
5Information Technology and Control 2025/1/54

Image Enhancement Model 
for Open-Pit Mine Monitoring 
Based on Parallel Multi-Scale 
Feature Fusion

ITC 1/54
Information Technology  
and Control
Vol. 54 / No. 1/ 2025
pp. 5-15
DOI 10.5755/j01.itc.54.1.38427

Image Enhancement Model for Open-Pit Mine Monitoring  
Based on Parallel Multi-Scale Feature Fusion

Received 2024/08/09 Accepted after revision 2024/12/16

HOW TO CITE: Tao, X., Guo, S., Zhang, Z., Wu, X. (2025). Image Enhancement Model for  
Open-Pit Mine Monitoring Based on Parallel Multi-Scale Feature Fusion. Information Technology 
and Control, 54(1), 5-15. https://doi.org/10.5755/j01.itc.54.1.38427

Corresponding author: 1437699376@qq.com 

Xuewei Tao  
School of Safety Engineering, China University of Mining and Technology; Zhonglian Runshi Xinjiang Coal 
Industry Co., Ltd; China; e-mail: 125710054@qq.com

Shike Guo  
Zhonglian Runshi Xinjiang Coal Industry Co., Ltd; China;  e-mail: 284673993@qq.com

Ziheng Zhang 
Zhonglian Runshi Xinjiang Coal Industry Co., Ltd; China; e-mail:  1021622377@qq.com

Xuchu Wu  
School of Energy and Mining Engineering, China University of Mining & Technology-Beijing, China;   
e-mail: 1437699376@qq.com

The workspace in open-pit mining systems often suffers from insufficient or uneven illumination due to spa-
tial constraints and obstructions caused by large equipment or geotechnical structures, leading to de-graded 
surveillance imagery and consequently impacting safety monitoring efforts. The quality of surveil-lance de-
termines the real-time monitoring of personnel safety at night, such as during night-time opera-tions, remote 
maintenance of equipment, and various simple remote control tasks This study designed an open-pit mine sur-
veillance image enhancement model based on a parallel multi-scale feature fusion Trans-former to address 
the degradation of surveillance video images and leverage the superior expressive power of Transformer net-
works in visual image processing compared to other networks. The network architecture mainly processes 
and integrates full-size feature maps and various levels of downsampled feature maps in parallel, preserving 
both the semantic relationships of image elements and their overall structure. The downsampling process of 
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the network aims to maximize the extraction and restoration of the luminance features of small-sized objects 
from low-resolution images. By integrating features from downsampling, full-size image processing effectively 
restores illumination, thereby enhancing the accuracy of the images. To reduce the computational demands 
of the Transformer structure and facilitate its application in moni-toring imagery, we employed an orthogo-
nal self-attention mechanism along both the rows and columns of the image to be processed. This mechanism 
shifts the network's computational demand from exponential to linear growth. During the training phase, the 
network model was trained using a dataset collected on-site to enhance the model's adaptability to field condi-
tions. Structural Similarity Index Measure (SSIM) and Peak Signal-to-Noise Ratio (PSNR) test results confirm 
that this model performs exceptionally well in open-pit mining production systems.
KEYWORDS: Image Restoration; Open-Pit Mine Environmental Monitoring Image Restoration; Parallel 
Multi-Scale Attention Feature Fusion; Parallel Multi-Resolution Image Restoration.

1. Introduction
The surveillance videos of open-pit mines are signifi-
cant for daily production work. For instance, they can 
provide a comprehensive grasp of the dynamics of 
the mining area, better coordinate various processes, 
make overall arrangements, and optimize production 
organization. They can also monitor the operation sit-
uation of the mining area in real-time and promptly 
discover and prevent potential safety hazards. How-
ever, due to the dust in the mining area and uneven 
illumination, the quality of surveillance video images 
often deteriorates. The main reasons include:
1 Explosion-proof standard restrictions: Due to the 

explosion risk in open-pit mines, the design of ex-
plosion-proof equipment limits the image acquisi-
tion performance, resulting in frequent occurrenc-
es of many noise points and low image resolution.

2 Blockage by equipment and buildings: Large equip-
ment and buildings in open-pit mines (such as 
crushers and silos) block light during production, 
leading to insufficient and uneven illumination of 
the images captured by cameras.

3 Severe dust in the operation site: Whether in the 
process of mining, shovel loading, or external trans-
portation and loading, the transfer and transpor-
tation of materials will generate a large amount of 
dust, seriously blocking the light and line of sight 
and affecting the clarity and visibility of the images.

The above factors jointly lead to severe degradation of 
surveillance images in open-pit mines, affecting dis-
patchers’ production judgment and work safety.
Therefore, developing high-performance surveil-
lance solutions and advanced image restoration 
technologies to improve image quality is crucial for 

enhancing production efficiency and ensuring safety.
In the current mining industry, most image enhance-
ment methods are based on improvements in the 
Retinex approach. These enhancement techniques 
primarily consider the relationships between differ-
ent lighting conditions, without addressing the en-
hancement of different image features. As a result, the 
enhanced images often exhibit a noticeable sense of 
artificiality, and artifacts or noise frequently appear 
in areas with significant illumination changes.
Tian et al. [20] introduced an improved Retinex fusion 
algorithm to address the issues of halo enlargement and 
overexposure in traditional image enhancement meth-
ods. By combining homomorphic filtering, bilateral fil-
tering, and Multi-scale Retinex with Color Restoration 
(MSRCR), the method enhanced the luminance while 
preserving the hue and applied adaptive nonlinear 
stretching to the saturation. The method proposed by 
Tian et al. [21] enhances coal mine low-light images 
through a Transformer-based model and adaptive fea-
ture fusion. The innovation includes a generative ad-
versarial framework for adaptive image enhancement, 
decoupling of illuminance and reflection components 
to prevent color distortion, and the use of a CEM-Trans-
former Encoder for improved brightness and reduced 
local unevenness. Additionally, the method integrates 
a skip connection with CEM-Cross-Transformer En-
coder to preserve fine details and employs ECA-Net for 
more efficient feature extraction. Experimental results 
show that this approach significantly improves image 
quality in both objective metrics and subjective visual 
evaluation, outperforming existing low-light enhance-
ment methods.
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The study by Kong et al. [4] focused on improving the 
image quality and detection accuracy of safety moni-
toring for personnel in coal mines. The research team 
found that due to insufficient underground illumina-
tion, traditional surveillance images often suffer from 
recognition difficulties and low detection accuracy. 
To address this, they proposed an innovative low-light 
image enhancement method. This method employs 
an adaptive enhancement strategy, including a local 
enhancement module and a Transformer-based glob-
al adjustment module. The local enhancement mod-
ule maps low-light areas to normal illumination at the 
pixel level while preserving as much detail as possi-
ble. The global adjustment module is used to prevent 
over-enhancement of bright areas and insufficient 
illumination in dark areas, while also avoiding color 
bias. Furthermore, to ensure that image enhancement 
does not negatively impact personnel detection, the 
research team introduced a feature similarity loss to 
maintain the consistency of target features.

2. Image Enhancement Algorithms
Image enhancement is an important image process-
ing technique aimed at improving the visual effect of 
an image and making it more suitable for specific ap-
plications or more in line with human visual prefer-
ences. This technique can be applied to reduce noise 
and enhance multiple aspects, such as an image’s con-
trast, brightness, details, and colors.
With the development of technology, related process-
ing methods have evolved from finding mapping mod-
els for image illumination restoration to establishing 
self-learning neural networks.
1 Histogram Equalization
Histogram equalization adjusts the image brightness 
distribution and automatically enhances the contrast, 
suitable for extremely dark or bright backgrounds and 
foregrounds. Contrast Limited Adaptive Histogram 
Equalization (CLAHE) is its improved version [14] 
which optimizes local detail preservation and reduc-
es over-enhancement problems by independently ap-
plying equalization to image blocks. Although CLAHE 
has a significant effect in adjusting local brightness, it 
may still lead to color distortion and increased noise.
2 Retinex Algorithm
The Retinex theory is based on the human visual sys-
tem and simulates the adaptability of the human eye 

to light to improve image brightness [6], contrast, and 
color. Among them, Single-Scale Retinex (SSR) and 
Multi-Scale Retinex (MSR) algorithms are partic-
ularly suitable for low-light enhancement and color 
restoration [20]. Although Retinex has progressed 
in color fidelity, its detail recovery and application 
breadth under complex illumination are still limit-
ed, especially in complex illumination environments 
such as open-pit mines.
3 CNNs and GAN
Convolutional Neural Networks (CNNs) have made 
significant progress in image enhancement. By learn-
ing a large amount of data, CNNs can optimize the 
visual effect of images [12]. Generative Adversarial 
Networks (GANs) [2, 19] can generate high-quality 
images for tasks such as low-light image enhance-
ment, High Dynamic Range (HDR) image generation, 
and color enhancement. These methods, from basic 
image processing techniques to advanced machine 
learning algorithms, are constantly evolving to meet 
the growing demand for image quality and visual ef-
fects. In the application process of CNNs, the per-
formance of image enhancement has been greatly 
improved, and there have also been obvious improve-
ments in generalization and other aspects. However, 
because the structure is still relatively simple, its ex-
pressive ability is still limited even if a very deep net-
work is established. It will encounter problems such 
as losing many details due to the too-deep structure, 
and the enhancement effect is significantly reduced.
4 Transformer Model
Thanks to the attention structure in the network, the 
network of the Transformer model can obtain the re-
lationship between all features and solve the problem 
of feature forgetting caused by the too-deep network 
structure, thereby making its expressive ability unprec-
edentedly improved and its generalization ability qual-
itatively transformed [22, 9, 23, 11, 1]. The emergence of 
the Transformer structure has made large models the 
basis of intelligence in various industries today. Still, 
it poses an unprecedented challenge to the storage and 
computing power of the GPU of the computer. 

3. Analysis of Current Problems
When open-pit mine monitoring images degrade, 
multiple problems coexist, such as the simultaneous 
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presence of low resolution, uneven illumination, in-
sufficient illumination, and many noise points. Exist-
ing methods often focus only on a single problem and 
have obvious limitations in the open-pit mine envi-
ronment. Although the algorithms mentioned above 
have been developed systematically and have a broad 
application space, there are still limitations in the 
processing of open-pit mine monitoring images.
For example, histogram equalization or adaptive his-
togram equalization relies on the initial quality of the 
image to improve contrast and brightness. If the mon-
itoring equipment has performance limitations due 
to explosion-proof requirements, it may lead to poor 
original image quality, such as many noise points and 
low resolution, which will affect the effect of these 
methods.
When encountering physical occlusion and uneven 
light, methods such as the Retinex Algorithm, which 
relies on the internal illumination consistency of the 
image, face a challenge because they need to evaluate 
the illumination conditions of the entire image to ad-
just the brightness and contrast.
Although deep learning methods have potential in 
low-light image enhancement, they require a large 
amount of high-quality, well-labeled training data 
to effectively learn how to process images under ex-
tremely low-lighting conditions. In practical applica-
tions, such data may be difficult to obtain.

4. Model Structure Design
The minimum processing unit of the model includes 
convolution filtering enhancement, a transformer 
with feature orthogonal enhancement, and a SKFF 
unit. The network structure consists of full-resolu-
tion feature enhancement and down-resolution fea-
ture enhancement.
The convolution filtering enhancement and the 
Transformer with feature orthogonal enhancement 
are mainly responsible for enhancing the feature 
brightness at this resolution. The SKFF unit is re-
sponsible for paying attention to the channel level and 
selectively fusing the full-resolution structure and 
the features processed by variable resolution. The 
stacking of the minimum processing units forms a re-
sidual context block, as shown in Figure 2. The stack-
ing of the basic structure forms a Multi-scale Resid-

ual Block (MRB). The stacking of MRB and residuals 
constitutes a recursive residual group. The image is 
enhanced step by step through the recursive residu-
al group to form a Transformer network with parallel 
multi-scale feature fusion, as shown in Figure 1.
MRB: The residual block mainly includes the follow-
ing elements: (a) Parallel multi-resolution convolu-
tional streams for extracting semantic richer fine-
to-coarse and coarse-to-fine spatial accurate feature 
representations; (b) Information exchange between 
multi-resolution streams; (c) Aggregation of differ-
ent stream features based on attention; and (d) Re-
sidual Contextual Block (RCB) for extracting atten-
tion-based features.
The overall processing process mainly includes in-
putting a three-channel image I, then applying a con-
volutional layer to extract the low-level feature map 
F0 and passing the feature map F0 through N Recur-
sive Residual Group (RRG) to generate deep features 
Fn. Each RRG contains multiple MRB. Next, apply a 
convolutional layer to the deep feature Fn and obtain 
a residual image R. Finally, the restored image can be 
obtained by I + R. Use the Charbonnier loss to opti-
mize the proposed network, and its formula is:
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 is the supervised 
image, and ε is an empirical constant, which is set to 
10–3 in all experiments.
Figure 1 shows the model structure diagram, whose 
backbone network is based on the recursive residual 
structure. The backbone network is used to preserve 
the full resolution of the processed pictures and en-
hance the detail retention ability of the network, 
while the branch network is used to decode the fea-
ture maps in the entire network through a kind of co-
dec so that the full-resolution image is decomposed 
into low-resolution and high-feature image represen-
tations, enhancing the spatial expression ability of 
the processed image, so that the position information 
represented by the image will not deviate.
The RRG is an advanced structure used in deep learn-
ing, especially in the field of image processing. It uses 
the idea of recursion and residual learning to con-
struct a deep network, aiming to improve the resto-
ration and enhancement quality of images effectively. 
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Figure 1 
Model structure
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Here, Fb is the input feature map. Firstly, a 1x1 con-
volution is applied, then the matrix is reshaped into a 
matrix of single pixels and single channels, and a soft-
max operation is performed to generate a new feature 
Fc. Next, the feature map Fb  is reshaped as H×W×C 
and multiplied with Fc to obtain the global feature de-
scription feature Fd. To capture the interdependence 
between channels, the description feature Fd passes 
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Figure 2 
Residual Contextual Block structure  
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Fuse: SKFF receives the input from two parallel con-
volution streams, which carry information of differ-
ent scales. Firstly, the multi-scale features are merged 
using an element-wise summation: L = L1 + L2. Then, 
Global Average Pooling (GAP) is applied to the spa-
tial dimension of L to calculate the channel-level 
statistics, which serve as important information for 
different channels. Next, a channel reduction convo-
lutional layer is applied to generate a compact feature 
representation z. Finally, the feature vector z passes 
through two parallel channel enhancement convolu-
tional layers (one for each resolution stream) and pro-
vides two feature descriptors, v1 and v2.
Select: This operation applies the softmax function to 
v1 and v2, generating attention activations s1 and s2. 
These activations are used to recalibrate the multi-
scale feature maps L1 and L2 adaptively. The entire 
process of feature recalibration and aggregation is de-
fined as U = s1 * L1 + s2 * L2.
The application of the feature orthogonal Transform-
er structure in the RCB is mainly divided into two 
parts: the high-axis self-attention structure and the 
wide-axis self-attention result. The result is to or-
thogonally decompose the attention of the full feature 
map into the attention of the two axes. The specific 
structure is as following Figure 4: The input feature 
map (C×H×W) is convolved into three matrices of 
Q, K, and V, respectively, and after deformation, the 
high-axis attention score is multiplied by the value, 
and in the same way, the wide-axis attention score 
and the final result are obtained.
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When designing the deep learning network struc-
ture, considering the observed advantages in the 
experiments, an innovative method combining pro-
gressive learning and MRB was adopted to handle 
image restoration and enhancement tasks. The de-
sign of this structure aims to solve the challenges 
faced by traditional convolutional neural networks 
when dealing with image details and context infor-
mation while optimizing training efficiency and 
model performance. To compare the algorithm ef-
fects, four indicators were selected for evaluation in 
the final results: 

(1) PSNR is a common indicator for measuring the 
quality of image reconstruction, especially in the 
field of image and video compression [7, 18]. It is 
calculated based on the Mean Square Error (MSE) 
between the original image and the processed im-
age. The higher the PSNR value, the better the im-

age quality. PSNR is calculated through the 
following formula: 
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5. Experimental Analysis and 
Discussion
When designing the deep learning network structure, 
considering the observed advantages in the experi-
ments, an innovative method combining progressive 
learning and MRB was adopted to handle image res-
toration and enhancement tasks. The design of this 
structure aims to solve the challenges faced by tradi-
tional convolutional neural networks when dealing 
with image details and context information while op-
timizing training efficiency and model performance. 
To compare the algorithm effects, four indicators 
were selected for evaluation in the final results:
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(3)

Here, MAX is the maximum pixel value of the im-
age, and MSE is the mean square error between the 
original image and the processed image. The for-
mula is as follows:
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2 Mean Absolute Erron (MAE) is another simple 
method for measuring image differences. It cal-
culates the average absolute pixel differences be-
tween the original image and the processed image. 
The smaller the MAE value, the more similar the 
images are; that is, the better the image process-
ing effect. Here, Ia and Ib bear the original image 
and the processed image, respectively, and N is the 
number of pixels. The formula is as follows:
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quality of image reconstruction, especially in the 
field of image and video compression [7, 18]. It is 
calculated based on the Mean Square Error (MSE) 
between the original image and the processed im-
age. The higher the PSNR value, the better the im-

age quality. PSNR is calculated through the 
following formula: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 20 ∗ log � 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
√𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

�.                                              (3) 

Here, MAX is the maximum pixel value of the 
image, and MSE is the mean square error be-
tween the original image and the processed 
image. The formula is as follows: 

𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀 = ∑(Ia−Ib)2

𝑁𝑁𝑁𝑁
.                                                                   (4) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = ∑|Ia−Ib|
𝑁𝑁𝑁𝑁

.                                                                  (5) 

(3) SSIM [16,17] is a more advanced indicator 
for measuring image quality, which considers 
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(5)

3 SSIM [16,17] is a more advanced indicator for mea-
suring image quality, which considers the image’s 
luminance, contrast, and structural information. 
Unlike PSNR, SSIM attempts to evaluate image 
quality from the perspective of visual perception, 
making it closer to the evaluation of the human vi-
sual system. The value of SSIM is between 0 and 1, 
and 1 indicates that the two images are the same.

4 Learned Perceptual Image Patch Similarity 
(LPIPS) [3, 25] is a recently proposed indicator for 

evaluating image quality. It uses deep learning to 
measure the perceptual similarity between images. 
Unlike PSNR and SSIM, which are based on tradi-
tional mathematical formulas, LPIPS predicts the 
visual differences between images by training a 
deep network, which can more accurately reflect 
the differences in human visual perception. The 
lower the LPIPS value, the more similar the images 
are in perception and the closer the quality is.

The experiments selected two different scenarios, in-
door and outdoor, namely the images obtained from 
the outdoor monitoring of the open-pit mine and 
the monitoring images obtained from the silo within 
the production system. The images obtained consist 
of photos taken at different times by a GoPro and a 
mobile phone. These photos were later adjusted by 
researchers using Adobe Lightroom to modify the 
brightness curves according to the required differ-
ent illumination levels. Then, 20 volunteers evaluat-
ed and filtered the adjusted images. Finally, a data-
set comprising both indoor and outdoor images was 
formed. The dataset was split into a training set and 
a validation set in a ratio of 0.8 to 0.2. The compari-
son diagram of the experimental results is shown in 
Table  1, and the calculation results of the evaluation 

Table 1
Comparison of results

Original image Algorithm proposed in 
this paper DRBN [8] DSLR [13] EnlightenGAN [10]



13Information Technology and Control 2025/1/54

Table 2
Index comparison table

Method
Indoor scene of open-pit mine Outdoor scene of open-pit mine

PSNR SSIM MAE LPIPS PSNR SSIM MAE LPIPS

Method in this paper 22.88 0.88 0.013 0.1234 28.58 0.91 0.010 0.0989

DRBN 16.65 0.82 0.244 0.2104 12.65 0.41 0.051 0.6154

DSLR 13.56 0.73 0.428 0.3512 24.71 0.83 0.018 0.4312

EnlightenGAN 21.12 0.84 0.084 0.1111 25.12 0.81 0.124 0.2121

EBDB [24] 17.23 0.66 0.224 0.2931 25.23 0.82 0.023 0.1591

PDPD [15] 18.34 0.72 0.135 0.2145 22.34 0.76 0.025 0.3243

JNB [5] 14.53 0.66 0.623 0.3416 13.53 0.56 0.422 0.8892

indicators are shown in Table 2. The results in the ta-
ble are the average values of the calculation indicators 
of multiple images within the scenarios.
For the training method, we chose to further train 
different methods based on the original network. The 
loss function used for training is Smooth L1, and the 
training was conducted for 300k epochs. The learning 
rate scheduler chosen was cosine annealing, with a 
minimum learning rate of 1e-6 and a maximum learn-
ing rate of 1e-3.
For image evaluation, a corresponding third-party li-
brary was selected, and the default parameters were 
used to evaluate four metrics: PSNR, SSIM, MAE, and 
LPIPS. The images evaluated were from the test set 
portion of the captured dataset.
By comparing the performance of different methods 
in the indoor and outdoor scenarios of the open-pit 
mine (using the four evaluation indicators of PSNR, 
SSIM, MAE, and LPIPS), it is concluded that the 
method proposed in the paper consistently outper-
forms other methods in both indoor and outdoor 
scenarios of the open-pit mine. Particularly, it shows 
significant advantages in the two indicators of PSNR 
and MAE, indicating that the method proposed in the 
paper has high accuracy and high-quality output in 
image restoration and enhancement tasks. The ex-
cellent performance of SSIM and LPIPS also demon-
strates that the method proposed in the paper can not 
only accurately reconstruct images but is also very 
outstanding in maintaining the image structure and 
perceptual quality. These results prove the effective-
ness and superiority of the network structure pro-
posed in this paper in handling image restoration and 
enhancement tasks.

In terms of image metric evaluation, our method out-
performs the compared methods. PSNR primarily 
represents image restoration at the pixel level. Our 
method achieves better results than other methods 
in this metric. SSIM evaluates the structural simi-
larity of images, and our results surpass those of oth-
er methods, indicating that our images are better at 
maintaining semantic coherence. MAE reflects the 
model’s fitting capability, and compared to other im-
age processing methods, our method shows superior 
fitting ability. LPIPS evaluates the realism of images, 
and our method performs slightly worse than Enlight-
enGAN in indoor environments. The main reason is 
that in indoor settings where illumination changes 
are not significant, adversarial networks tend to pro-
duce images with a stronger sense of realism to the 
human eye than our network.

6. Conclusion
This study significantly improves the image bright-
ness and clarity in low-illumination environments 
by integrating the improved PSNR loss, SSIM loss, 
and self-attention loss. More importantly, it can pre-
cisely retain the high-level features in the image, 
such as the details of mechanical equipment and the 
identity information of the operating personnel, en-
suring that the restored image is both of high qual-
ity and practical. This is particularly important for 
applications that require precise image restoration, 
such as open-pit mine monitoring systems, especial-
ly when dealing with challenges such as low resolu-
tion and high noise.
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When dealing with images under extremely low-illu-
mination conditions, the method of this study shows 
excellent anti-noise ability, effectively reducing noise 
points and image distortion. Compared with methods 
such as DRBN, DSLR, and EnlightenGAN, the method 
in this paper performs outstandingly in maintaining 
the clarity and stability of the image enhancement ef-
fect, reflecting its strong performance when dealing 
with low-quality original images.
Through tests on open-pit mine images under dif-
ferent scenarios and conditions, the method in this 
paper has wide applicability and flexibility. It can 
achieve effective image enhancement effects, wheth-
er under extremely low-illumination conditions or 
facing complex environmental backgrounds, such as 
the challenges of many noise points and low resolu-
tion. At the same time, it has made a breakthrough 
in computing efficiency and can thus be quickly de-
ployed in practical applications to meet the needs of 
real-time processing.
In the study of image enhancement for open-pit mines, 
we found that noise tends to appear in large areas of 

the same color during enhancement. Such areas are 
frequently seen in open-pit mine images. Therefore, 
future research will focus on handling image enhance-
ment for large monochromatic areas and exploring 
how to avoid the appearance of noise artifacts.
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