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Pipelines used for the hydraulic lifting of gas hydrate particles in deep-sea gas hydrates consume a large 
quantity of energy, so the level of efficient resource exploitation is very low and it is challenging to meet 
an efficient gas supply. Therefore, the article aims to optimize and analyze a process used for rigid pipe 
hydraulic lifting, an essential part of a deep-sea gas hydrate extraction system. First, the objective func-
tion is constructed considering the relationship between the extraction system’s parameters, and a spe-
cific energy consumption is set when the deep-sea gas hydrate extraction is under consideration. Then, 
the range of each parameter is determined according to the extraction system's actual situation. Secondly, 
the improved crow search algorithm with a hybrid strategy covering dynamic perception probability, Levy 
flight, and Cauchy variation mechanism is employed to solve the optimization model. Finally, the improved 
crow search algorithm is applied to the experimental settings and compared with other optimization algo-
rithms. The experimental results show that the proposed method, which is, the improved crow search algo-
rithm, has a good computational efficiency, can effectively realize the optimization of the parameters of the 
deep-sea natural gas hydrate system, and is robust to numerical fluctuations of the parameters. Thus, the 
performance of the pipeline is improved and the energy consumption of the system is effectively reduced. 
Eventually, a theoretical reference is provided for the development of deep-sea gas hydrate. The proposed 
algorithm, I-CSA, can effectively deal with larger sample data and maintain high computational efficiency 
with fewer MAPE results when the sample sizes increase. Eventually, it is helpful for the deep exploitation 
and utilization of deep-sea gas hydrate.
KEYWORDS: crow search algorithm, gas hydrate, pipeline lifting, dynamic perception probability, Levy flight, 
Cauchy variation mechanism.
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1.Introduction
The exploration and extraction of gas hydrates from 
deep seas have emerged as a significant research field 
due to their potential to serve as an alternative ener-
gy source. Gas hydrates, crystalline structures com-
posed of gas molecules surrounded by water mole-
cules, are found in oceanic sediments and permafrost 
regions. Their extraction poses many technical chal-
lenges, notably requiring optimizing hydraulic lifting 
processes that are critical for transporting extracted 
materials from a seabed to a surface. Hydraulic lift-
ing in deep-sea extraction systems revolves around 
utilizing a fluid medium to create a differential pres-
sure that aids in lifting extracted materials through a 
rigid pipe to a surface [1]. The efficiency and reliabil-
ity of this process are paramount, given the extreme 
conditions and fragile nature of gas hydrates. Initial 
research in this domain focused on understanding 
the physical properties of gas hydrates and the engi-
neering challenges associated with their extraction 
processes. As the field progresses, the spotlight turns 
towards optimizing the lifting process to minimize 
energy consumption and ensure the structural integ-
rity of the hydrates during ascent. 
The primary objective of the research is to enhance the 
efficiency and effectiveness of a hard pipe hydraulic 
lifting process within deep-sea gas hydrate extraction 
systems [8]. Globally, researchers have undertaken 
various studies to address the challenges associated 
with hydraulic lifting. They range from experimental 
investigations of flow behavior and hydrate disassoci-
ation risks to computational simulations to optimize 
pipe design and lifting parameters [3, 17]. The optimi-
zation process of deep-sea gas hydrate pipeline lifting 
is crucial, and pivotal for ensuring energy efficiency, 
operational safety, and environmental sustainabili-
ty in offshore engineering. This field intersects with 
various disciplines, including fluid mechanics, ther-
modynamics, materials science, and computational 
intelligence. The primary research categories encom-
pass flow assurance, pipeline material and design op-
timization, hydrate management, and the application 
of intelligent optimization algorithms. 
1 Flow Assurance and Hydrate Management are fun-

damental in ensuring uninterrupted flow in pipe-
lines, with a significant focus on preventing and 
managing gas hydrates, which can block pipelines 

and disrupt operations. The research includes ther-
modynamic and kinetic inhibitors, as well as me-
chanical strategies to prevent hydrate formation. 

2 Pipeline Material and Design Optimization deals 
with material selection and structural design crit-
ical for withstanding the harsh deep-sea environ-
ment and high pressures. Innovations in materials 
science, such as developing corrosion-resistant 
alloys and flexible pipeline designs, are among the 
key research focuses. 

3 Intelligent Optimization Algorithms research sev-
eral algorithms that have gained prominence for 
their potential to improve decision-making pro-
cesses in pipeline lifting. These algorithms include 
genetic algorithms (GA), particle swarm optimiza-
tion (PSO), artificial neural networks (ANN), and 
others. They are implemented for optimizing vari-
ous aspects of pipeline operation and design. 

Ahmadi et al. [2] compared four artificial intelligence 
models for testing the equilibrium conditions of nat-
ural gas hydrates. Predicted the equilibrium pressure 
of the pipeline with the highest accuracy, while re-
ducing calculation time while maintaining accuracy. 
The utilization of these techniques led to significant 
progress in pipeline optimization, which bodes well 
for the feasibility of such methods in the future. How-
ever, they are still prone to the problems of falling into 
local optimization and low convergence efficiency in 
practical applications, and thus still have limitations 
in practical applications. Thus, aiming at resolving 
those issues, the article mainly contributes to 
1 Aiming at improving the principle of deep-sea gas 

hydrate extraction by devising a mathematical 
model and an objective function about the working 
parameters, and the range of the working parame-
ters is reached. 

2 A multi-strategy hybrid improved crow search al-
gorithm is proposed for realizing the optimization 
of the working parameters of the natural gas hy-
drate extraction system. 

3 Simulation tests are designed with energy con-
sumption as an index and the effect and efficacy 
of the optimization are compared with different 
intelligent optimization algorithms to verify the 
rationality of the proposed algorithm.
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Even though the literature provides a wide range of 
optimization algorithms implemented in this area, 
some problems persist such as being trapped in a lo-
cal optimum and not applicable to practical problems. 
On the other hand, the crow search algorithm proves 
itself in several different areas and could provide 
solutions to these mentioned problems in the litera-
ture. The Crow search algorithm is implemented in 
high-dimensional data classification [12], optimal de-
ployment of private 5G multi-access edge computing 
systems [15], semiconductor final testing scheduling 
problems [10], and power system state estimation 
[4]. In addition, a modified version of the crow search 
algorithm is implemented to resolve problems, for 
example, disease diagnosis [24], automatic cluster-
ing, feature selection [19], and optimal flexible man-
ufacturing process planning. All indicates that the 
modified version of the Crow search algorithm has 
better results when compared with the utilization of 
single-form. Thus, the article combines 3 different 
mechanisms into the Crow search algorithm to deal 
with the problems, which are called dynamic percep-
tion probability, Levy flight, and Cauchy variation 
mechanism. Alternatively, heuristic algorithms are 
used in a variety of areas such as image segmenta-
tion, image classification, image restoration, and deep 
learning applications [23, 13, 26, 6, 20].
The main structure of the article is as follows: The 
introduction is presented in Section 1. Section 2 de-
scribes the working principle of the deep-sea gas hy-
drate extraction system, and gives the mathematical 
model and objective function, as well as determines 
the range of the parameters of the system. Section 3 
presents the basic principle of the crow search algo-
rithm and improves it based on the hybrid strategy, 
namely, perception probability, Levy flight, and Cau-
chy variation mechanism. Simulation experiments 
are designed in Section 4 to test the effectiveness of 
the proposed algorithm. Section 5 concludes the re-
search and provides an outlook. 

2. System Modeling

2.1 Fundamentals of Deep-Sea Gas Hydrate 
Extraction Systems 
The distribution range of gas hydrate deposits in na-
ture is high-latitude permafrost zones and deep seas 

of 300-4,000 m, and the reserves of natural gas hy-
drate in the deep sea account for more than 90% of the 
total amount of gas hydrate.
The marine storage depth is relatively shallow when 
compared with that of conventional oil and natural 
gas, so it is very promising to utilize the deep sea as 
a place for natural gas hydrate exploitation. There-
fore, it is very promising to utilize the deep sea as a 
site for gas hydrate extraction. The extraction meth-
ods of gas hydrate include pressure relief, thermal 
stimulation, injection of chemical reagents, carbon 
dioxide replacement, and solid-state implementa-
tions, among which the solid-state method draws on 
the extraction method of deep-sea manganese nod-
ules and combines with the working principle of the 
winch suction dredger. A great prospect of applica-
tion is shown in Figure 1. 

2.2 Mathematical Modeling of the System
At present, in both academia and industry, the prev-
alent practice involves altering merely 1 or 2 vari-
ables while keeping the rest fixed to analyze how 
these adjustments impact energy use and efficiency. 
However, they do not accurately reflect the unpre-
dictable variations of operational conditions in re-
al-world scenarios, nor do they consider the compre-

Figure 1
Working principle of deep sea gas hydrate extraction system.
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2.2 Mathematical Modeling of the System 

At present, in both academia and industry, the prevalent practice involves altering merely 1 or 2 variables while 
keeping the rest fixed to analyze how these adjustments impact energy use and efficiency. However, they do not 
accurately reflect the unpredictable variations of operational conditions in real-world scenarios, nor do they consider 
the comprehensive impact of simultaneous changes in variables on energy use and efficiency. In response, this study 
introduces a method to calculate hydraulic loss in vertical pipelines and utilizes the concept of "energy consumption 
ratio" (ECR) to construct a mathematical model. By adhering to theoretical guidelines and practical considerations 
for parameter variability, this work constructs a complex relationship between energy efficiency and consumption 
and the discussed parameters. This approach allows for a broader understanding of how variations in these 
parameters can collectively influence the system's performance, rather than examining them in isolated forms. The 
model aims to closely mimic actual operational conditions by considering the global impact of parameter changes, 
thus offering a more nuanced insight into optimizing energy efficiency and consumption in practical applications. 
In the article, gas hydrate optimization is carried out in terms of transport efficiency, and the objective function 
measures water consumed when a unit weight of gas hydrate particles is lifted based on a unit distance in height 
along a vertical pipeline, called the ECR. Combined with the actual deep-sea extraction and lifting process of gas 
hydrate, it is possible to reduce the specific energy consumption of the pipeline. The objective function is represented 
based on the consumed per unit weight of natural gas hydrate particles when lifting them per unit distance along the 
vertical pipeline, which is called the specific energy consumption. Assuming that the total length of the lifting 
pipeline is denoted by L, the mass of the gas hydrate particles in the pipeline of total length is D. The mass of the gas 
hydrate particles in the pipeline whose total length is L defined by Equation (1): 
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where ghpM (kg) denotes the total mass of hydrate particles of natural gas in the pipeline. LD (m) denotes the inner 
diameter of the pipeline in m. L (m) denotes the total length of the pipeline. s (kg/m3) denotes the mineral density. 

m (kg/m3) denotes the slurry density. w (kg/m3) is the density of seawater. 

The distance transported per unit of time for gas hydrate particles of mass ghpM  is denoted by m, and the head loss is 
defined by  

head w mLoss L gG ,                                       (2) 

where mG  g (m/s2) denotes the hydraulic gradient and the gravitational acceleration, respectively. The slurry flow 
rate  is shown in Equation (3). 

20.25 L sD ,                                                         (3) 

where  s  denotes the slurry conveying speed. Then, the ECR is defined by 

hea
ec

d
r

ghp s

Loss
E

M g
.                                                         (4) 

Equations (2)-(4) lead to Equation (5): 

w
ecr

m

s p

G
E

C
,                                                              (5) 

where pC  represents the concentrated volume of particles, and the hydraulic gradient mG  is delineated by Equation 
(6) 
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where f  denotes the friction coefficient whose score is taken as 0.0206, lC  denotes the local concentration 
transported by the pipeline, dC  represents the drag coefficient, which is taken as 0.44 for turbulent flow with a large 
Reynolds number, pd  characterizes the particle size. 

ecrE  represents a function of pipe diameter LD , slurry conveying speed s , particle size pd , mineral density s  , 

and volume concentration pC  Equation (6) is the objective function to be optimized in the article. 

2.3 Determination of Ranges of Operating Parameters 

(1) Pipe diameter, LD , and size are related to the flow rate  and slurry conveying speed s . If the pipe diameter is 
too small, the conveying flow of a pipeline is small, and the conveying capacity is limited. If the flow rate is 
unchanged and the pipe diameter is too large, it will reduce the speed of slurry conveying. If it is lower than the 
critical flow rate, the system cannot work properly. Therefore, the pipe should cooperate with the slurry pump. If the 
size is too large and is not conducive to deployment in the ocean, the pipe diameter of the vertical pipeline for energy 
requirement value has little impact. For example, an increase in the pipe diameter greater than 0.3 m cannot reduce 
energy consumption. Therefore, the size of the pipe diameter LD  is taken to be 0.2~0.3 m since the gas production 
capacity of medium-sized natural gas wells (3-10×104 m3/d) is considered. 

(2) Slurry conveying speed s  designates the particles in the vertical pipeline slurry transporting upward. The slurry 
flow rate must be greater than the settling speed of the particles. When taking into account the hydraulic conveying 
process itself is not completely stable and the existence of the wind and waves, vibration, or the movement of the 
ship itself and other external reasons, the slurry conveying speed should be at least 3 to 4 more times than the settling 
speed to ensure the reliability of the system because the system and the main pump are connected. As the system and 
the main pump connected to the hose are close to the level, it should also limit the slurry conveying speed greater 
than the critical speed.  The slurry conveying speed 1.534m/ ss  is selected by considering the flow rate. 
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where f  denotes the friction coefficient whose score is taken as 0.0206, lC  denotes the local concentration 
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the main pump connected to the hose are close to the level, it should also limit the slurry conveying speed greater 
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where f denotes the friction coefficient whose score 
is taken as 0.0206, Cl denotes the local concentration 
transported by the pipeline, Cd represents the drag 
coefficient, which is taken as 0.44 for turbulent flow 
with a large Reynolds number, dp characterizes the 
particle size.
Eecr represents a function of pipe diameter DL, slurry 
conveying speed νs, particle size dp, mineral density  ρs, 
and volume concentration Cp Equation (6) is the ob-
jective function to be optimized in the article.

2.3 Determination of Ranges of Operating 
Parameters
1 Pipe diameter, DL, and size are relatred to the flow 

rate ϑ and slurry conveying speed νs. If the pipe di-
ameter is too small, the conveying flow of a pipe-
line is small, and the conveying capacity is limited. 
If the flow rate is unchanged and the pipe diame-
ter is too large, it will reduce the speed of slurry 
conveying. If it is lower than the critical flow rate, 
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the system cannot work properly. Therefore, the 
pipe should cooperate with the slurry pump. If the 
size is too large and is not conducive to deploy-
ment in the ocean, the pipe diameter of the ver-
tical pipeline for energy requirement value has 
little impact. For example, an increase in the pipe 
diameter greater than 0.3 m cannot reduce ener-
gy consumption. Therefore, the size of the pipe 
diameter DL is taken to be 0.2~0.3 m since the gas 
production capacity of medium-sized natural gas 
wells (3-10×104 m3/d) is considered.

2 Slurry conveying speed νs designates the parti-
cles in the vertical pipeline slurry transporting 
upward. The slurry flow rate must be greater than 
the settling speed of the particles. When taking 
into account the hydraulic conveying process it-
self is not completely stable and the existence of 
the wind and waves, vibration, or the movement 
of the ship itself and other external reasons, the 
slurry conveying speed should be at least 3 to 4 
more times than the settling speed to ensure the 
reliability of the system because the system and 
the main pump are connected. As the system and 
the main pump connected to the hose are close to 
the level, it should also limit the slurry conveying 
speed greater than the critical speed. The slurry 
conveying speed νs ≥ 1.534m/s  is selected by con-
sidering the flow rate.

3 Particle size dp in the system of hydraulic convey-
ing represents the vertical pipeline elevation of 
coarse particles. To prevent the rapid reduction of 
the resistance coefficient leading to the end of the 
settlement velocity increases, the requirements of 
the particle size and pipe diameter ratio need to be 
dp

 / DL ≤ 0.2. If the particle size is too small floccu-
lation phenomenon may appear. Thus, the particle 
size dp needs to be between 10~40 mm.

4 Mineral density ρs is measured based on the lon-
gitudinal wave velocity of sonic logging. The sat-
uration degree of marine gas hydrate is estimated 
to change from 10% to 50%, the density of pure gas 
hydrate is 930 kg/m3, and the density of seafloor 
sediment is 1450 kg/m3, so the mineral density ρs 
can be considered to be between 1190-1398 kg/m3.

5 Volume concentration Cp is measured according 
to the experience of hydraulic coal transportation 
based on developed experience in the industry for 
hundreds of years. Hydraulic coal transportation 

usually ranges from 30% to 40%, the concentration 
of natural gas hydrate slurry should not be more 
than 40% and Cp ≤ 40% is taken.

3. Proposed Methodology

3.1 Crow Search Algorithm (CSA)

The crow search algorithm is a heuristic optimiza-
tion method that mimics the behavior of crowns. 
Crows will steal food by observing where the other 
birds hide their food, if a crow finds the thief, it will 
move to hiding places to avoid being a future vic-
tim. Crows use their own experiences to predict the 
pilferer’s behavior. The crow's overall flight area is 
the searching space, and the crow's hidden food rep-
resents the quality of the algorithm function score. 
We briefly provide the steps of the crow search algo-
rithm (CSA) below.
1 Determine the crow population size Nc (how many 

crows are in the population) and the algorithm's 
maximum iteration number, Itermax. Then, initial-
ize the crows' positions within a d-dimensional 
space (representing the optimization variables 
for the problem at hand) in a random manner.

2 Assess each crow's fitness score employing the 
fitness function, which then serves as the founda-
tional memory. This memory of converted posi-
tions is documented within the M variable setting.

3 Suppose that crow i moves to another location 
during the flight. Then, 2 scenarios exist.

Scenario 1: at the t-th iteration, crow i does not find 
the tracked crow j while traveling to the memorized 
hiding place Mi

t
, then the position of crow i at the t+1-

th iteration will be updated as follows [21, 18]:
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where 1t
iX  and t

iX  denote the positions of crow i at t+1-th and t-th iterations, respectively. 1 0,1R  denotes a 
random number. sf  denotes the flight step of a crow.   

Scenario 2: At the t-th iteration, crow i have a perception probability P of determining the tracked crow j while 
traveling to the memorized hiding place t

iM , then crow i will move to a random location within the search range at 
t+1-th iteration.      
To combine 2 scenarios, the position of crow i at t+1-th iteration is updated as follows [22].  
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(4) To assess each crow's updated fitness score and compare it with the available score stored in memory if the 
fitness score at the new location surpasses that in memory, the position is deemed valid, prompting an update to 
reflect this improvement. Conversely, if the new position does not offer a better fitness score, the crow remains 
stationary, maintaining its current location as follows: 
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(5) Continue to iterate, repeat steps (3) and (4) until the iteration stopping condition is met and the optimal value is the 
output. 

3.2 Improvements to CSA 

 , (7)

where Xi
t+1 and Xi

t denote the positions of crow i at  
t+1-th and t-th iterations, respectively. R1 ϵ [0,1] denotes 
a random number. fs denotes the flight step of a crow.  
Scenario 2: At the t-th iteration, crow i have a per-
ception probability P of determining the tracked crow 
j while traveling to the memorized hiding place Mi

t, 
then crow i will move to a random location within the 
search range at t+1-th iteration.     



Information Technology and Control 2025/2/54444

To combine 2 scenarios, the position of crow i at 
t+1-th iteration is updated as follows [22]. 
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(5) Continue to iterate, repeat steps (3) and (4) until the iteration stopping condition is met and the optimal value is the 
output. 

3.2 Improvements to CSA 

(8)

4 To assess each crow's updated fitness score and 
compare it with the available score stored in mem-
ory if the fitness score at the new location surpass-
es that in memory, the position is deemed valid, 
prompting an update to reflect this improvement. 
Conversely, if the new position does not offer a 
better fitness score, th e crow remains stationary, 
maintaining its current location as follows:
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(5) Continue to iterate, repeat steps (3) and (4) until the iteration stopping condition is met and the optimal value is the 
output. 

3.2 Improvements to CSA 

(9)

5 Continue to iterate, repeat steps (3) and (4) until 
the iteration stopping condition is met and the op-
timal value is the output.

3.2 Improvements to CSA
To make the CSA converged and optimized better, the 
article adopts a hybrid improvement strategy includ-
ing dynamic perception probability, Levy flight, and 
Cauchy variation mechanism for improving the per-
formance of the CSA.

3.2.1 Dynamic Perception Probability
In the improved CSA, the fixed perception probability, 
P, requires a prior configuration. A higher P value in-
creases the likelihood of crows being detected, prompt-
ing them to leave their current spot in favor of new ones. 
Conversely, a smaller P value inclines crows towards a 
localized search approach, highlighting a preference 
for exploring nearby areas. Such a static P score does 
not effectively balance the exploratory capabilities in 
the algorithm's initial and subsequent phases. To en-
hance algorithm efficiency, the dynamic perception 
probability of each iteration is advocated. The article 
introduces a method for calculating probabilities dy-
namically, which significantly boosts the algorithm's 
efficacy. The presented innovative approach for dy-
namic probability adjustment aims to optimize search 
efficiency throughout the algorithm's execution.
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where t and Itermax denote the previous iteration and maximum iteration numbers, respectively, and maxP  denote the 
maximum perceptual probability. 
The dynamic probability of perception P satisfies the convex decreasing curve, and the score of P is kept in a 
relatively large range at the beginning of the iteration, and gradually decreases with the iteration process, to realize the 
balance between the global and local search capability of the algorithm. 

3.2.2 Levy Flight 
In the CSA framework, crows adjust their locations randomly if 1R P , which means that when lacking guidance 
from superior solutions, it will lead to indiscriminate updates. To address this, the article incorporates the Levy flight 
approach into the crows' updating mechanism. The Levy flight employs a heavy-tailed probability distribution for its 
movements, facilitating both extensive and intensive searches due to its varied step lengths characterized by its high 
randomness. Effective local exploration is achieved with shorter steps, whereas longer strides enable the transition 
across different areas, broadening the search scope. Following the integration of the Levy flight concept, modifications 
to the method of updating the crows' positions have been implemented accordingly. More up-to-date Levy flight 
implementations can be found in [25, 11, 23]. 
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where Levy( )  denote the Levy flight step [7]: 
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where  takes values in the range (0, 2) and is usually taken as 1.5. and  follow normal distributions with zero 

mean and  variances, 2 20, , 0, ,  and  satisfy Equation (12) [16]: 
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where ( )  denotes the gamma function. 

3.2.3 Cauchy Variation Mechanism 
Within the CSA algorithm, the method for updating positions among crow populations is standardized and singular, 
devoid of any mutation mechanism [27]. This absence could lead to homogeneity within the population, hindering the 
algorithm's capacity to escape local optima once trapped. To counteract this, it is essential to introduce a degree of 
mutation in individual crows, thereby maintaining population diversity. The Cauchy distribution emerges as an ideal 
choice for introducing perturbations. More up-to-date research can be found in [23]. In the study, it is applied to adjust 
crow positions, facilitating variations and enhancing the algorithm's capability to overcome local optima while 
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diversity. The Cauchy distribution emerges as an 
ideal choice for introducing perturbations. More up-
to-date research can be found in [23]. In the study, it 
is applied to adjust crow positions, facilitating vari-
ations and enhancing the algorithm's capability to 
overcome local optima while preserving population 
heterogeneity. The perturbation is implemented by 
employing the standard Cauchy distribution func-
tion defined in Equation (14)
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When the position of the crow is perturbed the obtained new position is calculated as follows: 
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According to Equation (15), utilizing the Cauchy distribution to adjust the position of the crow effectively amounts to 
a renewed exploration of its available location. If this new position proves superior, it supersedes the former; 
otherwise, the original stance is maintained. This process, facilitated by the Cauchy modification, guarantees the 
population's variety and boosts the algorithm's proficiency in escaping local optimum. 

3.3 The Steps of the Improved CSA Process 
By introducing the dynamic perception probability, Levy flight strategy, and Cauchy variation mechanism into the 
CSA algorithm, the improved CSA (I-CSA) algorithm is obtained. Figure 2 depicts it and the steps of the algorithm 
are as follows: 
Step 1: Initialize the crow population position, crow memory, initial perception probability, initial flight step size, and 
maximum number of iterations. 
Step 2: Calculate the fitness score of each crow and determine the current optimal position. 
Step 3: Calculate the dynamic probability of sensing and determine whether the generated random number is greater 
than the current probability of sensing. If yes, use Equation (9) to update the crow's position. Otherwise, use Equation 
(10) to update the crow's position. 
Step 4: Perform Cauchy variation on the crow's location according to Equation (15). 
Step 5: Calculate the fitness score of the new location of the crow and update the memory according to Equation (9). 
Step 6: Judge the maximum number of iterations, if it is reached to a set number, output the optimal position and its 
fitness value; otherwise, repeat steps 2 to 6 until the termination condition is met. 
Figure 2 
The workflow of CSA. 
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4. Experimental Analysis

4.1 Experimental Environment  
and Data Sources
In this study, the investigative setting is anchored 
within a deep-sea gas hydrate exploration lab's min-
ing system. Adjustments can be made to the slurry's 
flow rate, particle size, and volume concentration to 
meet specific requirements. The pipeline's inner di-
ameter remained unchanged, owing to the extensive 
array of testing instruments encircling it, which made 
swapping pipelines of varying inner diameters a chal-
lenging endeavor. Due to the storage challenges asso-
ciated with natural gas hydrate particles, substitutes 
in the form of bituminous coal particles were em-
ployed, given their similar density. The experimental 
results are presented based on the data collected from 
actual experiments.

The Uniform Crossover and Roulette Wheel Section 
methods are used, with an allowable error of conver-
gence of 1.00E-10, and the number of judgments on 
the allowable error of convergence is 100 times. The 
convergence error is compared with the allowable 
convergence error, if the convergence error is larger 
than the allowable convergence error, then the cor-
responding independent variables are recalculated. 
If the convergence error is smaller than the conver-
gence allowable error, the computation ends with the 
output of the optimal result and the score of the corre-
sponding independent variable.

4.3 Experimental Results
To test the effectiveness of the proposed algorithm, 
3 experiments are designed to test its performance 
and compare it with the particle swarm optimization 
(PSO) algorithm, genetic algorithm (GA), and unim-
proved crow search algorithm in each experiment. The 
experiments are divided into the following 3 parts: 
1 Experiments on the ECR of the algorithm solution 

under different sample capacity conditions; 
2 Experiments on the error comparison between the 

ECR of the simulation test and that of the actual sys-
tem under different sample capacity conditions; and 

3 Experiments on the comparison of the algorithm's 
computational efficiency under different sample 
capacity conditions.

4.4 Experiments on the ECR of the Algorithm 
Solution Under Different Sample Capacity 
Conditions
The experimental data containing 100, 200, 300, 400, 
and 500 groups were randomly generated in MatLab 
7.0 according to the parameter settings presented in 
Table 1, and then I-CSA was implemented to find the 
optimized outcomes and calculate the mean of the 
ECR, and the results are shown in Figure 3 to com-
pare PSO, GA, and CSA algorithms.
Figure 3 depicts that the average of the ECR attained 
by the intelligent optimization algorithm fluctuates 
within a certain range as the sample capacity increas-
es since calculation results conform to a certain dis-
tribution law. Figure 3 depicts the results of PSO and 
GA by comparing those of CSA.  The CSA has a higher 
precision in optimization search due to its simpler 
structure. Moreover, the proposed algorithm, I-CSA, 

Settings Parameters

CPU Intel peon E5-2678 v3  
@ 2.SGHz* 12

GPU GeForce RTX 2080 Ti 11 GB

Memory 64GB

Hard disk capacity 2TB

Operating System Windows 10

Calculation software Matlab 2023A

Table 1 
Hardware environment of the experiment.

4.2 Calculation Settings
Table 2 presents the parameters of the operating sys-
tem, which is converted to international standard units. 

Table 2 
System operating parameters.

Parameters Value

DL 0.3

νs [1.534, +∞]

dp [0.01,0.04]

ρs 1197.4

Cp (0,0.04]
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has a further improvement in the optimization per-
formance, which makes the average of the ECR much 
lower than that of other algorithms. Therefore, the 
I-CSA can effectively decrease the ECR and advance 
the mining efficiency.

Table 3 summarizes the ECR attained by the intelli-
gent optimization algorithm in the practical appli-
cation of the operating parameters that deviate from 
the simulation results, which is because the marine 
environment such as seawater density and pressure 
is quite different from the experimental ones. Found 
that the simulation results of the PSO and GA have a 
large deviation from the actual results, and the MAPE 
of both of them varies in the range of 20% to 70% 
when all sample sizes are considered, which is insuf-
ficient for the accuracy of practical application. On 
the other hand, the optimization accuracy of the CSA 
is relatively higher, and the error between the optimi-
zation and the actual results can be controlled within 
the range of 10%~20%. The optimization accuracy of 
the I-CSA is higher, and the error can be reduced to 
less than 10%, with good optimization accuracy, thus 
its results are more in line with the actual situation, 
which can be effectively applied to the exploitation of 
deep-sea gas hydrate.

4.6. Experiments on the Comparison of the 
Algorithm's Computational Efficiency Under 
Different Sample Capacity Conditions
To check the computational efficiency of different 
algorithms, the computational time of I-CSA is com-
pared with those of the PSO, GA, and CSA when dif-
ferent sample sizes are implemented. Figure 4 depicts 
the outcomes.

4.5 Experiments on the Error Comparison 
Between the ECR of the Simulation Test and 
That of the Actual System Under Different 
Sample Capacity Conditions
To test the performance of the proposed algorithm 
in practical applications, its optimized output oper-
ating parameters are applied in practice, the results 
are compared with the results of the simulation, and 
the error is calculated. The results are compared with 
those of PSO, GA, and CSA and the Mean Absolute 
Percentage Error (MAPE) is presented in Table 3.

Figure 3 
The calculation results of the mean value of ECR.
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improved based on the hybrid strategy of dynamic perception probability, Levy flight, and Cauchy variation 
mechanism, and the proposed I-CSA realizes the optimization of the working parameters of the system. Finally, 
experiments are designed to test the performance of the proposed algorithm, and the experimental results show that the 
proposed I-CSA algorithm can effectively reduce the energy consumption of the system, and reduce the computational 
burden, thus the actual error grows relatively small, the computational efficiency is high, and the performance 
increases. So, a better performance for practical applications is probable as a reference for the natural gas extraction 
work.  
Considering that the unstable flow in a pipeline causes a large impact on the energy consumption ratio, the next step is 
to investigate the optimization of the optimal operating parameters in various types of deep-sea environments and to 
design the corresponding estimation model for assessing the mining revenue. 

Declaration of Conflicting Interests 
The author (s) declare no potential conflicts of interest concerning the research, authorship, and publication of this 
research. 

Funding 
This study was supported by Guangdong Basic and Applied Basic Research Foundation (No. 2022A1515010512), 
Guangdong Province Colleges and Universities Young Innovative Talents Project (No. 2020KQNCX047), Basic 
Subject Fund of Guangdong University of Petrochemical Technology (No. 2019rc120), and the Science and 
Technology Plan Project of Maoming(No. 2021001), Innovation Team of Ordinary Universities in Guangdong 
Province-Oil and Gas Resources Exploration and Development Innovation Team (No.2022KCXTD018). 
 



Information Technology and Control 2025/2/54448

Figure 4 depicts that as the sample size grows, the 
computational burden also increases, so the compu-
tation time of the intelligent optimization algorithm 
also grows. The PSO and GA are more complex due to 
their structural deficiencies. When the sample size 
increases, the computational time grows more rapid-
ly for the PSO and GA. In contrast, the computational 
time increases slightly slower for CSA, which is due to 
the simplicity of its computational process. However, 
the 3 algorithms still have shortcomings due to fall-
ing into local optimum and having low efficiency in 
optimization. Nevertheless, after using dynamic per-
ception probability, Levy flight, and the Cauchy vari-
ation mechanism the shortcomings are eliminated 
and optimization efficiency is significantly improved 
by the I-CSA. In addition, the proposed algorithm can 
effectively deal with larger sample data and maintain 
a high computational efficiency.

5. Conclusion
In the manuscript, an I-CSA-based optimization 
method for natural gas hydrate pipeline lifting is 
proposed to optimize the natural gas hydrate pipe-
line lifting process. Firstly, a mathematical model 
of energy loss and pipeline lifting-related parame-
ters is constructed, and the objective function and 
parameter ranges are given. Subsequently, the CSA 
is improved based on the hybrid strategy of dynamic 
perception probability, Levy flight, and Cauchy vari-
ation mechanism, and the proposed I-CSA realizes 
the optimization of the working parameters of the 
system. Finally, experiments are designed to test 

the performance of the proposed algorithm, and the 
experimental results show that the proposed I-CSA 
algorithm can effectively reduce the energy con-
sumption of the system, and reduce the computa-
tional burden, thus the actual error grows relatively 
small, the computational efficiency is high, and the 
performance increases. So, a better performance for 
practical applications is probable as a reference for 
the natural gas extraction work. 
Considering that the unstable flow in a pipeline 
causes a large impact on the energy consumption 
ratio, the next step is to investigate the optimiza-
tion of the optimal operating parameters in various 
types of deep-sea environments and to design the 
corresponding estimation model for assessing the 
mining revenue.
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