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When digital painting images are constructed to ensure a better visual effect of an image, it is necessary to 
carry out targeted processing on different areas of an image. So, image segmentation is a basis to ensure this 
processing effect. Therefore, this study proposes a method, called Widow-HoffLMS, for conducting complex 
texture segmentation for digital painting images. Firstly, the proposed algorithm is used to filter and process 
digital painting images, and the processing capability of the Hammerstein spline optimization algorithm is 
introduced to avoid damaging texture details of images and ensure detailed integrity of images. Then, filtered 
digital painting images are input into the adaptive network based on ghost convolution. A Ghost Module 
functions as an image block for convolutional neural networks that aims to generate more attributes by uti-
lizing fewer parameters. After texture features in images are extracted through the ghost convolution layer 
of the network, the feature map is fused and extracted through the U-Net segmentation layer. Finally, the 
decoder is implemented to restore the spatial resolution of images and produce the result of complex tex-
ture segmentations of digital painting images. The test results show that the filtering effect of the proposed 
method is good, and the contrast of the filtered digital painting image is above 0.932. Moreover, the proposed 
method can complete the texture feature extraction of images with different sizes and different pixel scores, 
and the results of the inverse variance are all below 0.018. Furthermore, the complex texture segmentation of 
animated digital images can be completed according to the preset needs. The integrity state of the complex 
texture segmentation is also high. 
KEYWORDS: Widow-HoffLMS adaptive algorithm, Digital painting image, Complex texture, Segmentation, 
Ghost convolution, Feature extraction.
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1. Introduction
Digital painting images are works of art created us-
ing digital technology and software and have been 
widely used in illustration, animation, game design, 
movie special effects, advertising design, and art 
education [1]. These images do not rely on conven-
tional painting media, such as paint, canvas, or pa-
per, but are generated and edited entirely digitally. 
Digital painting images have many advantages that 
conventional painting does not have, such as edit-
ability, copying and sharing, layering, and composit-
ing properties [2].
During the production and processing of digital 
painting images, texture, as one of the important vi-
sual features in an image, not only reflects the sur-
face structure and material properties of the object 
but also plays a crucial role in understanding, analyz-
ing, and recognizing an image. Texture segmentation 
is an important link, which can provide substantial 
basic data for subsequent image processing tasks 
(e.g. recognition, classification, compression) [3]. An 
image region obtained through texture segmentation 
can be used as input data for subsequent tasks, which 
can further improve the accuracy and efficiency of 
these tasks. At the same time, different regions in 
an image can be targeted processing through texture 
segmentation, such as enhancement, and suppres-
sion to improve the visual effect of an image [4].
However, due to the diversity and complexity of tex-
tures, conventional image segmentation methods 
often make it difficult to accurately segment regions 
with similar textures [5]. For this reason, to better 
achieve image segmentation, texture characteriza-
tion technology based on light polarization charac-
teristics is employed for texture characterization, 
and image pixel scores are expressed through dif-
ferent polarization characteristics to complete lo-
cal texture segmentation [6]. However, the method 
requires the deployment of circular polarization fil-
ters and multi-angle rotation in an image acquisition 
process (such as one step every 10 degrees from 0 to 
360 degrees), which requires the image acquisition 
equipment to have high accuracy and stability. In an 
environment of uneven illumination or strong re-
flection, changes in polarization characteristics may 
become complex and difficult to capture accurately, 
affecting the segmentation effect. To better achieve 

effective image segmentations based on the skele-
ton of over-segmented images, an adaptive Markov 
Random Field (MRF) method is used to process and 
extract the color and features of images, and then 
process them into hyper-pixels to achieve image seg-
mentations better [7]. Although the adaptive MRF 
can deal with the local dependency between pixels, 
it may not be ideal for the long-distance dependency, 
namely, interactions between pixels that are far away 
in images, especially when dealing with images with 
complex textures, blurred edges, or low contrast. The 
segmentation results are excessively smooth or in-
accurate in some areas. To better achieve image seg-
mentations, a parallel algorithm for parallel apriori 
simple linear iterative clustering (SLIC) on Apache 
Spark is proposed [8]. This algorithm uses the opera-
tions in Apache Spark to achieve parallel processing 
of images, relies on image partitions to achieve paral-
lel processing, obtains the shape and location charac-
teristics of images, and partition images according to 
the feature results. However, a simple uniform parti-
tion may not fully consider the shape, size, and loca-
tion of objects in an image, which leads to inaccurate 
segmentation results. 
The article subsequently proposed an improved 
parallel apriori simple linear iterative clustering 
(PASLIC)-on-Spark algorithm to improve the accu-
racy by considering the shape and location of clus-
ters in an image partition and controllable boundary 
repetition. The partition strategy itself still limits 
this improvement. To effectively perform image 
segmentations, a hybrid whale optimization algo-
rithm with a novel local minimum avoidance meth-
od is proposed for multi-level threshold color image 
segmentation [9]. This method employs local mini-
mum to segment an image to form multiple regions, 
to complete image segmentations, and utilizes the 
whale algorithm to optimize the optimal threshold. 
To enhance the segmentation effect, however, in 
multi-threshold color image segmentation, the al-
gorithm needs to accurately detect the boundaries 
between different color or texture regions. However, 
due to the complexity of the color transition region 
of an image, the algorithm may find it difficult to ac-
curately distinguish boundaries, resulting in rough 
or unsmooth segmentation edges.
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Texture not only reflects the surface structure and 
material properties of the object but also plays a cru-
cial role in understanding, analyzing, and recogniz-
ing an image. So, texture segmentation provides sub-
stantial basic data for subsequent image processing 
tasks. An image region obtained through texture 
segmentation can be implemented as input data for 
subsequent tasks and can further improve the accu-
racy and efficiency of these tasks. However, the di-
versity and complexity of textures lead conventional 
image segmentation methods to make it difficult to 
accurately segment regions with similar textures 
and require implementing different methodologies 
to complete local texture segmentation. 
The Widow-Hoff LMS adaptive algorithm is wide-
ly used in signal processing, adaptive filtering, and 
other fields due to its simplicity, robustness, and 
easy implementation. The algorithm is primarily 
used for supervised learning where the system it-
eratively tunes the parameters to approximate a 
desired target function. It operates by adjusting the 
weights of the linear predictor so that the predicted 
output converges to the real output over time. The 
least mean squares (LMS) adaptive algorithm min-
imizes the mean square error (MSE) to constantly 
adjust the weight of the filter to achieve the opti-
mal filtering effect. This feature gives the LMS al-
gorithm potential application scope in the field of 
image processing, especially in scenes that need 
adaptive adjustment of parameters [10]. Therefore, 
according to the filtering effect of the LMS adaptive 
algorithm and the difficulties and requirements of 
complex texture segmentation of digital painting 
images, this research proposes a complex texture 
segmentation algorithm of digital painting images 
based on the Widow-HoffLMS adaptive algorithm. 
The contributions are: 1. The filtering effect of the 
proposed method is good, and the contrast of the 
filtered digital painting image is above 0.932, 2. The 
proposed method can complete the texture feature 
extraction of images with different sizes and dif-
ferent pixel scores, and the results of the inverse 
variance are all below 0.018, 3. The complex tex-
ture segmentation of animated digital images can 
be completed according to the preset needs, 4. The 
integrity state of the complex texture segmentation 
is also high. More up-to-date research can be found 
in [30-35].

2. A Complex Texture Segmentation 
of Digital Painting Images
2.1. Filtering Processing of Digital Painting 
Images Based on Widow-HoffLMS Adaptive 
Algorithm

2.1.1. A Functional Structure of Widow-HoffLMS 
Adaptive Algorithm
Digital painting images are often acquired by sensors 
on devices such as digital drawing boards, tablet PCs, 
or computers, which are affected by various factors 
during operation, such as sensor material properties, 
electronic components, and circuit structures, thus 
introducing noise. Common sensor noise includes 
thermal noise caused by resistance, channel thermal 
noise of field effect tube, photon noise, dark current 
noise, optical response non-uniformity noise, etc. 
[11]. In addition, improper human operation (e.g., 
wrong parameter settings, and inappropriate image 
processing steps) may also lead to image noise [12]. 
Therefore, an image should be filtered before run-
ning segmentation.
The Widow-HoffLMS adaptive algorithm realizes 
dynamic adaptation to image features by continu-
ously adjusting the filter efficiency to minimize the 
output error as an optimization algorithm based on 
the gradient descent method. In image segmenta-
tion, image features such as color, texture, and shape 
may change due to different image contents [13]. The 
adaptability of the LMS algorithm enables it to cope 
with these changes and better realize image process-
ing flexibly. To improve the accuracy and robustness 
of the segmentation process [14] this paper uses 
the Widow-HoffLMS adaptive algorithm to filter it 
before the complex texture segmentation of digital 
painting images is conducted. The functional struc-
ture of the Widow-HoffLMS adaptive algorithm is 
shown in Figure 1.
This algorithm is used for processing a digital paint-
ing image. The input x(t) is plugged into the algorithm 
(original digital painting images). The output y(t) is a 
processed digital painting image. The noise  , the axial 
head weight w(t)  coefficients of the adaptive filter, the 
output error e(t), and the desired result q(t) are pro-
vided. During the operation of the Widow-HoffLMS 
adaptive algorithm, the system weight is adjusted 
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along the negative gradient direction, and the MSE is 
replaced by the squared error score, whose iterative 
computations are given as follows:
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output of the filter is obtained by calculating several nonlinear outputs and then filtering them linearly. 
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and considers the complexity of the algorithm, this paper uses a cubic polynomial curve as an 
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2.1.2. The Optimization of Widow-HoffLMS 
Adaptive Algorithm Based on Hammerstein Spline
Due to the high variety of colors and the structural 
complexity of digital painting images, it is neces-
sary to ensure image detail integrity in processing 
[15]. Therefore, to improve the processing effect of 
the Widow-HoffLMS adaptive algorithm for digital 
painting images, the algorithm is optimized by us-
ing the Hammerstein spline to form a Hammerstein 
Spline Adaptive Filter-Least Mean Square (SAF-
LMS) mainly composed of a memoryless nonlinear 
spline interpolation function based on adaptive look-
up table and a linear adaptive filter.

In this study, we first interpolate the input x(t), then 
obtain the nonlinear image processing result s(t), and 
then the final output y(t) is attained by processing s(t) 
through a linear adaptive filter. Among them, the es-
sence of nonlinear interpolation is to store the con-
trol points of the adaptive spline curve in the adap-
tive look-up table, and according to the score of the 
input image on the adaptive spline curve indexed to 
the appropriate interpolation point as the filter in 
t moment nonlinear output s(t). The final output of 
the filter is obtained by calculating several nonlinear 
outputs and then filtering them linearly.
Because the first derivative of a cubic polynomial 
spline curve is continuous, has good smoothness, and 
considers the complexity of the algorithm, this paper 
uses a cubic polynomial curve as an interpolation 
spline curve. Both the B-spline curve and CR spline 
curve are commonly used as cubic polynomial curves, 
among which the CR spline curve can traverse all con-
trol points, which can make the algorithm more ro-
bust. Therefore, the CR spline curve is implemented 
as the nonlinear interpolation function in this filter. 
The span index of the control point needs to be com-
puted before indexing the control point ξ and normal-
ized horizontal coordinates ψt. In the case of uniform 
control point spacing and a third-order spline curve, 
the span index ξ and the normalized horizontal coor-
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              where , M , x  represent downward rounding, the number of control points on the spline curve, 
the spacing between neighboring control points, and the control points of the spline curve. 
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distributed in axis, and therefore arbitrarily satisfies ,0 ,1 ,2 ,x x x x Mm m m m  and therefore 

arbitrarily i  satisfy , 1 ,i x i x ix m m .  After calculating the spanning index  and normalized 

horizontal coordinates t , the nonlinear output is given by:  
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coordinate of the control point indexed in the adaptive look-up table,  ( )  represents a local spline 
function and is the CR spline basis matrix. 

              After obtaining the nonlinear output, the final output ( )y t  can be obtained by the linear adaptive filter 
calculated as follows: 
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              Errors ( )e t  are calculated as follows: 
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             Based on the error signal ( )e n , the approximate cost function is obtained as follows: 
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              To minimize the cost function, the cost function is sampled by the random gradient method, and the cost 
function is used to calculate the partial derivatives of the weight factor vector and the ordinate of the 
index control point respectively, then ( )w t  in the spline adaptive filter-least mean square (SAF-LMS) 
algorithm is delineated by 
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where 1  and µ2 represent the learning step of the adaptive spline curve, and the control points of the 
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              This algorithm is used for processing a digital painting image. The input ( )x t  is plugged into the 
algorithm (original digital painting images). The output ( )y t  is a processed digital painting image. The 
noise , the axial head weight ( )w t  coefficients of the adaptive filter, the output error ( )e t , and the 
desired result ( )q t  are provided. During the operation of the Widow-HoffLMS adaptive algorithm, the 
system weight is adjusted along the negative gradient direction, and the MSE is replaced by the squared 
error score, whose iterative computations are given as follows: 

( ) ( ) ( )ty t w t x t   (1) 

( ) ( ) ( )e t q t y t   (2) 

( 1) ( ) 2 ( ) ( )w t w t e t x t , (3) 

where  represents the iterative step factor to make the algorithm converge, the step factor µ takes 

scores satisfying max1  constraints, where represents the maximum eigenvalue max  of the 

autocorrelation matrix ( )x t . 

2.1.2. The Optimization of Widow-HoffLMS Adaptive Algorithm Based on Hammerstein Spline 

Due to the high variety of colors and the structural complexity of digital painting images, it is necessary 
to ensure image detail integrity in processing [15]. Therefore, to improve the processing effect of the 
Widow-HoffLMS adaptive algorithm for digital painting images, the algorithm is optimized by using 
the Hammerstein spline to form a Hammerstein Spline Adaptive Filter-Least Mean Square (SAF-LMS) 
mainly composed of a memoryless nonlinear spline interpolation function based on adaptive look-up 
table and a linear adaptive filter. 

In this study, we first interpolate the input ( )x t , then obtain the nonlinear image processing result ( )s t
, and then the final output ( )y t  is attained by processing ( )s t  through a linear adaptive filter. Among 
them, the essence of nonlinear interpolation is to store the control points of the adaptive spline curve in 
the adaptive look-up table, and according to the score of the input image on the adaptive spline curve 
indexed to the appropriate interpolation point as the filter in t  moment nonlinear output ( )s t . The final 
output of the filter is obtained by calculating several nonlinear outputs and then filtering them linearly. 

                 Because the first derivative of a cubic polynomial spline curve is continuous, has good smoothness, 
and considers the complexity of the algorithm, this paper uses a cubic polynomial curve as an 
interpolation spline curve. Both the B-spline curve and CR spline curve are commonly used as cubic 
polynomial curves, among which the CR spline curve can traverse all control points, which can make 
the algorithm more robust. Therefore, the CR spline curve is implemented as the nonlinear interpolation 
function in this filter. The span index of the control point needs to be computed before indexing the 
control point  and normalized horizontal coordinates t . In the case of uniform control point spacing 
and a third-order spline curve, the span index  and the normalized horizontal coordinates tg  are 
calculated as follows: 
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where μ1 and μ2 represent the learning step of the 
adaptive spline curve, and the control points of the 
learning step of the linear adaptive filter weight fac-
tors, respectively; Ui,t represent a matrix of digital 
painting images.
To summarize, digital drawing images x(n)  are input 
after nonlinear interpolation and linear adaptive fil-
ter processing to obtain the output digital drawing 
image y(n), the update of the adaptive look-up table 
and linear adaptive filter weight factors is accom-
plished through Equation (11), and the next iteration 
is started, thus the digital painting image processing   
x(n) is completed.

2.2. Texture Segmentation of Digital Painting 
Images Based on Ghosted Convolutional 
Adaptive Networks

2.2.1. The Overall Structure of the Texture 
Segmentation Model for Digital Painting Images
After the digital painting image processing is com-
pleted by following the steps above, the texture seg-
mentation of the digital painting image is carried 
out. In this paper, the ghost convolution module is 
introduced based on the U-Net network to build a 
model that conducts texture segmentation of digital 
painting images, which is based on the adaptive ghost 
convolution. U-Net is a convolutional network archi-
tecture for fast and precise segmentation of images. 
Up to now, it has outperformed the prior best method. 
U-Net is developed for the task of semantic segmen-
tation. When a neural network is fed images as inputs, 
this model uses the ghost convolution module to ex-
tract texture features of a digital painting image [16], 
and then texture segmentation is realized through the 
U-Net network to ensure that the texture features of 
an image are not damaged during segmentation [17]. 
Therefore, the constructed whole model consists of 
2 parts. While one is the ghost convolution layer, the 
other is the U-Net segmentation layer. The overall 
structure of the model is shown in Figure 2.

Figure 2
The Structure of the Model Conducting: The Texture 
Segmentation of A Digital Painting Image Based on Ghost 
Shadow Convolutional Adaptive Network.

2.2.1. The Overall Structure of the Texture Segmentation Model for Digital Painting Images 

After the digital painting image processing is completed by following the steps above, the texture 
segmentation of the digital painting image is carried out. In this paper, the ghost convolution module is 
introduced based on the U-Net network to build a model that conducts texture segmentation of digital 
painting images, which is based on the adaptive ghost convolution. U-Net is a convolutional network 
architecture for fast and precise segmentation of images. Up to now, it has outperformed the prior best 
method. U-Net is developed for the task of semantic segmentation. When a neural network is fed images 
as inputs, this model uses the ghost convolution module to extract texture features of a digital painting 
image [16], and then texture segmentation is realized through the U-Net network to ensure that the 
texture features of an image are not damaged during segmentation [17]. Therefore, the constructed whole 
model consists of 2 parts. While one is the ghost convolution layer, the other is the U-Net segmentation 
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Figure 2 The Structure of the Model Conducting: The Texture Segmentation of A Digital Painting Image Based 
on Ghost Shadow Convolutional Adaptive Network. 
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Ghosting Convolutional Layer 

Convolutional neural networks (CNNs) expand the number of input feature maps through convolution 
layers, generating rich and even redundant information to ensure that the features of digital painting 
images can be fully extracted. However, redundant features also bring a lot of floating point operations 
(FLOPs) and model parameters, which lead to too long model training time and heavy memory 
consumption. After running ordinary convolution processing of digital painting images, there are a lot 
of similar structures like ghosts in Figure 2. This chapter uses ghost convolution to generate rich feature 
maps [18]. Ghost convolution uses cheap linear operations instead of some ordinary convolution 
operations, which can effectively reduce model parameters and better extract texture features of digital 
painting images. 

U-Net Split Layer 

U-Net is a U-shaped network structure that combines encoding and decoding processes. U-Net is a 
convolutional network architecture for fast and precise segmentation of images. Up to now, it has 
outperformed the prior best method. U-Net is developed for the task of semantic segmentation when a 
neural network is fed images as inputs. The encoding part is responsible for extracting image features 
and compressing them into vectors; In the decoding part, the compressed representation is transferred 
to a matrix to restore the spatial structure of an image. The transformed feature map is combined with 
the texture monitoring process, and the corrected texture features are obtained by back-propagation 
through the cross-entropy loss function. Finally, the correction results and the U-Net network 
segmentation feature map are normalized and combined to enhance texture features [19] to better realize 
the texture segmentation of digital painting images. 

2.2.2. Texture Feature Extraction Based on Ghost Convolutional Layers 
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Ghosting Convolutional Layer
Convolutional neural networks (CNNs) expand the 
number of input feature maps through convolution 
layers, generating rich and even redundant informa-
tion to ensure that the features of digital painting 
images can be fully extracted. However, redundant 
features also bring a lot of floating point operations 
(FLOPs) and model parameters, which lead to too 
long model training time and heavy memory con-
sumption. After running ordinary convolution pro-
cessing of digital painting images, there are a lot of 
similar structures like ghosts in Figure 2. This chap-
ter uses ghost convolution to generate rich feature 
maps [18]. Ghost convolution uses cheap linear op-
erations instead of some ordinary convolution oper-
ations, which can effectively reduce model param-
eters and better extract texture features of digital 
painting images.

U-Net Split Layer
U-Net is a U-shaped network structure that com-
bines encoding and decoding processes. U-Net is 
a convolutional network architecture for fast and 
precise segmentation of images. Up to now, it has 
outperformed the prior best method. U-Net is devel-
oped for the task of semantic segmentation when a 
neural network is fed images as inputs. The encod-
ing part is responsible for extracting image features 
and compressing them into vectors; In the decoding 
part, the compressed representation is transferred 
to a matrix to restore the spatial structure of an im-
age. The transformed feature map is combined with 
the texture monitoring process, and the corrected 
texture features are obtained by back-propagation 
through the cross-entropy loss function. Finally, the 
correction results and the U-Net network segmen-
tation feature map are normalized and combined to 
enhance texture features [19] to better realize the 
texture segmentation of digital painting images.

2.2.2. Texture Feature Extraction Based on Ghost 
Convolutional Layers
The ghost convolution layer consists of 2 parts: the 
first part of the ordinary convolution, the part of the 
strict control of the number of channels, the use of 
a limited number of filters on the input data of the 
channel and the space of the joint mapping output 
part of the feature map [20]. This feature map is 

called the fixed feature map. The second part of the 
ghost convolution: is the use of cheap linear opera-
tions to generate a fixed feature map that has similar 
characteristics to an image. This image is called the 
ghost feature map. The structure of a ghost convolu-
tion layer is shown in Figure 3.

Figure 3    
The Convolutional Layer Structure of a Ghost Shadow.
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The detailed steps of the ghost convolutional layer for performing texture extraction of digitally painted 
images are described as follows: 

              Step 1: Ordinary convolution operation: Given the input data ( )y n , whose height, width, and number 
of channels are denoted by H , W , and C , then the ordinary convolution for texture feature map 
extraction of digital painting image is calculated as: 

* ( )y L y t b                (12) 

0O R H W C K K ,       (13) 

where “*” represents the convolution operation, the set of output feature graphs is expressed in Y , the 
convolution filter set is expressed in L , the filter changes the number of data channels from C  to R , 
the number of feature maps varies with the number of channels, K K  represents the size of the 
convolution kernel for ordinary convolution,   0O  represents the amount of ordinary convolutional 
floating-point arithmetic. 

              Step 2: Ghost convolution operation: a cheap linear operation ( )  on a fixed digital painting image 
texture feature is a map O , the amount of calculation required to output S  ghost feature maps is, which 
is calculated by: 

( )ij ij iY y  , 1, ,i i R ; 1, ,j r  (14) 

( 1)O R r H W K K ,      (15) 

where iy  represents the i-th fixed feature graph in the output Y , 1iy  represents the original image of 

the i-th fixed feature graph, ( 1)ij jy  represents the j-th ghost feature graph of the fixed feature maps 

generated by cheap linear operation;  R-th fixed feature graph finally output N R R . ( 1)r  

images,  K K  represents the size of the convolution kernel of the ghost convolution and denotes the 
change of a fixed feature map into 1r  ghost feature map to complete the feature map expansion. 

The ghost convolution layer can generate the texture feature map of the digital painting image just like 
the ordinary convolution layer, so it can easily replace the ordinary convolution layer to reduce the 
calculation cost of the model. In digital painting images with large sizes and high channels, the ghost 
convolution layer can significantly reduce the amount of computation. When compared with the 
ordinary convolution layer, which uses filter banks to output all the feature maps at one time, the ghost 
convolution layer uses a distributed structure to output the required feature maps one by one. First, a 

The detailed steps of the ghost convolutional layer 
for performing texture extraction of digitally painted 
images are described as follows:
Step 1: Ordinary convolution operation: Given the 
input data y(n), whose height, width, and number of 
channels are denoted by H, W, and C, then the ordi-
nary convolution for texture feature map extraction 
of digital painting image is calculated as:

The ghost convolution layer consists of 2 parts: the first part of the ordinary convolution, the part of the 
strict control of the number of channels, the use of a limited number of filters on the input data of the 
channel and the space of the joint mapping output part of the feature map [20]. This feature map is called 
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The detailed steps of the ghost convolutional layer for performing texture extraction of digitally painted 
images are described as follows: 

              Step 1: Ordinary convolution operation: Given the input data ( )y n , whose height, width, and number 
of channels are denoted by H , W , and C , then the ordinary convolution for texture feature map 
extraction of digital painting image is calculated as: 

* ( )y L y t b                (12) 

0O R H W C K K ,       (13) 

where “*” represents the convolution operation, the set of output feature graphs is expressed in Y , the 
convolution filter set is expressed in L , the filter changes the number of data channels from C  to R , 
the number of feature maps varies with the number of channels, K K  represents the size of the 
convolution kernel for ordinary convolution,   0O  represents the amount of ordinary convolutional 
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images,  K K  represents the size of the convolution kernel of the ghost convolution and denotes the 
change of a fixed feature map into 1r  ghost feature map to complete the feature map expansion. 

The ghost convolution layer can generate the texture feature map of the digital painting image just like 
the ordinary convolution layer, so it can easily replace the ordinary convolution layer to reduce the 
calculation cost of the model. In digital painting images with large sizes and high channels, the ghost 
convolution layer can significantly reduce the amount of computation. When compared with the 
ordinary convolution layer, which uses filter banks to output all the feature maps at one time, the ghost 
convolution layer uses a distributed structure to output the required feature maps one by one. First, a 
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The detailed steps of the ghost convolutional layer for performing texture extraction of digitally painted 
images are described as follows: 

              Step 1: Ordinary convolution operation: Given the input data ( )y n , whose height, width, and number 
of channels are denoted by H , W , and C , then the ordinary convolution for texture feature map 
extraction of digital painting image is calculated as: 
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The ghost convolution layer can generate the texture feature map of the digital painting image just like 
the ordinary convolution layer, so it can easily replace the ordinary convolution layer to reduce the 
calculation cost of the model. In digital painting images with large sizes and high channels, the ghost 
convolution layer can significantly reduce the amount of computation. When compared with the 
ordinary convolution layer, which uses filter banks to output all the feature maps at one time, the ghost 
convolution layer uses a distributed structure to output the required feature maps one by one. First, a 
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where “*” represents the convolution operation, the 
set of output feature graphs is expressed in  Y, the con-
volution filter set is expressed in L, the filter changes 
the number of data channels from C to R, the number 
of feature maps varies with the number of channels,   
K×K represents the size of the convolution kernel 
for ordinary convolution, O0 represents the amount 
of ordinary convolutional floating-point arithmetic.
Step 2: Ghost convolution operation: a cheap linear 
operation Φ(·) on a fixed digital painting image tex-
ture feature is a map OΣ, the amount of calculation 
required to output S ghost feature maps is, which is 
calculated by:
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The ghost convolution layer consists of 2 parts: the first part of the ordinary convolution, the part of the 
strict control of the number of channels, the use of a limited number of filters on the input data of the 
channel and the space of the joint mapping output part of the feature map [20]. This feature map is called 
the fixed feature map. The second part of the ghost convolution: is the use of cheap linear operations to 
generate a fixed feature map that has similar characteristics to an image. This image is called the ghost 
feature map. The structure of a ghost convolution layer is shown in Figure 3. 
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The detailed steps of the ghost convolutional layer for performing texture extraction of digitally painted 
images are described as follows: 

              Step 1: Ordinary convolution operation: Given the input data ( )y n , whose height, width, and number 
of channels are denoted by H , W , and C , then the ordinary convolution for texture feature map 
extraction of digital painting image is calculated as: 
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The detailed steps of the ghost convolutional layer for performing texture extraction of digitally painted 
images are described as follows: 

              Step 1: Ordinary convolution operation: Given the input data ( )y n , whose height, width, and number 
of channels are denoted by H , W , and C , then the ordinary convolution for texture feature map 
extraction of digital painting image is calculated as: 
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The ghost convolution layer can generate the texture feature map of the digital painting image just like 
the ordinary convolution layer, so it can easily replace the ordinary convolution layer to reduce the 
calculation cost of the model. In digital painting images with large sizes and high channels, the ghost 
convolution layer can significantly reduce the amount of computation. When compared with the 
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convolution layer uses a distributed structure to output the required feature maps one by one. First, a 
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The detailed steps of the ghost convolutional layer for performing texture extraction of digitally painted 
images are described as follows: 

              Step 1: Ordinary convolution operation: Given the input data ( )y n , whose height, width, and number 
of channels are denoted by H , W , and C , then the ordinary convolution for texture feature map 
extraction of digital painting image is calculated as: 
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where “*” represents the convolution operation, the set of output feature graphs is expressed in Y , the 
convolution filter set is expressed in L , the filter changes the number of data channels from C  to R , 
the number of feature maps varies with the number of channels, K K  represents the size of the 
convolution kernel for ordinary convolution,   0O  represents the amount of ordinary convolutional 
floating-point arithmetic. 

              Step 2: Ghost convolution operation: a cheap linear operation ( )  on a fixed digital painting image 
texture feature is a map O , the amount of calculation required to output S  ghost feature maps is, which 
is calculated by: 
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images,  K K  represents the size of the convolution kernel of the ghost convolution and denotes the 
change of a fixed feature map into 1r  ghost feature map to complete the feature map expansion. 

The ghost convolution layer can generate the texture feature map of the digital painting image just like 
the ordinary convolution layer, so it can easily replace the ordinary convolution layer to reduce the 
calculation cost of the model. In digital painting images with large sizes and high channels, the ghost 
convolution layer can significantly reduce the amount of computation. When compared with the 
ordinary convolution layer, which uses filter banks to output all the feature maps at one time, the ghost 
convolution layer uses a distributed structure to output the required feature maps one by one. First, a 
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the fixed feature map. The second part of the ghost convolution: is the use of cheap linear operations to 
generate a fixed feature map that has similar characteristics to an image. This image is called the ghost 
feature map. The structure of a ghost convolution layer is shown in Figure 3. 

Figure 3 The Convolutional Layer Structure of a Ghost Shadow. 

Ordinary 
convolution

Ghost 
Shadow 

Convolution

Input

Output

 

The detailed steps of the ghost convolutional layer for performing texture extraction of digitally painted 
images are described as follows: 

              Step 1: Ordinary convolution operation: Given the input data ( )y n , whose height, width, and number 
of channels are denoted by H , W , and C , then the ordinary convolution for texture feature map 
extraction of digital painting image is calculated as: 
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where “*” represents the convolution operation, the set of output feature graphs is expressed in Y , the 
convolution filter set is expressed in L , the filter changes the number of data channels from C  to R , 
the number of feature maps varies with the number of channels, K K  represents the size of the 
convolution kernel for ordinary convolution,   0O  represents the amount of ordinary convolutional 
floating-point arithmetic. 

              Step 2: Ghost convolution operation: a cheap linear operation ( )  on a fixed digital painting image 
texture feature is a map O , the amount of calculation required to output S  ghost feature maps is, which 
is calculated by: 
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where iy  represents the i-th fixed feature graph in the output Y , 1iy  represents the original image of 

the i-th fixed feature graph, ( 1)ij jy  represents the j-th ghost feature graph of the fixed feature maps 

generated by cheap linear operation;  R-th fixed feature graph finally output N R R . ( 1)r  

images,  K K  represents the size of the convolution kernel of the ghost convolution and denotes the 
change of a fixed feature map into 1r  ghost feature map to complete the feature map expansion. 

The ghost convolution layer can generate the texture feature map of the digital painting image just like 
the ordinary convolution layer, so it can easily replace the ordinary convolution layer to reduce the 
calculation cost of the model. In digital painting images with large sizes and high channels, the ghost 
convolution layer can significantly reduce the amount of computation. When compared with the 
ordinary convolution layer, which uses filter banks to output all the feature maps at one time, the ghost 
convolution layer uses a distributed structure to output the required feature maps one by one. First, a 

 represents 
the size of the convolution kernel of the ghost convo-
lution and denotes the change of a fixed feature map 
into r–1 ghost feature map to complete the feature 
map expansion.
The ghost convolution layer can generate the texture 
feature map of the digital painting image just like the 
ordinary convolution layer, so it can easily replace 
the ordinary convolution layer to reduce the calcu-
lation cost of the model. In digital painting images 
with large sizes and high channels, the ghost con-
volution layer can significantly reduce the amount 
of computation. When compared with the ordinary 
convolution layer, which uses filter banks to output 
all the feature maps at one time, the ghost convolu-
tion layer uses a distributed structure to output the 
required feature maps one by one. First, a finite filter 
bank is used to jointly map the digital painting im-
age to output a fixed texture feature map, and then a 
cheap linear operation is used to transform the fixed 
texture feature map into a ghost texture feature map. 
At the same time, the size of the ordinary convo-
lution filter core is fixed, while the size of the ghost 
convolution filter core is diverse, which makes the 
feature mapping not in a single window sliding form, 
thus bringing more abundant texture feature maps 
of digital painting images { , [1, ]}iY Y i k , of which iY C W H , k  denotes the number of multiple feature maps with 

different receptive fields. More up-to-date research can be found in [24-26]. 

2.2.3 U-Net Split Layer 

The main function of the U-Net segmentation layer is to realize the texture segmentation of digital 
painting images. The module includes 2 steps in the whole segmentation process. While one is to fuse 
the texture feature map of the digital painting image extracted from the above summary, the other is to 
fuse the low-level features in the encoder with the decoder's high-level features through the decoder's 
jump connection to retain more detailed information. The spatial resolution of the image is restored, and 
the final result of complex texture segmentation of the digital painting image is generated. 

To ensure the effect of feature fusion, the decoder of the U-Net segmentation layer realizes the fusion 
of texture feature maps of digital painting images through the Regional Adaptive Feature Integration 
Module (RAFS), to ensure the fusion effect between shallow features and deep features and ensure the 
comprehensive retention of complex texture features. At the same time, it increases the correlation 
between different feature maps and improves the accuracy of image segmentation prediction from 
feature integration. 

After obtaining the input features, the decoder first fuses them through a 3×3 convolutional layer, and 
then combines the fused features with the predicted features through the designed channel reweighting 
block using element-wise addition operation. During the fusion process, to enable the model to 
adaptively select the feature information, a regional adaptive feature selection module is introduced, 
which is based on the feature dynamics adaptive selection mechanism, allowing each neuron to 
adaptively select feature information according to multiple scales or multiple receptive field sizes from 
different feature maps, and use the attention mechanism to fuse multiple feature maps with different 
receptive fields. As a given input feature map { , [1, ]}iY Y i k , its elements are summed up using 
Equation (16). 
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where iw  represents the attention weights for the I-th feature maps. Based on the attentional weights on 
the various receptive fields, matrix multiplication transformations were used to obtain new texture 
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, k denotes the number of multiple fea-
ture maps with different receptive fields. More up-to-
date research can be found in [24-26].

2.2.3. U-Net Split Layer
The main function of the U-Net segmentation lay-
er is to realize the texture segmentation of digital 
painting images. The module includes 2 steps in the 
whole segmentation process. While one is to fuse the 
texture feature map of the digital painting image ex-
tracted from the above summary, the other is to fuse 
the low-level features in the encoder with the decod-

er's high-level features through the decoder's jump 
connection to retain more detailed information. The 
spatial resolution of the image is restored, and the 
final result of complex texture segmentation of the 
digital painting image is generated.
To ensure the effect of feature fusion, the decoder of the 
U-Net segmentation layer realizes the fusion of texture 
feature maps of digital painting images through the Re-
gional Adaptive Feature Integration Module (RAFS), 
to ensure the fusion effect between shallow features 
and deep features and ensure the comprehensive re-
tention of complex texture features. At the same time, 
it increases the correlation between different feature 
maps and improves the accuracy of image segmenta-
tion prediction from feature integration.
After obtaining the input features, the decoder first 
fuses them through a 3×3 convolutional layer, and 
then combines the fused features with the predicted 
features through the designed channel reweighting 
block using element-wise addition operation. During 
the fusion process, to enable the model to adaptive-
ly select the feature information, a regional adap-
tive feature selection module is introduced, which 
is based on the feature dynamics adaptive selection 
mechanism, allowing each neuron to adaptively se-
lect feature information according to multiple scales 
or multiple receptive field sizes from different fea-
ture maps, and use the attention mechanism to fuse 
multiple feature maps with different receptive fields. 
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Through the presented method above, the attention 
weight is learned to achieve automatic feature selec-
tion. Finally,  the texture feature selection of the dig-
ital painting image by summing up each element is 
completed. At the end of the network is the Sigmoid 
activation function, which classifies the target tex-
ture and background to obtain the segmentation re-
sult image. Finally, the splicing and clipping results 
restore the spatial resolution of the image to obtain 
the final segmentation result of the complex texture 
of digital painting images. More research can be 
found in [27-32].

2.2.4. The Setting of Loss Function
In this subsection, the loss function is introduced to 
suppress the problem of uneven positive and nega-
tive samples, reduce the segmentation error caused 
by the small proportion of target texture pixels in the 
overall pixel of the image, and obtain excellent seg-
mentation results. In this paper, the outputs of dif-
ferent module branches are fused according to the 
ratio effectively, so that the model can be reasonable, 
effective, and fully utilize the feature information in 
the training and prediction stages. The cross-entropy 
loss function is adopted as the loss function for the 
complex texture segmentation of digital painting im-
ages. Equation (20) is implemented.
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where the partitioning iy  of real classes represents the predicted probability [0,1]ip  of the model for 

the class of the segmentation label iy  1, ,i N  and represents the total number of categories. 
 

3. The Results of Testing and Analysis 
To verify the application effect of the proposed method in the field of complex texture segmentation of 
digital painting images, this paper takes animations as digital painting images produced by a company 
specializing in animation productions to conduct relevant tests. There are obvious differences in the size 
of the images ranging from 50×50 pixels to 6000×4000 pixels, according to the application needs, the 
appropriate size images are selected to meet the needs of animation production. In this paper, 50 images 
of different sizes are randomly selected from the company's digital painting image database for testing. 
The extracted images contain different structural complexity and different colors to ensure the 
comprehensiveness and representativeness of the test results. 

Parameter settings: the training batch size is set to 16, the number of training times is set to 100, the 
convolutional kernel size is 3×3, the initial learning rate is set to 0.001, the weight decay regular term is 
0.0005, and the momentum parameter is 0.9. 

              The proposed method uses the Widow-HoffLMS adaptive algorithm to filter digital painting images 
before the complex texture segmentation of the digital painting image is run. To reliably judge the 
filtering effect of this algorithm, the contrast is used as the evaluation index, which is used to measure 
the clarity of the image texture and the depth of the texture grooves. So, this is used to judge whether 
the algorithm damages the texture structure of the image after filtering. The index score is between 0 
and 1. The larger the score is, the deeper the texture grooves are, and the greater the contrast is, that is, 
the better the filtering effect is, the clearer the image is, and no damage occurs during filtering. Equation 
(21) is used to calculate the indicator. 
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where i  and j  represent different pixels; d  represents the statistical step size, and  represents the 
statistical direction. 

By the proposed method, 10 digital painting images of different sizes were filtered to test the processing 
of different degrees of image noise and obtain the results of the filtered images 0K . The results are 
shown in Table 1. 
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where i and j represent different pixels; d represents 
the statistical step size, and θ represents the statisti-
cal direction.
By the proposed method, 10 digital painting images 
of different sizes were filtered to test the processing 
of different degrees of image noise and obtain the re-
sults of the filtered images K0. The results are shown 
in Table 1.
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Table 1 suggests that when there are different levels 
of noise in a digital painting image, the image results 
K0 are all above 0.932, and the maximum is 0.989. 
Because the Widow-HoffLMS adaptive algorithm 
selects the Hammerstein spline to optimize the al-
gorithm during image filtering, to better ensure its 
filtering effect and ensure the texture integrity after 
image processing.
The proposed method extracts the texture features 
of the image through the ghost convolutional layer 
when the complex texture segmentation of a dig-
ital painting image is carried out. To measure the 
extraction effect ofw the texture features, the in-
verse variance is used as a judgment criterion in 
the paper, which is capable of describing the degree 
of local change of the texture features, and takes a 
score between 0 and 1. If the texture of the image 
changes drastically in different regions, the inverse 
variance will be relatively small, indicating that the 
local change of the texture is larger and may con-
tain more details or irregularities, therefore, the 
smaller the score of this index, the better the fea-
ture extraction effect is, and the more details can 
be obtained in the image. Equation (22) is used to 
calculate this index.

Table 1 Comparison of the test results of the filtered digital painting images. 
Image size /pixel Noise level /dB   
 3 6 9 

50×50 0.943 0.952 0.963 
200×200 0.951 0.971 0.948 
400×400 0.967 0.968 0.972 
800×800 0.946 0.977 0.968 

1200×1200 0.938 0.941 0.989 
1680×1680 0.966 0.957 0.977 
2432×2432 0.973 0.956 0.966 
2600×2600 0.932 0.967 0.954 
3224×3224 0.985 0.981 0.949 
6000×4000 0.976 0.983 0.952 

 

Table 1 suggests that when there are different levels of noise in a digital painting image, the image results K0 are 
all above 0.932, and the maximum is 0.989. Because the Widow-HoffLMS adaptive algorithm selects the 
Hammerstein spline to optimize the algorithm during image filtering, to better ensure its filtering effect and ensure 
the texture integrity after image processing. 

               The proposed method extracts the texture features of the image through the ghost convolutional layer when the 
complex texture segmentation of a digital painting image is carried out. To measure the extraction effect of the 
texture features, the inverse variance is used as a judgment criterion in the paper, which is capable of describing 
the degree of local change of the texture features, and takes a score between 0 and 1. If the texture of the image 
changes drastically in different regions, the inverse variance will be relatively small, indicating that the local change 
of the texture is larger and may contain more details or irregularities, therefore, the smaller the score of this index, 
the better the feature extraction effect is, and the more details can be obtained in the image. Equation (22) is used 
to calculate this index. 
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The texture features of digital painting images are extracted by the proposed method, and the result µ of the feature 
extraction with different numbers of pixels by the proposed method is obtained. The results are shown in Table 2. 

Table 2 The Texture Feature Extraction of Digital  Painting 

 

 

 

 

 

 

 

                

 

Table 2 suggests that the change in the number of pixels in the image indicates the higher complexity of the 
image structure under different image sizes, that is, the smaller the image size, the higher the number of pixels, 
which indicates the higher complexity of the image structure. After the application of the proposed method, the 
texture feature extraction of images with different sizes and pixel numbers can be completed, and the result of 
the inverse variance is less than 0.018. Even when the image size is the smallest 50×50 pixel and the number of 

Number of pixels/piece Image size /pixel   
 50×50 1200×1200 6000×4000 

100 0.017 0.011 0.011 
200 0.016 0.014 0.012 
300 0.015 0.012 0.009 
400 0.018 0.015 0.01 
500 0.016 0.013 0.013 
600 0.012 0.011 0.012 
700 0.014 0.013 0.014 
800 0.015 0.014 0.011 
900 0.013 0.016 0.012 

1000 0.015 0.013 0.011 

 
. (22)

The texture features of digital painting images are 
extracted by the proposed method, and the result μ of 
the feature extraction with different numbers of pix-
els by the proposed method is obtained. The results 
are shown in Table 2.

Table 1
Comparison of the test results of the filtered digital 
painting images.

Image size /
pixel

Noise level /dB

3 6 9

50×50 0.943 0.952 0.963

200×200 0.951 0.971 0.948

400×400 0.967 0.968 0.972

800×800 0.946 0.977 0.968

1200×1200 0.938 0.941 0.989

1680×1680 0.966 0.957 0.977

2432×2432 0.973 0.956 0.966

2600×2600 0.932 0.967 0.954

3224×3224 0.985 0.981 0.949

6000×4000 0.976 0.983 0.952

Table 2 suggests that the change in the number of 
pixels in the image indicates the higher complexity of 
the image structure under different image sizes, that 
is, the smaller the image size, the higher the number 
of pixels, which indicates the higher complexity of 
the image structure. After the application of the pro-
posed method, the texture feature extraction of imag-
es with different sizes and pixel numbers can be com-
pleted, and the result of the inverse variance is less 
than 0.018. Even when the image size is the smallest 
50×50 pixel and the number of pixels reaches 1000, 
the result of the inverse variance is only 0.015. There-
fore, the proposed method has a better capability to 
extract complex texture features.
To verify the segmentation effect of the proposed 
method for the complex texture of digital painting 
images, 2 digital animation images (scene digital im-
age and animal digital image, respectively) are ran-
domly extracted from the selected test images for the 
texture segmentation test, and the complexity of the 
2 images and the color structure are different, to ana-
lyze the segmentation effect of the proposed method 
in a more comprehensive way, and the segmentation 
results are shown in Figures 4-5, respectively. When 

Table 2 
The Texture Feature Extraction of Digital  Painting

Number of 
pixels/piece

Image size /pixel

50×50 1200×1200 6000×4000

100 0.017 0.011 0.011

200 0.016 0.014 0.012

300 0.015 0.012 0.009

400 0.018 0.015 0.01

500 0.016 0.013 0.013

600 0.012 0.011 0.012

700 0.014 0.013 0.014

800 0.015 0.014 0.011

900 0.013 0.016 0.012

1000 0.015 0.013 0.011
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segmentation is performed, the segmentation target 
of Figure 4 is to obtain the complex texture segmen-
tation results of the trees in the image and to obtain 
the texture segmentation results of the foreground in 
Figure 5.
After analyzing the test results of Figures 4-5, it is 
concluded that the target texture segmentation re-
sults of the images can be obtained according to the 
segmentation requirements, for example, the seg-
mentation target in Figure 4 obtains the complex tex-
ture of the trees in the image, after the segmentation 
of 2 digitally drawn images with different complex-
ity and color structure is run. The proposed method 

pixels reaches 1000, the result of the inverse variance is only 0.015. Therefore, the proposed method has a better 
capability to extract complex texture features. 

To verify the segmentation effect of the proposed method for the complex texture of digital painting images, 2 
digital animation images (scene digital image and animal digital image, respectively) are randomly extracted 
from the selected test images for the texture segmentation test, and the complexity of the 2 images and the color 
structure are different, to analyze the segmentation effect of the proposed method in a more comprehensive way, 
and the segmentation results are shown in Figures 4-5, respectively. When segmentation is performed, the 
segmentation target of Figure 4 is to obtain the complex texture segmentation results of the trees in the image 
and to obtain the texture segmentation results of the foreground in Figure 5. 

Figure 4 The texture segmentation results in scene digital images. (a) Image before segmentation and (b) Complex texture 
segmentation results. 
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After analyzing the test results of Figures 4-5, it is concluded that the target texture segmentation results 
of the images can be obtained according to the segmentation requirements, for example, the 
segmentation target in Figure 4 obtains the complex texture of the trees in the image, after the 
segmentation of 2 digitally drawn images with different complexity and color structure is run. The 
proposed method comprehensively obtains the texture segmentation results of the 2 trees in the scene 
image. The texture segmentation results, even if the distribution and structural complexity of the texture 
are high, can still reliably realize the segmentation. According to the foreground texture segmentation 
that completes the complex texture segmentation of the foreground animals and trees in the animated 
digital image, the complex texture segmentation of the two images is achieved with high completeness. 

              To further verify the segmentation effect of the proposed methods on the complex texture of digitally 
rendered images, the methods presented in [7-9] are all used for comparison purposes. Complex texture 
segmentation is performed on digitally rendered images of different sizes through 4 methods, and the 
Dice coefficient is used as the evaluation index of the segmentation effect, The segmentation effect of 
the 4 methods is analyzed. The score is between 0 and 1. The larger the score is, the better the 
segmentation effect will be. Equation (23) is used to calculate this indicator. 
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where 2 X Y  represents the same number of elements for samples X  and Y , X  and Y  

represents the total number of elements for samples X  and Y ; coefficient 2 represents the reason for 
repeating the common elements in samples. The segmentation effect analysis results of the methods in 
[7-9] are presented. The results are shown in Table 3. 
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50×50 0.924 0.915 0.912 0.955 
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2600×2600 0.859 0.863 0.864 0.913 

3224×3224 0.851 0.857 0.858 0.907 

6000×4000 0.847 0.849 0.851 0.902 

Table 3 suggests that it is concluded that the complex texture segmentation of digital rendering images is carried 
out by 4 methods. When the same size of digital rendering image is segmented and the image size is small, the 
segmentation results of the methods in [7-9] are relatively good, and the Dice coefficient results are all above 0.847. 
With the increase in image size, the Dice coefficient results gradually decline. When the proposed method is used 
for complex texture segmentation of digital rendering images, the Dice coefficient results are all above 0.902, 
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(b) Texture result after segmentation

Figure 5
The texture segmentation results of animal digital images 
(a) Image before segmentation and (b) Texture result after 
segmentation. 

comprehensively obtains the texture segmentation 
results of the 2 trees in the scene image. The texture 
segmentation results, even if the distribution and 
structural complexity of the texture are high, can 
still reliably realize the segmentation. According to 
the foreground texture segmentation that completes 
the complex texture segmentation of the foreground 
animals and trees in the animated digital image, the 
complex texture segmentation of the two images is 
achieved with high completeness.
To further verify the segmentation effect of the pro-
posed methods on the complex texture of digitally 
rendered images, the methods presented in [7-9] are 
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all used for comparison purposes. Complex texture 
segmentation is performed on digitally rendered 
images of different sizes through 4 methods, and the 
Dice coefficient is used as the evaluation index of the 
segmentation effect, The segmentation effect of the 
4 methods is analyzed. The score is between 0 and 1. 
The larger the score is, the better the segmentation 
effect will be. Equation (23) is used to calculate this 
indicator.
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 represents the same number of ele-
ments for samples X and Y,  |X| and |Y | represents the 
total number of elements for samples X and Y; coeffi-
cient 2 represents the reason for repeating the com-
mon elements in samples. The segmentation effect 
analysis results of the methods in [7-9] are present-
ed. The results are shown in Table 3.
Table 3 suggests that it is concluded that the complex 
texture segmentation of digital rendering images is 
carried out by 4 methods. When the same size of dig-
ital rendering image is segmented and the image size 
is small, the segmentation results of the methods in 
[7-9] are relatively good, and the Dice coefficient re-
sults are all above 0.847. With the increase in image 
size, the Dice coefficient results gradually decline. 
When the proposed method is used for complex tex-
ture segmentation of digital rendering images, the 

Dice coefficient results are all above 0.902, which 
can better complete complex texture segmentation. 
Even when the image size is large, the segmentation 
effect is still good.

4. Conclusion
Image segmentation is a basis to ensure the processing 
effect when digital painting images are constructed to 
ensure the visual effect of an image. Thus, it is neces-
sary to carry out targeted processing on different areas 
of an image. Therefore, more complex segmentation 
methods are required to have better outcomes.
This paper proposes a method for conducting tex-
ture segmentation of digital painting images based 
on the Widow-HoffLMS adaptive algorithm when 
complex texture segmentation of digital painting 
images is needed. 
After analyzing the application effect of the proposed 
method through testing, it is determined that it meets 
the needs of complex texture segmentation of digital 
painting images, can better complete the texture seg-
mentation of digital painting images with different 
levels of complexity and noise, and can provide a reli-
able basis for targeted processing of different regions 
in the image.
The Dice coefficient results are greater than 0.847 
when image size increases. Moreover, the proposed 
method helps segment complex texture segmenta-

Image size /pixel Method in Reference [7] Method in Reference [8] Method in Reference [9] Proposed Method

50×50 0.924 0.915 0.912 0.955

200×200 0.911 0.909 0.908 0.948

400×400 0.907 0.906 0.903 0.942

800×800 0.903 0.902 0.899 0.938

1200×1200 0.895 0.894 0.892 0.929

1680×1680 0.877 0.883 0.886 0.923

2432×2432 0.862 0.872 0.871 0.918

2600×2600 0.859 0.863 0.864 0.913

3224×3224 0.851 0.857 0.858 0.907

6000×4000 0.847 0.849 0.851 0.902

Table 3 
The analysis of segmentation effects of four methods.



807Information Technology and Control 2025/3/54

tions of digital rendering images with the Dice coeffi-
cient greater than. 
It implies that better complete complex texture seg-
mentation is achieved. 
The limitation of the research is that the proposed 
method uses a linearity assumption. However, sev-
eral implementations require non-linearity. Thus, 
several non-linear assumptions could be used to im-
prove the results.

Future work will focus on other images used in dif-
ferent fields such as bio-medical images and the com-
plexity of the algorithm will be reduced to be imple-
mented in the practical applications.
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