

�����

(h, i). (6)

Likewise, the representation of the output for the c channel at a specific width w is given as:

𝑧𝑧��(w) =
1
H � 𝑥𝑥�(j, w).

�����

 (7)

Equations (6)-(7) individually accumulate features across two distinct spatial directions, producing a set of
feature maps that are sensitive to direction. By doing so, these transformations enable the attention module
to grasp extensive dependencies in one spatial direction while retaining exact positional details in the other.
This capability assists the model in precisely pinpointing objects of interest. Equations (6)-(7) attain a
comprehensive receptive field while embedding accurate positional details. The attention module sends the
aggregated feature map generated by Equation (7) into the Permute function to rearrange the dimensions
of the feature vectors, adapting to subsequent convolution operations. This facilitates improved
organization and processing of feature data, allowing the model to learn the inherent structure of the data
more efficiently [26]. Subsequently, it concatenates this with the aggregated feature map generated by
Equation (6) and sends them to a shared 1×1 convolutional transformation function F1 for further
transformation and fusion of information from these two feature maps, obtaining the feature representation
f:

𝑓𝑓 = 𝐹𝐹�([𝑧𝑧�, Permute(𝑧𝑧�)]) (8)

In Equation (8), F1 represents a 1×1 convolutional function. The role of the Permute function is to adjust the
dimension order of the tensor. The notation [zh, Permute(zw)] indicates the concatenation of the two feature
maps, zh and zw, along the channel dimension. f is a feature representation that integrates precise positional
information and inter-channel relationships.

The attention module functions in two steps on the feature representation f, which encompasses spatial
information extending both horizontally and vertically. Initially, the split function is utilized to divide the

(7)

Equations (6)-(7) individually accumulate features
across two distinct spatial directions, producing a set
of feature maps that are sensitive to direction. By doing
so, these transformations enable the attention module
to grasp extensive dependencies in one spatial direc-
tion while retaining exact positional details in the oth-
er. This capability assists the model in precisely pin-
pointing objects of interest. Equations (6)-(7) attain
a comprehensive receptive field while embedding ac-
curate positional details. The attention module sends
the aggregated feature map generated by Equation (7)
into the Permute function to rearrange the dimensions
of the feature vectors, adapting to subsequent convolu-
tion operations. This facilitates improved organization
and processing of feature data, allowing the model to
learn the inherent structure of the data more efficient-
ly [26]. Subsequently, it concatenates this with the ag-
gregated feature map generated by Equation (6) and
sends them to a shared 1×1 convolutional transforma-
tion function F1 for further transformation and fusion
of information from these two feature maps, obtaining
the feature representation f:

As shown in Figure 9, this attention mechanism retains global average pooling while decomposing it into
one-to-one feature encoding operations. Specifically, for a given input x, while performing global average
pooling, two spatial pooling kernels, specifically (H, 1) and (1, W), are utilized to encode each channel along
the horizontal and vertical axes, respectively. For a given height h in channel c, the output is formulated as
follows:

𝑧𝑧��(h) =
1
W � 𝑥𝑥�

�����

(h, i). (6)

Likewise, the representation of the output for the c channel at a specific width w is given as:

𝑧𝑧��(w) =
1
H � 𝑥𝑥�(j, w).

�����

 (7)

Equations (6)-(7) individually accumulate features across two distinct spatial directions, producing a set of
feature maps that are sensitive to direction. By doing so, these transformations enable the attention module
to grasp extensive dependencies in one spatial direction while retaining exact positional details in the other.
This capability assists the model in precisely pinpointing objects of interest. Equations (6)-(7) attain a
comprehensive receptive field while embedding accurate positional details. The attention module sends the
aggregated feature map generated by Equation (7) into the Permute function to rearrange the dimensions
of the feature vectors, adapting to subsequent convolution operations. This facilitates improved
organization and processing of feature data, allowing the model to learn the inherent structure of the data
more efficiently [26]. Subsequently, it concatenates this with the aggregated feature map generated by
Equation (6) and sends them to a shared 1×1 convolutional transformation function F1 for further
transformation and fusion of information from these two feature maps, obtaining the feature representation
f:

𝑓𝑓 = 𝐹𝐹�([𝑧𝑧�, Permute(𝑧𝑧�)]) (8)

In Equation (8), F1 represents a 1×1 convolutional function. The role of the Permute function is to adjust the
dimension order of the tensor. The notation [zh, Permute(zw)] indicates the concatenation of the two feature
maps, zh and zw, along the channel dimension. f is a feature representation that integrates precise positional
information and inter-channel relationships.

The attention module functions in two steps on the feature representation f, which encompasses spatial
information extending both horizontally and vertically. Initially, the split function is utilized to divide the

(8)

In Equation (8), F1 represents a 1×1 convolutional
function. The role of the Permute function is to adjust
the dimension order of the tensor. The notation [zh,

Permute(zw)] indicates the concatenation of the two
feature maps, zh and zw, along the channel dimension. f
is a feature representation that integrates precise po-
sitional information and inter-channel relationships.
The attention module functions in two steps on the
feature representation f, which encompasses spatial
information extending both horizontally and vertically.
Initially, the split function is utilized to divide the fea-
ture representation f into two separate tensors accord-
ing to the spatial dimension. Subsequently, the feature
representation f is passed through a common 1×1 con-
volutional transformation function, F1, which serves to
thoroughly extract feature data both horizontally and
vertically by processing along these two directions, we
obtain the intermediate feature representation f1:

feature representation f into two separate tensors according to the spatial dimension. Subsequently, the
feature representation f is passed through a common 1×1 convolutional transformation function, F1, which
serves to thoroughly extract feature data both horizontally and vertically by processing along these two
directions, we obtain the intermediate feature representation f1:

𝑓𝑓� = 𝐹𝐹�(𝑓𝑓). (9)

In Equation (9), F1 represents a 1×1 convolutional function.

The attention module feeds the obtained intermediate feature representation f1 into a sigmoid activation
function and then uses a split function to divide f1, obtaining the attention weights gh on the height
dimension and gw on the width dimension of the feature map. The expressions for gh and gw are shown in
Equations (10)-(11), respectively:

𝑔𝑔� = Sigmoid(𝑓𝑓�
�) (10)

𝑔𝑔� = Sigmoid(𝑓𝑓�
�). (11)

In Equations (10)-(11), the activation function employed is the Sigmoid function.

The obtained attention weights gh and gw are then multiplied with the two separate tensors obtained in the
first step to achieve weighted processing, resulting in more refined attention weights Gh and Gw. The
expressions for Gh and Gw are shown in Equations (12)-(13), respectively:

 𝐺𝐺� = 𝑓𝑓�⨀𝑔𝑔� (12)
𝐺𝐺� = 𝑓𝑓�⨀𝑔𝑔� (13)

In the third branch, the attention module utilizes global average pooling on the feature map, aiming to
capture the essential spatial information while effectively decreasing the number of model parameters [20,
21]. For a given input x, the squeeze step for the c channel can be represented as:

𝑧𝑧� =
1

H × W � � 𝑥𝑥�(i, j)
�

���

�

���

. (14)

In Equation (14), H represents the height and W indicates the width of the feature map. The element xc(i,j)
is positioned on the input feature map, where i and j correspond to the horizontal and vertical coordinates
of this element, individually.

The obtained feature representation is then fed into a shared 1×1 convolutional transformation function F1
to obtain the feature representation f2:

𝑓𝑓� = 𝐹𝐹�(𝑧𝑧�). (15)

In Equation (15), F1 represents a 1×1 convolutional function.

The intermediate feature representation f1 undergoes processing through the Sigmoid activation function,
followed by a mean operation. This is done to normalize the intermediate feature representation f1, resulting
in a tensor with the same quantity of channels as the input x. Subsequently, this normalized tensor is
multiplied with the feature representation f2 to obtain the global attention weight gc, which is expressed in
Equation (16) as follows:

𝑔𝑔� = 𝑓𝑓� �Mean�Sigmoid(𝑓𝑓�)��. (16)

In Equation (16), the Mean function represents the operation of calculating the mean, and Sigmoid is the
activation function.

This attention module multiplies the attention weights Gh, Gw, and gc obtained from the three branches to
produce the output yc of the attention module, which is represented as:

𝑦𝑦�(i, j) = 𝑥𝑥�(i, j) × 𝐺𝐺�
�(i) × 𝐺𝐺�

�(j) × 𝑔𝑔�(i, j). (17)

(9)

In Equation (9), F1 represents a 1×1 convolutional
function.
The attention module feeds the obtained intermedi-
ate feature representation f1 into a sigmoid activation
function and then uses a split function to divide f1,
obtaining the attention weights gh on the height di-
mension and gw on the width dimension of the feature
map. The expressions for gh and gw are shown in Equa-
tions (10)-(11), respectively:

encompasses spatial information extending
both horizontally and vertically. Initially, the
split function is utilized to divide the feature
representation f into two separate tensors
according to the spatial dimension.
Subsequently, the feature representation f is

passed through a common 1×1 convolutional
transformation function, F1, which serves to
thoroughly extract feature data both
horizontally and vertically by processing
along these two directions, we obtain the
intermediate feature representation f1:

𝑓𝑓� = 𝐹𝐹�(𝑓𝑓) (9)

In Equation (9), F1 represents a 1×1
convolutional function.

The attention module feeds the obtained
intermediate feature representation f1 into a
sigmoid activation function and then uses a

split function to divide f1, obtaining the
attention weights gh on the height dimension
and gw on the width dimension of the feature
map. The expressions for gh and gw are shown
in Equations (10) and (11), respectively:

𝑔𝑔� = Sigmoid(𝑓𝑓��) (10)

𝑔𝑔� = Sigmoid(𝑓𝑓��) (11)

In Equations (10) and (11), the activation
function employed is the Sigmoid function.

The obtained attention weights gh and gw are
then multiplied with the two separate tensors
obtained in the first step to achieve weighted

processing, resulting in more refined attention
weights Gh and Gw. The expressions for Gh and
Gw are shown in Equations (12) and (13),
respectively:

 𝐺𝐺� = 𝑓𝑓�⨀𝑔𝑔� (12)
𝐺𝐺� = 𝑓𝑓�⨀𝑔𝑔� (13)

In the third branch, the attention module
utilizes global average pooling on the feature
map, aiming to capture the essential spatial
information while effectively decreasing the

number of model parameters[20,21]. For a
given input x, the squeeze step for the c
channel can be represented as:

𝑧𝑧� = 1
H × W��𝑥𝑥�(i, j)

�

���

�

���
 (14)

In Equation (14), H represents the height and
W indicates the width of the feature map. The
element xc(i,j) is positioned on the input
feature map, where i and j correspond to the
horizontal and vertical coordinates of this
element, individually.

The obtained feature representation is then
fed into a shared 1×1 convolutional
transformation function F1 to obtain the
feature representation f2:

𝑓𝑓� = 𝐹𝐹�(𝑧𝑧�) (15)

In Equation (15), F1 represents a 1×1
convolutional function.

The intermediate feature representation f1
undergoes processing through the Sigmoid
activation function, followed by a mean
operation. This is done to normalize the
intermediate feature representation f1,

resulting in a tensor with the same quantity of
channels as the input x. Subsequently, this
normalized tensor is multiplied with the
feature representation f2 to obtain the global
attention weight gc, which is expressed in
Equation (16) as follows:

𝑔𝑔� = 𝑓𝑓�(Mean�Sigmoid(𝑓𝑓�)�) (16)

In Equation (16), the Mean function represents
the operation of calculating the mean, and
Sigmoid is the activation function.

This attention module multiplies the attention

weights Gh, Gw, and gc obtained from the three
branches to produce the output yc of the
attention module, which is represented as:

𝑦𝑦�(i, j) = 𝑥𝑥�(i, j) × 𝐺𝐺��(i) × 𝐺𝐺��(j) × 𝑔𝑔�(i, j) (17)

Figure 9
Simplified Diagram of MCSA Module.

(10)

encompasses spatial information extending
both horizontally and vertically. Initially, the
split function is utilized to divide the feature
representation f into two separate tensors
according to the spatial dimension.
Subsequently, the feature representation f is

passed through a common 1×1 convolutional
transformation function, F1, which serves to
thoroughly extract feature data both
horizontally and vertically by processing
along these two directions, we obtain the
intermediate feature representation f1:

𝑓𝑓� = 𝐹𝐹�(𝑓𝑓) (9)

In Equation (9), F1 represents a 1×1
convolutional function.

The attention module feeds the obtained
intermediate feature representation f1 into a
sigmoid activation function and then uses a

split function to divide f1, obtaining the
attention weights gh on the height dimension
and gw on the width dimension of the feature
map. The expressions for gh and gw are shown
in Equations (10) and (11), respectively:

𝑔𝑔� = Sigmoid(𝑓𝑓��) (10)

𝑔𝑔� = Sigmoid(𝑓𝑓��) (11)

In Equations (10) and (11), the activation
function employed is the Sigmoid function.

The obtained attention weights gh and gw are
then multiplied with the two separate tensors
obtained in the first step to achieve weighted

processing, resulting in more refined attention
weights Gh and Gw. The expressions for Gh and
Gw are shown in Equations (12) and (13),
respectively:

 𝐺𝐺� = 𝑓𝑓�⨀𝑔𝑔� (12)
𝐺𝐺� = 𝑓𝑓�⨀𝑔𝑔� (13)

In the third branch, the attention module
utilizes global average pooling on the feature
map, aiming to capture the essential spatial
information while effectively decreasing the

number of model parameters[20,21]. For a
given input x, the squeeze step for the c
channel can be represented as:

𝑧𝑧� = 1
H × W��𝑥𝑥�(i, j)

�

���

�

���
 (14)

In Equation (14), H represents the height and
W indicates the width of the feature map. The
element xc(i,j) is positioned on the input
feature map, where i and j correspond to the
horizontal and vertical coordinates of this
element, individually.

The obtained feature representation is then
fed into a shared 1×1 convolutional
transformation function F1 to obtain the
feature representation f2:

𝑓𝑓� = 𝐹𝐹�(𝑧𝑧�) (15)

In Equation (15), F1 represents a 1×1
convolutional function.

The intermediate feature representation f1
undergoes processing through the Sigmoid
activation function, followed by a mean
operation. This is done to normalize the
intermediate feature representation f1,

resulting in a tensor with the same quantity of
channels as the input x. Subsequently, this
normalized tensor is multiplied with the
feature representation f2 to obtain the global
attention weight gc, which is expressed in
Equation (16) as follows:

𝑔𝑔� = 𝑓𝑓�(Mean�Sigmoid(𝑓𝑓�)�) (16)

In Equation (16), the Mean function represents
the operation of calculating the mean, and
Sigmoid is the activation function.

This attention module multiplies the attention

weights Gh, Gw, and gc obtained from the three
branches to produce the output yc of the
attention module, which is represented as:

𝑦𝑦�(i, j) = 𝑥𝑥�(i, j) × 𝐺𝐺��(i) × 𝐺𝐺��(j) × 𝑔𝑔�(i, j) (17)

Figure 9
Simplified Diagram of MCSA Module.

(11)

In Equations (10)-(11), the activation function em-
ployed is the Sigmoid function.
The obtained attention weights gh and gw are then
multiplied with the two separate tensors obtained in
the first step to achieve weighted processing, result-
ing in more refined attention weights Gh and Gw. The
expressions for Gh and Gw are shown in Equations
(12)-(13), respectively:

feature representation f into two separate tensors according to the spatial dimension. Subsequently, the
feature representation f is passed through a common 1×1 convolutional transformation function, F1, which
serves to thoroughly extract feature data both horizontally and vertically by processing along these two
directions, we obtain the intermediate feature representation f1:

𝑓𝑓� = 𝐹𝐹�(𝑓𝑓). (9)

In Equation (9), F1 represents a 1×1 convolutional function.

The attention module feeds the obtained intermediate feature representation f1 into a sigmoid activation
function and then uses a split function to divide f1, obtaining the attention weights gh on the height
dimension and gw on the width dimension of the feature map. The expressions for gh and gw are shown in
Equations (10)-(11), respectively:

𝑔𝑔� = Sigmoid(𝑓𝑓�
�) (10)

𝑔𝑔� = Sigmoid(𝑓𝑓�
�). (11)

In Equations (10)-(11), the activation function employed is the Sigmoid function.

The obtained attention weights gh and gw are then multiplied with the two separate tensors obtained in the
first step to achieve weighted processing, resulting in more refined attention weights Gh and Gw. The
expressions for Gh and Gw are shown in Equations (12)-(13), respectively:

 𝐺𝐺� = 𝑓𝑓�⨀𝑔𝑔� (12)
𝐺𝐺� = 𝑓𝑓�⨀𝑔𝑔� (13)

In the third branch, the attention module utilizes global average pooling on the feature map, aiming to
capture the essential spatial information while effectively decreasing the number of model parameters [20,
21]. For a given input x, the squeeze step for the c channel can be represented as:

𝑧𝑧� =
1

H × W � � 𝑥𝑥�(i, j)
�

���

�

���

. (14)

In Equation (14), H represents the height and W indicates the width of the feature map. The element xc(i,j)
is positioned on the input feature map, where i and j correspond to the horizontal and vertical coordinates
of this element, individually.

The obtained feature representation is then fed into a shared 1×1 convolutional transformation function F1
to obtain the feature representation f2:

𝑓𝑓� = 𝐹𝐹�(𝑧𝑧�). (15)

In Equation (15), F1 represents a 1×1 convolutional function.

The intermediate feature representation f1 undergoes processing through the Sigmoid activation function,
followed by a mean operation. This is done to normalize the intermediate feature representation f1, resulting
in a tensor with the same quantity of channels as the input x. Subsequently, this normalized tensor is
multiplied with the feature representation f2 to obtain the global attention weight gc, which is expressed in
Equation (16) as follows:

𝑔𝑔� = 𝑓𝑓� �Mean�Sigmoid(𝑓𝑓�)��. (16)

In Equation (16), the Mean function represents the operation of calculating the mean, and Sigmoid is the
activation function.

This attention module multiplies the attention weights Gh, Gw, and gc obtained from the three branches to
produce the output yc of the attention module, which is represented as:

𝑦𝑦�(i, j) = 𝑥𝑥�(i, j) × 𝐺𝐺�
�(i) × 𝐺𝐺�

�(j) × 𝑔𝑔�(i, j). (17)

(12)

feature representation f into two separate tensors according to the spatial dimension. Subsequently, the
feature representation f is passed through a common 1×1 convolutional transformation function, F1, which
serves to thoroughly extract feature data both horizontally and vertically by processing along these two
directions, we obtain the intermediate feature representation f1:

𝑓𝑓� = 𝐹𝐹�(𝑓𝑓). (9)

In Equation (9), F1 represents a 1×1 convolutional function.

The attention module feeds the obtained intermediate feature representation f1 into a sigmoid activation
function and then uses a split function to divide f1, obtaining the attention weights gh on the height
dimension and gw on the width dimension of the feature map. The expressions for gh and gw are shown in
Equations (10)-(11), respectively:

𝑔𝑔� = Sigmoid(𝑓𝑓�
�) (10)

𝑔𝑔� = Sigmoid(𝑓𝑓�
�). (11)

In Equations (10)-(11), the activation function employed is the Sigmoid function.

The obtained attention weights gh and gw are then multiplied with the two separate tensors obtained in the
first step to achieve weighted processing, resulting in more refined attention weights Gh and Gw. The
expressions for Gh and Gw are shown in Equations (12)-(13), respectively:

 𝐺𝐺� = 𝑓𝑓�⨀𝑔𝑔� (12)
𝐺𝐺� = 𝑓𝑓�⨀𝑔𝑔� (13)

In the third branch, the attention module utilizes global average pooling on the feature map, aiming to
capture the essential spatial information while effectively decreasing the number of model parameters [20,
21]. For a given input x, the squeeze step for the c channel can be represented as:

𝑧𝑧� =
1

H × W � � 𝑥𝑥�(i, j)
�

���

�

���

. (14)

In Equation (14), H represents the height and W indicates the width of the feature map. The element xc(i,j)
is positioned on the input feature map, where i and j correspond to the horizontal and vertical coordinates
of this element, individually.

The obtained feature representation is then fed into a shared 1×1 convolutional transformation function F1
to obtain the feature representation f2:

𝑓𝑓� = 𝐹𝐹�(𝑧𝑧�). (15)

In Equation (15), F1 represents a 1×1 convolutional function.

The intermediate feature representation f1 undergoes processing through the Sigmoid activation function,
followed by a mean operation. This is done to normalize the intermediate feature representation f1, resulting
in a tensor with the same quantity of channels as the input x. Subsequently, this normalized tensor is
multiplied with the feature representation f2 to obtain the global attention weight gc, which is expressed in
Equation (16) as follows:

𝑔𝑔� = 𝑓𝑓� �Mean�Sigmoid(𝑓𝑓�)��. (16)

In Equation (16), the Mean function represents the operation of calculating the mean, and Sigmoid is the
activation function.

This attention module multiplies the attention weights Gh, Gw, and gc obtained from the three branches to
produce the output yc of the attention module, which is represented as:

𝑦𝑦�(i, j) = 𝑥𝑥�(i, j) × 𝐺𝐺�
�(i) × 𝐺𝐺�

�(j) × 𝑔𝑔�(i, j). (17)

(13)

In the third branch, the attention module utilizes
global average pooling on the feature map, aiming to
capture the essential spatial information while effec-
tively decreasing the number of model parameters
[20, 21]. For a given input x, the squeeze step for the c
channel can be represented as:

Figure 9
Simplified Diagram of MCSA Module

1299Information Technology and Control 2024/4/53

feature representation f into two separate tensors according to the spatial dimension. Subsequently, the
feature representation f is passed through a common 1×1 convolutional transformation function, F1, which
serves to thoroughly extract feature data both horizontally and vertically by processing along these two
directions, we obtain the intermediate feature representation f1:

𝑓𝑓� = 𝐹𝐹�(𝑓𝑓). (9)

In Equation (9), F1 represents a 1×1 convolutional function.

The attention module feeds the obtained intermediate feature representation f1 into a sigmoid activation
function and then uses a split function to divide f1, obtaining the attention weights gh on the height
dimension and gw on the width dimension of the feature map. The expressions for gh and gw are shown in
Equations (10)-(11), respectively:

𝑔𝑔� = Sigmoid(𝑓𝑓�
�) (10)

𝑔𝑔� = Sigmoid(𝑓𝑓�
�). (11)

In Equations (10)-(11), the activation function employed is the Sigmoid function.

The obtained attention weights gh and gw are then multiplied with the two separate tensors obtained in the
first step to achieve weighted processing, resulting in more refined attention weights Gh and Gw. The
expressions for Gh and Gw are shown in Equations (12)-(13), respectively:

 𝐺𝐺� = 𝑓𝑓�⨀𝑔𝑔� (12)
𝐺𝐺� = 𝑓𝑓�⨀𝑔𝑔� (13)

In the third branch, the attention module utilizes global average pooling on the feature map, aiming to
capture the essential spatial information while effectively decreasing the number of model parameters [20,
21]. For a given input x, the squeeze step for the c channel can be represented as:

𝑧𝑧� =
1

H × W � � 𝑥𝑥�(i, j)
�

���

�

���

. (14)

In Equation (14), H represents the height and W indicates the width of the feature map. The element xc(i,j)
is positioned on the input feature map, where i and j correspond to the horizontal and vertical coordinates
of this element, individually.

The obtained feature representation is then fed into a shared 1×1 convolutional transformation function F1
to obtain the feature representation f2:

𝑓𝑓� = 𝐹𝐹�(𝑧𝑧�). (15)

In Equation (15), F1 represents a 1×1 convolutional function.

The intermediate feature representation f1 undergoes processing through the Sigmoid activation function,
followed by a mean operation. This is done to normalize the intermediate feature representation f1, resulting
in a tensor with the same quantity of channels as the input x. Subsequently, this normalized tensor is
multiplied with the feature representation f2 to obtain the global attention weight gc, which is expressed in
Equation (16) as follows:

𝑔𝑔� = 𝑓𝑓� �Mean�Sigmoid(𝑓𝑓�)��. (16)

In Equation (16), the Mean function represents the operation of calculating the mean, and Sigmoid is the
activation function.

This attention module multiplies the attention weights Gh, Gw, and gc obtained from the three branches to
produce the output yc of the attention module, which is represented as:

𝑦𝑦�(i, j) = 𝑥𝑥�(i, j) × 𝐺𝐺�
�(i) × 𝐺𝐺�

�(j) × 𝑔𝑔�(i, j). (17)

(14)

In Equation (14), H represents the height and W indi-
cates the width of the feature map. The element xc(i,j)
is positioned on the input feature map, where i and j
correspond to the horizontal and vertical coordinates
of this element, individually.
The obtained feature representation is then fed into a
shared 1×1 convolutional transformation function F1
to obtain the feature representation f2:

feature representation f into two separate tensors according to the spatial dimension. Subsequently, the
feature representation f is passed through a common 1×1 convolutional transformation function, F1, which
serves to thoroughly extract feature data both horizontally and vertically by processing along these two
directions, we obtain the intermediate feature representation f1:

𝑓𝑓� = 𝐹𝐹�(𝑓𝑓). (9)

In Equation (9), F1 represents a 1×1 convolutional function.

The attention module feeds the obtained intermediate feature representation f1 into a sigmoid activation
function and then uses a split function to divide f1, obtaining the attention weights gh on the height
dimension and gw on the width dimension of the feature map. The expressions for gh and gw are shown in
Equations (10)-(11), respectively:

𝑔𝑔� = Sigmoid(𝑓𝑓�
�) (10)

𝑔𝑔� = Sigmoid(𝑓𝑓�
�). (11)

In Equations (10)-(11), the activation function employed is the Sigmoid function.

The obtained attention weights gh and gw are then multiplied with the two separate tensors obtained in the
first step to achieve weighted processing, resulting in more refined attention weights Gh and Gw. The
expressions for Gh and Gw are shown in Equations (12)-(13), respectively:

 𝐺𝐺� = 𝑓𝑓�⨀𝑔𝑔� (12)
𝐺𝐺� = 𝑓𝑓�⨀𝑔𝑔� (13)

In the third branch, the attention module utilizes global average pooling on the feature map, aiming to
capture the essential spatial information while effectively decreasing the number of model parameters [20,
21]. For a given input x, the squeeze step for the c channel can be represented as:

𝑧𝑧� =
1

H × W � � 𝑥𝑥�(i, j)
�

���

�

���

. (14)

In Equation (14), H represents the height and W indicates the width of the feature map. The element xc(i,j)
is positioned on the input feature map, where i and j correspond to the horizontal and vertical coordinates
of this element, individually.

The obtained feature representation is then fed into a shared 1×1 convolutional transformation function F1
to obtain the feature representation f2:

𝑓𝑓� = 𝐹𝐹�(𝑧𝑧�). (15)

In Equation (15), F1 represents a 1×1 convolutional function.

The intermediate feature representation f1 undergoes processing through the Sigmoid activation function,
followed by a mean operation. This is done to normalize the intermediate feature representation f1, resulting
in a tensor with the same quantity of channels as the input x. Subsequently, this normalized tensor is
multiplied with the feature representation f2 to obtain the global attention weight gc, which is expressed in
Equation (16) as follows:

𝑔𝑔� = 𝑓𝑓� �Mean�Sigmoid(𝑓𝑓�)��. (16)

In Equation (16), the Mean function represents the operation of calculating the mean, and Sigmoid is the
activation function.

This attention module multiplies the attention weights Gh, Gw, and gc obtained from the three branches to
produce the output yc of the attention module, which is represented as:

𝑦𝑦�(i, j) = 𝑥𝑥�(i, j) × 𝐺𝐺�
�(i) × 𝐺𝐺�

�(j) × 𝑔𝑔�(i, j). (17)

(15)

In Equation (15), F1 represents a 1×1 convolutional
function.
The intermediate feature representation f1 undergoes
processing through the Sigmoid activation function,
followed by a mean operation. This is done to normal-
ize the intermediate feature representation f1, result-
ing in a tensor with the same quantity of channels as
the input x. Subsequently, this normalized tensor is
multiplied with the feature representation f2 to obtain
the global attention weight gc, which is expressed in
Equation (16) as follows:

feature representation f into two separate tensors according to the spatial dimension. Subsequently, the
feature representation f is passed through a common 1×1 convolutional transformation function, F1, which
serves to thoroughly extract feature data both horizontally and vertically by processing along these two
directions, we obtain the intermediate feature representation f1:

𝑓𝑓� = 𝐹𝐹�(𝑓𝑓). (9)

In Equation (9), F1 represents a 1×1 convolutional function.

The attention module feeds the obtained intermediate feature representation f1 into a sigmoid activation
function and then uses a split function to divide f1, obtaining the attention weights gh on the height
dimension and gw on the width dimension of the feature map. The expressions for gh and gw are shown in
Equations (10)-(11), respectively:

𝑔𝑔� = Sigmoid(𝑓𝑓�
�) (10)

𝑔𝑔� = Sigmoid(𝑓𝑓�
�). (11)

In Equations (10)-(11), the activation function employed is the Sigmoid function.

The obtained attention weights gh and gw are then multiplied with the two separate tensors obtained in the
first step to achieve weighted processing, resulting in more refined attention weights Gh and Gw. The
expressions for Gh and Gw are shown in Equations (12)-(13), respectively:

 𝐺𝐺� = 𝑓𝑓�⨀𝑔𝑔� (12)
𝐺𝐺� = 𝑓𝑓�⨀𝑔𝑔� (13)

In the third branch, the attention module utilizes global average pooling on the feature map, aiming to
capture the essential spatial information while effectively decreasing the number of model parameters [20,
21]. For a given input x, the squeeze step for the c channel can be represented as:

𝑧𝑧� =
1

H × W � � 𝑥𝑥�(i, j)
�

���

�

���

. (14)

In Equation (14), H represents the height and W indicates the width of the feature map. The element xc(i,j)
is positioned on the input feature map, where i and j correspond to the horizontal and vertical coordinates
of this element, individually.

The obtained feature representation is then fed into a shared 1×1 convolutional transformation function F1
to obtain the feature representation f2:

𝑓𝑓� = 𝐹𝐹�(𝑧𝑧�). (15)

In Equation (15), F1 represents a 1×1 convolutional function.

The intermediate feature representation f1 undergoes processing through the Sigmoid activation function,
followed by a mean operation. This is done to normalize the intermediate feature representation f1, resulting
in a tensor with the same quantity of channels as the input x. Subsequently, this normalized tensor is
multiplied with the feature representation f2 to obtain the global attention weight gc, which is expressed in
Equation (16) as follows:

𝑔𝑔� = 𝑓𝑓� �Mean�Sigmoid(𝑓𝑓�)��. (16)

In Equation (16), the Mean function represents the operation of calculating the mean, and Sigmoid is the
activation function.

This attention module multiplies the attention weights Gh, Gw, and gc obtained from the three branches to
produce the output yc of the attention module, which is represented as:

𝑦𝑦�(i, j) = 𝑥𝑥�(i, j) × 𝐺𝐺�
�(i) × 𝐺𝐺�

�(j) × 𝑔𝑔�(i, j). (17)

(16)

In Equation (16), the Mean function represents the
operation of calculating the mean, and Sigmoid is the
activation function.
This attention module multiplies the attention
weights Gh, Gw, and gc obtained from the three branch-
es to produce the output yc of the attention module,
which is represented as:

feature representation f into two separate tensors according to the spatial dimension. Subsequently, the
feature representation f is passed through a common 1×1 convolutional transformation function, F1, which
serves to thoroughly extract feature data both horizontally and vertically by processing along these two
directions, we obtain the intermediate feature representation f1:

𝑓𝑓� = 𝐹𝐹�(𝑓𝑓). (9)

In Equation (9), F1 represents a 1×1 convolutional function.

The attention module feeds the obtained intermediate feature representation f1 into a sigmoid activation
function and then uses a split function to divide f1, obtaining the attention weights gh on the height
dimension and gw on the width dimension of the feature map. The expressions for gh and gw are shown in
Equations (10)-(11), respectively:

𝑔𝑔� = Sigmoid(𝑓𝑓�
�) (10)

𝑔𝑔� = Sigmoid(𝑓𝑓�
�). (11)

In Equations (10)-(11), the activation function employed is the Sigmoid function.

The obtained attention weights gh and gw are then multiplied with the two separate tensors obtained in the
first step to achieve weighted processing, resulting in more refined attention weights Gh and Gw. The
expressions for Gh and Gw are shown in Equations (12)-(13), respectively:

 𝐺𝐺� = 𝑓𝑓�⨀𝑔𝑔� (12)
𝐺𝐺� = 𝑓𝑓�⨀𝑔𝑔� (13)

In the third branch, the attention module utilizes global average pooling on the feature map, aiming to
capture the essential spatial information while effectively decreasing the number of model parameters [20,
21]. For a given input x, the squeeze step for the c channel can be represented as:

𝑧𝑧� =
1

H × W � � 𝑥𝑥�(i, j)
�

���

�

���

. (14)

In Equation (14), H represents the height and W indicates the width of the feature map. The element xc(i,j)
is positioned on the input feature map, where i and j correspond to the horizontal and vertical coordinates
of this element, individually.

The obtained feature representation is then fed into a shared 1×1 convolutional transformation function F1
to obtain the feature representation f2:

𝑓𝑓� = 𝐹𝐹�(𝑧𝑧�). (15)

In Equation (15), F1 represents a 1×1 convolutional function.

The intermediate feature representation f1 undergoes processing through the Sigmoid activation function,
followed by a mean operation. This is done to normalize the intermediate feature representation f1, resulting
in a tensor with the same quantity of channels as the input x. Subsequently, this normalized tensor is
multiplied with the feature representation f2 to obtain the global attention weight gc, which is expressed in
Equation (16) as follows:

𝑔𝑔� = 𝑓𝑓� �Mean�Sigmoid(𝑓𝑓�)��. (16)

In Equation (16), the Mean function represents the operation of calculating the mean, and Sigmoid is the
activation function.

This attention module multiplies the attention weights Gh, Gw, and gc obtained from the three branches to
produce the output yc of the attention module, which is represented as:

𝑦𝑦�(i, j) = 𝑥𝑥�(i, j) × 𝐺𝐺�
�(i) × 𝐺𝐺�

�(j) × 𝑔𝑔�(i, j). (17) (17)

2.4. Lightweight Detection Head

2.4.1. YOLOv8 Detection Head
The detection head in YOLOv8 is vital for object
detection and accounts for 1/5 of the computation-
al load within the model framework. The “Detect”
component corresponds to the detection head part
of YOLOv8, comprising two distinct branches, as de-
picted in Figure 10.

The two branches of the YOLOv8 detection head ex-
tract information through two 3×3 convolutions and
a 1×1 convolution, respectively. Ultimately, they de-
termine the bounding box regression loss (denoted
as Bounding Box.loss) and the classification loss (de-
noted as Cls.loss or Classification Loss), each being
calculated separately. After the three layers of convo-
lution, a for loop is employed to traverse each of the
three channels, which markedly raises the computa-
tional load and parameter count of the detection head.

2.4.2. Light Conv Detect Proposed in This Study
As depicted in Figure 11, the aim is to decrease both the
number of parameters and the computational burden
associated with the detection head, this paper designs
a new detection head named Light Conv Detect (LCD).
In each branch, the detection head feeds the feature
map into a 1×1 convolution (Conv-GN), which consists
of a convolutional layer and a normalization layer. The
convolutional layer is tasked with learning the spatial
relationships among the input features. Meanwhile,
the normalization layer standardizes the output of the
convolutional layer, aiming to expedite the training
process and enhance the model’s generalization capa-
bilities. The Conv-GN convolution can enhance the de-
tection head’s ability in localization and classification.
After being transformed by the 1×1 Conv-GN convolu-
tion, the feature maps on each branch are input into a
3×3 shared convolution (Conv-GN). After being trans-
formed by this convolution, the feature maps are then
fed into another 3×3 shared convolution (Conv-GN).
These two 3×3 convolutions share the same convolu-
tional parameters, thereby achieving efficient feature
extraction and object detection. This procedure has
the ability to significantly reduce the number of param-
eters, all while preserving a high degree of precision[7].
Upon extracting the feature information from the fea-
ture maps, three shared classification convolutions
(Conv-Cls) are utilized to produce the category predic-
tions for the targets, and the feature maps are convert-

Figure 10
YOLOv8 Detection Head branch

Information Technology and Control 2024/4/531300

ed into category probability distributions through this
convolutional transformation function. By using clas-
sification convolutions (Conv-Cls) for convolutional
transformation at different scales, the detection head
achieves accurate classification of targets of different
sizes. The detection head uses three shared regression
convolutions (Conv-Reg) to predict the position infor-
mation of the targets (such as bounding box coordi-
nates), and the classification convolutions (Conv-Cls)
and regression convolutions (Conv-Reg) used here
share parameters. While using shared convolutions, to
tackle the problem of varying target scales identified
by individual detection heads, a scaling layer (Scale) is
employed to adjust the feature maps, ensuring unifor-
mity in the target scales detected across all heads. By
using shared convolutions and convolutional param-
eter sharing, the detection head significantly decreas-
es the parameter count and computational load with
minimal loss of accuracy, making the model lighter and
improving the speed of object detection.

3. Self-Defined Dataset
The effectiveness of the fish catch classification and
detection algorithm introduced in this study is as-
sessed using a customized dataset (https://github.
com/tiange120/self-dataset). This dataset initially
comprises 9,000 images and is augmented to 12,000
images through methods such as flipping and crop-
ping. It covers ten different major economic fish
catches: golden pomfret, silver pomfret, Pacific sau-
ry, swimming crab, whelk, red snapper, codfish, sar-
dine, Pacific bluefin tuna, and skipjack tuna. Using
Make Sense software, manually classify and annotate
the given objects, and mark their bounding boxes. As
shown in Figure 12, it presents an example from this
dataset. The dataset is partitioned into training, vali-
dation, and testing subsets with a ratio of 7:2:1, aimed
at evaluating the performance of the YOLOv8-WML
network framework.

3.1. Add Noise Processing

To prevent overfitting, noise is added to the images
transformed through methods such as flipping and
cropping. As shown in Figure 13, salt and pepper
noise, Gaussian noise, and Poisson noise are added
to some images to simulate the potential interfer-
ences that images may encounter in real-time detec-
tion. By adding different types of noise, the complex-
ity and diversity of the dataset can be increased. This
aids the model in moving beyond mere dependence
on specific features of the training data, enabling it
to learn how to extract useful feature information
from a broader range of data, thereby enhancing the
model’s generalization ability and robustness.

Figure 11
Light Conv Detect

Figure 12
Some fish catch images from the Self-Defined dataset

1301Information Technology and Control 2024/4/53

3.2. Histogram Equalization Processing
Histogram equalization processing is applied to imag-
es with uneven grayscale distribution due to lighting
issues, which can cause blurred object textures, color
distortion, and weakened features. As shown in Figure

Figure 13
Comparison of Image with Noise Addition Processing

(a) Original fish catch image (b) Image after noise addition processing

14, histogram equalization processing can enhance
the image’s contrast by adjusting its grayscale distri-
bution, thereby expanding its dynamic range [11]. This
enhancement of contrast reduces color distortion and
shadowing in the image, making it clearer and helping
the model capture more useful feature information [17].

Figure 14
Image contrast after histogram equalization processing and its histogram comparison

(a) Original fish catch image (b) Image after histogram equalization processing

(c) Original image histogram (d) Equalized Histogram

Information Technology and Control 2024/4/531302

Figure 15
Enhance image contrast through sharpening processing

3.3. Sharpening Process
Enhance the sharpness of the image, particularly in ar-
eas where object contours are indistinct and features
appear blurred due to shaking. Figure 15 illustrates
that sharpening can accentuate the edges and contours
within the image, thereby enhancing the high-frequen-
cy information [12]. This augmentation facilitates the
model’s ability to capture and detect pivotal features in
the image, as well as to distinguish between various ob-
jects and regions within intricate backgrounds.

4. Model Training
4.1. Environmental Setup
The hardware environment used in this study is an
NVIDIA GeForce RTX 3070Ti graphics card with
Ubuntu 20.04 GPU drivers; the software environment
used is Python 3.8.16 and torch 1.13.0 + cu117. All ex-
periments are set to train for 500 epochs, and training
will be stopped early if there is no significant improve-
ment in average precision after 50 epochs. In the pro-
cess of model training, specific parameters are estab-
lished: the batch size is designated as 24, the learning
rate is fixed at 0.01, the SGD momentum is assigned a
value of 0.937, and the optimizer weight decay is set to
0.0005. All remaining training parameters adhere to
the default settings specified in the YOLOv8s model.

4.2. Training Results of the Model Validation Set
The model is configured for 500 training rounds, and
the training process will cease automatically if no no-

(a) Original fish catch image (b) Image after sharpening process

table enhancement in average accuracy is observed.
After the 152nd training round, the YOLOv8-WML
model achieved training results on the custom data-
set. Figure 16 displays various performance metrics
for both the training set and the validation set.
Figure 16 illustrates the bounding box loss curve, the
object loss curve, and the classification loss curve for
the enhanced YOLOv8 model, depicted in the first
three columns. The three curves depicted in the initial
three columns exhibit the loss trend, with the hori-
zontal axis denoting the training rounds and the ver-
tical axis indicating the aggregate loss value. As can be
seen from the curves, with the progression of training
rounds, the overall loss value continues to decrease and
eventually stabilizes. The findings of the experiments
indicate that the YOLOv8-WML model presented in
this paper displays satisfactory levels of fitting capabil-
ity, stability, and precision. The last two columns dis-
play the accuracy curve and the mean accuracy curve.
The horizontal axis signifies the number of training
rounds, while the vertical axis denotes both the accu-
racy rate and the average accuracy rate. The last two
columns feature curves that assess object detection
performance based on varying confidence thresholds;
a value closer to 1 on these curves signifies a higher lev-
el of confidence demonstrated by the model.
Figure 17 displays a confusion matrix that depicts the
prediction accuracy of the YOLOv8-WML model for
the 10 categories of fish catches in the custom data-
set. Furthermore, it demonstrates the connection
between the predicted categories and their corre-
sponding accuracy rates. Figure 16 displays a confu-
sion matrix where the columns denote the predicted

1303Information Technology and Control 2024/4/53

Figure 16
Performance metrics of the YOLOv8-WML model

Figure 17
The confusion matrix of the YOLOv8-WML model

Information Technology and Control 2024/4/531304

categories, the rows denote the actual labels, and the
diagonal elements indicate the prediction accuracy.
Figure 16 reveals that the YOLOv8-WML model at-
tains elevated accuracy levels across all categories.
Figure 18 illustrates that as the recall rate rises, the
precision also experiences an accelerated rate of
change. The PR curve of the YOLOv8-WML model
closely hugs the upper right corner, signifying its high
recall and precision rates. The considerable area be-
neath the PR curve indicates that the YOLOv8-WML
model exhibits good performance. The PR curve’s
smoothness suggests a consistent balance between
recall and precision within the YOLOv8-WML model.

Figure 19
The F1-Confidence Curve of the YOLOv8-WML Model

Figure 18
The PR curve of the YOLOv8-WML model

As illustrated in Figure 19, the F1 score typically rises
and then falls with an increase in confidence, reflect-
ing the model’s transition from being overly cautious to
overly confident. The F1-confidence curve in Figure 19
comprehensively evaluates the model’s precision and
recall in classification tasks by calculating the F1 score

at different confidence thresholds. This aids in assess-
ing the model’s performance at various confidence lev-
els and the differences in classification difficulty among
different categories. The horizontal axis represents con-
fidence, ranging from 0 to 1, indicating the level of cer-
tainty in the model’s prediction that a sample belongs to
a certain category. The vertical axis denotes the F1 score,
which is the harmonic mean of precision and recall,
used to gauge the accuracy of the model’s classification.
The multiple colored lines in Figure 19 depict the trends
of F1 scores for different categories as confidence varies.
For all classes, when the confidence level is 0.304, the F1
score reaches 0.83, indicating that the model performs
exceptionally well at this confidence level.

4.3. Ablation Experiment
To evaluate the effectiveness and reliability of the
YOLOv8 enhancement scheme across various as-

1305Information Technology and Control 2024/4/53

pects, and to gauge how they contribute to perfor-
mance improvements by systematically withdrawing
these enhancements, we carried out an ablation study.
Table 1 displays the experimental outcomes obtained
from the validation set, utilizing the Self-Defined
dataset.
From Table 1, although the performance of the
YOLOv8-WML model decreased due to the replace-
ment of the LCD detection head, the combination of
the WFR module and the MCSA module brought per-
formance improvements compared to the baseline.
This is attributed to the complementarity of these
three technologies. The WFR module can extract
more detailed features at multiple scales, while the
MCSA module can accurately capture spatial rela-
tionships between different channels and enhance
feature representations, thereby compensating for
the performance degradation caused by the LCD de-
tection head. The lightweight convolutional detection
head is designed to meet the parameter constraints of
embedded systems. By minimizing the use of shared
convolutions, it effectively reduces the number of
model parameters. Throughout this process, efforts
are made to minimize the impact on model perfor-
mance, thereby achieving an ideal balance between
model complexity and accuracy. By leveraging the
complementarity of these three technologies, the en-
hanced model boosts overall performance and accel-
erates computational speed, proving advantageous
for real-time object detection.
Table 1’s first row showcases the detection results
of the original YOLOv8 model, serving as the exper-
imental baseline. The second row displays the out-
comes following the integration of the WFR module,
capable of capturing intricate features across various

scales and enhancing the receptive field for each net-
work. When the WFR module is integrated, it leads
to an enhancement of 4.7% in mAP@0.5 and 5.6% in
mAP@0.5:0.95 compared to the baseline YOLOv8
model. The third row presents the findings after in-
troducing the MCSA module, an attention module
that divides channels into three, decomposes global
pooling into one-to-one feature encoding operations
while retaining global pooling, aiming to fully extract
features from each channel with a smaller number
of parameters and accurately capture spatial rela-
tionships between different channels. In contrast to
the initial YOLOv8 model, there is a 1.8% increase in
mAP@0.5 and a 2.3% boost in mAP@0.5:0.95. The
fourth row shows the findings of replacing the detec-
tion head with the LCD detection head. This findings
in a notable reduce in the quantity of parameters and
computational load, achieved through the utilization
of shared convolutions. When comparing the modi-
fied YOLOv8 to its initial counterpart, it’s noted that
while mAP@0.5 decreases by 2.9% and mAP@0.5:0.95
by 2.6%, there is a significant 18% reduction in pa-
rameter count and a 16.9% decrease in computational
load. The fifth row presents the experimental findings
when using both the WMR module and the MCSA
module. When compared to the baseline, there is a
6.2% enhancement in mAP@0.5 and a 6.3% improve-
ment in mAP@0.5:0.95. The last row displays the ul-
timate outcomes of the fish sorting detection model
introduced in this paper, achieving improvements of
2.2% and 3.7% in mAP@0.5 and mAP@0.5:0.95 indi-
vidually, and the quantity of parameters and compu-
tational load reduced by 16.63% and 13.03% respec-
tively. The experimental results demonstrate herein
validate the assertion of this paper, namely that the

WFR MCS LCD mAP@0.5 mAP@0.5:0.95 parameters GFLOPs

0.839 0.649 11127906 28.4

√ 0.886 0.705 11844252 29.5

√ 0.857 0.672 11293605 29.0

√ 0.810 0.623 9124781 23.6

√ √ 0.901 0.712 12010151 30.2

√ √ √ 0.861 0.686 9277570 24.7

Table 1
Ablation experiment table for the YOLOv8-WML model

Information Technology and Control 2024/4/531306

YOLOv8-WML model enhances detection accuracy
and expedites the detection process, while simultane-
ously diminishing the parameter count and alleviat-
ing the computational burden.

5. Comparative Experiment
5.1. Analysis of Experimental Outcomes
Across Various Datasets
In order to assess the model’s generalization capa-
bility, comparative experiments were performed
utilizing the publicly available dataset FishKnowl-

Figure 20
Performance comparison between the YOLOv8-WML model and the YOLOv8 model

edge. This dataset bears resemblance to the custom
dataset, as they both depict scenarios characterized
by densely packed biological entities, targets at mul-
tiple scales, and instances that may partially obscure
one another[14]. The FishKnowledge dataset con-
sists of 8723 training images, 2111 validation images,
and 1123 testing images. The YOLOv8-WML model,
which we propose, underwent training and testing
in conjunction with the YOLOv8 model. The findings
are illustrated in Figure 20.
The results are presented in Figure 20, the YOLOv8-
WML model achieved favorable findings on the pub-

1307Information Technology and Control 2024/4/53

lic dataset. Compared with the YOLOv8 model, it
not only exhibited higher mAP@0.5 and mAP@0.95
function curves but also demonstrated significantly
lower distribution focal loss (dfl_loss) and classifica-
tion loss (cls_loss) function curves. This suggests that
the YOLOv8-WML model exhibits superior detection
accuracy, characterized by diminished positional dis-
parities between the anticipated bounding boxes and
the actual ones, as well as reduced inconsistencies be-
tween the predicted categories and the genuine cate-
gories. The findings of the experiment indicate that
the YOLOv8-WML model shows outstanding per-
formance and can be efficiently utilized in scenarios
characterized by dense biological entities, multiple
scales, and potential occlusion.
As shown in Figure 21, a comparison is made between
the recognition results of real-world scenarios, the
YOLOv8s model, and the YOLOv8s-WML model on
a public dataset. The results clearly demonstrate that
the YOLOv8s-WML model outperforms the YOLOv8s
model in terms of performance. The YOLOv8s-WML
model effectively reduces the miss rate and false
alarm rate, enhances accuracy and computational

Figure 21
Comparison of Image Detection Results on Public Datasets

(a) Real Image Labels (b) Image Detected by YOLOv8s Model (c) Image Detected by YOLOv8s-
WML Model

speed, and decreases the number of parameters. The
experiments indicate that the proposed YOLOv8s-
WML model possesses good generalization capabili-
ties [23] . Through the synergistic effects of the WFR
module and the MCSA attention mechanism, it can
effectively identify other marine species in different
environments.

5.2. Contrasting Experiments and Outcomes
Across Various Models
This paper will compare the findings of different mod-
els in the experiment from aspects such as precision,
recall values, mAP values, F1 values and fps values. All
experiments were conducted on a Self-Defined data-
set, with the YOLOv8s model as the baseline. Table 2
displays the experimental results, indicating that the
YOLOv8s-WML model, designed for fish sorting detec-
tion, reached an mAP@0.5 score of 86.1%. This score
notably surpasses that of the original YOLOv8s model,
demonstrating a significant advantage. It is 1.1% high-
er than the Faster-RCNN model [19], 0.4% higher than
the SSD model [15], and 3.7% higher than the YOLOv5s
model. Furthermore, the YOLOv8s-WML model

Table 2
Performance comparison table of different models

Model Precision Recall mAP@0.5 mAP@0.95 F1 FPS(f/s)

Faster-RCNN 0.728 0.885 0.850 0.661 0.799 37.2

SSD 0.750 0.871 0.857 0.668 0.806 88.5

YOLOv5s 0.779 0.802 0.824 0.636 0.800 162.7

YOLOv8s 0.803 0.799 0.839 0.649 0.801 140.8

YOLOv8s-WML 0.825 0.820 0.861 0.686 0.822 223.1

Information Technology and Control 2024/4/531308

Figure 22
Comparison of Image Detection Results

achieved an F1 score of 0.822, which is 2.6% higher
than that of the YOLOv8s model, 2.5% higher than the
YOLOv5s model, 1.9% higher than the SSD model, and
2.8% higher than the Faster-RCNN model. The experi-
mental results indicate that the model proposed in this
paper exhibits better performance.
In order to showcase the superior accuracy of the
YOLOv8s-WML model presented in this study, a se-
lection of images was made from the Self-Defined
dataset. As shown in Figure 22, the fish sorting de-
tection results for real scenes, the YOLOv8s model,
and the YOLOv8s-WML model are presented. When
dealing with dense, overlapping, and varied-scale tar-
gets, the YOLOv8s-WML model notably surpasses
the YOLOv8s model. It excels at minimizing missed
detections and false positives, enhancing precision
and processing speed, while also reducing parame-
ter count and computational burden. This essentially
meets the requirements of fish sorting detection tasks
and has more practical application value.

6. Conclusions and Future Work
The fish catch sorting and detection model proposed
in this paper addresses common challenges in trawl
fishing catch sorting video images, such as dense
scenes, mutual occlusion, and multi-scale scenarios.
Addressing these Difficulties, the present paper pro-
poses a range of novel methodologies. Specifically, In
the YOLOv8 network architecture, the C2f module lo-
cated in its backbone is substituted by the WFR mod-
ule. The WFR module enhances the model’s ability
to extract features in multi-scale scenarios, thereby
improving the detection precision of the model. An
innovative attention mechanism, named MCSA, is

(a) Real Image Labels (b) Image Detected by YOLOv8s Model (c) Image Detected by YOLOv8s-
WML Model

introduced. The MCSA attention mechanism can ef-
fectively derive features from various channels with a
smaller quantity of parameters, accurately capture the
spatial relationships between different channels, and
simultaneously enhance the generation of offsets and
sampling weights. The detection head has undergone
lightweight optimizations, resulting in enhanced mod-
el performance, a decreased number of parameters, re-
duced computational load, and faster detection speed.
Techniques for enhancing images are utilized to tackle
the problem of low-quality original video images, ul-
timately leading to improved input image quality and
subsequent enhancement of the model’s performance.
However, despite the numerous advantages demon-
strated by the YOLOv8-WML model in experiments,
there are still some limitations that need further im-
provement and refinement in future work. In the exper-
iments, while the Lightweight Convolutional Detection
Head (LCD) significantly reduced the model parame-
ters, it also led to a decrease in classification accuracy.
Future work can explore more efficient model light-
weighting methods, striving to maintain the model’s
classification accuracy while reducing the number of
parameters. For instance, more sophisticated pruning
strategies, knowledge distillation techniques, or low-
rank factorization methods can be considered to find a
better balance between model lightweighting and per-
formance preservation. Additionally, while the current
custom dataset covers various types of economically
important fish catches, the diversity and scale of the
dataset are still limited, potentially failing to compre-
hensively reflect the complex situations encountered
in actual marine fishing, thereby affecting the model’s
generalization ability. In the future, the dataset can be
further expanded to increase its complexity and diver-
sity, enhancing the model’s generalization capability.

1309Information Technology and Control 2024/4/53

References
1. Cai, Y., Xu, S., Chen, Z. Community Structure and Di-

versity Status of Fisheries Resources in the Offshore
Waters of the Northern South China Sea. South China
Fisheries Science, 2018, 14(2), 10-18.

2. Cui, S., Zhou, Y., Wang, Y., Zhai, L. Fish Detection Us-
ing Deep Learning. Applied Computational Intelli-
gence and Soft Computing, 2020, 3738108. https://doi.
org/10.1155/2020/3738108

3. Ding, X., Zhang, Y., Ge, Y., Zhao, S., Song, L., Yue,
X., Shan, Y. UniRepLKNet: A Universal Perception
Large-Kernel ConvNet for Audio, Video, Point Cloud,
Time-Series and Image Recognition. Computer Vision
and Pattern Recognition, 2024. https://doi.org/10.1109/
CVPR52733.2024.00527

4. Feng, Y., Tao, X., Lee, E.-J. Classification of Shellfish Rec-
ognition Based on Improved Faster R-CNN Framework of
Deep Learning. Mathematical Problems in Engineering,
2021, 1966848. https://doi.org/10.1155/2021/1966848

5. He, K., Zhang, X., Ren, S., Sun, J. Deep Residual Learn-
ing for Image Recognition. In Proceedings of the 2016
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016, 770-778. https://doi.
org/10.1109/CVPR.2016.90

6. He, K., Zhang, X., Ren, S., Sun, J. Delving Deep into
Rectifiers: Surpassing Human-Level Performance
on ImageNet Classification. Computer Vision and
Pattern Recognition, 2015. https://doi.org/10.1109/
ICCV.2015.123

7. He, K., Zhang, X., Ren, S., Sun, J. Spatial Pyramid Pool-
ing in Deep Convolutional Networks for Visual Rec-
ognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2015, 37, 1904-1916. https://doi.
org/10.1109/TPAMI.2015.2389824

8. Hou, Q., Zhou, D., Feng, J. Coordinate Attention for
Efficient Mobile Network Design. In Proceedings of
the 2021 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2021, 13708-13717.
https://doi.org/10.1109/CVPR46437.2021.01350

9. Hu, G., He, W., Sun, C., Zhu, H., Li, K., Jiang, L. Hierarchi-
cal Belief Rule-Based Model for Imbalanced Multi-Clas-
sification. Expert Systems with Applications, 2023, 216.
https://doi.org/10.1016/j.eswa.2022.119451

10. Hu, J., Shen, L., Sun, G. Squeeze-and-Excitation Net-
works. In Proceedings of the 2018 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2018,
7132-7141. https://doi.org/10.1109/CVPR.2018.00745

11. Huo, J., Chang, Y., Wang, J., Wei, X. Robust Automat-
ic White Balance Algorithm Using Gray Color Points
in Images. IEEE Transactions on Consumer Elec-
tronics, 2006, 52, 541-546. https://doi.org/10.1109/
TCE.2006.1649677

12. Jingchun, Z., Xiaojing, W. E. I., Jinyu, S. H. I. Under-
water Image Enhancement Algorithm Based on Blue-
green Channel Color Compensation. JEIT 2022, 44,
2932-2939. doi:10.11999/JEIT211444.

13. Jolicoeur-Martineau, A., Mitliagkas, I. Gradient Pen-
alty from a Maximum Margin Perspective. Machine
Learning, 2020. arXiv preprint arXiv:1910.06922.

14. Liang, H., Song, T. Lightweight Marine Biological Tar-
get Detection Algorithm Based on YOLOv5. Frontiers
in Marine Science, 2023, 10. https://doi.org/10.3389/
fmars.2023.1219155

15. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu,
C.-Y., Berg, A. C. SSD: Single Shot MultiBox Detector.
Computer Vision and Pattern Recognition, 2016, 9905,
21-37. https://doi.org/10.1007/978-3-319-46448-0_2

16. Li-Zhe, C.A.I., De-Yuan, Y., Xiao-Yu, Z., Jing-Xiang,
L.I.N., Xin-Wei, C., Xi-Ping, Z., Yi-Yong, R.A.O., Li, M.A.,
He-Shan, L.I.N., Su-Jing, F. U. Species Composition and
Diversity of Marine Organisms from Benthic Trawling
in Daya Bay of the Northern South China Sea. Biodiver-
sity, 2017, 25(9), 1019-1030. https://doi.org/10.17520/
biods.2017103

17. Mohan, S., Simon, P. Underwater Image Enhancement
Based on Histogram Manipulation and Multiscale Fu-
sion. Procedia Computer Science, 2020, 171, 941-950.
https://doi.org/10.1016/j.procs.2020.04.102

18. Pang, B. Classification of Images Using EfficientNet
CNN Model with Convolutional Block Attention Mod-
ule (CBAM) and Spatial Group-Wise Enhance Module
(SGE). In Proceedings of the International Conference
on Image, Signal Processing, and Pattern Recogni-
tion (ISPP 2022), Sirkemaa, S., Agyeman, M.O., Eds.,
SPIE: Guilin, China, April 29 2022, 26. https://doi.
org/10.1117/12.2636811

19. Ren, S., He, K., Girshick, R., Sun, J. Faster R-CNN: To-
wards Real-Time Object Detection with Region Propos-
al Networks. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2017, 39, 1137-1149. https://
doi.org/10.1109/TPAMI.2016.2577031

20. Sánchez, J., Perronnin, F., Mensink, T., Verbeek, J. Im-
age Classification with the Fisher Vector: Theory and

Information Technology and Control 2024/4/531310

Practice. International Journal of Computer Vision,
2013, 105, 222-245. https://doi.org/10.1007/s11263-
013-0636-x

21. Shen, L., Sun, G., Huang, Q., Wang, S., Lin, Z., Wu, E.
Multi-Level Discriminative Dictionary Learning with
Application to Large Scale Image Classification. IEEE
Transactions on Image Processing 2015, 24, 3109-3123.
https://doi.org/10.1109/TIP.2015.2438548

22. Simonyan, K., Zisserman, A. Very Deep Convolutional
Networks for Large-Scale Image Recognition 2015.

23. Sung, M., Yu, S.-C., Girdhar, Y. Vision Based Real-Time
Fish Detection Using Convolutional Neural Network.
In Proceedings of the OCEANS 2017 - Aberdeen, IEEE:
Aberdeen, United Kingdom, June 2017, 1-6. https://doi.
org/10.1109/OCEANSE.2017.8084889

24. Villon, S., Mouillot, D., Chaumont, M. A Deep Learning
Method for Accurate and Fast Identification of Coral
Reef Fishes in Underwater Images. Ecological Infor-
matics, 2018, 48, 238-244. https://doi.org/10.1016/j.
ecoinf.2018.09.007

25. Wei, H., Liu, X., Xu, S., Dai, Z., Dai, Y., Xu, X. DWRSeg:
Rethinking Efficient Acquisition of Multi-Scale Con-

textual Information for Real-Time Semantic Segmen-
tation. Computer Vision and Pattern Recognition, 2023.

26. Woo, S., Park, J., Lee, J.-Y., Kweon, I. S. CBAM: Con-
volutional Block Attention Module. In Proceedings of
the Computer Vision - ECCV 2018, Ferrari, V., Hebert,
M., Sminchisescu, C., Weiss, Y., Eds., Springer Inter-
national Publishing: Cham, 2018, 3-19. https://doi.
org/10.1007/978-3-030-01234-2_1

27. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K. Aggregat-
ed Residual Transformations for Deep Neural Net-
works. In Proceedings of the 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
July 2017, pp. 5987-5995. https://doi.org/10.1109/
CVPR.2017.634

28. Zhang, X., Zhang, X., Gao, T. Comparative Analysis
on Catch Composition with Two Fishing Gears at
Yellow River Estuary in Spring. South China Fisher-
ies Science, 2010, 6, 59-67. doi:10.3969/j.issn.1673-
2227.2010.01.011.

29. Zou, Z., Chen, K., Shi, Z., Guo, Y., Ye, J. Object Detection
in 20 Years: A Survey. Proceedings of the IEEE 2023, 111,
257-276. https://doi.org/10.1109/JPROC.2023.3238524

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

