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The intricate structure of the brain often necessitates the combined use of magnetic resonance (MR) and com-
puted tomography (CT) imaging for comprehensive diagnostics in clinical care. However, certain patients can-
not be exposed to radiation-intensive CT scans, leading to data scarcity and affecting subsequent treatment. In 
this regard, this paper proposes a new model noise-attention-pix2pix-CycleGAN (NAP-CycleGAN), replacing 
the generator with pix2pixHD utilizing multi-scale strategies and context-aware modules. By integrating chan-
nel attention, the model effectively extracts relevant image features, allowing adaptive weight assignment and 
handling of long-range dependencies. Additionally, Gaussian noise is introduced to the discriminator to coun-
teract adversarial sample attacks and prevent gradient vanishing. Furthermore, feature matching loss and cy-
cle consistency loss are integrated to reduce image detail distortion. To verify the model validity, it is compared 
with seven state-of-the-art methods. The experimental results on the public brain dataset brain01 show that 
the proposed model outperforms these methods, it yields the best, and the synthetic CTs of the proposed model 
are closest to the original CT images.
KEYWORDS: CycleGAN, Pix2pixHD, Channel attention, Noise discriminator, MR-CT synthesis
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1. Introduction 
The structure of the human brain is sophisticated and 
complex, and brain imaging technology has therefore 
become an indispensable tool in scientific research 
and clinical work. Currently, mainstream medical 
imaging technologies include X-ray, magnetic reso-
nance (MR), computed tomography (CT)  so on [31, 
3]. At the time of application, MR and CT have been 
widely used [32], MR provides better soft-tissue con-
trast, but CT is particularly suitable for bone imaging 
with better electron density information [20, 44, 8, 
33]. It suggests that single-modality medical imaging 
sometimes struggles to provide a full range of critical 
information, so a combination of multimodal images 
is needed to enable physicians to obtain information 
from different perspectives. To reduce the risk of ion-
izing radiation, existing MR can be used to generate 
CT to enable the use of multimodal images as an aid 
in clinical diagnosis and treatment [25].
To date, many methods have been proposed for MR 
to CT such as density-based [28], atlas-based [2], and 
machine learning-based [19] methods. However these 
methods have limited accuracy [24], lack robustness, 
and are time-consuming [22]. To solve these prob-
lems, researchers have tried to use deep learning tech-
niques for image synthesis [4, 34, 39]. Among them, 
generative adversarial network(GAN) [16] is one of 
the most widely used, which is efficient and consumes 
less manpower to achieve better results. Many GAN 
networks [12, 49, 48, 40, 36] have been used for im-
age synthesis. Chen et al. [6] proposed the NICEGAN 
method by reusing the discriminator, one of the two 
main structures of GAN, to obtain a more impactful 
and efficient image translation architecture. Aljo-
hani et al. [1] proposed a deep pix2pixGAN method 
based on deep convolutional neural networks as well 
as GAN to synthesise better quality CT images from 
MR maps as a way to synthesise new medical images 
from different images. Zhao et al. [50] used condition-
al GAN(CGAN) to synthesize images of multi-centred 
regions of the pelvic region by applying the feature en-
hancement module and feature reconstruction loss to 
GAN and composited a high-quality image with more 
detailed texture features. Jin et al. [21] proposed MR-
GAN based on a dual cycle-consistent structure and 
combines dual cycle-consistent loss to generate MR 
from CT using paired and unpaired data to address the 

context-misalignment problem of unpaired training. 
Xin et al. [37] used multi-channel multi-path CGAN 
of multi-parameter MRI with the channel-based in-
dependent feature extraction network to generate 
pseudo-CT and reduce the risk of omission of feature 
extraction in single-channel images. However, the 
results achieved by these methods are still far from 
adequate and limited in the scope of enhancement. 
For structured medical images, more detailed tex-
ture features of medical images need to be extract-
ed. Based on Cycle-Consistent GAN(CycleGAN)'s 
ability to bi-directionally capture potential mapping 
relationships of images to achieve preservation of 
medical structural information, Wang et al. [52] used 
CycleGAN for deformation-invariant cross-domain 
information fusion for synthetic CT, which achieved 
better image alignment. Jelmer et al. [43] used Deep 
MR to CT based on CycleGAN, using convolutional 
neural networks (CNNs) instead of GAN for generator 
and discriminator architecture to generate CT using 
an unpaired dataset and generating higher quality CT 
images and preserve key details in the MR images as 
well as good structural alignment for efficient medical 
image translation. However, The limited CNN struc-
ture of the network and the unpaired sample data still 
leave ambiguity in the details sometime and clinical 
features of the generated CTs. New methods need to 
be found for high-quality CTs [41]. 
Pix2pixHD is emerging in the past few years, proposed 
by Wang et al. [42], and used to synthesize high-reso-
lution photo-realistic imagery because of its ability to 
capture image details. Kévin et al. [5] used a pix2pix-
HD-based model to synthesize CT from MR using 
multicentre data, demonstrating to some extent the 
utility of the framework to bring the study of MR-CT 
synthesis techniques for clinical applications a step 
closer. For the task of MR-CT synthesis using GAN, 
the researchers have iterated and innovated through 
multiple channels. Yi et al. [47] proposed DualGAN 
to reconstruct realistic synthetic images by introduc-
ing a cycle consistency loss, and the introduction of it 
helps to maintain the consistency of image semantics 
and improve the flexibility and applicability of train-
ing. Ding et al. [10] utilized feature matching loss with 
CGAN to improve the quality of generated images and 
Highly realistic images are obtained. Moreover, Xue 
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et al. [45] investigated the enhancement of CycleGAN 
for image translation by combining the channel at-
tention with evolutionary algorithms and obtained 
the feature that the channel attention allows learning 
important texture features of real images, which pro-
vides a new direction for the enhancement of Cycle-
GAN image translation. In addition, Emami et al. [11] 
and Kearney et al. [23] introduce spatial attention in 
SPA-GAN and attention-aware CycleGAN, respec-
tively, to help the generator focus on key regions of the 
image, such as soft tissue features and cranial detail 
texture in MR images. However, the accuracy for gen-
erating cross-modal CTs using GAN is currently in-
consistent and sometimes produces blurred images. 
In this paper, to reduce the risk of patient exposure 
to radiation, and make it possible to clinically obtain 
MR-CT multimodal image combinations based on the 
patient's captured MRs alone thus providing an accu-
rate plan for a comprehensive diagnosis and treat-
ment, Considering that CycleGAN flexibly generates 
better CT images, We wish to improve the transpar-
ency and interpretability of the GAN model, as well 
as to explore the detail capturing ability of GAN in CT 
synthesis even further, and obtain higher quality CT 
images. The contributions of this paper are as follows: 
1	 We propose a new noise-attention-pix2pix Cycle-

GAN model named NAP-CycleGAN with a pix2pix-
HD generator and mainly concentrate on MR to CT 
synthesis, to provide a potential solution of missing 
MR-CT paired brain datasets in clinical practice. 

2	 The channel attention modules are introduced in 
the generator and efficiently focus on local feature 
extraction thus capturing important detailed tex-
tural features of bones and soft tissues in MR im-
ages and performing adaptive weight assignment 
when necessary.

3	 The Gaussian Noise is incorporated into the dis-
criminator to improve the robustness of the dis-
criminator against adversarial sample attacks and 
avoid gradient vanishing.

4	 Feature matching loss and cycle consistency loss 
are added in the synthesis and reconstruction pro-
cess to reduce the loss of detail and gradient de-
scent loss, thus improving the detail quality and 
realism of the generated images. And quantitative 
as well as qualitative analyses are performed on the 
public brain datasets with other advanced models. 

2. Materials and Methods 
2.1. NAP-CycleGAN Model
2.1.1. Model Architecture
The brain CT generation method based on the noise-at-
tention-pix2pix-CycleGAN(NAP-CycleGAN) is 
shown in Figure 1. The (a) in Figure 1 represents the 
NAP-CycleGAN architecture. As the same as Cycle-
GAN, the NAP-CycleGAN is essentially a ring-shaped 
network, divided into two parts, forward and reverse 
cycles [7], and contains two generators and two dis-
criminators [46]. On the input side, the original MR 
is regarded as the X domain, and the original CT is 
regarded as the Y domain, the X and Y domains share 
the generators GCT and GMR, each with a discriminator 
DCT and DMR [9]. For the X domain, the generator GCT's 
task is to convert MR into CT, and for the Y domain, 
the generator GMR's task is to convert CT into MR. In 
the forward loop, the X domain's MR is used as input 
to generate the Synthetic CT (SCT) via the generator 
GCT. The SCT is fed into the discriminator DCT along 
with the original CT for differentiation. At the same 
time, the output SCT of the generator GCT is used as in-
put to the generator GMR to generate the fake MR. And 
then the generated pseudo-MR is compared with the 
original MR to produce a forward cycle consistency 
loss. In the reverse loop, the CT of the Y domain is used 
as a network input to generate a Synthetic MR (SMR) 
via the generator GMR. The generated SMR is fed into 
the discriminator DMR along with the original MR for 
differentiation. At the same time, the output SMR of 
the generator GMR is used as input to the generator GCT 
to generate the fake CT. The generated pseudo-CTs 
are compared with the original CTs to produce a re-
verse cycle consistency loss [6]. In addition, the net-
work generates some feature matching losses during 
the actual training of the forward and backward loops.
Figure 1(b) represents the block diagram of MR to 
CT synthesis using NAP-CycleGAN. The process of 
generating CT from MR using NAP-CycleGAN is as 
follows: Input the MR image into NAP-CycleGAN, 
the generator GCT generates a synthetic CT, and then 
input it into the discriminator GCT to identify whether 
the image is a real CT or a synthetic CT, and if the re-
sult of the identification is fake, return the result and 
continue with the next generation and discrimination 
process, and generates the corresponding adversarial 
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loss. In this process, the generated SCT is fed into the 
generator GMR for generating the reconstruction MR, 
and the comparison of the reconstruction MR with 
the input MR produces a loss of cycle consistency. 
At the same time, the generated synthetic CT is com-
pared with the paired CT of the input MR producing a 
feature matching loss.

2.1.2. Pix2pixHD Generator
Although the traditional Cyclegan generator has bet-
ter global style migration, its performance is some-

times limited in high-resolution image generation 
tasks, resulting in loss of details and image blurring 
[13]. Based on this, we replace the generator with 
pix2pixHD, constituting the pix2pixHD, constituting 
the generator structure with encoder, residual block, 
and decoder as main parts. pix2pixHD is designed 
for high-resolution image generation [30], capturing 
both global consistency and local details, with an ar-
chitecture that is capable of handling complex details 
and large image sizes. This capability is especially im-
portant for generating medical images such as CT or 

Figure 1 
(a) NAP-CycleGAN architecture. GCT: CT generator, from MR to generate CT; GMR: MR generator, from CT to generate MR; 
DCT: CT discriminator, discriminate whether the SCT is real or fake; DMR: MR discriminator, discriminate whether the SMR is 
real or fake; (b) The block diagram of MR to CT synthesis using NAP-CycleGAN. 
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images with fine features. In contrast, other common 
generators such as PatchGAN underperform complex 
structures and details, and the generated images may 
be macroscopically incoherent [14]; U-Net generators 
rely too much on skip connections, which may cause 
the network to focus more on local information and 
ignore global features, and are prone to blurring of 
boundaries [18]. In addition, these generators per-
form poorly in capturing long-range dependencies 
and features in detailed regions, which may lead to 
less realistic quality of the generated images [26, 27]. 
In contrast, pix2pixHD combines the advantages 
of both, reasonably introduces the skip connection 
and up-sampling modules, further enhances the de-
tail expression ability and spatial resolution gener-
ation quality, significantly improves the resolution 
and realism of the generated images, and has supe-
rior advantages compared to other generators in the 
high-resolution image generation task [42], which 
can better satisfy the needs of the tasks that have high 
requirements on details and resolution, such as med-
ical imaging. 

In the pixpixHD generator, the channel attention is 
introduced in the encoder, which can help the net-
work learn the important features in the input im-
age more effectively, automatically learn the impor-
tance of each channel, and then adjust the weight 
of the feature map by enhancing or suppressing the 
response of different channels; the spatial attention 
mechanism, upsampling layer [35] and skip connec-
tion are introduced in decoder, which helps the net-
work pay more attention to the features of different 
regions in input image, effectively increasing the 
spatial resolution of generated CTs, thus improving 
the detail and realism of the image.
Figure 2 shows the generator structure of NAP-Cy-
cleGAN, and its workflow is as follows: the input and 
output of the image in the generator are transmitted 
using a scale of 1×256×256×3. Among them, the en-
coder calculates a total of three convolutions, the 
output scales obtained from each calculation of a con-
volution module are further calculated and outputted 
by using channel attention once, and the results ob-
tained from the channel attention are multiplied by 

Figure 2 
Generator Structure.
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the results obtained from the calculation of the con-
volution block, and the results are input into the next 
convolution module. The results obtained from the 
channel attention are multiplied by the results of the 
convolution block and fed into the next convolution 
block for computation, and the results obtained from 
the last convolution block are directly fed into the 
residual blocks for computation. In the decoder, two 
convolution modules are designed, and an up-sam-
pling operation is carried out after every convolution 
block computation. The result of the first convolu-
tional module is then connected to the correspond-
ing convolutional module in the encoder, and the last 
convolutional module directly outputs the generated 
image using the tanh activation function.

2.1.3. Channel Attention Module
The basic structure of the channel attention mech-
anism module [51] in the NAP-CycleGAN network 
is shown in Figure 3. In the channel attention of the 
embedded encoder, the input feature F undergoes 
a 2×2 average pooling layer and then completes the 
attention feature extraction by the channel convo-
lutional computation, and completes the detail fea-
ture extraction operation of the input image by using 
three convolutional layers and one normalization 
layer and one Resize layer. In this process, the size 
of the convolution kernel (k) is 1×1, the number of 
channels in the first convolution layer W1 is set to 
32, the number of channels in the second convolu-
tion layer W2 is set to the input scale, the two con-
volutional layers generates different weights for dif-

ferent input channels. Then the number of channels 
in the convolution layer W3 is compressed into a sin-
gle channel for standardization, which can generate 
a global single-channel feature map, in which each 
pixel value represents the overall importance weight 
of the location, and this weight gathers the Compre-
hensive weight of the location on all channels, which 
can reduce the computational complexity as well 
as enhance the salient features and aggregated the 
global information, which can increase the compu-
tational performance of the model. Next, the output 
features obtained from a single channel are subject-
ed to the Resize operation with the same shape as in-
put_dim, which makes the output scale identical to 
the input feature scale F and is multiplied to obtain 
the final output result (Mc) of the channel attention 
mechanism. By introducing the channel attention 
mechanism, the encoder can automatically learn the 
correlation between different channels and adap-
tively adjust the importance of different channels 
to better adapt to different types of input images, 
enabling the encoder to better capture the key fea-
tures in the input image [15]. This helps to improve 
the generalization ability of the model and enhance 
the feature representation ability of the generator, 
enabling the generator to better process images with 
different features to produce higher-quality output 
images. The above process of operating the channel 
attention mechanism can be represented as follows:
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to different types of input images, enabling the 
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input image [15]. This helps to improve the 
generalization ability of the model and enhance the 
feature representation ability of the generator, 
enabling the generator to better process images 
with different features to produce higher-quality 
output images. The above process of operating the 
channel attention mechanism can be represented as 
follows: 

MC W3(R(W2(R(W1(AvgPool(F))))))×F. (1) 
In Equation (1), MC represents the attention 

weight of each channel i.e. the channel attention 
output result, and  F is the input feature map, such 
as the dimension of 256×256×64, which represents 
the height, width, and number of channels. 
AvgPool(F) is the average pooling operation, W1, 
W2, and W3 are convolution layers, R is the 
activation function Relu of  W1 and W2, and is 
the sigmoid activation function of W3. 

2.1.4 Discriminator structure 
For the discriminator, on top of the traditional 

CycleGAN network discriminator, Gaussian Noise 
is proposed to be embedded before the second 
convolutional module after the first one. Gaussian 

Noise can be regarded as a regularisation technique, 
and the introduction of Gaussian Noise to form the 
noise discriminator increases the robustness and 
generalization of the model and improves the 
model's ability to fight against adversarial attacks, 
making it easier for the model to learn the true 
features of real data. As shown in Figure 5, in the 
discriminator, there are a total of four 
convolutional modules consisting of convolutional, 
standard, and activation layers for stacking 
computation. 

Figure 4 
Discriminator structure. 
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In the training process of the NAP-CycleGAN 

network, the generator objective function used to 
compute the loss contains the traditional 
adversarial loss, the cycle consistency loss, and the 
feature matching loss, and the loss function used 
for the discriminator has only the adversarial loss. 
The main definition of the generator objective 
function is as follows: 

In Equation (2), Ladv stands for the adversarial 
loss, Lfml stands for the feature matching loss, Lccl  
stands for the cycle consistency loss, and and 
stand for the corresponding loss weights, where the 
value of is set to 0.1 and is set to 10. 

2.2.1 Adversarial loss 
The total adversarial loss in training combines 

the adversarial loss in the x and y domains. For the 
calculation of the adversarial loss, a biparadigm of 
squared L2 norms is used to measure the difference 
between the samples produced by the generator 
and the true samples. The formula for this is as 
follows: 
Ladv=Ex pdata(x)[logD(x)]+Ez p(z)[log(1-D(G(z)))]. 

(3) 
In Equation (3),  D(x) is the output of the 

(1)

Figure 3 
Schematic diagram of the channel attention.
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In Equation (1), MC represents the attention weight of 
each channel i.e. the channel attention output result, 
and  F is the input feature map, such as the dimension 
of 256×256×64, which represents the height, width, 
and number of channels. AvgPool(F) is the average 
pooling operation, W1, W2, and W3 are convolution 
layers, R is the activation function Relu of  W1 and W2, 
and σ is the sigmoid activation function of W3.

2.1.4. Discriminator Structure
For the discriminator, on top of the traditional Cycle-
GAN network discriminator, Gaussian Noise is pro-
posed to be embedded before the second convolution-
al module after the first one. Gaussian
Noise can be regarded as a regularisation technique, 
and the introduction of Gaussian Noise to form the 
noise discriminator increases the robustness and 
generalization of the model and improves the model's 
ability to fight against adversarial attacks, making it 
easier for the model to learn the true features of real 
data. As shown in Figure 4, in the discriminator, there 
are a total of four convolutional modules consisting 
of convolutional, standard, and activation layers for 
stacking computation.

Figure 4 
Discriminator structure.

2.2. Loss Function
In the training process of the NAP-CycleGAN net-
work, the generator objective function used to com-
pute the loss contains the traditional adversarial loss, 

the cycle consistency loss, and the feature matching 
loss, and the loss function used for the discriminator 
has only the adversarial loss. The main definition of 
the generator objective function is as follows:

 . (2)

In Equation (2), Ladv stands for the adversarial loss, 
Lfml stands for the feature matching loss, Lccl stands 
for the cycle consistency loss, and β and γ stand for the 
corresponding loss weights, where the value of β is set 
to 0.1 and γ is set to 10.

2.2.1. Adversarial Loss
The total adversarial loss in training combines the 
adversarial loss in the x and y domains. For the calcu-
lation of the adversarial loss, a biparadigm of squared 
L2 norms is used to measure the difference between 
the samples produced by the generator and the true 
samples. The formula for this is as follows:
follows: 
Ladv=Ex∼pdata(x)[logD(x)]+Ez∼p(z)[log(1-D(G(z)))].

(3) 
 . (3)

In Equation (3), D(x) is the output of the discrimina-
tor on the true data x, G(z) is the output of the gener-
ator on the random noise z, and D(G(z)) is the output 
of the discriminator on the generated sample G(z), Ex-

~pdata(x) denotes the expectation of the true data, where 
pdata(x) is the distribution of the true data, Ez~p(z) de-
notes the expectation of the random noise, i.e., the 
prediction of the discriminator D on the fake data G(z) 
generated by the generator G, where p(z) is the distri-
bution of the random noise.

2.2.2. Feature Matching Loss
The goal of the feature matching loss function is to 
facilitate feature matching between the generator 
and the discriminator by minimizing the distance 
between the real data and the generated data in the 
feature map output by the discriminator, thus im-
proving the quality and realism of the generated im-
age. Feature matching loss is a technique in GAN that 
aims to improve the training stability of the generator 
and the quality of the generated images. The feature 
matching loss can be seen as a further development 
and optimization of the traditional perceptual loss as 
it also involves the use of intermediate features of the 
convolutional neural network, but it focuses more on 
the training strategy of the generative adversarial net-
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work rather than simply as a choice of loss function. 
The difference between the features is measured us-
ing Euclidean distance and the sum of the mean val-
ues is calculated as the feature matching loss with the 
following formula:
feature matching loss with the following formula:
Lfml=

1
N
∑ (|| E(x) i-E(G(x)) i ||2

2
+ ||D(y) i-

N
i=1

D(F(y))i ||2
2
).                                                        

  Equation (4) calculates the discriminator's 

(4)

Equation (4) calculates the discriminator's feature 
similarity identification between the real reference 
image and the fake image, where N represents the 
number of pixels of the feature image, G and F are gen-
erators, E and D are discriminators, E(x) denotes the 
feature image of real data x at the output of generator 
E, G(x) denotes the generated data G(x), D(y) denotes 
the feature image of real data y at the output of dis-
criminator D, and F(y) denotes the generated data F(y). 

2.2.3. Cycle Consistency Loss
The cycle consistency loss is used to promote con-
sistency between the generated image and the orig-
inal image. The basic idea is to transform an image 
to another domain through a generator, and then re-
verse the transformation back to the original domain 
through another generator, and as close as possible 
to the original image. By minimizing this difference, 
the performance of the generator can be improved by 
making the generated image closer to the original in-
put image. Its calculation formula is as follows:
as follows: 

Lccl=
1
γ

(
1
N

|F(G(xi))-xi|
N

i=1

+
1
M

|G(F(γi)) -γi|
M

i=1

) .

 (5)

∑ ∑ . (5)

Equation (5) calculates the similarity between the 
fake input image synthesised from the generated im-
age and the reference input image by calculating the 
L1 distance between the x-domain and the y-domain,  
N and M represent the number of samples sampled 
from domains x and y, respectively. G is the genera-
tor from domain x to domain y, and F is the generator 
from domain y to domain x. F(G(x)) represents the 
fake image x generated from the synthetic image y 
generated from the real image x by the generator F, 
while G(F(y)) represents the fake image y obtained 
from the synthetic image x generated from the real 
image y by the generator G. γ represents the weight of 
the Cycle consistency loss over the total loss.

2.3. Experimental Setup
2.3.1. Data Acquisition and Pre-processing
The model uses the publicly available dataset 
brain01 from the GitHub website(https://github.
com /ChengBinJin /MRI-to- CT-DCNN-Tensor-
Flow) and has been introduced in [17]. The dataset 
includes 367 pairs of 2D brain MR-CT raw paired 
images, each MR and CT image size is 512 × 256 pix-
els. We finish the benchmark by rectifying N4 bias 
correction, histogram matching, and head mask gen-
eration. Then we adjust images by left-right rotation 
at different angles. To ensure the accuracy of the 
data, we cropped all MR-CT separated images after 
alignment to 256*256 pixels, and 290 pairs of MR-
CT paired images were randomly selected for train-
ing and 70 pairs of images for testing. Our processed 
dataset is divided into two training sets and two test 
sets named trainA, trainB, and testA, testB respec-
tively. There are 290 images in both folders of the 
training set, and 77 images in the two folders of the 
test set,  where A stands for MR, and B stands for CT.

2.3.2. Evaluation Metrics
For the comparison of model generation effects, the 
structural similarity index (SSIM), peak signal-to-
noise ratio (PSNR), mean absolute error (MAE), 
Visual Information Fidelity (VIF), and Fréchet In-
ception Distance (FID) are used to complete the 
comparative evaluation of different models.
The SSIM is a kind of index used to measure the 
degree of similarity between two images, which 
takes into account the three aspects of brightness, 
contrast, and structure, and ranges between [-1, 1]. 
SSIM is essential for preserving anatomical struc-
tures, particularly in disease detection and segmen-
tation tasks. Higher SSIM indicates better retention 
of structural information, which is important for ac-
curate medical diagnosis and anatomical structure 
analysis, especially in image conversion. The formu-
la is as follows: 

image conversion. The formula is as follows
                SSIM(x,y )=

(2μxμy+c1)(2μxy +c2)

(μx
2+μy

2+c1)(σx
2+σy

2+c2)
 

In Equation (6),  x and y are the two images 
 
. (6)
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PSNR is a measure of image distortion that evaluates 
image quality by comparing the mean square error in 
decibels (dB) between different images. Increased PSNR 
values mean less distortion in the generated images, so 
doctors can rely on higher-quality generated images for 
decision-making without worrying about misdiagnosis 
due to image distortion. The formula is as follows:
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root of the product of the two covariance matrices.

2.3.3. Statistical Analysis
For the analysis of statistical differences in mod-
el performance metrics, we performed the paired 
samples Wilcoxon signed rank test using GraphPad 
Prim 8, The criterion for the significant difference in 
results was p < 0.05. When p < 0.05, it indicates that 
there is a difference between the models.

2.3.4. Implementation Details
The task of generating pseudo-CT from MR for the 
NAP-CycleGAN network is completed using Python as 
the programming language, with a comparative analy-
sis of the evaluation metrics and a statistical analysis 
of the generated results with seven state-of-art models, 
namely NICEGAN [6], Deep MR to CT [43], DualGAN 
[47], CGAN [42], CycleGAN [52], pix2pix [38] and VAE 
[29]. After completing training using a training set of 
290 pairs of MR-CT paired images, we used a test set 
of 77 pairs of MR-CT paired images as evaluation sam-
ples to compare model performance.
During the training process, the training parameters 
of all models are kept the same as NAP-CycleGAN, 
and the Adam optimizer is used for gradient descent 
and parameter updating of the models. The parame-
ters of NAP-CycleGAN are set to λ with 10 and β with 
0.5, the batch-size is set to 1, the initial learning rate 
is 0.0002, the number of epochs to keep the learning 
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rate constant during training, epoch_step is 100, the 
visualization results are saved every 100 steps and 
sets the random number seed to the same number as 
the training set images, 290. And we set the weights 
of feature matching loss and cycle consistency loss to 
0.1 and 10 respectively. A total of 200 epochs of train-
ing are performed with a training duration of 12 hours 
and a testing duration of 1 second per new image. 

The experimental platform is relying on the NVIDIA 
2080Ti GPU graphics card Platform, based on py-
thon3.8, Tensorflow2.5, and cuda11.2.

3. Results
3.1. Evaluation of SCTs by Different Methods
In order to verify the effectiveness of the proposed net-
work, the seven MR-CT synthesis novel methods of 
NICEGAN, Deep MR to CT, DualGAN, CGAN, Cycle-
GAN, pix2pix, VAE, and NAP-CycleGAN are compara-
tively, respectively with the same dataset brain01.
The Synthetic CTs(SCTs) generated by these state-
of-the-art methods and their difference maps are 
shown in Figure 5, showing the training synthetic 

Figure 5 
Comparison of Synthetic CTs and difference maps from different models using the whole testing dataset including 77 paired 
MR-CT images. (a) Original MR and the Reference CT, (b) NICEGAN SCT and difference map, (c) Deep MR to CT SCT and 
difference map, (d) DualGAN SCT and difference map, (e) CGAN SCT and difference map, (f ) CycleGAN SCT and difference 
map, (g) pix2pix SCT and difference map, (h) VAE SCT and difference map, and (i) NAP-CycleGAN SCT and difference map.
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Figure 6 
Box & whiskers of the whole test dataset’s assessment metrics(MR to CT synthesis) between NAP-CycleGAN and other 
methods. The title indicates the currently used comparison assessment metric, the horizontal coordinate represents the 
method name, and the vertical coordinate represents the set of values for this assessment metric for all synthetic CTs of the 
method on the 77-pair MR-CT paired image test set.

Network SSIM(↑) PSNR(↑) MAE(↓) VIF(↑) FID(↓)

NICEGAN [6] 0.54±0.09** 10.16±1.69** 40.21±9.49** 0.14±0.04** 57.14±15.10**

Deep MR to CT [43] 0.69±0.06** 15.08±2.25** 16.67±6.26** 0.27±0.07** 42.58±9.61**

DualGAN [47] 0.69±0.03* 17.39±0.75* 14.58±1.92** 0.33±0.01* 44.54±10.42**

CGAN [42] 0.67±0.06** 15.08±2.19** 18.53±5.78** 0.28±0.06** 43.75±8.83**

CycleGAN [52] 0.57±0.07** 13.06±1.50** 23.92±6.90** 0.22±0.05** 44.93±9.69**

Pix2pix [38] 0.61±0.11** 12.61±3.04** 28.43±17.40** 0.21±0.11** 50.98±12.98**

VAE [29] 0.60±0.08** 11.40±2.72** 32.94±13.18** 0.13±0.09** 56.52±14.45**

NAP-CycleGAN 0.72±0.06 16.85±2.20 12.49±4.85 0.35±0.06 35.01±10.97

Table 1 
Comparison of image average assessment metrics between NAP-CycleGAN and other methods using the whole testing 
dataset including 77 paired MR-CT images. (The paired samples Wilcoxon signed rank test results: One star represents 
p<0.05, two stars represent p<0.01).
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SCTs and difference maps of the different methods. 
To make the differences more obvious as well as to 
facilitate visualization, we adjusted the difference 
maps to a black-to-red mode, where the red color in 
the figure represents the difference between the SCT 
maps of each method and the reference CT maps. 
When there are more red parts in the difference maps, 
it indicates that the SCTs of the model are more dif-
ferent from the RCTs. It is obvious from Figure 5 that 
the SCTs generated using Deep MR to CT, CGAN, Cy-
cleGAN, pix2pix and VAE are more different from the 
RCTs, and the textures in the SCTs are not the same, 
with more red parts in the difference maps, while the 
SCTs generated by DualGAN method and NAP- Cy-
cleGAN are closer to the RCT, with the least red parts 
in the difference maps. After further visual analysis 
we found that the SCTs of NAP-CycleGAN are visual-
ly closer to the RCTs compared to DualGAN, The SCT 
of NAP-CycleGAN produces clearer and more realis-
tic texture features compared to DualGAN, almost the 
same as the RCTs, and the difference map has less red 
parts than it, which have more clarity and homogene-
ity. Based on the consideration of assessing the qual-
ity of model-generated images from various aspects, 
we separately assessed the quality of SCTs generated 
by all the above methods.
The comparison results are shown in Figure 6 and 
Table 1. Figure 6 shows the set of five assessment 
metrics values for 77 SCTs generated by testing 
NAP-CycleGAN with seven state-of-the-art meth-
ods on the test set containing 77 pairs of MR-CT 
paired images, and in horizontal coordinates they 
are arranged in order from left to right: NICEGAN, 
MR to CT, DualGAN, CGAN, CycleGAN, Pix2pix, 
VAE. By looking at the data distribution of Figure 6, 
we can initially find that Nap-CylceGAN performs 
best, with better values of the assessment metrics 
for the 77 SCTs than the other methods in gener-
al. The distribution of the FID values as well as the 
MAE values are significantly lower than the values 
of the other methods, while the lower MAE values 
indicate that the details of the generated images are 
better preserved, which helps the doctors to iden-
tify and diagnose the lesion areas more accurately. 
For medical image generation, it indicates that the 
generated image is close to the real image in terms 
of high-level features, which improves the credibili-
ty of the generated image in the clinic. It shows that 

our method generates images with more clinical ap-
plications. 
In order to further confirm the differences of the 
NAP-CycleGAN compared to other methods, we 
calculated the mean value of the five evaluation met-
rics of these SCTs respectively, as shown in Table 1, 
where the worst metrics values are the NICEGAN, 
the pix2pix, and VAE with SSIM values of 0.54, 0.61 
and 0.60, PSNR values of 10.16, 12.61 and 11.40, MAE 
values of 40.21, 28.43 and 32.94, respectively. Com-
pared to the other models’ results, although not all 
indicators are at the lowest level, most of the met-
rics have worse result values than those of the other 
methods, which suggests that the other models are 
more effective. It is obvious that the SCTs generat-
ed by the NAP-CycleGAN method in the table have 
an average SSIM value of 0.72 HU, an average PSNR 
value of 16.85, an average MAE value of 12.49, VIF 
of 0.35, and FID of 35.01, which gives a more stable 
quality assessment results compared to the other 
models that generate better results. It can be seen 
that NAP-CycleGAN shows better performance 
in SCT map generation, both in terms of the visu-
al sensation of the generated images and the image 
evaluation metrics. Higher SSIM indicates that 
NAP-CycleGAN exhibits stronger structural fidelity 
compared to other methods, higher PSNR indicates 
that the details of the generated images are better 
preserved, which helps the doctor to better observe 
small lesions when processing high-resolution im-
ages, and lower MAE indicates that the SCT is closer 
with a small pixel gap to the reference CT. We can 
see this from the SCT as well as the disparity map in 
Figure 5, where the SCT of NAP-CycleGAN is closer 
to the reference CT in terms of structural similari-
ty, pixels and realism, containing skeletal contours 
as well as muscular tissue structural shapes. After 
using statistical analysis we have also found that the 
paired samples Wilcoxon signed rank test results be-
tween the five evaluation metrics and the models of 
NAP-CycleGAN with brain01 dataset are all p<0.05, 
so there is a significant difference in the evaluation 
metrics between our models. We also have compared 
their training computation efficiency, and we find 
that the training duration of CGAN, CycleGAN and 
VAE is the shortest, with 11 hours,11 hours and 10 
hours, the NAP-CycleGAN is about 12 hours, but the 
Deep MR to CT cost longest duration with almost 1.5 
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hours per epoch, with the other models have run for 
about the same 20 hours.

3.2. Ablation Experiments and Sensitivity 
Analysis
For the purpose of using the pix2pixHD generator 
structure, the embedded Gaussian noise attention 
used over the spatial attention, and the effectiveness 
of the loss function as proposed in this paper, an ab-
lation study is conducted. This ablation mainly fo-
cuses on the spatial attention, the  channel attention, 
the noise discriminator, and the discriminator, the 

advantages of the channel generator structure, ex-
cluding the feature loss function and the cycle con-
sistency function, and all the ablation experiments 
use the same dataset for training and testing with the 
same settings. Figure 7 shows the results of the abla-
tion experiments, from the generated SCTs, it can be 
seen that the SCTs generated by NAP-CycleGAN are 
the closest to the RCTs, the detailed texture is also 
clearer and closer to the RCTs, and the red part is the 
least in the difference maps, it can be found that no 
matter which module is embedded into the model 
alone, it can not get better SCTs, only by combining 

Figure 7 
Comparison of Synthetic CTs and difference maps from ablation experiments of different components using the whole 
testing dataset including 77 paired MR-CT images. (a) Original MR and reference CT(No maps), (b) Noise-Cycle: CycleGAN 
using noise discriminator, (c) Spatten-Cycle: CycleGAN using spatial attention, (d) Channel-Cycle: CycleGAN using channel 
attention, (e) Noise-pix: pix2pixHD generator with noise discriminator, (f ) Spatten-pix: pix2pixHD with the spatial attention, 
(g) Chaatten-pix: pix2pixHD with the channel attention, (h) NAP-Nonoise: NAP-CycleGAN with the spatial attention and 
the channel attention, (i) NAP-NoChaatten: NAP-CycleGAN without channel attention, ( j) NAP-Spatten: NAP-CycleGAN 
with the spatial attention, and (k) NAP-CycleGAN.
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Figure 8 
Box & whiskers of the test dataset’s assessment metrics(MR to CT synthesis) from ablation experiments of different 
components. The title indicates the currently used comparison assessment metric, the horizontal coordinate represents the 
method name, and the vertical coordinate represents the set of values for this assessment metric for all synthetic CTs of the 
method on the 77-pair MR-CT paired image test set.

Table 2 
Comparison of image average assessment metrics for ablation experiments using the whole testing dataset including 
77 paired MR-CT images. (The paired samples Wilcoxon signed rank test results: One star represents p<0.05, two stars 
represent p<0.01).

Network SSIM(↑) PSNR(↑) MAE(↓) VIF(↑) FID(↓)

Noise-Cycle 0.63±0.06** 13.44±1.28** 20.92±5.21** 0.21±0.05** 44.08±9.33**

Spatten-Cycle 0.34±0.03** 14.05±1.65** 21.81±5.76** 0.22±0.03** 45.77±10.22**

Chaatten-Cycle 0.64±0.05** 13.63±1.50** 21.92±4.66** 0.21±0.04** 45.19±10.67**

Noise-pix 0.71±0.07** 16.52±2.38* 12.90±5.32* 0.34±0.07* 37.64±10.86**

Spatten-pix 0.61±0.11** 12.66±3.02** 28.13±17.31** 0.21±0.11** 51.06±13.04**

Chaatten-pix 0.71±0.06** 16.42±2.39* 13.05±5.14** 0.33±0.07** 39.09±10.77**

NAP-Nonoise 0.70±0.06** 15.96±2.41** 14.67±5.31** 0.33±0.08** 38.67±11.49*

NAP-NoChaatten 0.71±0.06** 16.17±2.35** 14.20±5.20** 0.31±0.05** 37.10±10.81*

NAP-Spatten 0.72±0.06* 16.25±2.06** 13.23±5.28** 0.35±0.06* 34.86±10.04

NAP-CycleGAN 0.72±0.06 16.85±2.20 12.49±4.85 0.35±0.06 35.01±10.97



951Information Technology and Control 2025/3/54

all the modules and the loss function can we get the 
SCTs with the best quality. The best quality SCT can 
only be obtained by combining all modules and loss 
functions without spatial attention. 
In addition, the quality of the generated images is 
also evaluated for the ablation experiments and the 
results are shown in Figure 8 and Table 2. Firstly, By 
comparing the specific value distributions of the five 
metrics for the 77 synthetic samples in the test set 
in Figure 8, we find that pix2pixHD with the spatial 
attention (Spatten-pix) exhibits poor data distribu-
tions in the boxplots, with the lowest values of SSIM/
PSNR/VIF, and the highest distributions of MAE val-
ues. FID distribution is also higher. In contrast, the 
distributions of the five metrics for the NAP-Cycle-
GAN and other ablation component test results per-
formed better in the boxplots, all showing the correct 
tendencies as they should. In order to further obtain 
the best experimental combination, we compared 
the mean and standard deviation of the metric val-
ues of the 77 sample test results, as shown in Table 
2. It can be seen from Table 2 that in the case of not 
changing the loss function, just changing the other 
module models is not as effective as adding a new loss 
function. The introduction of Gaussian noise can ef-
fectively change the quality of generated image evalu-

ation, and the introduction of only the noise discrimi-
nator can achieve a better quality of image generation 
compared to embedding only the spatial attention. If 
the pix2pixHD structure is introduced into the gen-
erator structure alone, the image quality of the SCT 
is worse than if the module is not introduced together 
with other modules. It can be seen that in the case of 
introducing each module alone, only a small change 
in the quality of the generated image can be achieved, 
and if the added modules are combined two by two, 
it may also result in poor SCT generation, especially 
the use of spatial attention. But if all the modules are 
embedded and added with the feature matching loss 
and the cycle consistency loss function, i.e. NAP-Cy-
cleGAN, the generated SCT image quality of the Cy-
cleGAN model can be greatly improved and a better 
image performance can be obtained. Besides, the sta-
tistical analysis results that the paired samples Wil-
coxon signed rank test results between the five evalu-
ation metrics and the models of NAP-CycleGAN with 
brain01 dataset almost all p<0.05, so there is a signifi-
cant difference in the evaluation metrics between our 
models. The training computation efficiency is simi-
lar, which is during 12-13 hours.
In order to investigate the impact of a truly single 
loss function on model performance, we do the abla-

Figure 9 
Comparison of Synthetic CTs and difference maps from ablation experiments of different losses using the whole testing 
dataset including 77 paired MR-CT images. (a) Original MR and reference CT(No maps), (b) Noise-onlyfeatloss: NAP-
CycleGAN without cycle consistency loss, (c) Noise-onlycycloss: CycleGAN without feature matching loss, and (d) NAP-
CycleGAN: feature matching loss with cycle consistency loss and adversarial loss.
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tion experiments for the cycle consistency loss and 
the feature matching loss separately. As is shown 
in Figures 8-9 and Table 3 are SCTs and difference 
maps of different losses. From the results, it can be 
found that on the surface, the SCT of NAP-Cycle-
GAN is not much different from the other generat-
ed SCT, but the difference map shows that the red 
part in the difference map of NAP-CycleGAN is 
less than the other two components, which means 
that NAP-CycleGAN is closer to the reference CT. 
Finally, in order to further validate the model per-
formance of these three methods, we calculated five 
metrics for each of the three methods: SSIM, PSNR, 
MAE, VIF, and FID. From Table 3, we can also find 

that the methods of integrated feature matching loss 
and cycle consistency loss produce a better perfor-
mance of the metrics and get better SCT which is 
closest to RCT compared to others. This is a good in-
dication that the best results are achieved when two 
loss functions are combined. 
Moreover, We have also conducted the sensitivi-
ty experiment of NAP-CycleGAN to β. In order to 
achieve this purpose, we vary β from 0.1 to 1 and in-
crease per 0.1 with other settings that are the same. 
As the results are shown in Figure 10, The scatter 
plots from left to right and from top to bottom are: 
The scatter plots from left to right and from top to 
bottom is: average SSIM values comparison, average 

Figure 10 
The sensitivity analysis results of MR to CT synthesis in the training process for β(β increased from 0.1 to 1 per 0.1 with 
other settings the same). The scatter plots from left to right and from top to bottom are: average SSIM values comparison, 
average PSNR values comparison, average MAE values comparison, average VIF values comparison, and average FID 
values comparison. 

Network(ganloss) SSIM(↑) PSNR(↑) MAE(↓) VIF(↑) FID(↓)

NAP-onlyfeatloss 0.62±0.06** 12.66±1.28** 23.75±5.54** 0.17±0.04** 43.71±10.41**

NAP-onlycycloss 0.71±0.06** 15.89±2.24** 13.84±5.25** 0.30±0.05** 38.09±11.58*

NAP-CycleGAN 0.72±0.06 16.85±2.20 12.49±4.85 0.35±0.06 35.01±10.97

Table 3 
Comparison of image average assessment metrics for loss function ablation experiments using the whole testing dataset 
including 77 paired MR-CT images. (The paired samples Wilcoxon signed rank test results: One star represents p<0.05, two 
stars represent p<0.01).
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PSNR values comparison, average MAE values com-
parison, average VIF values comparison, average 
FID values comparison. From the scatter plots of 5 
metrics, we can find that the NAP-CycleGAN per-
forms best when β is set to 0.5.

4. Discussion
During the above works, we have used NAP-Cycle-
GAN for the task of generating CT from MR, and 
have good results. NAP-CycleGAN integrates the 
collection of Channel attention and multiple loss-
es to form a new combination of losses on top of 
the CycleGAN for the purpose of generating a real 
CT image that is adversarial and robust. To get the 
best-performing model, we have done some ablation 
experiments for analysis and comparison.
The analysis of those shown from Figures 7-10, Ta-
ble 2, and Table 3 indicates that the performance 
of NAP-CycleGAN far exceeds the other compo-
nents. Specifically, the introduction of Gaussian 
noise reduces the image detail loss, this can be 
seen from the comparison of metrics values be-
tween noise-Cycle and CycleGAN in Tables 1 and 
2, where five metrics are significantly improved. By 
comparing the Spatten-Cycle, Chaatten-Cycle and 
Noise-Cycle rows of Table 2 and Figure 8, it can 
be found that the Chaatten-Cycle performs best 
with the mean value of the SSIM of 0.64, PSNR of 
13.63, the VIF of 0.21, and Noise-Cycle has better 
values of 20.92 and 44.08 on MAE and FID. This in-
dicates that Noise-Cycle performs better in SCT’s 
accuracy and features, but overall Chaatten-Cycle 
is better in image structure similarity, and detail 
texture, which can also be found in Figure 7. From 
here we can find the importance and advantages of 
the channel attention. In order to explore the op-
timal combination of pix2pixHD generator with 
other components, we performed it with six com-
binations, and the results are shown in Figures 
7-8 and Table 2. From noise-pix to Nap-Spatten, 
the SCT of Spatten-pix performs worst in SSIM/
PSNR/MAE/VIF, and the SCT of Noise-pix has 
the worst FID, which indicates the poor structural 
similarity for the SCT of Spatten-pix, insufficient 
fidelity for visual information, and relatively few-
er clinical features in Noise-pix. From Figure 7, it 
can also be found that the SCT of Spatten-pix has 

too much darkness resulting in blurring of some 
of the textures, and the SCT of Noise-pix has fea-
tures that are too general. Comparatively, the SCTs 
of NAP-Spatten and NAP-CycleGAN have obvious 
boundaries, the features are obvious with less dis-
tortion, and the evaluation metrics are also found 
to be optimal in Figure 8 and Table 2, especially for 
NAP-CycleGAN. Moreover, from Figures 9-10 and 
Table 3, we have found that single loss function 
does not improve the performance, whereas when 
we combine them, we get the best SCTs with the 
most comprehensive clinical information features. 
Also, some parameters during the experiment also 
affect the results. As is shown in Figure 10, when 
the beta is set to 0.5, relatively good metrics are ob-
tained, which means it has an important impact on 
the model generation. These results suggest that 
the combination of those components plays a cru-
cial role in the synthesis of SCTs.
To validate the effectiveness of our model, we con-
ducted a comparative study of our approach with 
several of the more classical methods. From Figure 
5, it is obvious that NAP-CycleGAN's SCT with dis-
tinct skeletal boundaries has accurate soft tissue 
structures and boundaries that are closest to the ref-
erence CT compared to other models, with clear and 
accurate tissue texture features at the very boundar-
ies of the skeleton, and the least amount of distortion 
in the images. In contrast, the SCT of NICEGAN, 
CGAN, CycleGAN, and VAE was severely distorted, 
with more clinical details lost, and the difference 
maps also showed more red parts, the SCT skeletal 
boundary of pix2pix was too thick, the SCT skel-
etal boundary of Deep MR to CT showed errors, 
and the picture was more distorted, and the SCT of 
DualGAN had darker tones. In Figure 6 and Table 
1, the image evaluation metrics SSIM and VIF are 
higher than those of the other models, with a lower 
MAE and FID value, even though its PSNR metrics 
are lower than DualGAN, overall NAP-CycleGAN's 
metrics outperform other state-of-the-art methods. 
Since SSIM mainly measures the structural similar-
ity of clinical images, PSNR is used to quantify the 
image distortion, MAE reflects the image accuracy, 
VIF reflects the visual information fidelity and clin-
ical texture features of the images, and FID empha-
sises the degree of clinical features of the generated 
images, which is in complete agreement with the 
above-mentioned features of the SCT image perfor-
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mance of NAP-CycleGAN, indicating that NAP-Cy-
cleGAN's SCT is superior to other methods both in 
terms of visual analysis and performance analysis.
 In the research, the dataset we used is paired  data, 
but the SCTs of other methods still have problems 
like blurring of details and mismatch of detailed fea-
tures, while the feature extraction of the NAP-Cy-
cleGAN is more comprehensive. This further 
demonstrates the superiority of NAP-CycleGAN for 
clinical medical image translation.

5. Conclusions
In this research, the NAP-CycleGAN is proposed to 
finish the process of MR-to-CT synthesis according 
to the brain MR-CT data. It is a novel model that 
replaced the CycleGAN generator with pix2pixHD, 
introduces the Channel attention into generator in-
corporates the Gaussian Noise to integrate the noise 
discriminator, and uses the cycle consistency loss 
and the feature matching loss, which combines the 
advantages of detail feature extraction of Channel 
attention and the advantages of loss function loss 
computation and reduction of gradient vanishing 

solves the problems of detail distortion and instabil-
ity of generated images in previous CycleGAN net-
work generated images. 
Experimental results show that NAP-CycleGAN has 
obtained the best evaluation results in terms of the 
evaluation metrics and difference maps, and gener-
ates better CT images in terms of image quality and 
realism compared to state-of-the-art methods. 
The limitation of the NAP-CycleGAN is that it is 
trained using images from public datasets and lacks 
more practical and clinical validation. Our future 
work focuses on researching deep learning models 
that can perform multimodality not limited to MR-
CT, integrating with clinics as much as possible, ex-
ploring the possibility of obtaining more actual clin-
ical medical datasets for research, as well as whether 
it is possible to perform 3D MR-CT image conver-
sion and completing more relevant statistical anal-
yses to refine the model performance such as more 
clinically-oriented metrics or expert evaluations.

Acknowledgement
This work was financially supported by the National 
Natural Science Foundation of China [grant number 
81971505]. 

References
1.	 Abeer, A., Nawaf, A. Generating Synthetic Images for 

Healthcare with Novel Deep Pix2Pix GAN. Electron-
ics, 2022, 11(21), 3470. https://doi.org/10.3390/elec-
tronics11213470

2.	 Arabi H., Dowling J.A., Burgos N., Han X., Greer P.B., 
Koutsouvelis N., Zaidi H. Comparative Study of Algo-
rithms for Synthetic CT Generation from MRI: Con-
sequences for MRI-Guided Radiation Planning in the 
Pelvic Region. Medical Physics, 2018, 45(11), 5218-
5233. https://doi.org/10.1002/mp.13187

3.	 Armanious K., Jiang C., Fischer M., Küstner T., Hepp 
T., Nikolaou K., Gatidis S., Yang B. MedGAN: Medical 
Image Translation Using GANs. Computerized Med-
ical Imaging and Graphics, 2020, 79, 101684. https://
doi.org/10.1016/j.compmedimag.2019.101684

4.	 Boulanger M., Nunes J.-C., Chourak H., Largent A., 
Tahri S., Acosta O., De Crevoisier R., Lafond C., Bara-
teau A. Deep Learning Methods to Generate Synthet-
ic CT from MRI in Radiotherapy: A Literature Re-

view. Physica Medica, 2021, 89, 265-281. https://doi.
org/10.1016/j.ejmp.2021.07.027

5.	 Brou Boni K. N. D., Klein J., Vanquin L., Wagner A., La-
cornerie T., Pasquier D., Reynaert N. MR to CT Synthe-
sis with Multicenter Data in the Pelvic Area Using a 
Conditional Generative Adversarial Network. Physics 
in Medicine and Biology, 2020, 65(7), 075002. https://
doi.org/10.1088/1361-6560/ab7633

6.	 Chen, R., Huang, W., Huang, B., Sun, F., Fang, B. Re-
using Discriminators for Encoding: Towards Unsu-
pervised Image-to-Image Translation. Proceedings 
of the IEEE/CVF Conference on Computer Vision 
and Pattern Recognition, 2020, 8168-8177. https://doi.
org/10.1109/CVPR42600.2020.00819

7.	 Chen, X., Cao, Y., Zhang, K., Wang, Z., Xie, X., Wang, Y., 
Men, K., Dai, J. Technical Note: A Method to Synthe-
size Magnetic Resonance Images in Different Patient 
Rotation Angles with Deep Learning for Gantry-Free 
Radiotherapy. Medical Physics, 2023, 50(3), 1746-



955Information Technology and Control 2025/3/54

1755. https://doi.org/10.1002/mp.15981

8.	 Chen, Y., Yang, X.-H., Wei, Z., Heidari, A. A., Zheng, N., 
Li, Z., Chen, H., Hu, H., Zhou, Q., Guan, Q. Generative 
Adversarial Networks in Medical Image Augmenta-
tion: A Review. Computers in Biology and Medicine, 
2022, 144, 105382. https://doi.org/10.1016/j.compbi-
omed.2022.105382

9.	 Deng, L., Ji, Y., Huang, S., Yang, X., Wang, J. Synthetic CT 
Generation from CBCT Using Double-Chain-CycleGAN. 
Computers in Biology and Medicine, 2023, 161, 106889. 
https://doi.org/10.1016/j.compbiomed.2023.106889

10.	 Ding, S., Zheng, J., Liu, Z., Zheng, Y., Chen, Y., Xu, 
X., Lu, J., Xie, J. High-Resolution Dermoscopy Im-
age Synthesis with Conditional Generative Adver-
sarial Networks. Biomedical Signal Processing and 
Control, 2021, 64, 102224. https://doi.org/10.1016/j.
bspc.2020.102224

11.	 Emami, H., Aliabadi, M. M., Dong, M., Chinnam, R. B. 
SPA-GAN: Spatial Attention GAN for Image-to-Im-
age Translation. IEEE Transactions on Multime-
dia, 2020, 23, 391-401. https://doi.org/10.1109/
TMM.2020.2975961

12.	 Emami, H., Dong, M., Nejad-Davarani, S. P., Glide-
Hurst, C. K. Generating Synthetic CTs from Magnet-
ic Resonance Images Using Generative Adversarial 
Networks. Medical Physics, 2018, 45(8), 3627-3636. 
https://doi.org/10.1002/mp.13047

13.	 Estakhraji, S. I. Z., Pirasteh, A., Bradshaw, T., Mc-
Millan, A. On the Effect of Training Database Size 
for MR-Based Synthetic CT Generation in the Head. 
Computerized Medical Imaging and Graphics, 2023, 
107, 102227. https://doi.org/10.1016/j.compmedim-
ag.2023.102227

14.	 Fan, C., Lin, H., Qiu, Y. U-Patch GAN: A Medical Image 
Fusion Method Based on GAN. Journal of Digital Im-
aging, 2023, 36(1), 339-355. https://doi.org/10.1007/
s10278-022-00696-7

15.	 Gong, C., Huang, Y., Luo, M., Cao, S., Gong, X., Ding, S., 
Yuan, X., Zheng, W., Zhang, Y. Channel-Wise Attention 
Enhanced and Structural Similarity Constrained Cy-
cleGAN for Effective Synthetic CT Generation from 
Head and Neck MRI Images. Radiation Oncology, 2024, 
19(1), 37. https://doi.org/10.1186/s13014-024-02429-2

16.	 Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, 
B., Warde-Farley, D., Ozair, S., Courville, A., Ben-
gio, Y. Generative Adversarial Nets. Communica-
tions of the ACM, 2020, 63(11), 139-144. https://doi.
org/10.1145/3422622

17.	 Han, X. MR-Based Synthetic CT Generation Us-
ing a Deep Convolutional Neural Network Method. 
Medical Physics, 2017, 44(4), 1408-1419. https://doi.
org/10.1002/mp.12155

18.	 Huang, Y., Bian, S., Li, H., Wang, C., Li, K. DS-UNet: 
A Dual Streams UNet for Refined Image Forgery Lo-
calization. Information Sciences, 2022, 610, 73-89. 
https://doi.org/10.1016/j.ins.2022.08.005

19.	 Huynh, T., Gao, Y., Kang, J., Wang, L., Zhang, P., Lian, 
J. Estimating CT Image from MRI Data Using Struc-
tured Random Forest and Auto-Context Model. IEEE 
Transactions on Medical Imaging, 2016, 35(1), 174-
183. https://doi.org/10.1109/TMI.2015.2461533

20.	 Jiang, J., Hu, Y.-C., Tyagi, N., Zhang, P., Rimner, A., 
Deasy, J.O., Veeraraghavan, H. Cross-Modality (CT-
MRI) Prior Augmented Deep Learning for Robust 
Lung Tumor Segmentation from Small MR Datasets. 
Medical Physics, 2019, 46(10), 4392-4404. https://doi.
org/10.1002/mp.13695

21.	 Jin, C.-B., Kim, H., Jung, W., Joo, S., Park, E., Saem, 
A.Y., Han, I.H., Lee, J.I., Cui, X. Deep CT to MR Synthe-
sis Using Paired and Unpaired Data. Sensors (Basel), 
2019, 19(10), 2361. https://doi.org/10.3390/s19102361

22.	 Johnstone, E., Wyatt, J.J., Henry, A.M., Short, S.C., 
Sebag-Montefiore, D., Murray, L., Kelly, C.G., McCal-
lum, H.M., Speight, R. Systematic Review of Synthet-
ic Computed Tomography Generation Methodologies 
for Use in Magnetic Resonance Imaging-Only Radia-
tion Therapy. International Journal of Radiation On-
cology, Biology, Physics, 2018, 100(1), 199-217. https://
doi.org/10.1016/j.ijrobp.2017.08.043

23.	 Kearney, V., Zeimer, B.P., Perry, A., Wang, T., Chan, J., 
Yom, S.S., Solberg, T.D. Spatial Attention Gated Varia-
tional Autoencoder Enhanced Cycle-Consistent Gen-
erative Adversarial Networks for MRI to CT Trans-
lation. International Journal of Radiation Oncology, 
Biology, Physics, 2019, 105(1), E720-E721. https://doi.
org/10.1016/j.ijrobp.2019.06.897

24.	 Keereman, V., Fierens, Y., Broux, T., De Deene, Y., 
Lonneux, M., Vandenberghe, S. MRI-Based Atten-
uation Correction for PET/MRI Using Ultrashort 
Echo Time Sequences. Journal of Nuclear Medi-
cine, 2010, 51(5), 812-818. https://doi.org/10.2967/
jnumed.109.065425

25.	 Kim, T., Cha, M., Kim, H., Lee, J. K., Kim, J. Learning 
to Discover Cross-Domain Relations with Generative 
Adversarial Networks. International Conference on 
Machine Learning: PMLR, 2017, p. 1857-1865. 	



Information Technology and Control 2025/3/54956

26.	 Klages, P., Benslimane, I., Riyahi, S., Jiang, J., Hunt, M., 
Deasy, J.O., Veeraraghavan, H., Tyagi, N. Patch-Based 
Generative Adversarial Neural Network Models for 
Head and Neck MR-Only Planning. Medical Phys-
ics, 2020, 47(2), 626-642. https://doi.org/10.1002/
mp.13927

27.	 Lan, L., You, L., Zhang, Z., Fan, Z., Zhao, W., Zeng, N., 
Chen, Y., Zhou, X. Generative Adversarial Networks 
and Its Applications in Biomedical Informatics. 
Frontiers in Public Health, 2020, 8, 164. https://doi.
org/10.3389/fpubh.2020.00164

28.	 Largent, A., Barateau, A., Nunes, J.-C., Lafond, C., 
Greer, P.B., Dowling, J.A., Saint-Jalmes, H., Acosta, O., 
de Crevoisier, R. Pseudo-CT Generation for MRI-Only 
Radiation Therapy Treatment Planning: Comparison 
Among Patch-Based, Atlas-Based, and Bulk Density 
Methods. International Journal of Radiation Oncolo-
gy, Biology, Physics, 2019, 103(2), 479-490. https://doi.
org/10.1016/j.ijrobp.2018.10.002

29.	 Li, F., Huang, W., Luo, M., Zhang, P., Zha, Y. A New 
VAE-GAN Model to Synthesize Arterial Spin Labe-
ling Images from Structural MRI. Displays, 2021, 70, 
102079. https://doi.org/10.1016/j.displa.2021.102079

30.	 Li, S., Zhao, X. High-Resolution Concrete Damage Im-
age Synthesis Using Conditional Generative Adversar-
ial Network. Automation in Construction, 2023, 147, 
104739. https://doi.org/10.1016/j.autcon.2022.104739

31.	 Liu, Z., Wang, S., Dong, D., Wei, J., Fang, C., Zhou, X., 
Sun, K., Li, L., Li, B., Wang, M., Tian, J. The Applica-
tions of Radiomics in Precision Diagnosis and Treat-
ment of Oncology: Opportunities and Challenges. 
Theranostics, 2019, 9(5), 1303-1322. https://doi.
org/10.7150/thno.30309

32.	 Paudyal, R., Shah, A. D., Akin, O., Do, R. K. G., Konar, A. 
S., Hatzoglou, V., Mahmood, U., Lee, N., Wong, R. J., Ba-
nerjee, S., Shin, J., Veeraraghavan, H., Shukla-Dave, A. 
Artificial Intelligence in CT and MR Imaging for On-
cological Applications. Cancers (Basel), 2023, 15(9), 
2573. https://doi.org/10.3390/cancers15092573

33.	 Reddy, S. Generative AI in Healthcare: An Implemen-
tation Science Informed Translational Path on Appli-
cation, Integration and Governance. Implement Sci, 
2024, 19(1), 27. https://doi.org/10.1186/s13012-024-
01357-9

34.	 Spadea, M. F., Pileggi, G., Zaffino, P., Salome, P., Catana, 
C., Izquierdo-Garcia, D., Amato, F., Seco, J. Deep 
Convolution Neural Network (DCNN) Multiplane 
Approach to Synthetic CT Generation from MR Im-
ages-Application in Brain Proton Therapy. Interna-

tional Journal of Radiation Oncology, Biology, Phys-
ics, 2019, 105(3), 495-503. https://doi.org/10.1016/j.
ijrobp.2019.06.2535

35.	 Szmul, A., Taylor, S., Lim, P., Cantwell, J., Moreira, 
I., Zhang, Y., D'Souza, D., Moinuddin, S., Gaze, M. N., 
Gains, J. Deep Learning Based Synthetic CT from 
Cone Beam CT Generation for Abdominal Paediatric 
Radiotherapy. Physics in Medicine and Biology, 2023, 
68(10), 105006. https://doi.org/10.1088/1361-6560/
acc921

36.	 Tan, Y., Patel, R. V., Wang, Z., Luo, Y., Chen, J., Luo, J., 
Chen, W., Mao, Z., Huang, R. Y., Wang, H., Bi, W. L., Yao, 
S. Generation and Applications of Synthetic Comput-
ed Tomography Images for Neurosurgical Planning. 
Journal of Neurosurgery, 2024,141(3),742-751. https://
doi.org/10.3171/2024.1.JNS232196

37.	 Tie, X., Lam, S.-K., Zhang, Y., Lee, K.-H., Au, K.-H., Cai, 
J. Pseudo-CT Generation from Multi-Parametric MRI 
Using a Novel Multi-Channel Multi-Path Conditional 
Generative Adversarial Network for Nasopharynge-
al Carcinoma Patients. Medical Physics, 2020, 47(4), 
1750-1762. https://doi.org/10.1002/mp.14062

38.	 Toda, R., Teramoto, A., Kondo, M., Imaizumi, K., Saito, 
K., Fujita, H. Lung Cancer CT Image Generation from a 
Free-Form Sketch Using Style-Based Pix2Pix for Data 
Augmentation. Sci Rep, 2022, 12(1), 12867. https://doi.
org/10.1038/s41598-022-16861-5

39.	 Vukovic, D., Ruvinov, I., Antico, M., Steffens, M., Fon-
tanarosa, D. Automatic GAN-Based MRI Volume Syn-
thesis from US Volumes: A Proof of Concept Investiga-
tion. Scientific Reports, 2023, 13(1), 21716. https://doi.
org/10.1038/s41598-023-48595-3

40.	 Wang, C., Yang, G., Papanastasiou, G., Tsaftaris, S. 
A., Newby, D. E., Gray, C., Macnaught, G., MacGilli-
vray, T. J. DiCyc: GAN-Based Deformation Invariant 
Cross-Domain Information Fusion for Medical Im-
age Synthesis. Information Fusion, 2021, 67, 147-160. 
https://doi.org/10.1016/j.inffus.2020.10.015

41.	 Wang, J., Wu, Q. M. J., Pourpanah, F. DC-CycleGAN: 
Bidirectional CT-to-MR Synthesis from Unpaired 
Data. Computerized Medical Imaging and Graphics, 
2023, 108, 102249. https://doi.org/10.1016/j.comp-
medimag.2023.102249

42.	 Wang, T.-C., Liu, M.-Y., Zhu, J.-Y., Tao, A., Kautz, J., 
Catanzaro, B. High-Resolution Image Synthesis and 
Semantic Manipulation with Conditional GANs. Pro-
ceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition, 2018, 8798-8807. https://doi.
org/10.1109/CVPR.2018.00917



957Information Technology and Control 2025/3/54

43.	 Wolterink, J. M., Dinkla, A. M., Savenije, M. H., 
Seevinck, P. R., van den Berg, C. A., Išgum, I. Deep MR 
to CT Synthesis Using Unpaired Data. Simulation and 
Synthesis in Medical Imaging: Second International 
Workshop, SASHIMI 2017, Held in Conjunction with 
MICCAI 2017, Québec City, QC, Canada, September 
10, 2017, Proceedings 2: Springer, 2017, 14-23. https://
doi.org/10.1007/978-3-319-68127-6_2

44.	 Xiao, Q., Monfaredi, R., Musa, M., Cleary, K., Chen, 
Y. MR-Conditional Actuations: A Review. Annals of 
Biomedical Engineering, 2020, 48(12), 2707-2733. 
https://doi.org/10.1007/s10439-020-02597-8

45.	 Xue, Y., Zhang, Y., Neri, F. A Method Based on Evolu-
tionary Algorithms and Channel Attention Mechanism 
to Enhance Cycle Generative Adversarial Network 
Performance for Image Translation. International 
Journal of Neural Systems, 2023, 33(05), 2350026. 
https://doi.org/10.1142/S0129065723500260

46.	 Yang, H., Sun, J., Carass, A., Zhao, C., Lee, J., Prince, J. 
L. Unsupervised MR-to-CT Synthesis Using Struc-
ture-Constrained CycleGAN. IEEE Trans Med Imag-
ing, 2020, 39(12), 4249-4261. https://doi.org/10.1109/
TMI.2020.3015379

47.	 Yi, Z., Zhang, H., Tan, P., Gong, M. DualGAN: Unsuper-
vised Dual Learning for Image-to-Image Translation. 
Proceedings of the IEEE International Conference 
on Computer Vision, 2017, 2849-2857. https://doi.

org/10.1109/ICCV.2017.310

48.	 Yu, B., Zhou, L., Wang, L., Shi, Y., Fripp, J., Bourgeat, P. 
EA-GANs: Edge-Aware Generative Adversarial Net-
works for Cross-Modality MR Image Synthesis. IEEE 
Transactions on Medical Imaging, 2019, 38(7), 1750-
1762. https://doi.org/10.1109/TMI.2019.2895894

49.	 Zhang, F., Zhao, H., Li, Y., Wu, Y., Sun, X. CBA-GAN: 
Cartoonization Style Transformation Based on the 
Convolutional Attention Module. Computers and 
Electrical Engineering, 2023, 106, 108575. https://doi.
org/10.1016/j.compeleceng.2022.108575

50.	 Zhao, B., Cheng, T., Zhang, X., Wang, J., Zhu, H., Zhao, 
R., Li, D., Zhang, Z., Yu, G. CT Synthesis from MR in the 
Pelvic Area Using Residual Transformer Conditional 
GAN. Computerized Medical Imaging and Graphics, 
2023, 103, 102150. https://doi.org/10.1016/j.comp-
medimag.2022.102150

51.	 Zhao, S., Geng, C., Guo, C., Tian, F., Tang, X. SARU: A 
Self-Attention ResUNet to Generate Synthetic CT Im-
ages for MR-Only BNCT Treatment Planning. Medical 
Physics, 2023, 50(1), 117-127. https://doi.org/10.1002/
mp.15986

52.	 Zhu, J.-Y., Park, T., Isola, P., Efros, A. A. Unpaired Im-
age-to-Image Translation Using Cycle-Consistent 
Adversarial Networks. Proceedings of the IEEE Inter-
national Conference on Computer Vision, 2017, 2223-
2232. https://doi.org/10.1109/ICCV.2017.244

This article is an Open Access article distributed under the terms and conditions of the Creative 
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).


