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This paper introduces a new image denoising method using adaptive weighted low-rank matrix recovery to 
tackle the challenges of separating low-rank information from noise and improving performance affected by 
empirical hyperparameters. We start by using image nonlocal similarity to build a low-rank denoising model, 
then apply the Gerschgorin theory to precisely determine the rank of the low -rank matrix. With this rank esti-
mation, we use adaptive weighting along with singular value decomposition and weighted soft-thresholding to 
solve the denoising model, resulting in the denoised image. Experiments show our algorithm surpasses tradi-
tional denoising methods in average PSNR and SSIM. Specifically, for images contaminated with high-intensi-
ty noise (with a variance of 100), our algorithm achieves average PSNR and SSIM values of 24.66dB and 0.7267, 
respectively. Additionally, our algorithm exhibits superior performance in denoising images with real noise and 
is also applicable to color image denoising.
KEYWORDS: Denoising Algorithm; Low-Rank Matrix Recovery; Image Weighted Nuclear Norm Minimiza-
tion; Image Denoising; Image Processing.

1. Low-rank Matrix Recovery Model
As one of the important carriers of human informa-
tion acquisition, images are often affected by various 
disturbing factors in the real world, leading to a de-
crease in the quality of image acquisition and trans-
mission, thus affecting people’s information acquisi-
tion and transmission. The goal of image denoising is 
to recover a clear image from a noise-polluted image. 

How to effectively remove image noise has always 
been a popular scientific research problem, in view 
of this, this paper proposes a new adaptive weighted 
low-rank image denoising algorithm [11].
When some elements of a low-rank matrix or a matrix 
with low-rank properties are corrupted, the method 
of recovering the original matrix by automatically 
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recognizing the corrupted elements is called low-
rank matrix recovery [6]. In the low-rank matrix fac-
torization method, we wish to find a matrix X which 
is as close as possible to the corrupted matrix Y with 
a certain data fidelity, and the matrix X can be decom-
posed into the product of two low-rank matrices [4, 
12]. However, low-rank matrix decomposition is a 
class of nonconvex problems that are difficult to solve. 
To solve this problem, we can use the rank minimiza-
tion method. This is a non-convex optimization prob-
lem, but can be approximated instead of rank minimi-
zation by nuclear norm minimization (NNM) [1] for 
low-rank matrix recovery. Kernel-paradigm minimi-
zation is widely used in low-rank matrix recovery al-
gorithms. To summarize, low-rank matrix recovery is 
a method to obtain the original matrix by identifying 
and recovering the corrupted matrix elements. This is 
able to be achieved by low-rank matrix factorization 
or rank minimization, of which kernel-paradigm min-
imization is a commonly used method. The approxi-
mate solution problem of NNM can be expressed as:

approximated instead of rank minimization by nuclear norm 
minimization (NNM) [1] for low-rank matrix recovery. 
Kernel-paradigm minimization is widely used in low-rank 
matrix recovery algorithms. To summarize, low-rank matrix 
recovery is a method to obtain the original matrix by 
identifying and recovering the corrupted matrix elements. 
This is able to be achieved by low-rank matrix factorization 
or rank minimization, of which kernel-paradigm 
minimization is a commonly used method. The approximate 
solution problem of NNM can be expressed as: 

𝑌𝑌𝑌𝑌� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚||𝑋𝑋𝑋𝑋 − 𝑌𝑌𝑌𝑌||𝐸𝐸𝐸𝐸2 2⁄ + 𝜏𝜏𝜏𝜏||𝑌𝑌𝑌𝑌||∗, (1) 
where ∥ 𝑌𝑌𝑌𝑌 ∥∗= ∑  𝑚𝑚𝑚𝑚=1 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(L) is the kernel paradigm of matrix 
Y, 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌)   is the ith singular value, and ∥. ∥𝐸𝐸𝐸𝐸 is the E-
parameter. In the image denoising task, Y and X represent 
the denoised image matrix and the noise image matrix, 
respectively. It has been proved that the NuclearNorm 
Proximal (NNP) problem can be solved by taking a soft 
thresholding operation on the singular values to obtain a 
closed-loop solution: 

𝑌𝑌𝑌𝑌� = 𝑈𝑈𝑈𝑈𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏[Σ]𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇, (2) 
where Y= 𝑈𝑈𝑈𝑈Σ𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇 is the singular value decomposition of the 

matrix Y,Σ = diag({𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚}1≤𝑚𝑚𝑚𝑚≤𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚))，𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏[Σ]𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = sgn(𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚) ⋅

max(|𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚|− 𝜏𝜏𝜏𝜏, 0)  is a parameter-based soft thresholding 
operator, where the degree of sparsity is controlled. In order 
to minimize the rank of the matrix, minimizing all singular 
values simultaneously and equally is a major limitation of 
the method, and does not take into account the physical 
significance of the singular values themselves, i.e., the 
image information is essentially retained in the larger 
singular values. In order to improve the flexibility of NNM, 
the Weighted Kernel Paradigm Minimization (WNNM) [5] 
method is proposed. The weighted kernel paradigm of 
matrix Y is defined as: 

||𝑌𝑌𝑌𝑌||𝑤𝑤𝑤𝑤,∗= Ʃ𝑚𝑚𝑚𝑚=1𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌), (3) 
where 𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚 is the non-negative weighting assigned to 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌). 
The weighted kernel paradigm minimization model is as 
follows： 

𝑌𝑌𝑌𝑌� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚||𝑌𝑌𝑌𝑌 −
𝑌𝑌𝑌𝑌||𝐸𝐸𝐸𝐸2

2
+ 𝜏𝜏𝜏𝜏�|Y|�

𝑊𝑊𝑊𝑊,∗
. (4) 

Compared with NNM, weighted kernel-paradigm 
minimization [14, 16] greatly improves the flexibility of the 
kernel paradigm, which makes the low-rank matrix recovery 
more accurate. Therefore, the weighted kernel-paradigm 
minimization model achieves better denoising performance 
in the image denoising task. The weighted kernel-paradigm 
minimization model performs a weighted soft-thresholding 
operation on the singular values of the optimal solution 
obtained is Y = 𝑈𝑈𝑈𝑈𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏𝑤𝑤𝑤𝑤[Σ]𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇 , where 𝑆𝑆𝑆𝑆𝜏𝜏𝜏𝜏𝑤𝑤𝑤𝑤[Σ] = sgn(𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚) ⋅

max(|𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚|− 𝜏𝜏𝜏𝜏𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚 , 0) is the weighted soft threshold operator 
[7, 13]. 
 

2. Image Denoising Algorithm 
2.1 Adaptive Weighted Low-rank Matrix 
Recovery Models 
Weighted kernel-paradigm minimization models have been 
widely used in recent years due to their excellent 
performance; however, the weights in such methods depend 
on a regularization parameter chosen empirically and are 
correlated with the rank of the low-rank matrix, leading to 
the need to adjust the parameter iteratively in different tasks. 
In order to solve this problem, this paper proposes an 
adaptive weighting model that can adaptively weight the low 
rank matrix while passing through the observation data itself, 
and can accurately and efficiently recover the low rank 
matrix [17]. 

As mentioned earlier, the rank of the low-rank matrix 
is a very important parameter in the problem of recovering 
low-rank matrices. In some scenarios, this parameter is 
known, but in the vast majority of scenarios, it is unknown. 
In order to solve the problem that the rank of the low-rank 
matrix is unknown, this paper introduces the idea of 
Gerschgorin disk estimation to estimate the rank of the low-
rank matrix. The signal N received by a sensor array in a 
noisy environment can be similarly expressed as the sum of 
the sparse noise signal matrix S [9, 10] and the low-rank 
source signal matrix Y [15]. The covariance matrix NR of 
matrix N of rank r can be defined as: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇. (5) 
The eigenvalue decomposition of 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 yields： 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = 𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁Ʃ𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁
𝐻𝐻𝐻𝐻 , (6) 

where 𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅N = [𝑢𝑢𝑢𝑢1,𝑢𝑢𝑢𝑢2,⋯ ,𝑢𝑢𝑢𝑢𝑁𝑁𝑁𝑁] , is a matrix consisting of 
eigenvectors and Σ𝑅𝑅𝑅𝑅N = diag(𝜆𝜆𝜆𝜆1,𝜆𝜆𝜆𝜆2,⋯ , 𝜆𝜆𝜆𝜆𝑁𝑁𝑁𝑁)  is a diagonal 
array consisting of eigenvalues. In a noise-free environment 
rank 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 is r, but in a real environment due to noise effects, 
rank 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 is n (n>> r). To accurately estimate the rank r of the 
low-rank matrix, Gerschgorin disk theory is introduced. 
First, the covariance matrix is divided: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = �
𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝐻𝐻𝐻𝐻 𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

�. (7) 

𝑅𝑅𝑅𝑅N1 ∈ ℝ(𝑚𝑚𝑚𝑚−1)×(𝑚𝑚𝑚𝑚−1) in the above equation is obtained by 
deleting the last row and the last column of 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁. The 
eigenvalue decomposition of matrix 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 can be derived: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 = 𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁1Ʃ1𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁1𝐻𝐻𝐻𝐻  (8) 
𝑈𝑈𝑈𝑈N1 = [𝑞𝑞𝑞𝑞1′ ,𝑞𝑞𝑞𝑞2′ ,⋯ ,𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚−1′ ] is the matrix 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 eigenvector 

matrix and 𝚺𝚺𝚺𝚺1 = �𝜆𝜆𝜆𝜆
¯
1
′ , 𝜆𝜆𝜆𝜆2′ ,⋯ , 𝜆𝜆𝜆𝜆𝑚𝑚𝑚𝑚−1′ � is the matrix𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 

(1)

where 
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rank 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 is n (n>> r). To accurately estimate the rank r of the 
low-rank matrix, Gerschgorin disk theory is introduced. 
First, the covariance matrix is divided: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = �
𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝐻𝐻𝐻𝐻 𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

�. (7) 

𝑅𝑅𝑅𝑅N1 ∈ ℝ(𝑚𝑚𝑚𝑚−1)×(𝑚𝑚𝑚𝑚−1) in the above equation is obtained by 
deleting the last row and the last column of 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁. The 
eigenvalue decomposition of matrix 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 can be derived: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 = 𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁1Ʃ1𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁1𝐻𝐻𝐻𝐻  (8) 
𝑈𝑈𝑈𝑈N1 = [𝑞𝑞𝑞𝑞1′ ,𝑞𝑞𝑞𝑞2′ ,⋯ ,𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚−1′ ] is the matrix 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 eigenvector 

matrix and 𝚺𝚺𝚺𝚺1 = �𝜆𝜆𝜆𝜆
¯
1
′ , 𝜆𝜆𝜆𝜆2′ ,⋯ , 𝜆𝜆𝜆𝜆𝑚𝑚𝑚𝑚−1′ � is the matrix𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 

 (L) is the kernel paradigm 
of matrix Y, 

approximated instead of rank minimization by nuclear norm 
minimization (NNM) [1] for low-rank matrix recovery. 
Kernel-paradigm minimization is widely used in low-rank 
matrix recovery algorithms. To summarize, low-rank matrix 
recovery is a method to obtain the original matrix by 
identifying and recovering the corrupted matrix elements. 
This is able to be achieved by low-rank matrix factorization 
or rank minimization, of which kernel-paradigm 
minimization is a commonly used method. The approximate 
solution problem of NNM can be expressed as: 

𝑌𝑌𝑌𝑌� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚||𝑋𝑋𝑋𝑋 − 𝑌𝑌𝑌𝑌||𝐸𝐸𝐸𝐸2 2⁄ + 𝜏𝜏𝜏𝜏||𝑌𝑌𝑌𝑌||∗, (1) 
where ∥ 𝑌𝑌𝑌𝑌 ∥∗= ∑  𝑚𝑚𝑚𝑚=1 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(L) is the kernel paradigm of matrix 
Y, 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌)   is the ith singular value, and ∥. ∥𝐸𝐸𝐸𝐸 is the E-
parameter. In the image denoising task, Y and X represent 
the denoised image matrix and the noise image matrix, 
respectively. It has been proved that the NuclearNorm 
Proximal (NNP) problem can be solved by taking a soft 
thresholding operation on the singular values to obtain a 
closed-loop solution: 

𝑌𝑌𝑌𝑌� = 𝑈𝑈𝑈𝑈𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏[Σ]𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇, (2) 
where Y= 𝑈𝑈𝑈𝑈Σ𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇 is the singular value decomposition of the 

matrix Y,Σ = diag({𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚}1≤𝑚𝑚𝑚𝑚≤𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚))，𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏[Σ]𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = sgn(𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚) ⋅

max(|𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚|− 𝜏𝜏𝜏𝜏, 0)  is a parameter-based soft thresholding 
operator, where the degree of sparsity is controlled. In order 
to minimize the rank of the matrix, minimizing all singular 
values simultaneously and equally is a major limitation of 
the method, and does not take into account the physical 
significance of the singular values themselves, i.e., the 
image information is essentially retained in the larger 
singular values. In order to improve the flexibility of NNM, 
the Weighted Kernel Paradigm Minimization (WNNM) [5] 
method is proposed. The weighted kernel paradigm of 
matrix Y is defined as: 

||𝑌𝑌𝑌𝑌||𝑤𝑤𝑤𝑤,∗= Ʃ𝑚𝑚𝑚𝑚=1𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌), (3) 
where 𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚 is the non-negative weighting assigned to 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌). 
The weighted kernel paradigm minimization model is as 
follows： 

𝑌𝑌𝑌𝑌� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚||𝑌𝑌𝑌𝑌 −
𝑌𝑌𝑌𝑌||𝐸𝐸𝐸𝐸2

2
+ 𝜏𝜏𝜏𝜏�|Y|�

𝑊𝑊𝑊𝑊,∗
. (4) 

Compared with NNM, weighted kernel-paradigm 
minimization [14, 16] greatly improves the flexibility of the 
kernel paradigm, which makes the low-rank matrix recovery 
more accurate. Therefore, the weighted kernel-paradigm 
minimization model achieves better denoising performance 
in the image denoising task. The weighted kernel-paradigm 
minimization model performs a weighted soft-thresholding 
operation on the singular values of the optimal solution 
obtained is Y = 𝑈𝑈𝑈𝑈𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏𝑤𝑤𝑤𝑤[Σ]𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇 , where 𝑆𝑆𝑆𝑆𝜏𝜏𝜏𝜏𝑤𝑤𝑤𝑤[Σ] = sgn(𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚) ⋅

max(|𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚|− 𝜏𝜏𝜏𝜏𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚 , 0) is the weighted soft threshold operator 
[7, 13]. 
 

2. Image Denoising Algorithm 
2.1 Adaptive Weighted Low-rank Matrix 
Recovery Models 
Weighted kernel-paradigm minimization models have been 
widely used in recent years due to their excellent 
performance; however, the weights in such methods depend 
on a regularization parameter chosen empirically and are 
correlated with the rank of the low-rank matrix, leading to 
the need to adjust the parameter iteratively in different tasks. 
In order to solve this problem, this paper proposes an 
adaptive weighting model that can adaptively weight the low 
rank matrix while passing through the observation data itself, 
and can accurately and efficiently recover the low rank 
matrix [17]. 

As mentioned earlier, the rank of the low-rank matrix 
is a very important parameter in the problem of recovering 
low-rank matrices. In some scenarios, this parameter is 
known, but in the vast majority of scenarios, it is unknown. 
In order to solve the problem that the rank of the low-rank 
matrix is unknown, this paper introduces the idea of 
Gerschgorin disk estimation to estimate the rank of the low-
rank matrix. The signal N received by a sensor array in a 
noisy environment can be similarly expressed as the sum of 
the sparse noise signal matrix S [9, 10] and the low-rank 
source signal matrix Y [15]. The covariance matrix NR of 
matrix N of rank r can be defined as: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇. (5) 
The eigenvalue decomposition of 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 yields： 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = 𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁Ʃ𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁
𝐻𝐻𝐻𝐻 , (6) 

where 𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅N = [𝑢𝑢𝑢𝑢1,𝑢𝑢𝑢𝑢2,⋯ ,𝑢𝑢𝑢𝑢𝑁𝑁𝑁𝑁] , is a matrix consisting of 
eigenvectors and Σ𝑅𝑅𝑅𝑅N = diag(𝜆𝜆𝜆𝜆1,𝜆𝜆𝜆𝜆2,⋯ , 𝜆𝜆𝜆𝜆𝑁𝑁𝑁𝑁)  is a diagonal 
array consisting of eigenvalues. In a noise-free environment 
rank 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 is r, but in a real environment due to noise effects, 
rank 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 is n (n>> r). To accurately estimate the rank r of the 
low-rank matrix, Gerschgorin disk theory is introduced. 
First, the covariance matrix is divided: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = �
𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝐻𝐻𝐻𝐻 𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

�. (7) 

𝑅𝑅𝑅𝑅N1 ∈ ℝ(𝑚𝑚𝑚𝑚−1)×(𝑚𝑚𝑚𝑚−1) in the above equation is obtained by 
deleting the last row and the last column of 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁. The 
eigenvalue decomposition of matrix 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 can be derived: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 = 𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁1Ʃ1𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁1𝐻𝐻𝐻𝐻  (8) 
𝑈𝑈𝑈𝑈N1 = [𝑞𝑞𝑞𝑞1′ ,𝑞𝑞𝑞𝑞2′ ,⋯ ,𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚−1′ ] is the matrix 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 eigenvector 

matrix and 𝚺𝚺𝚺𝚺1 = �𝜆𝜆𝜆𝜆
¯
1
′ , 𝜆𝜆𝜆𝜆2′ ,⋯ , 𝜆𝜆𝜆𝜆𝑚𝑚𝑚𝑚−1′ � is the matrix𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 

 is the ith singular value, and 

approximated instead of rank minimization by nuclear norm 
minimization (NNM) [1] for low-rank matrix recovery. 
Kernel-paradigm minimization is widely used in low-rank 
matrix recovery algorithms. To summarize, low-rank matrix 
recovery is a method to obtain the original matrix by 
identifying and recovering the corrupted matrix elements. 
This is able to be achieved by low-rank matrix factorization 
or rank minimization, of which kernel-paradigm 
minimization is a commonly used method. The approximate 
solution problem of NNM can be expressed as: 

𝑌𝑌𝑌𝑌� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚||𝑋𝑋𝑋𝑋 − 𝑌𝑌𝑌𝑌||𝐸𝐸𝐸𝐸2 2⁄ + 𝜏𝜏𝜏𝜏||𝑌𝑌𝑌𝑌||∗, (1) 
where ∥ 𝑌𝑌𝑌𝑌 ∥∗= ∑  𝑚𝑚𝑚𝑚=1 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(L) is the kernel paradigm of matrix 
Y, 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌)   is the ith singular value, and ∥. ∥𝐸𝐸𝐸𝐸 is the E-
parameter. In the image denoising task, Y and X represent 
the denoised image matrix and the noise image matrix, 
respectively. It has been proved that the NuclearNorm 
Proximal (NNP) problem can be solved by taking a soft 
thresholding operation on the singular values to obtain a 
closed-loop solution: 

𝑌𝑌𝑌𝑌� = 𝑈𝑈𝑈𝑈𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏[Σ]𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇, (2) 
where Y= 𝑈𝑈𝑈𝑈Σ𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇 is the singular value decomposition of the 

matrix Y,Σ = diag({𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚}1≤𝑚𝑚𝑚𝑚≤𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚))，𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏[Σ]𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = sgn(𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚) ⋅

max(|𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚|− 𝜏𝜏𝜏𝜏, 0)  is a parameter-based soft thresholding 
operator, where the degree of sparsity is controlled. In order 
to minimize the rank of the matrix, minimizing all singular 
values simultaneously and equally is a major limitation of 
the method, and does not take into account the physical 
significance of the singular values themselves, i.e., the 
image information is essentially retained in the larger 
singular values. In order to improve the flexibility of NNM, 
the Weighted Kernel Paradigm Minimization (WNNM) [5] 
method is proposed. The weighted kernel paradigm of 
matrix Y is defined as: 

||𝑌𝑌𝑌𝑌||𝑤𝑤𝑤𝑤,∗= Ʃ𝑚𝑚𝑚𝑚=1𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌), (3) 
where 𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚 is the non-negative weighting assigned to 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌). 
The weighted kernel paradigm minimization model is as 
follows： 

𝑌𝑌𝑌𝑌� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚||𝑌𝑌𝑌𝑌 −
𝑌𝑌𝑌𝑌||𝐸𝐸𝐸𝐸2

2
+ 𝜏𝜏𝜏𝜏�|Y|�

𝑊𝑊𝑊𝑊,∗
. (4) 

Compared with NNM, weighted kernel-paradigm 
minimization [14, 16] greatly improves the flexibility of the 
kernel paradigm, which makes the low-rank matrix recovery 
more accurate. Therefore, the weighted kernel-paradigm 
minimization model achieves better denoising performance 
in the image denoising task. The weighted kernel-paradigm 
minimization model performs a weighted soft-thresholding 
operation on the singular values of the optimal solution 
obtained is Y = 𝑈𝑈𝑈𝑈𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏𝑤𝑤𝑤𝑤[Σ]𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇 , where 𝑆𝑆𝑆𝑆𝜏𝜏𝜏𝜏𝑤𝑤𝑤𝑤[Σ] = sgn(𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚) ⋅

max(|𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚|− 𝜏𝜏𝜏𝜏𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚 , 0) is the weighted soft threshold operator 
[7, 13]. 
 

2. Image Denoising Algorithm 
2.1 Adaptive Weighted Low-rank Matrix 
Recovery Models 
Weighted kernel-paradigm minimization models have been 
widely used in recent years due to their excellent 
performance; however, the weights in such methods depend 
on a regularization parameter chosen empirically and are 
correlated with the rank of the low-rank matrix, leading to 
the need to adjust the parameter iteratively in different tasks. 
In order to solve this problem, this paper proposes an 
adaptive weighting model that can adaptively weight the low 
rank matrix while passing through the observation data itself, 
and can accurately and efficiently recover the low rank 
matrix [17]. 

As mentioned earlier, the rank of the low-rank matrix 
is a very important parameter in the problem of recovering 
low-rank matrices. In some scenarios, this parameter is 
known, but in the vast majority of scenarios, it is unknown. 
In order to solve the problem that the rank of the low-rank 
matrix is unknown, this paper introduces the idea of 
Gerschgorin disk estimation to estimate the rank of the low-
rank matrix. The signal N received by a sensor array in a 
noisy environment can be similarly expressed as the sum of 
the sparse noise signal matrix S [9, 10] and the low-rank 
source signal matrix Y [15]. The covariance matrix NR of 
matrix N of rank r can be defined as: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇. (5) 
The eigenvalue decomposition of 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 yields： 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = 𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁Ʃ𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁
𝐻𝐻𝐻𝐻 , (6) 

where 𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅N = [𝑢𝑢𝑢𝑢1,𝑢𝑢𝑢𝑢2,⋯ ,𝑢𝑢𝑢𝑢𝑁𝑁𝑁𝑁] , is a matrix consisting of 
eigenvectors and Σ𝑅𝑅𝑅𝑅N = diag(𝜆𝜆𝜆𝜆1,𝜆𝜆𝜆𝜆2,⋯ , 𝜆𝜆𝜆𝜆𝑁𝑁𝑁𝑁)  is a diagonal 
array consisting of eigenvalues. In a noise-free environment 
rank 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 is r, but in a real environment due to noise effects, 
rank 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 is n (n>> r). To accurately estimate the rank r of the 
low-rank matrix, Gerschgorin disk theory is introduced. 
First, the covariance matrix is divided: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = �
𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝐻𝐻𝐻𝐻 𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

�. (7) 

𝑅𝑅𝑅𝑅N1 ∈ ℝ(𝑚𝑚𝑚𝑚−1)×(𝑚𝑚𝑚𝑚−1) in the above equation is obtained by 
deleting the last row and the last column of 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁. The 
eigenvalue decomposition of matrix 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 can be derived: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 = 𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁1Ʃ1𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁1𝐻𝐻𝐻𝐻  (8) 
𝑈𝑈𝑈𝑈N1 = [𝑞𝑞𝑞𝑞1′ ,𝑞𝑞𝑞𝑞2′ ,⋯ ,𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚−1′ ] is the matrix 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 eigenvector 

matrix and 𝚺𝚺𝚺𝚺1 = �𝜆𝜆𝜆𝜆
¯
1
′ , 𝜆𝜆𝜆𝜆2′ ,⋯ , 𝜆𝜆𝜆𝜆𝑚𝑚𝑚𝑚−1′ � is the matrix𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 

is the E-parameter. In the image denoising task, 
Y and X represent the denoised image matrix and 
the noise image matrix, respectively. It has been 
proved that the NuclearNorm Proximal (NNP) 
problem can be solved by taking a soft thresholding 
operation on the singular values to obtain a closed-
loop solution:

approximated instead of rank minimization by nuclear norm 
minimization (NNM) [1] for low-rank matrix recovery. 
Kernel-paradigm minimization is widely used in low-rank 
matrix recovery algorithms. To summarize, low-rank matrix 
recovery is a method to obtain the original matrix by 
identifying and recovering the corrupted matrix elements. 
This is able to be achieved by low-rank matrix factorization 
or rank minimization, of which kernel-paradigm 
minimization is a commonly used method. The approximate 
solution problem of NNM can be expressed as: 

𝑌𝑌𝑌𝑌� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚||𝑋𝑋𝑋𝑋 − 𝑌𝑌𝑌𝑌||𝐸𝐸𝐸𝐸2 2⁄ + 𝜏𝜏𝜏𝜏||𝑌𝑌𝑌𝑌||∗, (1) 
where ∥ 𝑌𝑌𝑌𝑌 ∥∗= ∑  𝑚𝑚𝑚𝑚=1 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(L) is the kernel paradigm of matrix 
Y, 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌)   is the ith singular value, and ∥. ∥𝐸𝐸𝐸𝐸 is the E-
parameter. In the image denoising task, Y and X represent 
the denoised image matrix and the noise image matrix, 
respectively. It has been proved that the NuclearNorm 
Proximal (NNP) problem can be solved by taking a soft 
thresholding operation on the singular values to obtain a 
closed-loop solution: 

𝑌𝑌𝑌𝑌� = 𝑈𝑈𝑈𝑈𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏[Σ]𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇, (2) 
where Y= 𝑈𝑈𝑈𝑈Σ𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇 is the singular value decomposition of the 

matrix Y,Σ = diag({𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚}1≤𝑚𝑚𝑚𝑚≤𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚))，𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏[Σ]𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = sgn(𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚) ⋅

max(|𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚|− 𝜏𝜏𝜏𝜏, 0)  is a parameter-based soft thresholding 
operator, where the degree of sparsity is controlled. In order 
to minimize the rank of the matrix, minimizing all singular 
values simultaneously and equally is a major limitation of 
the method, and does not take into account the physical 
significance of the singular values themselves, i.e., the 
image information is essentially retained in the larger 
singular values. In order to improve the flexibility of NNM, 
the Weighted Kernel Paradigm Minimization (WNNM) [5] 
method is proposed. The weighted kernel paradigm of 
matrix Y is defined as: 

||𝑌𝑌𝑌𝑌||𝑤𝑤𝑤𝑤,∗= Ʃ𝑚𝑚𝑚𝑚=1𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌), (3) 
where 𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚 is the non-negative weighting assigned to 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌). 
The weighted kernel paradigm minimization model is as 
follows： 

𝑌𝑌𝑌𝑌� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚||𝑌𝑌𝑌𝑌 −
𝑌𝑌𝑌𝑌||𝐸𝐸𝐸𝐸2

2
+ 𝜏𝜏𝜏𝜏�|Y|�

𝑊𝑊𝑊𝑊,∗
. (4) 

Compared with NNM, weighted kernel-paradigm 
minimization [14, 16] greatly improves the flexibility of the 
kernel paradigm, which makes the low-rank matrix recovery 
more accurate. Therefore, the weighted kernel-paradigm 
minimization model achieves better denoising performance 
in the image denoising task. The weighted kernel-paradigm 
minimization model performs a weighted soft-thresholding 
operation on the singular values of the optimal solution 
obtained is Y = 𝑈𝑈𝑈𝑈𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏𝑤𝑤𝑤𝑤[Σ]𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇 , where 𝑆𝑆𝑆𝑆𝜏𝜏𝜏𝜏𝑤𝑤𝑤𝑤[Σ] = sgn(𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚) ⋅

max(|𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚|− 𝜏𝜏𝜏𝜏𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚 , 0) is the weighted soft threshold operator 
[7, 13]. 
 

2. Image Denoising Algorithm 
2.1 Adaptive Weighted Low-rank Matrix 
Recovery Models 
Weighted kernel-paradigm minimization models have been 
widely used in recent years due to their excellent 
performance; however, the weights in such methods depend 
on a regularization parameter chosen empirically and are 
correlated with the rank of the low-rank matrix, leading to 
the need to adjust the parameter iteratively in different tasks. 
In order to solve this problem, this paper proposes an 
adaptive weighting model that can adaptively weight the low 
rank matrix while passing through the observation data itself, 
and can accurately and efficiently recover the low rank 
matrix [17]. 

As mentioned earlier, the rank of the low-rank matrix 
is a very important parameter in the problem of recovering 
low-rank matrices. In some scenarios, this parameter is 
known, but in the vast majority of scenarios, it is unknown. 
In order to solve the problem that the rank of the low-rank 
matrix is unknown, this paper introduces the idea of 
Gerschgorin disk estimation to estimate the rank of the low-
rank matrix. The signal N received by a sensor array in a 
noisy environment can be similarly expressed as the sum of 
the sparse noise signal matrix S [9, 10] and the low-rank 
source signal matrix Y [15]. The covariance matrix NR of 
matrix N of rank r can be defined as: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇. (5) 
The eigenvalue decomposition of 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 yields： 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = 𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁Ʃ𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁
𝐻𝐻𝐻𝐻 , (6) 

where 𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅N = [𝑢𝑢𝑢𝑢1,𝑢𝑢𝑢𝑢2,⋯ ,𝑢𝑢𝑢𝑢𝑁𝑁𝑁𝑁] , is a matrix consisting of 
eigenvectors and Σ𝑅𝑅𝑅𝑅N = diag(𝜆𝜆𝜆𝜆1,𝜆𝜆𝜆𝜆2,⋯ , 𝜆𝜆𝜆𝜆𝑁𝑁𝑁𝑁)  is a diagonal 
array consisting of eigenvalues. In a noise-free environment 
rank 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 is r, but in a real environment due to noise effects, 
rank 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 is n (n>> r). To accurately estimate the rank r of the 
low-rank matrix, Gerschgorin disk theory is introduced. 
First, the covariance matrix is divided: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = �
𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝐻𝐻𝐻𝐻 𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

�. (7) 

𝑅𝑅𝑅𝑅N1 ∈ ℝ(𝑚𝑚𝑚𝑚−1)×(𝑚𝑚𝑚𝑚−1) in the above equation is obtained by 
deleting the last row and the last column of 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁. The 
eigenvalue decomposition of matrix 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 can be derived: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 = 𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁1Ʃ1𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁1𝐻𝐻𝐻𝐻  (8) 
𝑈𝑈𝑈𝑈N1 = [𝑞𝑞𝑞𝑞1′ ,𝑞𝑞𝑞𝑞2′ ,⋯ ,𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚−1′ ] is the matrix 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 eigenvector 

matrix and 𝚺𝚺𝚺𝚺1 = �𝜆𝜆𝜆𝜆
¯
1
′ , 𝜆𝜆𝜆𝜆2′ ,⋯ , 𝜆𝜆𝜆𝜆𝑚𝑚𝑚𝑚−1′ � is the matrix𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 

, (2)

where 

approximated instead of rank minimization by nuclear norm 
minimization (NNM) [1] for low-rank matrix recovery. 
Kernel-paradigm minimization is widely used in low-rank 
matrix recovery algorithms. To summarize, low-rank matrix 
recovery is a method to obtain the original matrix by 
identifying and recovering the corrupted matrix elements. 
This is able to be achieved by low-rank matrix factorization 
or rank minimization, of which kernel-paradigm 
minimization is a commonly used method. The approximate 
solution problem of NNM can be expressed as: 

𝑌𝑌𝑌𝑌� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚||𝑋𝑋𝑋𝑋 − 𝑌𝑌𝑌𝑌||𝐸𝐸𝐸𝐸2 2⁄ + 𝜏𝜏𝜏𝜏||𝑌𝑌𝑌𝑌||∗, (1) 
where ∥ 𝑌𝑌𝑌𝑌 ∥∗= ∑  𝑚𝑚𝑚𝑚=1 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(L) is the kernel paradigm of matrix 
Y, 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌)   is the ith singular value, and ∥. ∥𝐸𝐸𝐸𝐸 is the E-
parameter. In the image denoising task, Y and X represent 
the denoised image matrix and the noise image matrix, 
respectively. It has been proved that the NuclearNorm 
Proximal (NNP) problem can be solved by taking a soft 
thresholding operation on the singular values to obtain a 
closed-loop solution: 

𝑌𝑌𝑌𝑌� = 𝑈𝑈𝑈𝑈𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏[Σ]𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇, (2) 
where Y= 𝑈𝑈𝑈𝑈Σ𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇 is the singular value decomposition of the 

matrix Y,Σ = diag({𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚}1≤𝑚𝑚𝑚𝑚≤𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚))，𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏[Σ]𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = sgn(𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚) ⋅

max(|𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚|− 𝜏𝜏𝜏𝜏, 0)  is a parameter-based soft thresholding 
operator, where the degree of sparsity is controlled. In order 
to minimize the rank of the matrix, minimizing all singular 
values simultaneously and equally is a major limitation of 
the method, and does not take into account the physical 
significance of the singular values themselves, i.e., the 
image information is essentially retained in the larger 
singular values. In order to improve the flexibility of NNM, 
the Weighted Kernel Paradigm Minimization (WNNM) [5] 
method is proposed. The weighted kernel paradigm of 
matrix Y is defined as: 

||𝑌𝑌𝑌𝑌||𝑤𝑤𝑤𝑤,∗= Ʃ𝑚𝑚𝑚𝑚=1𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌), (3) 
where 𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚 is the non-negative weighting assigned to 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌). 
The weighted kernel paradigm minimization model is as 
follows： 

𝑌𝑌𝑌𝑌� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚||𝑌𝑌𝑌𝑌 −
𝑌𝑌𝑌𝑌||𝐸𝐸𝐸𝐸2
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𝑊𝑊𝑊𝑊,∗
. (4) 

Compared with NNM, weighted kernel-paradigm 
minimization [14, 16] greatly improves the flexibility of the 
kernel paradigm, which makes the low-rank matrix recovery 
more accurate. Therefore, the weighted kernel-paradigm 
minimization model achieves better denoising performance 
in the image denoising task. The weighted kernel-paradigm 
minimization model performs a weighted soft-thresholding 
operation on the singular values of the optimal solution 
obtained is Y = 𝑈𝑈𝑈𝑈𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏𝑤𝑤𝑤𝑤[Σ]𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇 , where 𝑆𝑆𝑆𝑆𝜏𝜏𝜏𝜏𝑤𝑤𝑤𝑤[Σ] = sgn(𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚) ⋅

max(|𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚|− 𝜏𝜏𝜏𝜏𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚 , 0) is the weighted soft threshold operator 
[7, 13]. 
 

2. Image Denoising Algorithm 
2.1 Adaptive Weighted Low-rank Matrix 
Recovery Models 
Weighted kernel-paradigm minimization models have been 
widely used in recent years due to their excellent 
performance; however, the weights in such methods depend 
on a regularization parameter chosen empirically and are 
correlated with the rank of the low-rank matrix, leading to 
the need to adjust the parameter iteratively in different tasks. 
In order to solve this problem, this paper proposes an 
adaptive weighting model that can adaptively weight the low 
rank matrix while passing through the observation data itself, 
and can accurately and efficiently recover the low rank 
matrix [17]. 

As mentioned earlier, the rank of the low-rank matrix 
is a very important parameter in the problem of recovering 
low-rank matrices. In some scenarios, this parameter is 
known, but in the vast majority of scenarios, it is unknown. 
In order to solve the problem that the rank of the low-rank 
matrix is unknown, this paper introduces the idea of 
Gerschgorin disk estimation to estimate the rank of the low-
rank matrix. The signal N received by a sensor array in a 
noisy environment can be similarly expressed as the sum of 
the sparse noise signal matrix S [9, 10] and the low-rank 
source signal matrix Y [15]. The covariance matrix NR of 
matrix N of rank r can be defined as: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇. (5) 
The eigenvalue decomposition of 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 yields： 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = 𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁Ʃ𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁
𝐻𝐻𝐻𝐻 , (6) 

where 𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅N = [𝑢𝑢𝑢𝑢1,𝑢𝑢𝑢𝑢2,⋯ ,𝑢𝑢𝑢𝑢𝑁𝑁𝑁𝑁] , is a matrix consisting of 
eigenvectors and Σ𝑅𝑅𝑅𝑅N = diag(𝜆𝜆𝜆𝜆1,𝜆𝜆𝜆𝜆2,⋯ , 𝜆𝜆𝜆𝜆𝑁𝑁𝑁𝑁)  is a diagonal 
array consisting of eigenvalues. In a noise-free environment 
rank 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 is r, but in a real environment due to noise effects, 
rank 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 is n (n>> r). To accurately estimate the rank r of the 
low-rank matrix, Gerschgorin disk theory is introduced. 
First, the covariance matrix is divided: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = �
𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝐻𝐻𝐻𝐻 𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

�. (7) 

𝑅𝑅𝑅𝑅N1 ∈ ℝ(𝑚𝑚𝑚𝑚−1)×(𝑚𝑚𝑚𝑚−1) in the above equation is obtained by 
deleting the last row and the last column of 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁. The 
eigenvalue decomposition of matrix 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 can be derived: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 = 𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁1Ʃ1𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁1𝐻𝐻𝐻𝐻  (8) 
𝑈𝑈𝑈𝑈N1 = [𝑞𝑞𝑞𝑞1′ ,𝑞𝑞𝑞𝑞2′ ,⋯ ,𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚−1′ ] is the matrix 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 eigenvector 

matrix and 𝚺𝚺𝚺𝚺1 = �𝜆𝜆𝜆𝜆
¯
1
′ , 𝜆𝜆𝜆𝜆2′ ,⋯ , 𝜆𝜆𝜆𝜆𝑚𝑚𝑚𝑚−1′ � is the matrix𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 

 is the singular value decompo-
sition of the matrix Y, is a parameter-based soft 
thresholding operator, where the degree of spar-
sity is controlled. In order to minimize the rank of 
the matrix, minimizing all singular values simul-
taneously and equally is a major limitation of the 
method, and does not take into account the physi-
cal significance of the singular values themselves, 
i.e., the image information is essentially retained 
in the larger singular values. In order to improve 
the flexibility of NNM, the Weighted Kernel Par-
adigm Minimization (WNNM) [5] method is pro-
posed. The weighted kernel paradigm of matrix Y 
is defined as:

approximated instead of rank minimization by nuclear norm 
minimization (NNM) [1] for low-rank matrix recovery. 
Kernel-paradigm minimization is widely used in low-rank 
matrix recovery algorithms. To summarize, low-rank matrix 
recovery is a method to obtain the original matrix by 
identifying and recovering the corrupted matrix elements. 
This is able to be achieved by low-rank matrix factorization 
or rank minimization, of which kernel-paradigm 
minimization is a commonly used method. The approximate 
solution problem of NNM can be expressed as: 

𝑌𝑌𝑌𝑌� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚||𝑋𝑋𝑋𝑋 − 𝑌𝑌𝑌𝑌||𝐸𝐸𝐸𝐸2 2⁄ + 𝜏𝜏𝜏𝜏||𝑌𝑌𝑌𝑌||∗, (1) 
where ∥ 𝑌𝑌𝑌𝑌 ∥∗= ∑  𝑚𝑚𝑚𝑚=1 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(L) is the kernel paradigm of matrix 
Y, 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌)   is the ith singular value, and ∥. ∥𝐸𝐸𝐸𝐸 is the E-
parameter. In the image denoising task, Y and X represent 
the denoised image matrix and the noise image matrix, 
respectively. It has been proved that the NuclearNorm 
Proximal (NNP) problem can be solved by taking a soft 
thresholding operation on the singular values to obtain a 
closed-loop solution: 

𝑌𝑌𝑌𝑌� = 𝑈𝑈𝑈𝑈𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏[Σ]𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇, (2) 
where Y= 𝑈𝑈𝑈𝑈Σ𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇 is the singular value decomposition of the 

matrix Y,Σ = diag({𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚}1≤𝑚𝑚𝑚𝑚≤𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚))，𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏[Σ]𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = sgn(𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚) ⋅

max(|𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚|− 𝜏𝜏𝜏𝜏, 0)  is a parameter-based soft thresholding 
operator, where the degree of sparsity is controlled. In order 
to minimize the rank of the matrix, minimizing all singular 
values simultaneously and equally is a major limitation of 
the method, and does not take into account the physical 
significance of the singular values themselves, i.e., the 
image information is essentially retained in the larger 
singular values. In order to improve the flexibility of NNM, 
the Weighted Kernel Paradigm Minimization (WNNM) [5] 
method is proposed. The weighted kernel paradigm of 
matrix Y is defined as: 

||𝑌𝑌𝑌𝑌||𝑤𝑤𝑤𝑤,∗= Ʃ𝑚𝑚𝑚𝑚=1𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌), (3) 
where 𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚 is the non-negative weighting assigned to 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌). 
The weighted kernel paradigm minimization model is as 
follows： 

𝑌𝑌𝑌𝑌� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚||𝑌𝑌𝑌𝑌 −
𝑌𝑌𝑌𝑌||𝐸𝐸𝐸𝐸2

2
+ 𝜏𝜏𝜏𝜏�|Y|�

𝑊𝑊𝑊𝑊,∗
. (4) 

Compared with NNM, weighted kernel-paradigm 
minimization [14, 16] greatly improves the flexibility of the 
kernel paradigm, which makes the low-rank matrix recovery 
more accurate. Therefore, the weighted kernel-paradigm 
minimization model achieves better denoising performance 
in the image denoising task. The weighted kernel-paradigm 
minimization model performs a weighted soft-thresholding 
operation on the singular values of the optimal solution 
obtained is Y = 𝑈𝑈𝑈𝑈𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏𝑤𝑤𝑤𝑤[Σ]𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇 , where 𝑆𝑆𝑆𝑆𝜏𝜏𝜏𝜏𝑤𝑤𝑤𝑤[Σ] = sgn(𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚) ⋅

max(|𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚|− 𝜏𝜏𝜏𝜏𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚 , 0) is the weighted soft threshold operator 
[7, 13]. 
 

2. Image Denoising Algorithm 
2.1 Adaptive Weighted Low-rank Matrix 
Recovery Models 
Weighted kernel-paradigm minimization models have been 
widely used in recent years due to their excellent 
performance; however, the weights in such methods depend 
on a regularization parameter chosen empirically and are 
correlated with the rank of the low-rank matrix, leading to 
the need to adjust the parameter iteratively in different tasks. 
In order to solve this problem, this paper proposes an 
adaptive weighting model that can adaptively weight the low 
rank matrix while passing through the observation data itself, 
and can accurately and efficiently recover the low rank 
matrix [17]. 

As mentioned earlier, the rank of the low-rank matrix 
is a very important parameter in the problem of recovering 
low-rank matrices. In some scenarios, this parameter is 
known, but in the vast majority of scenarios, it is unknown. 
In order to solve the problem that the rank of the low-rank 
matrix is unknown, this paper introduces the idea of 
Gerschgorin disk estimation to estimate the rank of the low-
rank matrix. The signal N received by a sensor array in a 
noisy environment can be similarly expressed as the sum of 
the sparse noise signal matrix S [9, 10] and the low-rank 
source signal matrix Y [15]. The covariance matrix NR of 
matrix N of rank r can be defined as: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇. (5) 
The eigenvalue decomposition of 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 yields： 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = 𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁Ʃ𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁
𝐻𝐻𝐻𝐻 , (6) 

where 𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅N = [𝑢𝑢𝑢𝑢1,𝑢𝑢𝑢𝑢2,⋯ ,𝑢𝑢𝑢𝑢𝑁𝑁𝑁𝑁] , is a matrix consisting of 
eigenvectors and Σ𝑅𝑅𝑅𝑅N = diag(𝜆𝜆𝜆𝜆1,𝜆𝜆𝜆𝜆2,⋯ , 𝜆𝜆𝜆𝜆𝑁𝑁𝑁𝑁)  is a diagonal 
array consisting of eigenvalues. In a noise-free environment 
rank 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 is r, but in a real environment due to noise effects, 
rank 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 is n (n>> r). To accurately estimate the rank r of the 
low-rank matrix, Gerschgorin disk theory is introduced. 
First, the covariance matrix is divided: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = �
𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝐻𝐻𝐻𝐻 𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

�. (7) 

𝑅𝑅𝑅𝑅N1 ∈ ℝ(𝑚𝑚𝑚𝑚−1)×(𝑚𝑚𝑚𝑚−1) in the above equation is obtained by 
deleting the last row and the last column of 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁. The 
eigenvalue decomposition of matrix 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 can be derived: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 = 𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁1Ʃ1𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁1𝐻𝐻𝐻𝐻  (8) 
𝑈𝑈𝑈𝑈N1 = [𝑞𝑞𝑞𝑞1′ ,𝑞𝑞𝑞𝑞2′ ,⋯ ,𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚−1′ ] is the matrix 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 eigenvector 

matrix and 𝚺𝚺𝚺𝚺1 = �𝜆𝜆𝜆𝜆
¯
1
′ , 𝜆𝜆𝜆𝜆2′ ,⋯ , 𝜆𝜆𝜆𝜆𝑚𝑚𝑚𝑚−1′ � is the matrix𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 

, (3)

where ωi is the non-negative weighting assigned to  
σ(Y). The weighted kernel paradigm minimization 
model is as follows:

approximated instead of rank minimization by nuclear norm 
minimization (NNM) [1] for low-rank matrix recovery. 
Kernel-paradigm minimization is widely used in low-rank 
matrix recovery algorithms. To summarize, low-rank matrix 
recovery is a method to obtain the original matrix by 
identifying and recovering the corrupted matrix elements. 
This is able to be achieved by low-rank matrix factorization 
or rank minimization, of which kernel-paradigm 
minimization is a commonly used method. The approximate 
solution problem of NNM can be expressed as: 

𝑌𝑌𝑌𝑌� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚||𝑋𝑋𝑋𝑋 − 𝑌𝑌𝑌𝑌||𝐸𝐸𝐸𝐸2 2⁄ + 𝜏𝜏𝜏𝜏||𝑌𝑌𝑌𝑌||∗, (1) 
where ∥ 𝑌𝑌𝑌𝑌 ∥∗= ∑  𝑚𝑚𝑚𝑚=1 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(L) is the kernel paradigm of matrix 
Y, 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌)   is the ith singular value, and ∥. ∥𝐸𝐸𝐸𝐸 is the E-
parameter. In the image denoising task, Y and X represent 
the denoised image matrix and the noise image matrix, 
respectively. It has been proved that the NuclearNorm 
Proximal (NNP) problem can be solved by taking a soft 
thresholding operation on the singular values to obtain a 
closed-loop solution: 

𝑌𝑌𝑌𝑌� = 𝑈𝑈𝑈𝑈𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏[Σ]𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇, (2) 
where Y= 𝑈𝑈𝑈𝑈Σ𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇 is the singular value decomposition of the 

matrix Y,Σ = diag({𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚}1≤𝑚𝑚𝑚𝑚≤𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚))，𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏[Σ]𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = sgn(𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚) ⋅

max(|𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚|− 𝜏𝜏𝜏𝜏, 0)  is a parameter-based soft thresholding 
operator, where the degree of sparsity is controlled. In order 
to minimize the rank of the matrix, minimizing all singular 
values simultaneously and equally is a major limitation of 
the method, and does not take into account the physical 
significance of the singular values themselves, i.e., the 
image information is essentially retained in the larger 
singular values. In order to improve the flexibility of NNM, 
the Weighted Kernel Paradigm Minimization (WNNM) [5] 
method is proposed. The weighted kernel paradigm of 
matrix Y is defined as: 

||𝑌𝑌𝑌𝑌||𝑤𝑤𝑤𝑤,∗= Ʃ𝑚𝑚𝑚𝑚=1𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌), (3) 
where 𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚 is the non-negative weighting assigned to 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌). 
The weighted kernel paradigm minimization model is as 
follows： 

𝑌𝑌𝑌𝑌� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚||𝑌𝑌𝑌𝑌 −
𝑌𝑌𝑌𝑌||𝐸𝐸𝐸𝐸2

2
+ 𝜏𝜏𝜏𝜏�|Y|�

𝑊𝑊𝑊𝑊,∗
. (4) 

Compared with NNM, weighted kernel-paradigm 
minimization [14, 16] greatly improves the flexibility of the 
kernel paradigm, which makes the low-rank matrix recovery 
more accurate. Therefore, the weighted kernel-paradigm 
minimization model achieves better denoising performance 
in the image denoising task. The weighted kernel-paradigm 
minimization model performs a weighted soft-thresholding 
operation on the singular values of the optimal solution 
obtained is Y = 𝑈𝑈𝑈𝑈𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏𝑤𝑤𝑤𝑤[Σ]𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇 , where 𝑆𝑆𝑆𝑆𝜏𝜏𝜏𝜏𝑤𝑤𝑤𝑤[Σ] = sgn(𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚) ⋅

max(|𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚|− 𝜏𝜏𝜏𝜏𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚 , 0) is the weighted soft threshold operator 
[7, 13]. 
 

2. Image Denoising Algorithm 
2.1 Adaptive Weighted Low-rank Matrix 
Recovery Models 
Weighted kernel-paradigm minimization models have been 
widely used in recent years due to their excellent 
performance; however, the weights in such methods depend 
on a regularization parameter chosen empirically and are 
correlated with the rank of the low-rank matrix, leading to 
the need to adjust the parameter iteratively in different tasks. 
In order to solve this problem, this paper proposes an 
adaptive weighting model that can adaptively weight the low 
rank matrix while passing through the observation data itself, 
and can accurately and efficiently recover the low rank 
matrix [17]. 

As mentioned earlier, the rank of the low-rank matrix 
is a very important parameter in the problem of recovering 
low-rank matrices. In some scenarios, this parameter is 
known, but in the vast majority of scenarios, it is unknown. 
In order to solve the problem that the rank of the low-rank 
matrix is unknown, this paper introduces the idea of 
Gerschgorin disk estimation to estimate the rank of the low-
rank matrix. The signal N received by a sensor array in a 
noisy environment can be similarly expressed as the sum of 
the sparse noise signal matrix S [9, 10] and the low-rank 
source signal matrix Y [15]. The covariance matrix NR of 
matrix N of rank r can be defined as: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇. (5) 
The eigenvalue decomposition of 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 yields： 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = 𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁Ʃ𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁
𝐻𝐻𝐻𝐻 , (6) 

where 𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅N = [𝑢𝑢𝑢𝑢1,𝑢𝑢𝑢𝑢2,⋯ ,𝑢𝑢𝑢𝑢𝑁𝑁𝑁𝑁] , is a matrix consisting of 
eigenvectors and Σ𝑅𝑅𝑅𝑅N = diag(𝜆𝜆𝜆𝜆1,𝜆𝜆𝜆𝜆2,⋯ , 𝜆𝜆𝜆𝜆𝑁𝑁𝑁𝑁)  is a diagonal 
array consisting of eigenvalues. In a noise-free environment 
rank 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 is r, but in a real environment due to noise effects, 
rank 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 is n (n>> r). To accurately estimate the rank r of the 
low-rank matrix, Gerschgorin disk theory is introduced. 
First, the covariance matrix is divided: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = �
𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝐻𝐻𝐻𝐻 𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

�. (7) 

𝑅𝑅𝑅𝑅N1 ∈ ℝ(𝑚𝑚𝑚𝑚−1)×(𝑚𝑚𝑚𝑚−1) in the above equation is obtained by 
deleting the last row and the last column of 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁. The 
eigenvalue decomposition of matrix 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 can be derived: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 = 𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁1Ʃ1𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁1𝐻𝐻𝐻𝐻  (8) 
𝑈𝑈𝑈𝑈N1 = [𝑞𝑞𝑞𝑞1′ ,𝑞𝑞𝑞𝑞2′ ,⋯ ,𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚−1′ ] is the matrix 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 eigenvector 

matrix and 𝚺𝚺𝚺𝚺1 = �𝜆𝜆𝜆𝜆
¯
1
′ , 𝜆𝜆𝜆𝜆2′ ,⋯ , 𝜆𝜆𝜆𝜆𝑚𝑚𝑚𝑚−1′ � is the matrix𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 

(4)

Compared with NNM, weighted kernel-paradigm 
minimization [14, 16] greatly improves the flexibil-
ity of the kernel paradigm, which makes the low-
rank matrix recovery more accurate. Therefore, 
the weighted kernel-paradigm minimization mod-
el achieves better denoising performance in the 
image denoising task. The weighted kernel-par-
adigm minimization model performs a weighted 
soft-thresholding operation on the singular values 
of the optimal solution obtained is 

approximated instead of rank minimization by nuclear norm 
minimization (NNM) [1] for low-rank matrix recovery. 
Kernel-paradigm minimization is widely used in low-rank 
matrix recovery algorithms. To summarize, low-rank matrix 
recovery is a method to obtain the original matrix by 
identifying and recovering the corrupted matrix elements. 
This is able to be achieved by low-rank matrix factorization 
or rank minimization, of which kernel-paradigm 
minimization is a commonly used method. The approximate 
solution problem of NNM can be expressed as: 

𝑌𝑌𝑌𝑌� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚||𝑋𝑋𝑋𝑋 − 𝑌𝑌𝑌𝑌||𝐸𝐸𝐸𝐸2 2⁄ + 𝜏𝜏𝜏𝜏||𝑌𝑌𝑌𝑌||∗, (1) 
where ∥ 𝑌𝑌𝑌𝑌 ∥∗= ∑  𝑚𝑚𝑚𝑚=1 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(L) is the kernel paradigm of matrix 
Y, 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌)   is the ith singular value, and ∥. ∥𝐸𝐸𝐸𝐸 is the E-
parameter. In the image denoising task, Y and X represent 
the denoised image matrix and the noise image matrix, 
respectively. It has been proved that the NuclearNorm 
Proximal (NNP) problem can be solved by taking a soft 
thresholding operation on the singular values to obtain a 
closed-loop solution: 

𝑌𝑌𝑌𝑌� = 𝑈𝑈𝑈𝑈𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏[Σ]𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇, (2) 
where Y= 𝑈𝑈𝑈𝑈Σ𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇 is the singular value decomposition of the 

matrix Y,Σ = diag({𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚}1≤𝑚𝑚𝑚𝑚≤𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚))，𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏[Σ]𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = sgn(𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚) ⋅

max(|𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚|− 𝜏𝜏𝜏𝜏, 0)  is a parameter-based soft thresholding 
operator, where the degree of sparsity is controlled. In order 
to minimize the rank of the matrix, minimizing all singular 
values simultaneously and equally is a major limitation of 
the method, and does not take into account the physical 
significance of the singular values themselves, i.e., the 
image information is essentially retained in the larger 
singular values. In order to improve the flexibility of NNM, 
the Weighted Kernel Paradigm Minimization (WNNM) [5] 
method is proposed. The weighted kernel paradigm of 
matrix Y is defined as: 

||𝑌𝑌𝑌𝑌||𝑤𝑤𝑤𝑤,∗= Ʃ𝑚𝑚𝑚𝑚=1𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌), (3) 
where 𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚 is the non-negative weighting assigned to 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌). 
The weighted kernel paradigm minimization model is as 
follows： 

𝑌𝑌𝑌𝑌� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚||𝑌𝑌𝑌𝑌 −
𝑌𝑌𝑌𝑌||𝐸𝐸𝐸𝐸2
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+ 𝜏𝜏𝜏𝜏�|Y|�

𝑊𝑊𝑊𝑊,∗
. (4) 

Compared with NNM, weighted kernel-paradigm 
minimization [14, 16] greatly improves the flexibility of the 
kernel paradigm, which makes the low-rank matrix recovery 
more accurate. Therefore, the weighted kernel-paradigm 
minimization model achieves better denoising performance 
in the image denoising task. The weighted kernel-paradigm 
minimization model performs a weighted soft-thresholding 
operation on the singular values of the optimal solution 
obtained is Y = 𝑈𝑈𝑈𝑈𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏𝑤𝑤𝑤𝑤[Σ]𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇 , where 𝑆𝑆𝑆𝑆𝜏𝜏𝜏𝜏𝑤𝑤𝑤𝑤[Σ] = sgn(𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚) ⋅

max(|𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚|− 𝜏𝜏𝜏𝜏𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚 , 0) is the weighted soft threshold operator 
[7, 13]. 
 

2. Image Denoising Algorithm 
2.1 Adaptive Weighted Low-rank Matrix 
Recovery Models 
Weighted kernel-paradigm minimization models have been 
widely used in recent years due to their excellent 
performance; however, the weights in such methods depend 
on a regularization parameter chosen empirically and are 
correlated with the rank of the low-rank matrix, leading to 
the need to adjust the parameter iteratively in different tasks. 
In order to solve this problem, this paper proposes an 
adaptive weighting model that can adaptively weight the low 
rank matrix while passing through the observation data itself, 
and can accurately and efficiently recover the low rank 
matrix [17]. 

As mentioned earlier, the rank of the low-rank matrix 
is a very important parameter in the problem of recovering 
low-rank matrices. In some scenarios, this parameter is 
known, but in the vast majority of scenarios, it is unknown. 
In order to solve the problem that the rank of the low-rank 
matrix is unknown, this paper introduces the idea of 
Gerschgorin disk estimation to estimate the rank of the low-
rank matrix. The signal N received by a sensor array in a 
noisy environment can be similarly expressed as the sum of 
the sparse noise signal matrix S [9, 10] and the low-rank 
source signal matrix Y [15]. The covariance matrix NR of 
matrix N of rank r can be defined as: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇. (5) 
The eigenvalue decomposition of 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 yields： 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = 𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁Ʃ𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁
𝐻𝐻𝐻𝐻 , (6) 

where 𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅N = [𝑢𝑢𝑢𝑢1,𝑢𝑢𝑢𝑢2,⋯ ,𝑢𝑢𝑢𝑢𝑁𝑁𝑁𝑁] , is a matrix consisting of 
eigenvectors and Σ𝑅𝑅𝑅𝑅N = diag(𝜆𝜆𝜆𝜆1,𝜆𝜆𝜆𝜆2,⋯ , 𝜆𝜆𝜆𝜆𝑁𝑁𝑁𝑁)  is a diagonal 
array consisting of eigenvalues. In a noise-free environment 
rank 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 is r, but in a real environment due to noise effects, 
rank 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 is n (n>> r). To accurately estimate the rank r of the 
low-rank matrix, Gerschgorin disk theory is introduced. 
First, the covariance matrix is divided: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = �
𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝐻𝐻𝐻𝐻 𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

�. (7) 

𝑅𝑅𝑅𝑅N1 ∈ ℝ(𝑚𝑚𝑚𝑚−1)×(𝑚𝑚𝑚𝑚−1) in the above equation is obtained by 
deleting the last row and the last column of 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁. The 
eigenvalue decomposition of matrix 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 can be derived: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 = 𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁1Ʃ1𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁1𝐻𝐻𝐻𝐻  (8) 
𝑈𝑈𝑈𝑈N1 = [𝑞𝑞𝑞𝑞1′ ,𝑞𝑞𝑞𝑞2′ ,⋯ ,𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚−1′ ] is the matrix 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 eigenvector 

matrix and 𝚺𝚺𝚺𝚺1 = �𝜆𝜆𝜆𝜆
¯
1
′ , 𝜆𝜆𝜆𝜆2′ ,⋯ , 𝜆𝜆𝜆𝜆𝑚𝑚𝑚𝑚−1′ � is the matrix𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 

, 
where 

approximated instead of rank minimization by nuclear norm 
minimization (NNM) [1] for low-rank matrix recovery. 
Kernel-paradigm minimization is widely used in low-rank 
matrix recovery algorithms. To summarize, low-rank matrix 
recovery is a method to obtain the original matrix by 
identifying and recovering the corrupted matrix elements. 
This is able to be achieved by low-rank matrix factorization 
or rank minimization, of which kernel-paradigm 
minimization is a commonly used method. The approximate 
solution problem of NNM can be expressed as: 

𝑌𝑌𝑌𝑌� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚||𝑋𝑋𝑋𝑋 − 𝑌𝑌𝑌𝑌||𝐸𝐸𝐸𝐸2 2⁄ + 𝜏𝜏𝜏𝜏||𝑌𝑌𝑌𝑌||∗, (1) 
where ∥ 𝑌𝑌𝑌𝑌 ∥∗= ∑  𝑚𝑚𝑚𝑚=1 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(L) is the kernel paradigm of matrix 
Y, 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌)   is the ith singular value, and ∥. ∥𝐸𝐸𝐸𝐸 is the E-
parameter. In the image denoising task, Y and X represent 
the denoised image matrix and the noise image matrix, 
respectively. It has been proved that the NuclearNorm 
Proximal (NNP) problem can be solved by taking a soft 
thresholding operation on the singular values to obtain a 
closed-loop solution: 

𝑌𝑌𝑌𝑌� = 𝑈𝑈𝑈𝑈𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏[Σ]𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇, (2) 
where Y= 𝑈𝑈𝑈𝑈Σ𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇 is the singular value decomposition of the 

matrix Y,Σ = diag({𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚}1≤𝑚𝑚𝑚𝑚≤𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚))，𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏[Σ]𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = sgn(𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚) ⋅

max(|𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚|− 𝜏𝜏𝜏𝜏, 0)  is a parameter-based soft thresholding 
operator, where the degree of sparsity is controlled. In order 
to minimize the rank of the matrix, minimizing all singular 
values simultaneously and equally is a major limitation of 
the method, and does not take into account the physical 
significance of the singular values themselves, i.e., the 
image information is essentially retained in the larger 
singular values. In order to improve the flexibility of NNM, 
the Weighted Kernel Paradigm Minimization (WNNM) [5] 
method is proposed. The weighted kernel paradigm of 
matrix Y is defined as: 

||𝑌𝑌𝑌𝑌||𝑤𝑤𝑤𝑤,∗= Ʃ𝑚𝑚𝑚𝑚=1𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌), (3) 
where 𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚 is the non-negative weighting assigned to 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌). 
The weighted kernel paradigm minimization model is as 
follows： 

𝑌𝑌𝑌𝑌� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚||𝑌𝑌𝑌𝑌 −
𝑌𝑌𝑌𝑌||𝐸𝐸𝐸𝐸2

2
+ 𝜏𝜏𝜏𝜏�|Y|�

𝑊𝑊𝑊𝑊,∗
. (4) 

Compared with NNM, weighted kernel-paradigm 
minimization [14, 16] greatly improves the flexibility of the 
kernel paradigm, which makes the low-rank matrix recovery 
more accurate. Therefore, the weighted kernel-paradigm 
minimization model achieves better denoising performance 
in the image denoising task. The weighted kernel-paradigm 
minimization model performs a weighted soft-thresholding 
operation on the singular values of the optimal solution 
obtained is Y = 𝑈𝑈𝑈𝑈𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏𝑤𝑤𝑤𝑤[Σ]𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇 , where 𝑆𝑆𝑆𝑆𝜏𝜏𝜏𝜏𝑤𝑤𝑤𝑤[Σ] = sgn(𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚) ⋅

max(|𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚|− 𝜏𝜏𝜏𝜏𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚 , 0) is the weighted soft threshold operator 
[7, 13]. 
 

2. Image Denoising Algorithm 
2.1 Adaptive Weighted Low-rank Matrix 
Recovery Models 
Weighted kernel-paradigm minimization models have been 
widely used in recent years due to their excellent 
performance; however, the weights in such methods depend 
on a regularization parameter chosen empirically and are 
correlated with the rank of the low-rank matrix, leading to 
the need to adjust the parameter iteratively in different tasks. 
In order to solve this problem, this paper proposes an 
adaptive weighting model that can adaptively weight the low 
rank matrix while passing through the observation data itself, 
and can accurately and efficiently recover the low rank 
matrix [17]. 

As mentioned earlier, the rank of the low-rank matrix 
is a very important parameter in the problem of recovering 
low-rank matrices. In some scenarios, this parameter is 
known, but in the vast majority of scenarios, it is unknown. 
In order to solve the problem that the rank of the low-rank 
matrix is unknown, this paper introduces the idea of 
Gerschgorin disk estimation to estimate the rank of the low-
rank matrix. The signal N received by a sensor array in a 
noisy environment can be similarly expressed as the sum of 
the sparse noise signal matrix S [9, 10] and the low-rank 
source signal matrix Y [15]. The covariance matrix NR of 
matrix N of rank r can be defined as: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇. (5) 
The eigenvalue decomposition of 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 yields： 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = 𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁Ʃ𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁
𝐻𝐻𝐻𝐻 , (6) 

where 𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅N = [𝑢𝑢𝑢𝑢1,𝑢𝑢𝑢𝑢2,⋯ ,𝑢𝑢𝑢𝑢𝑁𝑁𝑁𝑁] , is a matrix consisting of 
eigenvectors and Σ𝑅𝑅𝑅𝑅N = diag(𝜆𝜆𝜆𝜆1,𝜆𝜆𝜆𝜆2,⋯ , 𝜆𝜆𝜆𝜆𝑁𝑁𝑁𝑁)  is a diagonal 
array consisting of eigenvalues. In a noise-free environment 
rank 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 is r, but in a real environment due to noise effects, 
rank 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 is n (n>> r). To accurately estimate the rank r of the 
low-rank matrix, Gerschgorin disk theory is introduced. 
First, the covariance matrix is divided: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = �
𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝐻𝐻𝐻𝐻 𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

�. (7) 

𝑅𝑅𝑅𝑅N1 ∈ ℝ(𝑚𝑚𝑚𝑚−1)×(𝑚𝑚𝑚𝑚−1) in the above equation is obtained by 
deleting the last row and the last column of 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁. The 
eigenvalue decomposition of matrix 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 can be derived: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 = 𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁1Ʃ1𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁1𝐻𝐻𝐻𝐻  (8) 
𝑈𝑈𝑈𝑈N1 = [𝑞𝑞𝑞𝑞1′ ,𝑞𝑞𝑞𝑞2′ ,⋯ ,𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚−1′ ] is the matrix 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 eigenvector 

matrix and 𝚺𝚺𝚺𝚺1 = �𝜆𝜆𝜆𝜆
¯
1
′ , 𝜆𝜆𝜆𝜆2′ ,⋯ , 𝜆𝜆𝜆𝜆𝑚𝑚𝑚𝑚−1′ � is the matrix𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 

approximated instead of rank minimization by nuclear norm 
minimization (NNM) [1] for low-rank matrix recovery. 
Kernel-paradigm minimization is widely used in low-rank 
matrix recovery algorithms. To summarize, low-rank matrix 
recovery is a method to obtain the original matrix by 
identifying and recovering the corrupted matrix elements. 
This is able to be achieved by low-rank matrix factorization 
or rank minimization, of which kernel-paradigm 
minimization is a commonly used method. The approximate 
solution problem of NNM can be expressed as: 

𝑌𝑌𝑌𝑌� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚||𝑋𝑋𝑋𝑋 − 𝑌𝑌𝑌𝑌||𝐸𝐸𝐸𝐸2 2⁄ + 𝜏𝜏𝜏𝜏||𝑌𝑌𝑌𝑌||∗, (1) 
where ∥ 𝑌𝑌𝑌𝑌 ∥∗= ∑  𝑚𝑚𝑚𝑚=1 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(L) is the kernel paradigm of matrix 
Y, 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌)   is the ith singular value, and ∥. ∥𝐸𝐸𝐸𝐸 is the E-
parameter. In the image denoising task, Y and X represent 
the denoised image matrix and the noise image matrix, 
respectively. It has been proved that the NuclearNorm 
Proximal (NNP) problem can be solved by taking a soft 
thresholding operation on the singular values to obtain a 
closed-loop solution: 

𝑌𝑌𝑌𝑌� = 𝑈𝑈𝑈𝑈𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏[Σ]𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇, (2) 
where Y= 𝑈𝑈𝑈𝑈Σ𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇 is the singular value decomposition of the 

matrix Y,Σ = diag({𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚}1≤𝑚𝑚𝑚𝑚≤𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚))，𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏[Σ]𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = sgn(𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚) ⋅

max(|𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚|− 𝜏𝜏𝜏𝜏, 0)  is a parameter-based soft thresholding 
operator, where the degree of sparsity is controlled. In order 
to minimize the rank of the matrix, minimizing all singular 
values simultaneously and equally is a major limitation of 
the method, and does not take into account the physical 
significance of the singular values themselves, i.e., the 
image information is essentially retained in the larger 
singular values. In order to improve the flexibility of NNM, 
the Weighted Kernel Paradigm Minimization (WNNM) [5] 
method is proposed. The weighted kernel paradigm of 
matrix Y is defined as: 

||𝑌𝑌𝑌𝑌||𝑤𝑤𝑤𝑤,∗= Ʃ𝑚𝑚𝑚𝑚=1𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌), (3) 
where 𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚 is the non-negative weighting assigned to 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌). 
The weighted kernel paradigm minimization model is as 
follows： 

𝑌𝑌𝑌𝑌� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚||𝑌𝑌𝑌𝑌 −
𝑌𝑌𝑌𝑌||𝐸𝐸𝐸𝐸2

2
+ 𝜏𝜏𝜏𝜏�|Y|�

𝑊𝑊𝑊𝑊,∗
. (4) 

Compared with NNM, weighted kernel-paradigm 
minimization [14, 16] greatly improves the flexibility of the 
kernel paradigm, which makes the low-rank matrix recovery 
more accurate. Therefore, the weighted kernel-paradigm 
minimization model achieves better denoising performance 
in the image denoising task. The weighted kernel-paradigm 
minimization model performs a weighted soft-thresholding 
operation on the singular values of the optimal solution 
obtained is Y = 𝑈𝑈𝑈𝑈𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏𝑤𝑤𝑤𝑤[Σ]𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇 , where 𝑆𝑆𝑆𝑆𝜏𝜏𝜏𝜏𝑤𝑤𝑤𝑤[Σ] = sgn(𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚) ⋅

max(|𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚|− 𝜏𝜏𝜏𝜏𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚 , 0) is the weighted soft threshold operator 
[7, 13]. 
 

2. Image Denoising Algorithm 
2.1 Adaptive Weighted Low-rank Matrix 
Recovery Models 
Weighted kernel-paradigm minimization models have been 
widely used in recent years due to their excellent 
performance; however, the weights in such methods depend 
on a regularization parameter chosen empirically and are 
correlated with the rank of the low-rank matrix, leading to 
the need to adjust the parameter iteratively in different tasks. 
In order to solve this problem, this paper proposes an 
adaptive weighting model that can adaptively weight the low 
rank matrix while passing through the observation data itself, 
and can accurately and efficiently recover the low rank 
matrix [17]. 

As mentioned earlier, the rank of the low-rank matrix 
is a very important parameter in the problem of recovering 
low-rank matrices. In some scenarios, this parameter is 
known, but in the vast majority of scenarios, it is unknown. 
In order to solve the problem that the rank of the low-rank 
matrix is unknown, this paper introduces the idea of 
Gerschgorin disk estimation to estimate the rank of the low-
rank matrix. The signal N received by a sensor array in a 
noisy environment can be similarly expressed as the sum of 
the sparse noise signal matrix S [9, 10] and the low-rank 
source signal matrix Y [15]. The covariance matrix NR of 
matrix N of rank r can be defined as: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇. (5) 
The eigenvalue decomposition of 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 yields： 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = 𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁Ʃ𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁
𝐻𝐻𝐻𝐻 , (6) 

where 𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅N = [𝑢𝑢𝑢𝑢1,𝑢𝑢𝑢𝑢2,⋯ ,𝑢𝑢𝑢𝑢𝑁𝑁𝑁𝑁] , is a matrix consisting of 
eigenvectors and Σ𝑅𝑅𝑅𝑅N = diag(𝜆𝜆𝜆𝜆1,𝜆𝜆𝜆𝜆2,⋯ , 𝜆𝜆𝜆𝜆𝑁𝑁𝑁𝑁)  is a diagonal 
array consisting of eigenvalues. In a noise-free environment 
rank 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 is r, but in a real environment due to noise effects, 
rank 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 is n (n>> r). To accurately estimate the rank r of the 
low-rank matrix, Gerschgorin disk theory is introduced. 
First, the covariance matrix is divided: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = �
𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝐻𝐻𝐻𝐻 𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

�. (7) 

𝑅𝑅𝑅𝑅N1 ∈ ℝ(𝑚𝑚𝑚𝑚−1)×(𝑚𝑚𝑚𝑚−1) in the above equation is obtained by 
deleting the last row and the last column of 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁. The 
eigenvalue decomposition of matrix 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 can be derived: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 = 𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁1Ʃ1𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁1𝐻𝐻𝐻𝐻  (8) 
𝑈𝑈𝑈𝑈N1 = [𝑞𝑞𝑞𝑞1′ ,𝑞𝑞𝑞𝑞2′ ,⋯ ,𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚−1′ ] is the matrix 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 eigenvector 

matrix and 𝚺𝚺𝚺𝚺1 = �𝜆𝜆𝜆𝜆
¯
1
′ , 𝜆𝜆𝜆𝜆2′ ,⋯ , 𝜆𝜆𝜆𝜆𝑚𝑚𝑚𝑚−1′ � is the matrix𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 

 is the 
weighted soft threshold operator [7, 13].

2. Image Denoising Algorithm
2.1. Adaptive Weighted Low-rank Matrix 
Recovery Models
Weighted kernel-paradigm minimization models 
have been widely used in recent years due to their 
excellent performance; however, the weights in such 
methods depend on a regularization parameter cho-
sen empirically and are correlated with the rank of 
the low-rank matrix, leading to the need to adjust the 
parameter iteratively in different tasks. In order to 
solve this problem, this paper proposes an adaptive 
weighting model that can adaptively weight the low 
rank matrix while passing through the observation 
data itself, and can accurately and efficiently recover 
the low rank matrix [17].
As mentioned earlier, the rank of the low-rank ma-
trix is a very important parameter in the problem of 
recovering low-rank matrices. In some scenarios, this 
parameter is known, but in the vast majority of sce-
narios, it is unknown. In order to solve the problem 
that the rank of the low-rank matrix is unknown, this 
paper introduces the idea of Gerschgorin disk estima-
tion to estimate the rank of the low-rank matrix. The 
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signal N received by a sensor array in a noisy envi-
ronment can be similarly expressed as the sum of the 
sparse noise signal matrix S [9, 10] and the low-rank 
source signal matrix Y [15]. The covariance matrix NR 
of matrix N of rank r can be defined as:

approximated instead of rank minimization by nuclear norm 
minimization (NNM) [1] for low-rank matrix recovery. 
Kernel-paradigm minimization is widely used in low-rank 
matrix recovery algorithms. To summarize, low-rank matrix 
recovery is a method to obtain the original matrix by 
identifying and recovering the corrupted matrix elements. 
This is able to be achieved by low-rank matrix factorization 
or rank minimization, of which kernel-paradigm 
minimization is a commonly used method. The approximate 
solution problem of NNM can be expressed as: 

𝑌𝑌𝑌𝑌� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚||𝑋𝑋𝑋𝑋 − 𝑌𝑌𝑌𝑌||𝐸𝐸𝐸𝐸2 2⁄ + 𝜏𝜏𝜏𝜏||𝑌𝑌𝑌𝑌||∗, (1) 
where ∥ 𝑌𝑌𝑌𝑌 ∥∗= ∑  𝑚𝑚𝑚𝑚=1 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(L) is the kernel paradigm of matrix 
Y, 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌)   is the ith singular value, and ∥. ∥𝐸𝐸𝐸𝐸 is the E-
parameter. In the image denoising task, Y and X represent 
the denoised image matrix and the noise image matrix, 
respectively. It has been proved that the NuclearNorm 
Proximal (NNP) problem can be solved by taking a soft 
thresholding operation on the singular values to obtain a 
closed-loop solution: 

𝑌𝑌𝑌𝑌� = 𝑈𝑈𝑈𝑈𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏[Σ]𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇, (2) 
where Y= 𝑈𝑈𝑈𝑈Σ𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇 is the singular value decomposition of the 

matrix Y,Σ = diag({𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚}1≤𝑚𝑚𝑚𝑚≤𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚))，𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏[Σ]𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = sgn(𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚) ⋅

max(|𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚|− 𝜏𝜏𝜏𝜏, 0)  is a parameter-based soft thresholding 
operator, where the degree of sparsity is controlled. In order 
to minimize the rank of the matrix, minimizing all singular 
values simultaneously and equally is a major limitation of 
the method, and does not take into account the physical 
significance of the singular values themselves, i.e., the 
image information is essentially retained in the larger 
singular values. In order to improve the flexibility of NNM, 
the Weighted Kernel Paradigm Minimization (WNNM) [5] 
method is proposed. The weighted kernel paradigm of 
matrix Y is defined as: 

||𝑌𝑌𝑌𝑌||𝑤𝑤𝑤𝑤,∗= Ʃ𝑚𝑚𝑚𝑚=1𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌), (3) 
where 𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚 is the non-negative weighting assigned to 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌). 
The weighted kernel paradigm minimization model is as 
follows： 

𝑌𝑌𝑌𝑌� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚||𝑌𝑌𝑌𝑌 −
𝑌𝑌𝑌𝑌||𝐸𝐸𝐸𝐸2

2
+ 𝜏𝜏𝜏𝜏�|Y|�

𝑊𝑊𝑊𝑊,∗
. (4) 

Compared with NNM, weighted kernel-paradigm 
minimization [14, 16] greatly improves the flexibility of the 
kernel paradigm, which makes the low-rank matrix recovery 
more accurate. Therefore, the weighted kernel-paradigm 
minimization model achieves better denoising performance 
in the image denoising task. The weighted kernel-paradigm 
minimization model performs a weighted soft-thresholding 
operation on the singular values of the optimal solution 
obtained is Y = 𝑈𝑈𝑈𝑈𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏𝑤𝑤𝑤𝑤[Σ]𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇 , where 𝑆𝑆𝑆𝑆𝜏𝜏𝜏𝜏𝑤𝑤𝑤𝑤[Σ] = sgn(𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚) ⋅

max(|𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚|− 𝜏𝜏𝜏𝜏𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚 , 0) is the weighted soft threshold operator 
[7, 13]. 
 

2. Image Denoising Algorithm 
2.1 Adaptive Weighted Low-rank Matrix 
Recovery Models 
Weighted kernel-paradigm minimization models have been 
widely used in recent years due to their excellent 
performance; however, the weights in such methods depend 
on a regularization parameter chosen empirically and are 
correlated with the rank of the low-rank matrix, leading to 
the need to adjust the parameter iteratively in different tasks. 
In order to solve this problem, this paper proposes an 
adaptive weighting model that can adaptively weight the low 
rank matrix while passing through the observation data itself, 
and can accurately and efficiently recover the low rank 
matrix [17]. 

As mentioned earlier, the rank of the low-rank matrix 
is a very important parameter in the problem of recovering 
low-rank matrices. In some scenarios, this parameter is 
known, but in the vast majority of scenarios, it is unknown. 
In order to solve the problem that the rank of the low-rank 
matrix is unknown, this paper introduces the idea of 
Gerschgorin disk estimation to estimate the rank of the low-
rank matrix. The signal N received by a sensor array in a 
noisy environment can be similarly expressed as the sum of 
the sparse noise signal matrix S [9, 10] and the low-rank 
source signal matrix Y [15]. The covariance matrix NR of 
matrix N of rank r can be defined as: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇. (5) 
The eigenvalue decomposition of 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 yields： 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = 𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁Ʃ𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁
𝐻𝐻𝐻𝐻 , (6) 

where 𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅N = [𝑢𝑢𝑢𝑢1,𝑢𝑢𝑢𝑢2,⋯ ,𝑢𝑢𝑢𝑢𝑁𝑁𝑁𝑁] , is a matrix consisting of 
eigenvectors and Σ𝑅𝑅𝑅𝑅N = diag(𝜆𝜆𝜆𝜆1,𝜆𝜆𝜆𝜆2,⋯ , 𝜆𝜆𝜆𝜆𝑁𝑁𝑁𝑁)  is a diagonal 
array consisting of eigenvalues. In a noise-free environment 
rank 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 is r, but in a real environment due to noise effects, 
rank 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 is n (n>> r). To accurately estimate the rank r of the 
low-rank matrix, Gerschgorin disk theory is introduced. 
First, the covariance matrix is divided: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = �
𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝐻𝐻𝐻𝐻 𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

�. (7) 

𝑅𝑅𝑅𝑅N1 ∈ ℝ(𝑚𝑚𝑚𝑚−1)×(𝑚𝑚𝑚𝑚−1) in the above equation is obtained by 
deleting the last row and the last column of 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁. The 
eigenvalue decomposition of matrix 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 can be derived: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 = 𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁1Ʃ1𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁1𝐻𝐻𝐻𝐻  (8) 
𝑈𝑈𝑈𝑈N1 = [𝑞𝑞𝑞𝑞1′ ,𝑞𝑞𝑞𝑞2′ ,⋯ ,𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚−1′ ] is the matrix 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 eigenvector 

matrix and 𝚺𝚺𝚺𝚺1 = �𝜆𝜆𝜆𝜆
¯
1
′ , 𝜆𝜆𝜆𝜆2′ ,⋯ , 𝜆𝜆𝜆𝜆𝑚𝑚𝑚𝑚−1′ � is the matrix𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 

(5)

The eigenvalue decomposition of RN yields:

approximated instead of rank minimization by nuclear norm 
minimization (NNM) [1] for low-rank matrix recovery. 
Kernel-paradigm minimization is widely used in low-rank 
matrix recovery algorithms. To summarize, low-rank matrix 
recovery is a method to obtain the original matrix by 
identifying and recovering the corrupted matrix elements. 
This is able to be achieved by low-rank matrix factorization 
or rank minimization, of which kernel-paradigm 
minimization is a commonly used method. The approximate 
solution problem of NNM can be expressed as: 

𝑌𝑌𝑌𝑌� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚||𝑋𝑋𝑋𝑋 − 𝑌𝑌𝑌𝑌||𝐸𝐸𝐸𝐸2 2⁄ + 𝜏𝜏𝜏𝜏||𝑌𝑌𝑌𝑌||∗, (1) 
where ∥ 𝑌𝑌𝑌𝑌 ∥∗= ∑  𝑚𝑚𝑚𝑚=1 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(L) is the kernel paradigm of matrix 
Y, 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌)   is the ith singular value, and ∥. ∥𝐸𝐸𝐸𝐸 is the E-
parameter. In the image denoising task, Y and X represent 
the denoised image matrix and the noise image matrix, 
respectively. It has been proved that the NuclearNorm 
Proximal (NNP) problem can be solved by taking a soft 
thresholding operation on the singular values to obtain a 
closed-loop solution: 

𝑌𝑌𝑌𝑌� = 𝑈𝑈𝑈𝑈𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏[Σ]𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇, (2) 
where Y= 𝑈𝑈𝑈𝑈Σ𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇 is the singular value decomposition of the 

matrix Y,Σ = diag({𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚}1≤𝑚𝑚𝑚𝑚≤𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚))，𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏[Σ]𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = sgn(𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚) ⋅

max(|𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚|− 𝜏𝜏𝜏𝜏, 0)  is a parameter-based soft thresholding 
operator, where the degree of sparsity is controlled. In order 
to minimize the rank of the matrix, minimizing all singular 
values simultaneously and equally is a major limitation of 
the method, and does not take into account the physical 
significance of the singular values themselves, i.e., the 
image information is essentially retained in the larger 
singular values. In order to improve the flexibility of NNM, 
the Weighted Kernel Paradigm Minimization (WNNM) [5] 
method is proposed. The weighted kernel paradigm of 
matrix Y is defined as: 

||𝑌𝑌𝑌𝑌||𝑤𝑤𝑤𝑤,∗= Ʃ𝑚𝑚𝑚𝑚=1𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌), (3) 
where 𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚 is the non-negative weighting assigned to 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌). 
The weighted kernel paradigm minimization model is as 
follows： 

𝑌𝑌𝑌𝑌� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚||𝑌𝑌𝑌𝑌 −
𝑌𝑌𝑌𝑌||𝐸𝐸𝐸𝐸2

2
+ 𝜏𝜏𝜏𝜏�|Y|�

𝑊𝑊𝑊𝑊,∗
. (4) 

Compared with NNM, weighted kernel-paradigm 
minimization [14, 16] greatly improves the flexibility of the 
kernel paradigm, which makes the low-rank matrix recovery 
more accurate. Therefore, the weighted kernel-paradigm 
minimization model achieves better denoising performance 
in the image denoising task. The weighted kernel-paradigm 
minimization model performs a weighted soft-thresholding 
operation on the singular values of the optimal solution 
obtained is Y = 𝑈𝑈𝑈𝑈𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏𝑤𝑤𝑤𝑤[Σ]𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇 , where 𝑆𝑆𝑆𝑆𝜏𝜏𝜏𝜏𝑤𝑤𝑤𝑤[Σ] = sgn(𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚) ⋅

max(|𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚|− 𝜏𝜏𝜏𝜏𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚 , 0) is the weighted soft threshold operator 
[7, 13]. 
 

2. Image Denoising Algorithm 
2.1 Adaptive Weighted Low-rank Matrix 
Recovery Models 
Weighted kernel-paradigm minimization models have been 
widely used in recent years due to their excellent 
performance; however, the weights in such methods depend 
on a regularization parameter chosen empirically and are 
correlated with the rank of the low-rank matrix, leading to 
the need to adjust the parameter iteratively in different tasks. 
In order to solve this problem, this paper proposes an 
adaptive weighting model that can adaptively weight the low 
rank matrix while passing through the observation data itself, 
and can accurately and efficiently recover the low rank 
matrix [17]. 

As mentioned earlier, the rank of the low-rank matrix 
is a very important parameter in the problem of recovering 
low-rank matrices. In some scenarios, this parameter is 
known, but in the vast majority of scenarios, it is unknown. 
In order to solve the problem that the rank of the low-rank 
matrix is unknown, this paper introduces the idea of 
Gerschgorin disk estimation to estimate the rank of the low-
rank matrix. The signal N received by a sensor array in a 
noisy environment can be similarly expressed as the sum of 
the sparse noise signal matrix S [9, 10] and the low-rank 
source signal matrix Y [15]. The covariance matrix NR of 
matrix N of rank r can be defined as: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇. (5) 
The eigenvalue decomposition of 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 yields： 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = 𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁Ʃ𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁
𝐻𝐻𝐻𝐻 , (6) 

where 𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅N = [𝑢𝑢𝑢𝑢1,𝑢𝑢𝑢𝑢2,⋯ ,𝑢𝑢𝑢𝑢𝑁𝑁𝑁𝑁] , is a matrix consisting of 
eigenvectors and Σ𝑅𝑅𝑅𝑅N = diag(𝜆𝜆𝜆𝜆1,𝜆𝜆𝜆𝜆2,⋯ , 𝜆𝜆𝜆𝜆𝑁𝑁𝑁𝑁)  is a diagonal 
array consisting of eigenvalues. In a noise-free environment 
rank 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 is r, but in a real environment due to noise effects, 
rank 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 is n (n>> r). To accurately estimate the rank r of the 
low-rank matrix, Gerschgorin disk theory is introduced. 
First, the covariance matrix is divided: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = �
𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝐻𝐻𝐻𝐻 𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

�. (7) 

𝑅𝑅𝑅𝑅N1 ∈ ℝ(𝑚𝑚𝑚𝑚−1)×(𝑚𝑚𝑚𝑚−1) in the above equation is obtained by 
deleting the last row and the last column of 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁. The 
eigenvalue decomposition of matrix 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 can be derived: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 = 𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁1Ʃ1𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁1𝐻𝐻𝐻𝐻  (8) 
𝑈𝑈𝑈𝑈N1 = [𝑞𝑞𝑞𝑞1′ ,𝑞𝑞𝑞𝑞2′ ,⋯ ,𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚−1′ ] is the matrix 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 eigenvector 

matrix and 𝚺𝚺𝚺𝚺1 = �𝜆𝜆𝜆𝜆
¯
1
′ , 𝜆𝜆𝜆𝜆2′ ,⋯ , 𝜆𝜆𝜆𝜆𝑚𝑚𝑚𝑚−1′ � is the matrix𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 

(6)

where 

approximated instead of rank minimization by nuclear norm 
minimization (NNM) [1] for low-rank matrix recovery. 
Kernel-paradigm minimization is widely used in low-rank 
matrix recovery algorithms. To summarize, low-rank matrix 
recovery is a method to obtain the original matrix by 
identifying and recovering the corrupted matrix elements. 
This is able to be achieved by low-rank matrix factorization 
or rank minimization, of which kernel-paradigm 
minimization is a commonly used method. The approximate 
solution problem of NNM can be expressed as: 

𝑌𝑌𝑌𝑌� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚||𝑋𝑋𝑋𝑋 − 𝑌𝑌𝑌𝑌||𝐸𝐸𝐸𝐸2 2⁄ + 𝜏𝜏𝜏𝜏||𝑌𝑌𝑌𝑌||∗, (1) 
where ∥ 𝑌𝑌𝑌𝑌 ∥∗= ∑  𝑚𝑚𝑚𝑚=1 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(L) is the kernel paradigm of matrix 
Y, 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌)   is the ith singular value, and ∥. ∥𝐸𝐸𝐸𝐸 is the E-
parameter. In the image denoising task, Y and X represent 
the denoised image matrix and the noise image matrix, 
respectively. It has been proved that the NuclearNorm 
Proximal (NNP) problem can be solved by taking a soft 
thresholding operation on the singular values to obtain a 
closed-loop solution: 

𝑌𝑌𝑌𝑌� = 𝑈𝑈𝑈𝑈𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏[Σ]𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇, (2) 
where Y= 𝑈𝑈𝑈𝑈Σ𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇 is the singular value decomposition of the 

matrix Y,Σ = diag({𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚}1≤𝑚𝑚𝑚𝑚≤𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚))，𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏[Σ]𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = sgn(𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚) ⋅

max(|𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚|− 𝜏𝜏𝜏𝜏, 0)  is a parameter-based soft thresholding 
operator, where the degree of sparsity is controlled. In order 
to minimize the rank of the matrix, minimizing all singular 
values simultaneously and equally is a major limitation of 
the method, and does not take into account the physical 
significance of the singular values themselves, i.e., the 
image information is essentially retained in the larger 
singular values. In order to improve the flexibility of NNM, 
the Weighted Kernel Paradigm Minimization (WNNM) [5] 
method is proposed. The weighted kernel paradigm of 
matrix Y is defined as: 

||𝑌𝑌𝑌𝑌||𝑤𝑤𝑤𝑤,∗= Ʃ𝑚𝑚𝑚𝑚=1𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌), (3) 
where 𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚 is the non-negative weighting assigned to 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌). 
The weighted kernel paradigm minimization model is as 
follows： 

𝑌𝑌𝑌𝑌� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚||𝑌𝑌𝑌𝑌 −
𝑌𝑌𝑌𝑌||𝐸𝐸𝐸𝐸2

2
+ 𝜏𝜏𝜏𝜏�|Y|�

𝑊𝑊𝑊𝑊,∗
. (4) 

Compared with NNM, weighted kernel-paradigm 
minimization [14, 16] greatly improves the flexibility of the 
kernel paradigm, which makes the low-rank matrix recovery 
more accurate. Therefore, the weighted kernel-paradigm 
minimization model achieves better denoising performance 
in the image denoising task. The weighted kernel-paradigm 
minimization model performs a weighted soft-thresholding 
operation on the singular values of the optimal solution 
obtained is Y = 𝑈𝑈𝑈𝑈𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏𝑤𝑤𝑤𝑤[Σ]𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇 , where 𝑆𝑆𝑆𝑆𝜏𝜏𝜏𝜏𝑤𝑤𝑤𝑤[Σ] = sgn(𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚) ⋅

max(|𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚|− 𝜏𝜏𝜏𝜏𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚 , 0) is the weighted soft threshold operator 
[7, 13]. 
 

2. Image Denoising Algorithm 
2.1 Adaptive Weighted Low-rank Matrix 
Recovery Models 
Weighted kernel-paradigm minimization models have been 
widely used in recent years due to their excellent 
performance; however, the weights in such methods depend 
on a regularization parameter chosen empirically and are 
correlated with the rank of the low-rank matrix, leading to 
the need to adjust the parameter iteratively in different tasks. 
In order to solve this problem, this paper proposes an 
adaptive weighting model that can adaptively weight the low 
rank matrix while passing through the observation data itself, 
and can accurately and efficiently recover the low rank 
matrix [17]. 

As mentioned earlier, the rank of the low-rank matrix 
is a very important parameter in the problem of recovering 
low-rank matrices. In some scenarios, this parameter is 
known, but in the vast majority of scenarios, it is unknown. 
In order to solve the problem that the rank of the low-rank 
matrix is unknown, this paper introduces the idea of 
Gerschgorin disk estimation to estimate the rank of the low-
rank matrix. The signal N received by a sensor array in a 
noisy environment can be similarly expressed as the sum of 
the sparse noise signal matrix S [9, 10] and the low-rank 
source signal matrix Y [15]. The covariance matrix NR of 
matrix N of rank r can be defined as: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇. (5) 
The eigenvalue decomposition of 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 yields： 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = 𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁Ʃ𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁
𝐻𝐻𝐻𝐻 , (6) 

where 𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅N = [𝑢𝑢𝑢𝑢1,𝑢𝑢𝑢𝑢2,⋯ ,𝑢𝑢𝑢𝑢𝑁𝑁𝑁𝑁] , is a matrix consisting of 
eigenvectors and Σ𝑅𝑅𝑅𝑅N = diag(𝜆𝜆𝜆𝜆1,𝜆𝜆𝜆𝜆2,⋯ , 𝜆𝜆𝜆𝜆𝑁𝑁𝑁𝑁)  is a diagonal 
array consisting of eigenvalues. In a noise-free environment 
rank 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 is r, but in a real environment due to noise effects, 
rank 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 is n (n>> r). To accurately estimate the rank r of the 
low-rank matrix, Gerschgorin disk theory is introduced. 
First, the covariance matrix is divided: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = �
𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝐻𝐻𝐻𝐻 𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

�. (7) 

𝑅𝑅𝑅𝑅N1 ∈ ℝ(𝑚𝑚𝑚𝑚−1)×(𝑚𝑚𝑚𝑚−1) in the above equation is obtained by 
deleting the last row and the last column of 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁. The 
eigenvalue decomposition of matrix 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 can be derived: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 = 𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁1Ʃ1𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁1𝐻𝐻𝐻𝐻  (8) 
𝑈𝑈𝑈𝑈N1 = [𝑞𝑞𝑞𝑞1′ ,𝑞𝑞𝑞𝑞2′ ,⋯ ,𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚−1′ ] is the matrix 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 eigenvector 

matrix and 𝚺𝚺𝚺𝚺1 = �𝜆𝜆𝜆𝜆
¯
1
′ , 𝜆𝜆𝜆𝜆2′ ,⋯ , 𝜆𝜆𝜆𝜆𝑚𝑚𝑚𝑚−1′ � is the matrix𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 

, is a matrix consisting 
of eigenvectors and 

approximated instead of rank minimization by nuclear norm 
minimization (NNM) [1] for low-rank matrix recovery. 
Kernel-paradigm minimization is widely used in low-rank 
matrix recovery algorithms. To summarize, low-rank matrix 
recovery is a method to obtain the original matrix by 
identifying and recovering the corrupted matrix elements. 
This is able to be achieved by low-rank matrix factorization 
or rank minimization, of which kernel-paradigm 
minimization is a commonly used method. The approximate 
solution problem of NNM can be expressed as: 

𝑌𝑌𝑌𝑌� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚||𝑋𝑋𝑋𝑋 − 𝑌𝑌𝑌𝑌||𝐸𝐸𝐸𝐸2 2⁄ + 𝜏𝜏𝜏𝜏||𝑌𝑌𝑌𝑌||∗, (1) 
where ∥ 𝑌𝑌𝑌𝑌 ∥∗= ∑  𝑚𝑚𝑚𝑚=1 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(L) is the kernel paradigm of matrix 
Y, 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌)   is the ith singular value, and ∥. ∥𝐸𝐸𝐸𝐸 is the E-
parameter. In the image denoising task, Y and X represent 
the denoised image matrix and the noise image matrix, 
respectively. It has been proved that the NuclearNorm 
Proximal (NNP) problem can be solved by taking a soft 
thresholding operation on the singular values to obtain a 
closed-loop solution: 

𝑌𝑌𝑌𝑌� = 𝑈𝑈𝑈𝑈𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏[Σ]𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇, (2) 
where Y= 𝑈𝑈𝑈𝑈Σ𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇 is the singular value decomposition of the 

matrix Y,Σ = diag({𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚}1≤𝑚𝑚𝑚𝑚≤𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚))，𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏[Σ]𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = sgn(𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚) ⋅

max(|𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚|− 𝜏𝜏𝜏𝜏, 0)  is a parameter-based soft thresholding 
operator, where the degree of sparsity is controlled. In order 
to minimize the rank of the matrix, minimizing all singular 
values simultaneously and equally is a major limitation of 
the method, and does not take into account the physical 
significance of the singular values themselves, i.e., the 
image information is essentially retained in the larger 
singular values. In order to improve the flexibility of NNM, 
the Weighted Kernel Paradigm Minimization (WNNM) [5] 
method is proposed. The weighted kernel paradigm of 
matrix Y is defined as: 

||𝑌𝑌𝑌𝑌||𝑤𝑤𝑤𝑤,∗= Ʃ𝑚𝑚𝑚𝑚=1𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌), (3) 
where 𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚 is the non-negative weighting assigned to 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌). 
The weighted kernel paradigm minimization model is as 
follows： 

𝑌𝑌𝑌𝑌� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚||𝑌𝑌𝑌𝑌 −
𝑌𝑌𝑌𝑌||𝐸𝐸𝐸𝐸2

2
+ 𝜏𝜏𝜏𝜏�|Y|�

𝑊𝑊𝑊𝑊,∗
. (4) 

Compared with NNM, weighted kernel-paradigm 
minimization [14, 16] greatly improves the flexibility of the 
kernel paradigm, which makes the low-rank matrix recovery 
more accurate. Therefore, the weighted kernel-paradigm 
minimization model achieves better denoising performance 
in the image denoising task. The weighted kernel-paradigm 
minimization model performs a weighted soft-thresholding 
operation on the singular values of the optimal solution 
obtained is Y = 𝑈𝑈𝑈𝑈𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏𝑤𝑤𝑤𝑤[Σ]𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇 , where 𝑆𝑆𝑆𝑆𝜏𝜏𝜏𝜏𝑤𝑤𝑤𝑤[Σ] = sgn(𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚) ⋅

max(|𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚|− 𝜏𝜏𝜏𝜏𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚 , 0) is the weighted soft threshold operator 
[7, 13]. 
 

2. Image Denoising Algorithm 
2.1 Adaptive Weighted Low-rank Matrix 
Recovery Models 
Weighted kernel-paradigm minimization models have been 
widely used in recent years due to their excellent 
performance; however, the weights in such methods depend 
on a regularization parameter chosen empirically and are 
correlated with the rank of the low-rank matrix, leading to 
the need to adjust the parameter iteratively in different tasks. 
In order to solve this problem, this paper proposes an 
adaptive weighting model that can adaptively weight the low 
rank matrix while passing through the observation data itself, 
and can accurately and efficiently recover the low rank 
matrix [17]. 

As mentioned earlier, the rank of the low-rank matrix 
is a very important parameter in the problem of recovering 
low-rank matrices. In some scenarios, this parameter is 
known, but in the vast majority of scenarios, it is unknown. 
In order to solve the problem that the rank of the low-rank 
matrix is unknown, this paper introduces the idea of 
Gerschgorin disk estimation to estimate the rank of the low-
rank matrix. The signal N received by a sensor array in a 
noisy environment can be similarly expressed as the sum of 
the sparse noise signal matrix S [9, 10] and the low-rank 
source signal matrix Y [15]. The covariance matrix NR of 
matrix N of rank r can be defined as: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇. (5) 
The eigenvalue decomposition of 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 yields： 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = 𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁Ʃ𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁
𝐻𝐻𝐻𝐻 , (6) 

where 𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅N = [𝑢𝑢𝑢𝑢1,𝑢𝑢𝑢𝑢2,⋯ ,𝑢𝑢𝑢𝑢𝑁𝑁𝑁𝑁] , is a matrix consisting of 
eigenvectors and Σ𝑅𝑅𝑅𝑅N = diag(𝜆𝜆𝜆𝜆1,𝜆𝜆𝜆𝜆2,⋯ , 𝜆𝜆𝜆𝜆𝑁𝑁𝑁𝑁)  is a diagonal 
array consisting of eigenvalues. In a noise-free environment 
rank 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 is r, but in a real environment due to noise effects, 
rank 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 is n (n>> r). To accurately estimate the rank r of the 
low-rank matrix, Gerschgorin disk theory is introduced. 
First, the covariance matrix is divided: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = �
𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝐻𝐻𝐻𝐻 𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

�. (7) 

𝑅𝑅𝑅𝑅N1 ∈ ℝ(𝑚𝑚𝑚𝑚−1)×(𝑚𝑚𝑚𝑚−1) in the above equation is obtained by 
deleting the last row and the last column of 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁. The 
eigenvalue decomposition of matrix 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 can be derived: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 = 𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁1Ʃ1𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁1𝐻𝐻𝐻𝐻  (8) 
𝑈𝑈𝑈𝑈N1 = [𝑞𝑞𝑞𝑞1′ ,𝑞𝑞𝑞𝑞2′ ,⋯ ,𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚−1′ ] is the matrix 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 eigenvector 

matrix and 𝚺𝚺𝚺𝚺1 = �𝜆𝜆𝜆𝜆
¯
1
′ , 𝜆𝜆𝜆𝜆2′ ,⋯ , 𝜆𝜆𝜆𝜆𝑚𝑚𝑚𝑚−1′ � is the matrix𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 

 is a di-
agonal array consisting of eigenvalues. In a noise-
free environment rank RN is r, but in a real environ-
ment due to noise effects, rank RN is n (n>> r). To 
accurately estimate the rank r of the low-rank ma-
trix, Gerschgorin disk theory is introduced. First, 
the covariance matrix is divided:

approximated instead of rank minimization by nuclear norm 
minimization (NNM) [1] for low-rank matrix recovery. 
Kernel-paradigm minimization is widely used in low-rank 
matrix recovery algorithms. To summarize, low-rank matrix 
recovery is a method to obtain the original matrix by 
identifying and recovering the corrupted matrix elements. 
This is able to be achieved by low-rank matrix factorization 
or rank minimization, of which kernel-paradigm 
minimization is a commonly used method. The approximate 
solution problem of NNM can be expressed as: 

𝑌𝑌𝑌𝑌� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚||𝑋𝑋𝑋𝑋 − 𝑌𝑌𝑌𝑌||𝐸𝐸𝐸𝐸2 2⁄ + 𝜏𝜏𝜏𝜏||𝑌𝑌𝑌𝑌||∗, (1) 
where ∥ 𝑌𝑌𝑌𝑌 ∥∗= ∑  𝑚𝑚𝑚𝑚=1 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(L) is the kernel paradigm of matrix 
Y, 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌)   is the ith singular value, and ∥. ∥𝐸𝐸𝐸𝐸 is the E-
parameter. In the image denoising task, Y and X represent 
the denoised image matrix and the noise image matrix, 
respectively. It has been proved that the NuclearNorm 
Proximal (NNP) problem can be solved by taking a soft 
thresholding operation on the singular values to obtain a 
closed-loop solution: 

𝑌𝑌𝑌𝑌� = 𝑈𝑈𝑈𝑈𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏[Σ]𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇, (2) 
where Y= 𝑈𝑈𝑈𝑈Σ𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇 is the singular value decomposition of the 

matrix Y,Σ = diag({𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚}1≤𝑚𝑚𝑚𝑚≤𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚))，𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏[Σ]𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = sgn(𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚) ⋅

max(|𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚|− 𝜏𝜏𝜏𝜏, 0)  is a parameter-based soft thresholding 
operator, where the degree of sparsity is controlled. In order 
to minimize the rank of the matrix, minimizing all singular 
values simultaneously and equally is a major limitation of 
the method, and does not take into account the physical 
significance of the singular values themselves, i.e., the 
image information is essentially retained in the larger 
singular values. In order to improve the flexibility of NNM, 
the Weighted Kernel Paradigm Minimization (WNNM) [5] 
method is proposed. The weighted kernel paradigm of 
matrix Y is defined as: 

||𝑌𝑌𝑌𝑌||𝑤𝑤𝑤𝑤,∗= Ʃ𝑚𝑚𝑚𝑚=1𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌), (3) 
where 𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚 is the non-negative weighting assigned to 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌). 
The weighted kernel paradigm minimization model is as 
follows： 

𝑌𝑌𝑌𝑌� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚||𝑌𝑌𝑌𝑌 −
𝑌𝑌𝑌𝑌||𝐸𝐸𝐸𝐸2

2
+ 𝜏𝜏𝜏𝜏�|Y|�

𝑊𝑊𝑊𝑊,∗
. (4) 

Compared with NNM, weighted kernel-paradigm 
minimization [14, 16] greatly improves the flexibility of the 
kernel paradigm, which makes the low-rank matrix recovery 
more accurate. Therefore, the weighted kernel-paradigm 
minimization model achieves better denoising performance 
in the image denoising task. The weighted kernel-paradigm 
minimization model performs a weighted soft-thresholding 
operation on the singular values of the optimal solution 
obtained is Y = 𝑈𝑈𝑈𝑈𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏𝑤𝑤𝑤𝑤[Σ]𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇 , where 𝑆𝑆𝑆𝑆𝜏𝜏𝜏𝜏𝑤𝑤𝑤𝑤[Σ] = sgn(𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚) ⋅

max(|𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚|− 𝜏𝜏𝜏𝜏𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚 , 0) is the weighted soft threshold operator 
[7, 13]. 
 

2. Image Denoising Algorithm 
2.1 Adaptive Weighted Low-rank Matrix 
Recovery Models 
Weighted kernel-paradigm minimization models have been 
widely used in recent years due to their excellent 
performance; however, the weights in such methods depend 
on a regularization parameter chosen empirically and are 
correlated with the rank of the low-rank matrix, leading to 
the need to adjust the parameter iteratively in different tasks. 
In order to solve this problem, this paper proposes an 
adaptive weighting model that can adaptively weight the low 
rank matrix while passing through the observation data itself, 
and can accurately and efficiently recover the low rank 
matrix [17]. 

As mentioned earlier, the rank of the low-rank matrix 
is a very important parameter in the problem of recovering 
low-rank matrices. In some scenarios, this parameter is 
known, but in the vast majority of scenarios, it is unknown. 
In order to solve the problem that the rank of the low-rank 
matrix is unknown, this paper introduces the idea of 
Gerschgorin disk estimation to estimate the rank of the low-
rank matrix. The signal N received by a sensor array in a 
noisy environment can be similarly expressed as the sum of 
the sparse noise signal matrix S [9, 10] and the low-rank 
source signal matrix Y [15]. The covariance matrix NR of 
matrix N of rank r can be defined as: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇. (5) 
The eigenvalue decomposition of 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 yields： 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = 𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁Ʃ𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁
𝐻𝐻𝐻𝐻 , (6) 

where 𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅N = [𝑢𝑢𝑢𝑢1,𝑢𝑢𝑢𝑢2,⋯ ,𝑢𝑢𝑢𝑢𝑁𝑁𝑁𝑁] , is a matrix consisting of 
eigenvectors and Σ𝑅𝑅𝑅𝑅N = diag(𝜆𝜆𝜆𝜆1,𝜆𝜆𝜆𝜆2,⋯ , 𝜆𝜆𝜆𝜆𝑁𝑁𝑁𝑁)  is a diagonal 
array consisting of eigenvalues. In a noise-free environment 
rank 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 is r, but in a real environment due to noise effects, 
rank 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 is n (n>> r). To accurately estimate the rank r of the 
low-rank matrix, Gerschgorin disk theory is introduced. 
First, the covariance matrix is divided: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = �
𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝐻𝐻𝐻𝐻 𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

�. (7) 

𝑅𝑅𝑅𝑅N1 ∈ ℝ(𝑚𝑚𝑚𝑚−1)×(𝑚𝑚𝑚𝑚−1) in the above equation is obtained by 
deleting the last row and the last column of 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁. The 
eigenvalue decomposition of matrix 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 can be derived: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 = 𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁1Ʃ1𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁1𝐻𝐻𝐻𝐻  (8) 
𝑈𝑈𝑈𝑈N1 = [𝑞𝑞𝑞𝑞1′ ,𝑞𝑞𝑞𝑞2′ ,⋯ ,𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚−1′ ] is the matrix 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 eigenvector 

matrix and 𝚺𝚺𝚺𝚺1 = �𝜆𝜆𝜆𝜆
¯
1
′ , 𝜆𝜆𝜆𝜆2′ ,⋯ , 𝜆𝜆𝜆𝜆𝑚𝑚𝑚𝑚−1′ � is the matrix𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 

(7)

approximated instead of rank minimization by nuclear norm 
minimization (NNM) [1] for low-rank matrix recovery. 
Kernel-paradigm minimization is widely used in low-rank 
matrix recovery algorithms. To summarize, low-rank matrix 
recovery is a method to obtain the original matrix by 
identifying and recovering the corrupted matrix elements. 
This is able to be achieved by low-rank matrix factorization 
or rank minimization, of which kernel-paradigm 
minimization is a commonly used method. The approximate 
solution problem of NNM can be expressed as: 

𝑌𝑌𝑌𝑌� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚||𝑋𝑋𝑋𝑋 − 𝑌𝑌𝑌𝑌||𝐸𝐸𝐸𝐸2 2⁄ + 𝜏𝜏𝜏𝜏||𝑌𝑌𝑌𝑌||∗, (1) 
where ∥ 𝑌𝑌𝑌𝑌 ∥∗= ∑  𝑚𝑚𝑚𝑚=1 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(L) is the kernel paradigm of matrix 
Y, 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌)   is the ith singular value, and ∥. ∥𝐸𝐸𝐸𝐸 is the E-
parameter. In the image denoising task, Y and X represent 
the denoised image matrix and the noise image matrix, 
respectively. It has been proved that the NuclearNorm 
Proximal (NNP) problem can be solved by taking a soft 
thresholding operation on the singular values to obtain a 
closed-loop solution: 

𝑌𝑌𝑌𝑌� = 𝑈𝑈𝑈𝑈𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏[Σ]𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇, (2) 
where Y= 𝑈𝑈𝑈𝑈Σ𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇 is the singular value decomposition of the 

matrix Y,Σ = diag({𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚}1≤𝑚𝑚𝑚𝑚≤𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚))，𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏[Σ]𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = sgn(𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚) ⋅

max(|𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚|− 𝜏𝜏𝜏𝜏, 0)  is a parameter-based soft thresholding 
operator, where the degree of sparsity is controlled. In order 
to minimize the rank of the matrix, minimizing all singular 
values simultaneously and equally is a major limitation of 
the method, and does not take into account the physical 
significance of the singular values themselves, i.e., the 
image information is essentially retained in the larger 
singular values. In order to improve the flexibility of NNM, 
the Weighted Kernel Paradigm Minimization (WNNM) [5] 
method is proposed. The weighted kernel paradigm of 
matrix Y is defined as: 

||𝑌𝑌𝑌𝑌||𝑤𝑤𝑤𝑤,∗= Ʃ𝑚𝑚𝑚𝑚=1𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌), (3) 
where 𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚 is the non-negative weighting assigned to 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌). 
The weighted kernel paradigm minimization model is as 
follows： 

𝑌𝑌𝑌𝑌� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚||𝑌𝑌𝑌𝑌 −
𝑌𝑌𝑌𝑌||𝐸𝐸𝐸𝐸2

2
+ 𝜏𝜏𝜏𝜏�|Y|�

𝑊𝑊𝑊𝑊,∗
. (4) 

Compared with NNM, weighted kernel-paradigm 
minimization [14, 16] greatly improves the flexibility of the 
kernel paradigm, which makes the low-rank matrix recovery 
more accurate. Therefore, the weighted kernel-paradigm 
minimization model achieves better denoising performance 
in the image denoising task. The weighted kernel-paradigm 
minimization model performs a weighted soft-thresholding 
operation on the singular values of the optimal solution 
obtained is Y = 𝑈𝑈𝑈𝑈𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏𝑤𝑤𝑤𝑤[Σ]𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇 , where 𝑆𝑆𝑆𝑆𝜏𝜏𝜏𝜏𝑤𝑤𝑤𝑤[Σ] = sgn(𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚) ⋅

max(|𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚|− 𝜏𝜏𝜏𝜏𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚 , 0) is the weighted soft threshold operator 
[7, 13]. 
 

2. Image Denoising Algorithm 
2.1 Adaptive Weighted Low-rank Matrix 
Recovery Models 
Weighted kernel-paradigm minimization models have been 
widely used in recent years due to their excellent 
performance; however, the weights in such methods depend 
on a regularization parameter chosen empirically and are 
correlated with the rank of the low-rank matrix, leading to 
the need to adjust the parameter iteratively in different tasks. 
In order to solve this problem, this paper proposes an 
adaptive weighting model that can adaptively weight the low 
rank matrix while passing through the observation data itself, 
and can accurately and efficiently recover the low rank 
matrix [17]. 

As mentioned earlier, the rank of the low-rank matrix 
is a very important parameter in the problem of recovering 
low-rank matrices. In some scenarios, this parameter is 
known, but in the vast majority of scenarios, it is unknown. 
In order to solve the problem that the rank of the low-rank 
matrix is unknown, this paper introduces the idea of 
Gerschgorin disk estimation to estimate the rank of the low-
rank matrix. The signal N received by a sensor array in a 
noisy environment can be similarly expressed as the sum of 
the sparse noise signal matrix S [9, 10] and the low-rank 
source signal matrix Y [15]. The covariance matrix NR of 
matrix N of rank r can be defined as: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇. (5) 
The eigenvalue decomposition of 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 yields： 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = 𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁Ʃ𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁
𝐻𝐻𝐻𝐻 , (6) 

where 𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅N = [𝑢𝑢𝑢𝑢1,𝑢𝑢𝑢𝑢2,⋯ ,𝑢𝑢𝑢𝑢𝑁𝑁𝑁𝑁] , is a matrix consisting of 
eigenvectors and Σ𝑅𝑅𝑅𝑅N = diag(𝜆𝜆𝜆𝜆1,𝜆𝜆𝜆𝜆2,⋯ , 𝜆𝜆𝜆𝜆𝑁𝑁𝑁𝑁)  is a diagonal 
array consisting of eigenvalues. In a noise-free environment 
rank 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 is r, but in a real environment due to noise effects, 
rank 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 is n (n>> r). To accurately estimate the rank r of the 
low-rank matrix, Gerschgorin disk theory is introduced. 
First, the covariance matrix is divided: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = �
𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝐻𝐻𝐻𝐻 𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

�. (7) 

𝑅𝑅𝑅𝑅N1 ∈ ℝ(𝑚𝑚𝑚𝑚−1)×(𝑚𝑚𝑚𝑚−1) in the above equation is obtained by 
deleting the last row and the last column of 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁. The 
eigenvalue decomposition of matrix 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 can be derived: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 = 𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁1Ʃ1𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁1𝐻𝐻𝐻𝐻  (8) 
𝑈𝑈𝑈𝑈N1 = [𝑞𝑞𝑞𝑞1′ ,𝑞𝑞𝑞𝑞2′ ,⋯ ,𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚−1′ ] is the matrix 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 eigenvector 

matrix and 𝚺𝚺𝚺𝚺1 = �𝜆𝜆𝜆𝜆
¯
1
′ , 𝜆𝜆𝜆𝜆2′ ,⋯ , 𝜆𝜆𝜆𝜆𝑚𝑚𝑚𝑚−1′ � is the matrix𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 

 in the above equation is ob-
tained by deleting the last row and the last column 
of RN. The eigenvalue decomposition of matrix RN 1 
can be derived:

approximated instead of rank minimization by nuclear norm 
minimization (NNM) [1] for low-rank matrix recovery. 
Kernel-paradigm minimization is widely used in low-rank 
matrix recovery algorithms. To summarize, low-rank matrix 
recovery is a method to obtain the original matrix by 
identifying and recovering the corrupted matrix elements. 
This is able to be achieved by low-rank matrix factorization 
or rank minimization, of which kernel-paradigm 
minimization is a commonly used method. The approximate 
solution problem of NNM can be expressed as: 

𝑌𝑌𝑌𝑌� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚||𝑋𝑋𝑋𝑋 − 𝑌𝑌𝑌𝑌||𝐸𝐸𝐸𝐸2 2⁄ + 𝜏𝜏𝜏𝜏||𝑌𝑌𝑌𝑌||∗, (1) 
where ∥ 𝑌𝑌𝑌𝑌 ∥∗= ∑  𝑚𝑚𝑚𝑚=1 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(L) is the kernel paradigm of matrix 
Y, 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌)   is the ith singular value, and ∥. ∥𝐸𝐸𝐸𝐸 is the E-
parameter. In the image denoising task, Y and X represent 
the denoised image matrix and the noise image matrix, 
respectively. It has been proved that the NuclearNorm 
Proximal (NNP) problem can be solved by taking a soft 
thresholding operation on the singular values to obtain a 
closed-loop solution: 

𝑌𝑌𝑌𝑌� = 𝑈𝑈𝑈𝑈𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏[Σ]𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇, (2) 
where Y= 𝑈𝑈𝑈𝑈Σ𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇 is the singular value decomposition of the 

matrix Y,Σ = diag({𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚}1≤𝑚𝑚𝑚𝑚≤𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚))，𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏[Σ]𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = sgn(𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚) ⋅

max(|𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚|− 𝜏𝜏𝜏𝜏, 0)  is a parameter-based soft thresholding 
operator, where the degree of sparsity is controlled. In order 
to minimize the rank of the matrix, minimizing all singular 
values simultaneously and equally is a major limitation of 
the method, and does not take into account the physical 
significance of the singular values themselves, i.e., the 
image information is essentially retained in the larger 
singular values. In order to improve the flexibility of NNM, 
the Weighted Kernel Paradigm Minimization (WNNM) [5] 
method is proposed. The weighted kernel paradigm of 
matrix Y is defined as: 

||𝑌𝑌𝑌𝑌||𝑤𝑤𝑤𝑤,∗= Ʃ𝑚𝑚𝑚𝑚=1𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌), (3) 
where 𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚 is the non-negative weighting assigned to 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌). 
The weighted kernel paradigm minimization model is as 
follows： 

𝑌𝑌𝑌𝑌� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚||𝑌𝑌𝑌𝑌 −
𝑌𝑌𝑌𝑌||𝐸𝐸𝐸𝐸2

2
+ 𝜏𝜏𝜏𝜏�|Y|�

𝑊𝑊𝑊𝑊,∗
. (4) 

Compared with NNM, weighted kernel-paradigm 
minimization [14, 16] greatly improves the flexibility of the 
kernel paradigm, which makes the low-rank matrix recovery 
more accurate. Therefore, the weighted kernel-paradigm 
minimization model achieves better denoising performance 
in the image denoising task. The weighted kernel-paradigm 
minimization model performs a weighted soft-thresholding 
operation on the singular values of the optimal solution 
obtained is Y = 𝑈𝑈𝑈𝑈𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏𝑤𝑤𝑤𝑤[Σ]𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇 , where 𝑆𝑆𝑆𝑆𝜏𝜏𝜏𝜏𝑤𝑤𝑤𝑤[Σ] = sgn(𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚) ⋅

max(|𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚|− 𝜏𝜏𝜏𝜏𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚 , 0) is the weighted soft threshold operator 
[7, 13]. 
 

2. Image Denoising Algorithm 
2.1 Adaptive Weighted Low-rank Matrix 
Recovery Models 
Weighted kernel-paradigm minimization models have been 
widely used in recent years due to their excellent 
performance; however, the weights in such methods depend 
on a regularization parameter chosen empirically and are 
correlated with the rank of the low-rank matrix, leading to 
the need to adjust the parameter iteratively in different tasks. 
In order to solve this problem, this paper proposes an 
adaptive weighting model that can adaptively weight the low 
rank matrix while passing through the observation data itself, 
and can accurately and efficiently recover the low rank 
matrix [17]. 

As mentioned earlier, the rank of the low-rank matrix 
is a very important parameter in the problem of recovering 
low-rank matrices. In some scenarios, this parameter is 
known, but in the vast majority of scenarios, it is unknown. 
In order to solve the problem that the rank of the low-rank 
matrix is unknown, this paper introduces the idea of 
Gerschgorin disk estimation to estimate the rank of the low-
rank matrix. The signal N received by a sensor array in a 
noisy environment can be similarly expressed as the sum of 
the sparse noise signal matrix S [9, 10] and the low-rank 
source signal matrix Y [15]. The covariance matrix NR of 
matrix N of rank r can be defined as: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇. (5) 
The eigenvalue decomposition of 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 yields： 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = 𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁Ʃ𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁
𝐻𝐻𝐻𝐻 , (6) 

where 𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅N = [𝑢𝑢𝑢𝑢1,𝑢𝑢𝑢𝑢2,⋯ ,𝑢𝑢𝑢𝑢𝑁𝑁𝑁𝑁] , is a matrix consisting of 
eigenvectors and Σ𝑅𝑅𝑅𝑅N = diag(𝜆𝜆𝜆𝜆1,𝜆𝜆𝜆𝜆2,⋯ , 𝜆𝜆𝜆𝜆𝑁𝑁𝑁𝑁)  is a diagonal 
array consisting of eigenvalues. In a noise-free environment 
rank 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 is r, but in a real environment due to noise effects, 
rank 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 is n (n>> r). To accurately estimate the rank r of the 
low-rank matrix, Gerschgorin disk theory is introduced. 
First, the covariance matrix is divided: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = �
𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝐻𝐻𝐻𝐻 𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

�. (7) 

𝑅𝑅𝑅𝑅N1 ∈ ℝ(𝑚𝑚𝑚𝑚−1)×(𝑚𝑚𝑚𝑚−1) in the above equation is obtained by 
deleting the last row and the last column of 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁. The 
eigenvalue decomposition of matrix 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 can be derived: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 = 𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁1Ʃ1𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁1𝐻𝐻𝐻𝐻  (8) 
𝑈𝑈𝑈𝑈N1 = [𝑞𝑞𝑞𝑞1′ ,𝑞𝑞𝑞𝑞2′ ,⋯ ,𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚−1′ ] is the matrix 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 eigenvector 

matrix and 𝚺𝚺𝚺𝚺1 = �𝜆𝜆𝜆𝜆
¯
1
′ , 𝜆𝜆𝜆𝜆2′ ,⋯ , 𝜆𝜆𝜆𝜆𝑚𝑚𝑚𝑚−1′ � is the matrix𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 

(8)

approximated instead of rank minimization by nuclear norm 
minimization (NNM) [1] for low-rank matrix recovery. 
Kernel-paradigm minimization is widely used in low-rank 
matrix recovery algorithms. To summarize, low-rank matrix 
recovery is a method to obtain the original matrix by 
identifying and recovering the corrupted matrix elements. 
This is able to be achieved by low-rank matrix factorization 
or rank minimization, of which kernel-paradigm 
minimization is a commonly used method. The approximate 
solution problem of NNM can be expressed as: 

𝑌𝑌𝑌𝑌� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚||𝑋𝑋𝑋𝑋 − 𝑌𝑌𝑌𝑌||𝐸𝐸𝐸𝐸2 2⁄ + 𝜏𝜏𝜏𝜏||𝑌𝑌𝑌𝑌||∗, (1) 
where ∥ 𝑌𝑌𝑌𝑌 ∥∗= ∑  𝑚𝑚𝑚𝑚=1 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(L) is the kernel paradigm of matrix 
Y, 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌)   is the ith singular value, and ∥. ∥𝐸𝐸𝐸𝐸 is the E-
parameter. In the image denoising task, Y and X represent 
the denoised image matrix and the noise image matrix, 
respectively. It has been proved that the NuclearNorm 
Proximal (NNP) problem can be solved by taking a soft 
thresholding operation on the singular values to obtain a 
closed-loop solution: 

𝑌𝑌𝑌𝑌� = 𝑈𝑈𝑈𝑈𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏[Σ]𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇, (2) 
where Y= 𝑈𝑈𝑈𝑈Σ𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇 is the singular value decomposition of the 

matrix Y,Σ = diag({𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚}1≤𝑚𝑚𝑚𝑚≤𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚))，𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏[Σ]𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = sgn(𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚) ⋅

max(|𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚|− 𝜏𝜏𝜏𝜏, 0)  is a parameter-based soft thresholding 
operator, where the degree of sparsity is controlled. In order 
to minimize the rank of the matrix, minimizing all singular 
values simultaneously and equally is a major limitation of 
the method, and does not take into account the physical 
significance of the singular values themselves, i.e., the 
image information is essentially retained in the larger 
singular values. In order to improve the flexibility of NNM, 
the Weighted Kernel Paradigm Minimization (WNNM) [5] 
method is proposed. The weighted kernel paradigm of 
matrix Y is defined as: 

||𝑌𝑌𝑌𝑌||𝑤𝑤𝑤𝑤,∗= Ʃ𝑚𝑚𝑚𝑚=1𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌), (3) 
where 𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚 is the non-negative weighting assigned to 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌). 
The weighted kernel paradigm minimization model is as 
follows： 

𝑌𝑌𝑌𝑌� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚||𝑌𝑌𝑌𝑌 −
𝑌𝑌𝑌𝑌||𝐸𝐸𝐸𝐸2

2
+ 𝜏𝜏𝜏𝜏�|Y|�

𝑊𝑊𝑊𝑊,∗
. (4) 

Compared with NNM, weighted kernel-paradigm 
minimization [14, 16] greatly improves the flexibility of the 
kernel paradigm, which makes the low-rank matrix recovery 
more accurate. Therefore, the weighted kernel-paradigm 
minimization model achieves better denoising performance 
in the image denoising task. The weighted kernel-paradigm 
minimization model performs a weighted soft-thresholding 
operation on the singular values of the optimal solution 
obtained is Y = 𝑈𝑈𝑈𝑈𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏𝑤𝑤𝑤𝑤[Σ]𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇 , where 𝑆𝑆𝑆𝑆𝜏𝜏𝜏𝜏𝑤𝑤𝑤𝑤[Σ] = sgn(𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚) ⋅

max(|𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚|− 𝜏𝜏𝜏𝜏𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚 , 0) is the weighted soft threshold operator 
[7, 13]. 
 

2. Image Denoising Algorithm 
2.1 Adaptive Weighted Low-rank Matrix 
Recovery Models 
Weighted kernel-paradigm minimization models have been 
widely used in recent years due to their excellent 
performance; however, the weights in such methods depend 
on a regularization parameter chosen empirically and are 
correlated with the rank of the low-rank matrix, leading to 
the need to adjust the parameter iteratively in different tasks. 
In order to solve this problem, this paper proposes an 
adaptive weighting model that can adaptively weight the low 
rank matrix while passing through the observation data itself, 
and can accurately and efficiently recover the low rank 
matrix [17]. 

As mentioned earlier, the rank of the low-rank matrix 
is a very important parameter in the problem of recovering 
low-rank matrices. In some scenarios, this parameter is 
known, but in the vast majority of scenarios, it is unknown. 
In order to solve the problem that the rank of the low-rank 
matrix is unknown, this paper introduces the idea of 
Gerschgorin disk estimation to estimate the rank of the low-
rank matrix. The signal N received by a sensor array in a 
noisy environment can be similarly expressed as the sum of 
the sparse noise signal matrix S [9, 10] and the low-rank 
source signal matrix Y [15]. The covariance matrix NR of 
matrix N of rank r can be defined as: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇. (5) 
The eigenvalue decomposition of 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 yields： 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = 𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁Ʃ𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁
𝐻𝐻𝐻𝐻 , (6) 

where 𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅N = [𝑢𝑢𝑢𝑢1,𝑢𝑢𝑢𝑢2,⋯ ,𝑢𝑢𝑢𝑢𝑁𝑁𝑁𝑁] , is a matrix consisting of 
eigenvectors and Σ𝑅𝑅𝑅𝑅N = diag(𝜆𝜆𝜆𝜆1,𝜆𝜆𝜆𝜆2,⋯ , 𝜆𝜆𝜆𝜆𝑁𝑁𝑁𝑁)  is a diagonal 
array consisting of eigenvalues. In a noise-free environment 
rank 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 is r, but in a real environment due to noise effects, 
rank 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 is n (n>> r). To accurately estimate the rank r of the 
low-rank matrix, Gerschgorin disk theory is introduced. 
First, the covariance matrix is divided: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = �
𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝐻𝐻𝐻𝐻 𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

�. (7) 

𝑅𝑅𝑅𝑅N1 ∈ ℝ(𝑚𝑚𝑚𝑚−1)×(𝑚𝑚𝑚𝑚−1) in the above equation is obtained by 
deleting the last row and the last column of 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁. The 
eigenvalue decomposition of matrix 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 can be derived: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 = 𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁1Ʃ1𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁1𝐻𝐻𝐻𝐻  (8) 
𝑈𝑈𝑈𝑈N1 = [𝑞𝑞𝑞𝑞1′ ,𝑞𝑞𝑞𝑞2′ ,⋯ ,𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚−1′ ] is the matrix 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 eigenvector 

matrix and 𝚺𝚺𝚺𝚺1 = �𝜆𝜆𝜆𝜆
¯
1
′ , 𝜆𝜆𝜆𝜆2′ ,⋯ , 𝜆𝜆𝜆𝜆𝑚𝑚𝑚𝑚−1′ � is the matrix𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 

 is the matrix RN1 eigenvec-

tor matrix and 

approximated instead of rank minimization by nuclear norm 
minimization (NNM) [1] for low-rank matrix recovery. 
Kernel-paradigm minimization is widely used in low-rank 
matrix recovery algorithms. To summarize, low-rank matrix 
recovery is a method to obtain the original matrix by 
identifying and recovering the corrupted matrix elements. 
This is able to be achieved by low-rank matrix factorization 
or rank minimization, of which kernel-paradigm 
minimization is a commonly used method. The approximate 
solution problem of NNM can be expressed as: 

𝑌𝑌𝑌𝑌� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚||𝑋𝑋𝑋𝑋 − 𝑌𝑌𝑌𝑌||𝐸𝐸𝐸𝐸2 2⁄ + 𝜏𝜏𝜏𝜏||𝑌𝑌𝑌𝑌||∗, (1) 
where ∥ 𝑌𝑌𝑌𝑌 ∥∗= ∑  𝑚𝑚𝑚𝑚=1 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(L) is the kernel paradigm of matrix 
Y, 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌)   is the ith singular value, and ∥. ∥𝐸𝐸𝐸𝐸 is the E-
parameter. In the image denoising task, Y and X represent 
the denoised image matrix and the noise image matrix, 
respectively. It has been proved that the NuclearNorm 
Proximal (NNP) problem can be solved by taking a soft 
thresholding operation on the singular values to obtain a 
closed-loop solution: 

𝑌𝑌𝑌𝑌� = 𝑈𝑈𝑈𝑈𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏[Σ]𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇, (2) 
where Y= 𝑈𝑈𝑈𝑈Σ𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇 is the singular value decomposition of the 

matrix Y,Σ = diag({𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚}1≤𝑚𝑚𝑚𝑚≤𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚))，𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏[Σ]𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = sgn(𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚) ⋅

max(|𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚|− 𝜏𝜏𝜏𝜏, 0)  is a parameter-based soft thresholding 
operator, where the degree of sparsity is controlled. In order 
to minimize the rank of the matrix, minimizing all singular 
values simultaneously and equally is a major limitation of 
the method, and does not take into account the physical 
significance of the singular values themselves, i.e., the 
image information is essentially retained in the larger 
singular values. In order to improve the flexibility of NNM, 
the Weighted Kernel Paradigm Minimization (WNNM) [5] 
method is proposed. The weighted kernel paradigm of 
matrix Y is defined as: 

||𝑌𝑌𝑌𝑌||𝑤𝑤𝑤𝑤,∗= Ʃ𝑚𝑚𝑚𝑚=1𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌), (3) 
where 𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚 is the non-negative weighting assigned to 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑌𝑌𝑌𝑌). 
The weighted kernel paradigm minimization model is as 
follows： 

𝑌𝑌𝑌𝑌� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚||𝑌𝑌𝑌𝑌 −
𝑌𝑌𝑌𝑌||𝐸𝐸𝐸𝐸2

2
+ 𝜏𝜏𝜏𝜏�|Y|�

𝑊𝑊𝑊𝑊,∗
. (4) 

Compared with NNM, weighted kernel-paradigm 
minimization [14, 16] greatly improves the flexibility of the 
kernel paradigm, which makes the low-rank matrix recovery 
more accurate. Therefore, the weighted kernel-paradigm 
minimization model achieves better denoising performance 
in the image denoising task. The weighted kernel-paradigm 
minimization model performs a weighted soft-thresholding 
operation on the singular values of the optimal solution 
obtained is Y = 𝑈𝑈𝑈𝑈𝒮𝒮𝒮𝒮𝜏𝜏𝜏𝜏𝑤𝑤𝑤𝑤[Σ]𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇 , where 𝑆𝑆𝑆𝑆𝜏𝜏𝜏𝜏𝑤𝑤𝑤𝑤[Σ] = sgn(𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚) ⋅

max(|𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚|− 𝜏𝜏𝜏𝜏𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚 , 0) is the weighted soft threshold operator 
[7, 13]. 
 

2. Image Denoising Algorithm 
2.1 Adaptive Weighted Low-rank Matrix 
Recovery Models 
Weighted kernel-paradigm minimization models have been 
widely used in recent years due to their excellent 
performance; however, the weights in such methods depend 
on a regularization parameter chosen empirically and are 
correlated with the rank of the low-rank matrix, leading to 
the need to adjust the parameter iteratively in different tasks. 
In order to solve this problem, this paper proposes an 
adaptive weighting model that can adaptively weight the low 
rank matrix while passing through the observation data itself, 
and can accurately and efficiently recover the low rank 
matrix [17]. 

As mentioned earlier, the rank of the low-rank matrix 
is a very important parameter in the problem of recovering 
low-rank matrices. In some scenarios, this parameter is 
known, but in the vast majority of scenarios, it is unknown. 
In order to solve the problem that the rank of the low-rank 
matrix is unknown, this paper introduces the idea of 
Gerschgorin disk estimation to estimate the rank of the low-
rank matrix. The signal N received by a sensor array in a 
noisy environment can be similarly expressed as the sum of 
the sparse noise signal matrix S [9, 10] and the low-rank 
source signal matrix Y [15]. The covariance matrix NR of 
matrix N of rank r can be defined as: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇. (5) 
The eigenvalue decomposition of 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 yields： 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = 𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁Ʃ𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁
𝐻𝐻𝐻𝐻 , (6) 

where 𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅N = [𝑢𝑢𝑢𝑢1,𝑢𝑢𝑢𝑢2,⋯ ,𝑢𝑢𝑢𝑢𝑁𝑁𝑁𝑁] , is a matrix consisting of 
eigenvectors and Σ𝑅𝑅𝑅𝑅N = diag(𝜆𝜆𝜆𝜆1,𝜆𝜆𝜆𝜆2,⋯ , 𝜆𝜆𝜆𝜆𝑁𝑁𝑁𝑁)  is a diagonal 
array consisting of eigenvalues. In a noise-free environment 
rank 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 is r, but in a real environment due to noise effects, 
rank 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 is n (n>> r). To accurately estimate the rank r of the 
low-rank matrix, Gerschgorin disk theory is introduced. 
First, the covariance matrix is divided: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = �
𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝐻𝐻𝐻𝐻 𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

�. (7) 

𝑅𝑅𝑅𝑅N1 ∈ ℝ(𝑚𝑚𝑚𝑚−1)×(𝑚𝑚𝑚𝑚−1) in the above equation is obtained by 
deleting the last row and the last column of 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁. The 
eigenvalue decomposition of matrix 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 can be derived: 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 = 𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁1Ʃ1𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁1𝐻𝐻𝐻𝐻  (8) 
𝑈𝑈𝑈𝑈N1 = [𝑞𝑞𝑞𝑞1′ ,𝑞𝑞𝑞𝑞2′ ,⋯ ,𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚−1′ ] is the matrix 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1 eigenvector 

matrix and 𝚺𝚺𝚺𝚺1 = �𝜆𝜆𝜆𝜆
¯
1
′ , 𝜆𝜆𝜆𝜆2′ ,⋯ , 𝜆𝜆𝜆𝜆𝑚𝑚𝑚𝑚−1′ � is the matrix𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁1  is the matrix-

RN1 eigenvalue matrix. Define a you change matrix 
[5] eigenvalue matrix. Define a you change matrix [5] 𝑈𝑈𝑈𝑈 ∈

ℝ𝑚𝑚𝑚𝑚×𝑚𝑚𝑚𝑚(𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝐻𝐻𝐻𝐻 = 𝐼𝐼𝐼𝐼) as follows: 

𝑈𝑈𝑈𝑈 = �𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚1 0
0 1�. (9) 

Then the covariance matrix after you change is: 

𝑅𝑅𝑅𝑅𝑇𝑇𝑇𝑇 = 𝑈𝑈𝑈𝑈𝐻𝐻𝐻𝐻𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁𝑈𝑈𝑈𝑈 = � Ʃ1 𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁1𝐻𝐻𝐻𝐻 𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝐻𝐻𝐻𝐻𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁1 𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

�

=

⎝

⎜
⎜
⎛

𝜆𝜆𝜆𝜆1 0 0
0 𝜆𝜆𝜆𝜆2 0
0 0 𝜆𝜆𝜆𝜆3

⋯
0 𝜌𝜌𝜌𝜌1
0 𝜌𝜌𝜌𝜌2
0 𝜌𝜌𝜌𝜌3

⋮ ⋱ ⋮
0 0 0
𝜌𝜌𝜌𝜌1∗ 𝜌𝜌𝜌𝜌2∗ 𝜌𝜌𝜌𝜌3∗

⋯
𝜆𝜆𝜆𝜆𝑚𝑚𝑚𝑚−1 𝜌𝜌𝜌𝜌𝑚𝑚𝑚𝑚−1
𝜌𝜌𝜌𝜌𝑚𝑚𝑚𝑚−1
∗ 𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚⎠

⎟
⎟
⎞

 
(10) 

Eq. 𝜌𝜌𝜌𝜌𝑚𝑚𝑚𝑚 = 𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚′𝐻𝐻𝐻𝐻𝑅𝑅𝑅𝑅. The eigenvalues of the Leigh Gerschgorin 
disk theory estimation matrix RT with the radius of the first 
(n- 1) Gerschgorin disks [2]: 

𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 = |𝜌𝜌𝜌𝜌𝑚𝑚𝑚𝑚| = |𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚′𝐻𝐻𝐻𝐻𝑅𝑅𝑅𝑅|.    (11) 
Therefore, the radius 𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚of the ith Gerschgorin disk depends 
directly on the size of 𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚′𝐻𝐻𝐻𝐻𝑅𝑅𝑅𝑅 . If 𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚′  is an eigenvector of a 
sparse space, the radius of the ith Gerschgorin disk, i.e., the 
radius of the sparse disk, will decrease significantly and tend 
to zero. If 𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚′ is an eigenvector of the low-rank space, the i-
th Gerschgorin disk radius, i.e., the radius of the low-rank 
disk, will be non-zero and larger than the radius of the sparse 
disk. Therefore, the estimated rank by heuristic decision rule 
is: 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑘𝑘𝑘𝑘) = 𝑎𝑎𝑎𝑎𝑘𝑘𝑘𝑘 −
𝐷𝐷𝐷𝐷(𝑚𝑚𝑚𝑚)
𝑚𝑚𝑚𝑚−1

Ʃ𝑚𝑚𝑚𝑚=1𝑚𝑚𝑚𝑚−1𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚, (12) 
where k = 1, 2, n ... 2, and the adjustment factor D (m) is a 
constant with respect to n. The GDE (k) is computed from k 
= 1, 2, n ... 2. The GDE (k) is computed starting from k = 1, 
and when GDE (k) is negative for the first time, the rank of 
the low-rank matrix is r = k-1. As mentioned before, 
different singular values should be assigned different 
weights and it is desired that the weights do not need to be 
adjusted manually and repeatedly. Combined with the 
proposed low rank matrix rank estimation algorithm, this 
paper proposes an adaptive weighted low rank matrix 
recovery model based on the rank estimation, i.e: 

𝑌𝑌𝑌𝑌� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ||𝑋𝑋𝑋𝑋 − 𝑌𝑌𝑌𝑌||𝐸𝐸𝐸𝐸2 2⁄ + 𝜆𝜆𝜆𝜆||𝑌𝑌𝑌𝑌||𝑊𝑊𝑊𝑊𝑌𝑌𝑌𝑌
∗ , (13) 

where ,𝑊𝑊𝑊𝑊𝑌𝑌𝑌𝑌 = diag ��𝜔𝜔𝜔𝜔𝑌𝑌𝑌𝑌,𝑚𝑚𝑚𝑚�1≤𝑚𝑚𝑚𝑚≤𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚)� . Unlike the 

previous methods of, this model uses a rank estimation 
algorithm to determine the weights and penalizes the 
singular values to varying degrees. In the iterative process, 
the low-rank matrix L, which is obtained by solving the soft-
threshold operator, is expected to have its rth singular value 
greater than zero and its r+1st singular value less than zero. 
At the same time, in order to minimize the interference to 
the low-rank matrix, the weights are chosen with this factor 
in mind. Combined with the rank estimation algorithm 

proposed in the previous section, if the estimated rank of the 
low-rank matrix in the last iteration is r, the weight WY is set 
to: 

𝜔𝜔𝜔𝜔𝑌𝑌𝑌𝑌,𝑚𝑚𝑚𝑚 = 𝜎𝜎𝜎𝜎𝑟𝑟𝑟𝑟+1(𝑋𝑋𝑋𝑋)2

𝜆𝜆𝜆𝜆𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖(𝑋𝑋𝑋𝑋)
. (14) 

Compared with the weighted kernel paradigm minimization 
algorithm [8], the model proposed in this paper is able to 
adaptively set the weights according to the observation 
matrix without manually adjusting the parameters. In 
addition, the model is able to ensure that the rank of the 
recovered low-rank matrix is equal to the target rank. 
 
2.2Adaptive Weighted Low-rank Matrix 
Recovery Image Denoising Algorithm 
The detailed steps for applying the above adaptive weighted 
low-rank matrix recovery model to the image denoising task 
are as follows [16]: 

(1) Divide the image X of size N × M into m image 
blocks xi of size Y × Y. A sliding window method can be 
used to partition the image into uniformly sized image 
blocks; (2) Search for the n image blocks that are most 
similar to the current image block xi in a search window of 
size Y × Y. The n image blocks that are most similar to the 
current image block xi can be searched for in the search 
window of size Y × Y. The n image blocks that are most 
similar to the current image block xi can be selected. 
Measures such as mean square deviation or correlation 
coefficient can be used to calculate the similarity and select 
the n most similar image blocks; (3) Stack each similar 
image block by column expansion into a similar block 
matrix Xj. Expand the pixel values of each image block by 
columns and then stack these column vectors into a similar 
block matrix; (4) Form a group of all the similar block 
matrices. Stack all the similar block matrices into one large 
matrix as the input matrix; (5) Solve the group of all similar 
matrices using the adaptive weighted low-rank matrix 
recovery model described above to recover the low-rank 
structure. A low-rank matrix recovery algorithm, such as the 
kernel-paradigm-based low-rank matrix recovery method, 
can be used to solve the input matrix to obtain the recovered 
low-rank structure; (6) After obtaining the recovered low-
rank structure, convert it back to the image block form and 
stitch all the image blocks together to obtain the denoised 
image. 

Through the above steps, the above adaptive weighted 
low-rank matrix recovery model can be applied to the image 
denoising task to realize the denoising process of the image. 
For each set of similar block matrix Xj solving then there is 
the following optimization problem: 

eigenvalue matrix. Define a you change matrix [5] 𝑈𝑈𝑈𝑈 ∈
ℝ𝑚𝑚𝑚𝑚×𝑚𝑚𝑚𝑚(𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝐻𝐻𝐻𝐻 = 𝐼𝐼𝐼𝐼) as follows: 

𝑈𝑈𝑈𝑈 = �𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚1 0
0 1�. (9) 

Then the covariance matrix after you change is: 

𝑅𝑅𝑅𝑅𝑇𝑇𝑇𝑇 = 𝑈𝑈𝑈𝑈𝐻𝐻𝐻𝐻𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁𝑈𝑈𝑈𝑈 = � Ʃ1 𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁1𝐻𝐻𝐻𝐻 𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝐻𝐻𝐻𝐻𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁1 𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

�

=

⎝

⎜
⎜
⎛

𝜆𝜆𝜆𝜆1 0 0
0 𝜆𝜆𝜆𝜆2 0
0 0 𝜆𝜆𝜆𝜆3

⋯
0 𝜌𝜌𝜌𝜌1
0 𝜌𝜌𝜌𝜌2
0 𝜌𝜌𝜌𝜌3

⋮ ⋱ ⋮
0 0 0
𝜌𝜌𝜌𝜌1∗ 𝜌𝜌𝜌𝜌2∗ 𝜌𝜌𝜌𝜌3∗

⋯
𝜆𝜆𝜆𝜆𝑚𝑚𝑚𝑚−1 𝜌𝜌𝜌𝜌𝑚𝑚𝑚𝑚−1
𝜌𝜌𝜌𝜌𝑚𝑚𝑚𝑚−1
∗ 𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚⎠
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(10) 

Eq. 𝜌𝜌𝜌𝜌𝑚𝑚𝑚𝑚 = 𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚′𝐻𝐻𝐻𝐻𝑅𝑅𝑅𝑅. The eigenvalues of the Leigh Gerschgorin 
disk theory estimation matrix RT with the radius of the first 
(n- 1) Gerschgorin disks [2]: 

𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 = |𝜌𝜌𝜌𝜌𝑚𝑚𝑚𝑚| = |𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚′𝐻𝐻𝐻𝐻𝑅𝑅𝑅𝑅|.    (11) 
Therefore, the radius 𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚of the ith Gerschgorin disk depends 
directly on the size of 𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚′𝐻𝐻𝐻𝐻𝑅𝑅𝑅𝑅 . If 𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚′  is an eigenvector of a 
sparse space, the radius of the ith Gerschgorin disk, i.e., the 
radius of the sparse disk, will decrease significantly and tend 
to zero. If 𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚′ is an eigenvector of the low-rank space, the i-
th Gerschgorin disk radius, i.e., the radius of the low-rank 
disk, will be non-zero and larger than the radius of the sparse 
disk. Therefore, the estimated rank by heuristic decision rule 
is: 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑘𝑘𝑘𝑘) = 𝑎𝑎𝑎𝑎𝑘𝑘𝑘𝑘 −
𝐷𝐷𝐷𝐷(𝑚𝑚𝑚𝑚)
𝑚𝑚𝑚𝑚−1

Ʃ𝑚𝑚𝑚𝑚=1𝑚𝑚𝑚𝑚−1𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚, (12) 
where k = 1, 2, n ... 2, and the adjustment factor D (m) is a 
constant with respect to n. The GDE (k) is computed from k 
= 1, 2, n ... 2. The GDE (k) is computed starting from k = 1, 
and when GDE (k) is negative for the first time, the rank of 
the low-rank matrix is r = k-1. As mentioned before, 
different singular values should be assigned different 
weights and it is desired that the weights do not need to be 
adjusted manually and repeatedly. Combined with the 
proposed low rank matrix rank estimation algorithm, this 
paper proposes an adaptive weighted low rank matrix 
recovery model based on the rank estimation, i.e: 

𝑌𝑌𝑌𝑌� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ||𝑋𝑋𝑋𝑋 − 𝑌𝑌𝑌𝑌||𝐸𝐸𝐸𝐸2 2⁄ + 𝜆𝜆𝜆𝜆||𝑌𝑌𝑌𝑌||𝑊𝑊𝑊𝑊𝑌𝑌𝑌𝑌
∗ , (13) 

where ,𝑊𝑊𝑊𝑊𝑌𝑌𝑌𝑌 = diag ��𝜔𝜔𝜔𝜔𝑌𝑌𝑌𝑌,𝑚𝑚𝑚𝑚�1≤𝑚𝑚𝑚𝑚≤𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚)� . Unlike the 

previous methods of, this model uses a rank estimation 
algorithm to determine the weights and penalizes the 
singular values to varying degrees. In the iterative process, 
the low-rank matrix L, which is obtained by solving the soft-
threshold operator, is expected to have its rth singular value 
greater than zero and its r+1st singular value less than zero. 
At the same time, in order to minimize the interference to 
the low-rank matrix, the weights are chosen with this factor 
in mind. Combined with the rank estimation algorithm 

proposed in the previous section, if the estimated rank of the 
low-rank matrix in the last iteration is r, the weight WY is set 
to: 

𝜔𝜔𝜔𝜔𝑌𝑌𝑌𝑌,𝑚𝑚𝑚𝑚 = 𝜎𝜎𝜎𝜎𝑟𝑟𝑟𝑟+1(𝑋𝑋𝑋𝑋)2

𝜆𝜆𝜆𝜆𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖(𝑋𝑋𝑋𝑋)
. (14) 

Compared with the weighted kernel paradigm minimization 
algorithm [8], the model proposed in this paper is able to 
adaptively set the weights according to the observation 
matrix without manually adjusting the parameters. In 
addition, the model is able to ensure that the rank of the 
recovered low-rank matrix is equal to the target rank. 
 
2.2Adaptive Weighted Low-rank Matrix 
Recovery Image Denoising Algorithm 
The detailed steps for applying the above adaptive weighted 
low-rank matrix recovery model to the image denoising task 
are as follows [16]: 

(1) Divide the image X of size N × M into m image 
blocks xi of size Y × Y. A sliding window method can be 
used to partition the image into uniformly sized image 
blocks; (2) Search for the n image blocks that are most 
similar to the current image block xi in a search window of 
size Y × Y. The n image blocks that are most similar to the 
current image block xi can be searched for in the search 
window of size Y × Y. The n image blocks that are most 
similar to the current image block xi can be selected. 
Measures such as mean square deviation or correlation 
coefficient can be used to calculate the similarity and select 
the n most similar image blocks; (3) Stack each similar 
image block by column expansion into a similar block 
matrix Xj. Expand the pixel values of each image block by 
columns and then stack these column vectors into a similar 
block matrix; (4) Form a group of all the similar block 
matrices. Stack all the similar block matrices into one large 
matrix as the input matrix; (5) Solve the group of all similar 
matrices using the adaptive weighted low-rank matrix 
recovery model described above to recover the low-rank 
structure. A low-rank matrix recovery algorithm, such as the 
kernel-paradigm-based low-rank matrix recovery method, 
can be used to solve the input matrix to obtain the recovered 
low-rank structure; (6) After obtaining the recovered low-
rank structure, convert it back to the image block form and 
stitch all the image blocks together to obtain the denoised 
image. 

Through the above steps, the above adaptive weighted 
low-rank matrix recovery model can be applied to the image 
denoising task to realize the denoising process of the image. 
For each set of similar block matrix Xj solving then there is 
the following optimization problem: 

 as follows:eigenvalue matrix. Define a you change matrix [5] 𝑈𝑈𝑈𝑈 ∈
ℝ𝑚𝑚𝑚𝑚×𝑚𝑚𝑚𝑚(𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝐻𝐻𝐻𝐻 = 𝐼𝐼𝐼𝐼) as follows: 

𝑈𝑈𝑈𝑈 = �𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚1 0
0 1�. (9) 

Then the covariance matrix after you change is: 

𝑅𝑅𝑅𝑅𝑇𝑇𝑇𝑇 = 𝑈𝑈𝑈𝑈𝐻𝐻𝐻𝐻𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁𝑈𝑈𝑈𝑈 = � Ʃ1 𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁1𝐻𝐻𝐻𝐻 𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝐻𝐻𝐻𝐻𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁1 𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
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Eq. 𝜌𝜌𝜌𝜌𝑚𝑚𝑚𝑚 = 𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚′𝐻𝐻𝐻𝐻𝑅𝑅𝑅𝑅. The eigenvalues of the Leigh Gerschgorin 
disk theory estimation matrix RT with the radius of the first 
(n- 1) Gerschgorin disks [2]: 

𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 = |𝜌𝜌𝜌𝜌𝑚𝑚𝑚𝑚| = |𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚′𝐻𝐻𝐻𝐻𝑅𝑅𝑅𝑅|.    (11) 
Therefore, the radius 𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚of the ith Gerschgorin disk depends 
directly on the size of 𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚′𝐻𝐻𝐻𝐻𝑅𝑅𝑅𝑅 . If 𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚′  is an eigenvector of a 
sparse space, the radius of the ith Gerschgorin disk, i.e., the 
radius of the sparse disk, will decrease significantly and tend 
to zero. If 𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚′ is an eigenvector of the low-rank space, the i-
th Gerschgorin disk radius, i.e., the radius of the low-rank 
disk, will be non-zero and larger than the radius of the sparse 
disk. Therefore, the estimated rank by heuristic decision rule 
is: 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑘𝑘𝑘𝑘) = 𝑎𝑎𝑎𝑎𝑘𝑘𝑘𝑘 −
𝐷𝐷𝐷𝐷(𝑚𝑚𝑚𝑚)
𝑚𝑚𝑚𝑚−1

Ʃ𝑚𝑚𝑚𝑚=1𝑚𝑚𝑚𝑚−1𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚, (12) 
where k = 1, 2, n ... 2, and the adjustment factor D (m) is a 
constant with respect to n. The GDE (k) is computed from k 
= 1, 2, n ... 2. The GDE (k) is computed starting from k = 1, 
and when GDE (k) is negative for the first time, the rank of 
the low-rank matrix is r = k-1. As mentioned before, 
different singular values should be assigned different 
weights and it is desired that the weights do not need to be 
adjusted manually and repeatedly. Combined with the 
proposed low rank matrix rank estimation algorithm, this 
paper proposes an adaptive weighted low rank matrix 
recovery model based on the rank estimation, i.e: 

𝑌𝑌𝑌𝑌� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ||𝑋𝑋𝑋𝑋 − 𝑌𝑌𝑌𝑌||𝐸𝐸𝐸𝐸2 2⁄ + 𝜆𝜆𝜆𝜆||𝑌𝑌𝑌𝑌||𝑊𝑊𝑊𝑊𝑌𝑌𝑌𝑌
∗ , (13) 

where ,𝑊𝑊𝑊𝑊𝑌𝑌𝑌𝑌 = diag ��𝜔𝜔𝜔𝜔𝑌𝑌𝑌𝑌,𝑚𝑚𝑚𝑚�1≤𝑚𝑚𝑚𝑚≤𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚)� . Unlike the 

previous methods of, this model uses a rank estimation 
algorithm to determine the weights and penalizes the 
singular values to varying degrees. In the iterative process, 
the low-rank matrix L, which is obtained by solving the soft-
threshold operator, is expected to have its rth singular value 
greater than zero and its r+1st singular value less than zero. 
At the same time, in order to minimize the interference to 
the low-rank matrix, the weights are chosen with this factor 
in mind. Combined with the rank estimation algorithm 

proposed in the previous section, if the estimated rank of the 
low-rank matrix in the last iteration is r, the weight WY is set 
to: 

𝜔𝜔𝜔𝜔𝑌𝑌𝑌𝑌,𝑚𝑚𝑚𝑚 = 𝜎𝜎𝜎𝜎𝑟𝑟𝑟𝑟+1(𝑋𝑋𝑋𝑋)2

𝜆𝜆𝜆𝜆𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖(𝑋𝑋𝑋𝑋)
. (14) 

Compared with the weighted kernel paradigm minimization 
algorithm [8], the model proposed in this paper is able to 
adaptively set the weights according to the observation 
matrix without manually adjusting the parameters. In 
addition, the model is able to ensure that the rank of the 
recovered low-rank matrix is equal to the target rank. 
 
2.2Adaptive Weighted Low-rank Matrix 
Recovery Image Denoising Algorithm 
The detailed steps for applying the above adaptive weighted 
low-rank matrix recovery model to the image denoising task 
are as follows [16]: 

(1) Divide the image X of size N × M into m image 
blocks xi of size Y × Y. A sliding window method can be 
used to partition the image into uniformly sized image 
blocks; (2) Search for the n image blocks that are most 
similar to the current image block xi in a search window of 
size Y × Y. The n image blocks that are most similar to the 
current image block xi can be searched for in the search 
window of size Y × Y. The n image blocks that are most 
similar to the current image block xi can be selected. 
Measures such as mean square deviation or correlation 
coefficient can be used to calculate the similarity and select 
the n most similar image blocks; (3) Stack each similar 
image block by column expansion into a similar block 
matrix Xj. Expand the pixel values of each image block by 
columns and then stack these column vectors into a similar 
block matrix; (4) Form a group of all the similar block 
matrices. Stack all the similar block matrices into one large 
matrix as the input matrix; (5) Solve the group of all similar 
matrices using the adaptive weighted low-rank matrix 
recovery model described above to recover the low-rank 
structure. A low-rank matrix recovery algorithm, such as the 
kernel-paradigm-based low-rank matrix recovery method, 
can be used to solve the input matrix to obtain the recovered 
low-rank structure; (6) After obtaining the recovered low-
rank structure, convert it back to the image block form and 
stitch all the image blocks together to obtain the denoised 
image. 

Through the above steps, the above adaptive weighted 
low-rank matrix recovery model can be applied to the image 
denoising task to realize the denoising process of the image. 
For each set of similar block matrix Xj solving then there is 
the following optimization problem: 

(9)
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sparse space, the radius of the ith Gerschgorin disk, i.e., the 
radius of the sparse disk, will decrease significantly and tend 
to zero. If 𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚′ is an eigenvector of the low-rank space, the i-
th Gerschgorin disk radius, i.e., the radius of the low-rank 
disk, will be non-zero and larger than the radius of the sparse 
disk. Therefore, the estimated rank by heuristic decision rule 
is: 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑘𝑘𝑘𝑘) = 𝑎𝑎𝑎𝑎𝑘𝑘𝑘𝑘 −
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Ʃ𝑚𝑚𝑚𝑚=1𝑚𝑚𝑚𝑚−1𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚, (12) 
where k = 1, 2, n ... 2, and the adjustment factor D (m) is a 
constant with respect to n. The GDE (k) is computed from k 
= 1, 2, n ... 2. The GDE (k) is computed starting from k = 1, 
and when GDE (k) is negative for the first time, the rank of 
the low-rank matrix is r = k-1. As mentioned before, 
different singular values should be assigned different 
weights and it is desired that the weights do not need to be 
adjusted manually and repeatedly. Combined with the 
proposed low rank matrix rank estimation algorithm, this 
paper proposes an adaptive weighted low rank matrix 
recovery model based on the rank estimation, i.e: 
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previous methods of, this model uses a rank estimation 
algorithm to determine the weights and penalizes the 
singular values to varying degrees. In the iterative process, 
the low-rank matrix L, which is obtained by solving the soft-
threshold operator, is expected to have its rth singular value 
greater than zero and its r+1st singular value less than zero. 
At the same time, in order to minimize the interference to 
the low-rank matrix, the weights are chosen with this factor 
in mind. Combined with the rank estimation algorithm 

proposed in the previous section, if the estimated rank of the 
low-rank matrix in the last iteration is r, the weight WY is set 
to: 
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. (14) 

Compared with the weighted kernel paradigm minimization 
algorithm [8], the model proposed in this paper is able to 
adaptively set the weights according to the observation 
matrix without manually adjusting the parameters. In 
addition, the model is able to ensure that the rank of the 
recovered low-rank matrix is equal to the target rank. 
 
2.2Adaptive Weighted Low-rank Matrix 
Recovery Image Denoising Algorithm 
The detailed steps for applying the above adaptive weighted 
low-rank matrix recovery model to the image denoising task 
are as follows [16]: 

(1) Divide the image X of size N × M into m image 
blocks xi of size Y × Y. A sliding window method can be 
used to partition the image into uniformly sized image 
blocks; (2) Search for the n image blocks that are most 
similar to the current image block xi in a search window of 
size Y × Y. The n image blocks that are most similar to the 
current image block xi can be searched for in the search 
window of size Y × Y. The n image blocks that are most 
similar to the current image block xi can be selected. 
Measures such as mean square deviation or correlation 
coefficient can be used to calculate the similarity and select 
the n most similar image blocks; (3) Stack each similar 
image block by column expansion into a similar block 
matrix Xj. Expand the pixel values of each image block by 
columns and then stack these column vectors into a similar 
block matrix; (4) Form a group of all the similar block 
matrices. Stack all the similar block matrices into one large 
matrix as the input matrix; (5) Solve the group of all similar 
matrices using the adaptive weighted low-rank matrix 
recovery model described above to recover the low-rank 
structure. A low-rank matrix recovery algorithm, such as the 
kernel-paradigm-based low-rank matrix recovery method, 
can be used to solve the input matrix to obtain the recovered 
low-rank structure; (6) After obtaining the recovered low-
rank structure, convert it back to the image block form and 
stitch all the image blocks together to obtain the denoised 
image. 

Through the above steps, the above adaptive weighted 
low-rank matrix recovery model can be applied to the image 
denoising task to realize the denoising process of the image. 
For each set of similar block matrix Xj solving then there is 
the following optimization problem: 
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radius of the sparse disk, will decrease significantly and tend 
to zero. If 𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚′ is an eigenvector of the low-rank space, the i-
th Gerschgorin disk radius, i.e., the radius of the low-rank 
disk, will be non-zero and larger than the radius of the sparse 
disk. Therefore, the estimated rank by heuristic decision rule 
is: 
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where k = 1, 2, n ... 2, and the adjustment factor D (m) is a 
constant with respect to n. The GDE (k) is computed from k 
= 1, 2, n ... 2. The GDE (k) is computed starting from k = 1, 
and when GDE (k) is negative for the first time, the rank of 
the low-rank matrix is r = k-1. As mentioned before, 
different singular values should be assigned different 
weights and it is desired that the weights do not need to be 
adjusted manually and repeatedly. Combined with the 
proposed low rank matrix rank estimation algorithm, this 
paper proposes an adaptive weighted low rank matrix 
recovery model based on the rank estimation, i.e: 
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previous methods of, this model uses a rank estimation 
algorithm to determine the weights and penalizes the 
singular values to varying degrees. In the iterative process, 
the low-rank matrix L, which is obtained by solving the soft-
threshold operator, is expected to have its rth singular value 
greater than zero and its r+1st singular value less than zero. 
At the same time, in order to minimize the interference to 
the low-rank matrix, the weights are chosen with this factor 
in mind. Combined with the rank estimation algorithm 

proposed in the previous section, if the estimated rank of the 
low-rank matrix in the last iteration is r, the weight WY is set 
to: 

𝜔𝜔𝜔𝜔𝑌𝑌𝑌𝑌,𝑚𝑚𝑚𝑚 = 𝜎𝜎𝜎𝜎𝑟𝑟𝑟𝑟+1(𝑋𝑋𝑋𝑋)2

𝜆𝜆𝜆𝜆𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖(𝑋𝑋𝑋𝑋)
. (14) 

Compared with the weighted kernel paradigm minimization 
algorithm [8], the model proposed in this paper is able to 
adaptively set the weights according to the observation 
matrix without manually adjusting the parameters. In 
addition, the model is able to ensure that the rank of the 
recovered low-rank matrix is equal to the target rank. 
 
2.2Adaptive Weighted Low-rank Matrix 
Recovery Image Denoising Algorithm 
The detailed steps for applying the above adaptive weighted 
low-rank matrix recovery model to the image denoising task 
are as follows [16]: 

(1) Divide the image X of size N × M into m image 
blocks xi of size Y × Y. A sliding window method can be 
used to partition the image into uniformly sized image 
blocks; (2) Search for the n image blocks that are most 
similar to the current image block xi in a search window of 
size Y × Y. The n image blocks that are most similar to the 
current image block xi can be searched for in the search 
window of size Y × Y. The n image blocks that are most 
similar to the current image block xi can be selected. 
Measures such as mean square deviation or correlation 
coefficient can be used to calculate the similarity and select 
the n most similar image blocks; (3) Stack each similar 
image block by column expansion into a similar block 
matrix Xj. Expand the pixel values of each image block by 
columns and then stack these column vectors into a similar 
block matrix; (4) Form a group of all the similar block 
matrices. Stack all the similar block matrices into one large 
matrix as the input matrix; (5) Solve the group of all similar 
matrices using the adaptive weighted low-rank matrix 
recovery model described above to recover the low-rank 
structure. A low-rank matrix recovery algorithm, such as the 
kernel-paradigm-based low-rank matrix recovery method, 
can be used to solve the input matrix to obtain the recovered 
low-rank structure; (6) After obtaining the recovered low-
rank structure, convert it back to the image block form and 
stitch all the image blocks together to obtain the denoised 
image. 

Through the above steps, the above adaptive weighted 
low-rank matrix recovery model can be applied to the image 
denoising task to realize the denoising process of the image. 
For each set of similar block matrix Xj solving then there is 
the following optimization problem: 
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sparse space, the radius of the ith Gerschgorin disk, i.e., the 
radius of the sparse disk, will decrease significantly and tend 
to zero. If 𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚′ is an eigenvector of the low-rank space, the i-
th Gerschgorin disk radius, i.e., the radius of the low-rank 
disk, will be non-zero and larger than the radius of the sparse 
disk. Therefore, the estimated rank by heuristic decision rule 
is: 
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= 1, 2, n ... 2. The GDE (k) is computed starting from k = 1, 
and when GDE (k) is negative for the first time, the rank of 
the low-rank matrix is r = k-1. As mentioned before, 
different singular values should be assigned different 
weights and it is desired that the weights do not need to be 
adjusted manually and repeatedly. Combined with the 
proposed low rank matrix rank estimation algorithm, this 
paper proposes an adaptive weighted low rank matrix 
recovery model based on the rank estimation, i.e: 
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previous methods of, this model uses a rank estimation 
algorithm to determine the weights and penalizes the 
singular values to varying degrees. In the iterative process, 
the low-rank matrix L, which is obtained by solving the soft-
threshold operator, is expected to have its rth singular value 
greater than zero and its r+1st singular value less than zero. 
At the same time, in order to minimize the interference to 
the low-rank matrix, the weights are chosen with this factor 
in mind. Combined with the rank estimation algorithm 

proposed in the previous section, if the estimated rank of the 
low-rank matrix in the last iteration is r, the weight WY is set 
to: 
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Compared with the weighted kernel paradigm minimization 
algorithm [8], the model proposed in this paper is able to 
adaptively set the weights according to the observation 
matrix without manually adjusting the parameters. In 
addition, the model is able to ensure that the rank of the 
recovered low-rank matrix is equal to the target rank. 
 
2.2Adaptive Weighted Low-rank Matrix 
Recovery Image Denoising Algorithm 
The detailed steps for applying the above adaptive weighted 
low-rank matrix recovery model to the image denoising task 
are as follows [16]: 

(1) Divide the image X of size N × M into m image 
blocks xi of size Y × Y. A sliding window method can be 
used to partition the image into uniformly sized image 
blocks; (2) Search for the n image blocks that are most 
similar to the current image block xi in a search window of 
size Y × Y. The n image blocks that are most similar to the 
current image block xi can be searched for in the search 
window of size Y × Y. The n image blocks that are most 
similar to the current image block xi can be selected. 
Measures such as mean square deviation or correlation 
coefficient can be used to calculate the similarity and select 
the n most similar image blocks; (3) Stack each similar 
image block by column expansion into a similar block 
matrix Xj. Expand the pixel values of each image block by 
columns and then stack these column vectors into a similar 
block matrix; (4) Form a group of all the similar block 
matrices. Stack all the similar block matrices into one large 
matrix as the input matrix; (5) Solve the group of all similar 
matrices using the adaptive weighted low-rank matrix 
recovery model described above to recover the low-rank 
structure. A low-rank matrix recovery algorithm, such as the 
kernel-paradigm-based low-rank matrix recovery method, 
can be used to solve the input matrix to obtain the recovered 
low-rank structure; (6) After obtaining the recovered low-
rank structure, convert it back to the image block form and 
stitch all the image blocks together to obtain the denoised 
image. 

Through the above steps, the above adaptive weighted 
low-rank matrix recovery model can be applied to the image 
denoising task to realize the denoising process of the image. 
For each set of similar block matrix Xj solving then there is 
the following optimization problem: 
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constant with respect to n. The GDE (k) is computed from k 
= 1, 2, n ... 2. The GDE (k) is computed starting from k = 1, 
and when GDE (k) is negative for the first time, the rank of 
the low-rank matrix is r = k-1. As mentioned before, 
different singular values should be assigned different 
weights and it is desired that the weights do not need to be 
adjusted manually and repeatedly. Combined with the 
proposed low rank matrix rank estimation algorithm, this 
paper proposes an adaptive weighted low rank matrix 
recovery model based on the rank estimation, i.e: 
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previous methods of, this model uses a rank estimation 
algorithm to determine the weights and penalizes the 
singular values to varying degrees. In the iterative process, 
the low-rank matrix L, which is obtained by solving the soft-
threshold operator, is expected to have its rth singular value 
greater than zero and its r+1st singular value less than zero. 
At the same time, in order to minimize the interference to 
the low-rank matrix, the weights are chosen with this factor 
in mind. Combined with the rank estimation algorithm 

proposed in the previous section, if the estimated rank of the 
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Compared with the weighted kernel paradigm minimization 
algorithm [8], the model proposed in this paper is able to 
adaptively set the weights according to the observation 
matrix without manually adjusting the parameters. In 
addition, the model is able to ensure that the rank of the 
recovered low-rank matrix is equal to the target rank. 
 
2.2Adaptive Weighted Low-rank Matrix 
Recovery Image Denoising Algorithm 
The detailed steps for applying the above adaptive weighted 
low-rank matrix recovery model to the image denoising task 
are as follows [16]: 

(1) Divide the image X of size N × M into m image 
blocks xi of size Y × Y. A sliding window method can be 
used to partition the image into uniformly sized image 
blocks; (2) Search for the n image blocks that are most 
similar to the current image block xi in a search window of 
size Y × Y. The n image blocks that are most similar to the 
current image block xi can be searched for in the search 
window of size Y × Y. The n image blocks that are most 
similar to the current image block xi can be selected. 
Measures such as mean square deviation or correlation 
coefficient can be used to calculate the similarity and select 
the n most similar image blocks; (3) Stack each similar 
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matrix Xj. Expand the pixel values of each image block by 
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block matrix; (4) Form a group of all the similar block 
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matrix as the input matrix; (5) Solve the group of all similar 
matrices using the adaptive weighted low-rank matrix 
recovery model described above to recover the low-rank 
structure. A low-rank matrix recovery algorithm, such as the 
kernel-paradigm-based low-rank matrix recovery method, 
can be used to solve the input matrix to obtain the recovered 
low-rank structure; (6) After obtaining the recovered low-
rank structure, convert it back to the image block form and 
stitch all the image blocks together to obtain the denoised 
image. 

Through the above steps, the above adaptive weighted 
low-rank matrix recovery model can be applied to the image 
denoising task to realize the denoising process of the image. 
For each set of similar block matrix Xj solving then there is 
the following optimization problem: 

. If 

eigenvalue matrix. Define a you change matrix [5] 𝑈𝑈𝑈𝑈 ∈
ℝ𝑚𝑚𝑚𝑚×𝑚𝑚𝑚𝑚(𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝐻𝐻𝐻𝐻 = 𝐼𝐼𝐼𝐼) as follows: 

𝑈𝑈𝑈𝑈 = �𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚1 0
0 1�. (9) 

Then the covariance matrix after you change is: 
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(10) 

Eq. 𝜌𝜌𝜌𝜌𝑚𝑚𝑚𝑚 = 𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚′𝐻𝐻𝐻𝐻𝑅𝑅𝑅𝑅. The eigenvalues of the Leigh Gerschgorin 
disk theory estimation matrix RT with the radius of the first 
(n- 1) Gerschgorin disks [2]: 

𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 = |𝜌𝜌𝜌𝜌𝑚𝑚𝑚𝑚| = |𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚′𝐻𝐻𝐻𝐻𝑅𝑅𝑅𝑅|.    (11) 
Therefore, the radius 𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚of the ith Gerschgorin disk depends 
directly on the size of 𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚′𝐻𝐻𝐻𝐻𝑅𝑅𝑅𝑅 . If 𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚′  is an eigenvector of a 
sparse space, the radius of the ith Gerschgorin disk, i.e., the 
radius of the sparse disk, will decrease significantly and tend 
to zero. If 𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚′ is an eigenvector of the low-rank space, the i-
th Gerschgorin disk radius, i.e., the radius of the low-rank 
disk, will be non-zero and larger than the radius of the sparse 
disk. Therefore, the estimated rank by heuristic decision rule 
is: 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑘𝑘𝑘𝑘) = 𝑎𝑎𝑎𝑎𝑘𝑘𝑘𝑘 −
𝐷𝐷𝐷𝐷(𝑚𝑚𝑚𝑚)
𝑚𝑚𝑚𝑚−1

Ʃ𝑚𝑚𝑚𝑚=1𝑚𝑚𝑚𝑚−1𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚, (12) 
where k = 1, 2, n ... 2, and the adjustment factor D (m) is a 
constant with respect to n. The GDE (k) is computed from k 
= 1, 2, n ... 2. The GDE (k) is computed starting from k = 1, 
and when GDE (k) is negative for the first time, the rank of 
the low-rank matrix is r = k-1. As mentioned before, 
different singular values should be assigned different 
weights and it is desired that the weights do not need to be 
adjusted manually and repeatedly. Combined with the 
proposed low rank matrix rank estimation algorithm, this 
paper proposes an adaptive weighted low rank matrix 
recovery model based on the rank estimation, i.e: 

𝑌𝑌𝑌𝑌� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ||𝑋𝑋𝑋𝑋 − 𝑌𝑌𝑌𝑌||𝐸𝐸𝐸𝐸2 2⁄ + 𝜆𝜆𝜆𝜆||𝑌𝑌𝑌𝑌||𝑊𝑊𝑊𝑊𝑌𝑌𝑌𝑌
∗ , (13) 

where ,𝑊𝑊𝑊𝑊𝑌𝑌𝑌𝑌 = diag ��𝜔𝜔𝜔𝜔𝑌𝑌𝑌𝑌,𝑚𝑚𝑚𝑚�1≤𝑚𝑚𝑚𝑚≤𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚)� . Unlike the 

previous methods of, this model uses a rank estimation 
algorithm to determine the weights and penalizes the 
singular values to varying degrees. In the iterative process, 
the low-rank matrix L, which is obtained by solving the soft-
threshold operator, is expected to have its rth singular value 
greater than zero and its r+1st singular value less than zero. 
At the same time, in order to minimize the interference to 
the low-rank matrix, the weights are chosen with this factor 
in mind. Combined with the rank estimation algorithm 

proposed in the previous section, if the estimated rank of the 
low-rank matrix in the last iteration is r, the weight WY is set 
to: 

𝜔𝜔𝜔𝜔𝑌𝑌𝑌𝑌,𝑚𝑚𝑚𝑚 = 𝜎𝜎𝜎𝜎𝑟𝑟𝑟𝑟+1(𝑋𝑋𝑋𝑋)2

𝜆𝜆𝜆𝜆𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖(𝑋𝑋𝑋𝑋)
. (14) 

Compared with the weighted kernel paradigm minimization 
algorithm [8], the model proposed in this paper is able to 
adaptively set the weights according to the observation 
matrix without manually adjusting the parameters. In 
addition, the model is able to ensure that the rank of the 
recovered low-rank matrix is equal to the target rank. 
 
2.2Adaptive Weighted Low-rank Matrix 
Recovery Image Denoising Algorithm 
The detailed steps for applying the above adaptive weighted 
low-rank matrix recovery model to the image denoising task 
are as follows [16]: 

(1) Divide the image X of size N × M into m image 
blocks xi of size Y × Y. A sliding window method can be 
used to partition the image into uniformly sized image 
blocks; (2) Search for the n image blocks that are most 
similar to the current image block xi in a search window of 
size Y × Y. The n image blocks that are most similar to the 
current image block xi can be searched for in the search 
window of size Y × Y. The n image blocks that are most 
similar to the current image block xi can be selected. 
Measures such as mean square deviation or correlation 
coefficient can be used to calculate the similarity and select 
the n most similar image blocks; (3) Stack each similar 
image block by column expansion into a similar block 
matrix Xj. Expand the pixel values of each image block by 
columns and then stack these column vectors into a similar 
block matrix; (4) Form a group of all the similar block 
matrices. Stack all the similar block matrices into one large 
matrix as the input matrix; (5) Solve the group of all similar 
matrices using the adaptive weighted low-rank matrix 
recovery model described above to recover the low-rank 
structure. A low-rank matrix recovery algorithm, such as the 
kernel-paradigm-based low-rank matrix recovery method, 
can be used to solve the input matrix to obtain the recovered 
low-rank structure; (6) After obtaining the recovered low-
rank structure, convert it back to the image block form and 
stitch all the image blocks together to obtain the denoised 
image. 

Through the above steps, the above adaptive weighted 
low-rank matrix recovery model can be applied to the image 
denoising task to realize the denoising process of the image. 
For each set of similar block matrix Xj solving then there is 
the following optimization problem: 

 is an ei-
genvector of a sparse space, the radius of the ith 
Gerschgorin disk, i.e., the radius of the sparse disk, 
will decrease significantly and tend to zero. If 
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𝑈𝑈𝑈𝑈 = �𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚1 0
0 1�. (9) 

Then the covariance matrix after you change is: 
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Eq. 𝜌𝜌𝜌𝜌𝑚𝑚𝑚𝑚 = 𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚′𝐻𝐻𝐻𝐻𝑅𝑅𝑅𝑅. The eigenvalues of the Leigh Gerschgorin 
disk theory estimation matrix RT with the radius of the first 
(n- 1) Gerschgorin disks [2]: 

𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 = |𝜌𝜌𝜌𝜌𝑚𝑚𝑚𝑚| = |𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚′𝐻𝐻𝐻𝐻𝑅𝑅𝑅𝑅|.    (11) 
Therefore, the radius 𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚of the ith Gerschgorin disk depends 
directly on the size of 𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚′𝐻𝐻𝐻𝐻𝑅𝑅𝑅𝑅 . If 𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚′  is an eigenvector of a 
sparse space, the radius of the ith Gerschgorin disk, i.e., the 
radius of the sparse disk, will decrease significantly and tend 
to zero. If 𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚′ is an eigenvector of the low-rank space, the i-
th Gerschgorin disk radius, i.e., the radius of the low-rank 
disk, will be non-zero and larger than the radius of the sparse 
disk. Therefore, the estimated rank by heuristic decision rule 
is: 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑘𝑘𝑘𝑘) = 𝑎𝑎𝑎𝑎𝑘𝑘𝑘𝑘 −
𝐷𝐷𝐷𝐷(𝑚𝑚𝑚𝑚)
𝑚𝑚𝑚𝑚−1

Ʃ𝑚𝑚𝑚𝑚=1𝑚𝑚𝑚𝑚−1𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚, (12) 
where k = 1, 2, n ... 2, and the adjustment factor D (m) is a 
constant with respect to n. The GDE (k) is computed from k 
= 1, 2, n ... 2. The GDE (k) is computed starting from k = 1, 
and when GDE (k) is negative for the first time, the rank of 
the low-rank matrix is r = k-1. As mentioned before, 
different singular values should be assigned different 
weights and it is desired that the weights do not need to be 
adjusted manually and repeatedly. Combined with the 
proposed low rank matrix rank estimation algorithm, this 
paper proposes an adaptive weighted low rank matrix 
recovery model based on the rank estimation, i.e: 
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∗ , (13) 

where ,𝑊𝑊𝑊𝑊𝑌𝑌𝑌𝑌 = diag ��𝜔𝜔𝜔𝜔𝑌𝑌𝑌𝑌,𝑚𝑚𝑚𝑚�1≤𝑚𝑚𝑚𝑚≤𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚)� . Unlike the 

previous methods of, this model uses a rank estimation 
algorithm to determine the weights and penalizes the 
singular values to varying degrees. In the iterative process, 
the low-rank matrix L, which is obtained by solving the soft-
threshold operator, is expected to have its rth singular value 
greater than zero and its r+1st singular value less than zero. 
At the same time, in order to minimize the interference to 
the low-rank matrix, the weights are chosen with this factor 
in mind. Combined with the rank estimation algorithm 

proposed in the previous section, if the estimated rank of the 
low-rank matrix in the last iteration is r, the weight WY is set 
to: 

𝜔𝜔𝜔𝜔𝑌𝑌𝑌𝑌,𝑚𝑚𝑚𝑚 = 𝜎𝜎𝜎𝜎𝑟𝑟𝑟𝑟+1(𝑋𝑋𝑋𝑋)2

𝜆𝜆𝜆𝜆𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖(𝑋𝑋𝑋𝑋)
. (14) 

Compared with the weighted kernel paradigm minimization 
algorithm [8], the model proposed in this paper is able to 
adaptively set the weights according to the observation 
matrix without manually adjusting the parameters. In 
addition, the model is able to ensure that the rank of the 
recovered low-rank matrix is equal to the target rank. 
 
2.2Adaptive Weighted Low-rank Matrix 
Recovery Image Denoising Algorithm 
The detailed steps for applying the above adaptive weighted 
low-rank matrix recovery model to the image denoising task 
are as follows [16]: 

(1) Divide the image X of size N × M into m image 
blocks xi of size Y × Y. A sliding window method can be 
used to partition the image into uniformly sized image 
blocks; (2) Search for the n image blocks that are most 
similar to the current image block xi in a search window of 
size Y × Y. The n image blocks that are most similar to the 
current image block xi can be searched for in the search 
window of size Y × Y. The n image blocks that are most 
similar to the current image block xi can be selected. 
Measures such as mean square deviation or correlation 
coefficient can be used to calculate the similarity and select 
the n most similar image blocks; (3) Stack each similar 
image block by column expansion into a similar block 
matrix Xj. Expand the pixel values of each image block by 
columns and then stack these column vectors into a similar 
block matrix; (4) Form a group of all the similar block 
matrices. Stack all the similar block matrices into one large 
matrix as the input matrix; (5) Solve the group of all similar 
matrices using the adaptive weighted low-rank matrix 
recovery model described above to recover the low-rank 
structure. A low-rank matrix recovery algorithm, such as the 
kernel-paradigm-based low-rank matrix recovery method, 
can be used to solve the input matrix to obtain the recovered 
low-rank structure; (6) After obtaining the recovered low-
rank structure, convert it back to the image block form and 
stitch all the image blocks together to obtain the denoised 
image. 

Through the above steps, the above adaptive weighted 
low-rank matrix recovery model can be applied to the image 
denoising task to realize the denoising process of the image. 
For each set of similar block matrix Xj solving then there is 
the following optimization problem: 

 is 
an eigenvector of the low-rank space, the i-th Ger-
schgorin disk radius, i.e., the radius of the low-rank 
disk, will be non-zero and larger than the radius of 
the sparse disk. Therefore, the estimated rank by 
heuristic decision rule is:
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𝑈𝑈𝑈𝑈 = �𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚1 0
0 1�. (9) 
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Eq. 𝜌𝜌𝜌𝜌𝑚𝑚𝑚𝑚 = 𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚′𝐻𝐻𝐻𝐻𝑅𝑅𝑅𝑅. The eigenvalues of the Leigh Gerschgorin 
disk theory estimation matrix RT with the radius of the first 
(n- 1) Gerschgorin disks [2]: 

𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 = |𝜌𝜌𝜌𝜌𝑚𝑚𝑚𝑚| = |𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚′𝐻𝐻𝐻𝐻𝑅𝑅𝑅𝑅|.    (11) 
Therefore, the radius 𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚of the ith Gerschgorin disk depends 
directly on the size of 𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚′𝐻𝐻𝐻𝐻𝑅𝑅𝑅𝑅 . If 𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚′  is an eigenvector of a 
sparse space, the radius of the ith Gerschgorin disk, i.e., the 
radius of the sparse disk, will decrease significantly and tend 
to zero. If 𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚′ is an eigenvector of the low-rank space, the i-
th Gerschgorin disk radius, i.e., the radius of the low-rank 
disk, will be non-zero and larger than the radius of the sparse 
disk. Therefore, the estimated rank by heuristic decision rule 
is: 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑘𝑘𝑘𝑘) = 𝑎𝑎𝑎𝑎𝑘𝑘𝑘𝑘 −
𝐷𝐷𝐷𝐷(𝑚𝑚𝑚𝑚)
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Ʃ𝑚𝑚𝑚𝑚=1𝑚𝑚𝑚𝑚−1𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚, (12) 
where k = 1, 2, n ... 2, and the adjustment factor D (m) is a 
constant with respect to n. The GDE (k) is computed from k 
= 1, 2, n ... 2. The GDE (k) is computed starting from k = 1, 
and when GDE (k) is negative for the first time, the rank of 
the low-rank matrix is r = k-1. As mentioned before, 
different singular values should be assigned different 
weights and it is desired that the weights do not need to be 
adjusted manually and repeatedly. Combined with the 
proposed low rank matrix rank estimation algorithm, this 
paper proposes an adaptive weighted low rank matrix 
recovery model based on the rank estimation, i.e: 
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∗ , (13) 

where ,𝑊𝑊𝑊𝑊𝑌𝑌𝑌𝑌 = diag ��𝜔𝜔𝜔𝜔𝑌𝑌𝑌𝑌,𝑚𝑚𝑚𝑚�1≤𝑚𝑚𝑚𝑚≤𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚)� . Unlike the 

previous methods of, this model uses a rank estimation 
algorithm to determine the weights and penalizes the 
singular values to varying degrees. In the iterative process, 
the low-rank matrix L, which is obtained by solving the soft-
threshold operator, is expected to have its rth singular value 
greater than zero and its r+1st singular value less than zero. 
At the same time, in order to minimize the interference to 
the low-rank matrix, the weights are chosen with this factor 
in mind. Combined with the rank estimation algorithm 

proposed in the previous section, if the estimated rank of the 
low-rank matrix in the last iteration is r, the weight WY is set 
to: 

𝜔𝜔𝜔𝜔𝑌𝑌𝑌𝑌,𝑚𝑚𝑚𝑚 = 𝜎𝜎𝜎𝜎𝑟𝑟𝑟𝑟+1(𝑋𝑋𝑋𝑋)2

𝜆𝜆𝜆𝜆𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖(𝑋𝑋𝑋𝑋)
. (14) 

Compared with the weighted kernel paradigm minimization 
algorithm [8], the model proposed in this paper is able to 
adaptively set the weights according to the observation 
matrix without manually adjusting the parameters. In 
addition, the model is able to ensure that the rank of the 
recovered low-rank matrix is equal to the target rank. 
 
2.2Adaptive Weighted Low-rank Matrix 
Recovery Image Denoising Algorithm 
The detailed steps for applying the above adaptive weighted 
low-rank matrix recovery model to the image denoising task 
are as follows [16]: 

(1) Divide the image X of size N × M into m image 
blocks xi of size Y × Y. A sliding window method can be 
used to partition the image into uniformly sized image 
blocks; (2) Search for the n image blocks that are most 
similar to the current image block xi in a search window of 
size Y × Y. The n image blocks that are most similar to the 
current image block xi can be searched for in the search 
window of size Y × Y. The n image blocks that are most 
similar to the current image block xi can be selected. 
Measures such as mean square deviation or correlation 
coefficient can be used to calculate the similarity and select 
the n most similar image blocks; (3) Stack each similar 
image block by column expansion into a similar block 
matrix Xj. Expand the pixel values of each image block by 
columns and then stack these column vectors into a similar 
block matrix; (4) Form a group of all the similar block 
matrices. Stack all the similar block matrices into one large 
matrix as the input matrix; (5) Solve the group of all similar 
matrices using the adaptive weighted low-rank matrix 
recovery model described above to recover the low-rank 
structure. A low-rank matrix recovery algorithm, such as the 
kernel-paradigm-based low-rank matrix recovery method, 
can be used to solve the input matrix to obtain the recovered 
low-rank structure; (6) After obtaining the recovered low-
rank structure, convert it back to the image block form and 
stitch all the image blocks together to obtain the denoised 
image. 

Through the above steps, the above adaptive weighted 
low-rank matrix recovery model can be applied to the image 
denoising task to realize the denoising process of the image. 
For each set of similar block matrix Xj solving then there is 
the following optimization problem: 

(12)

where k = 1, 2, n ... 2, and the adjustment factor D (m) is 
a constant with respect to n. The GDE (k) is computed 
from k = 1, 2, n ... 2. The GDE (k) is computed start-
ing from k = 1, and when GDE (k) is negative for the 
first time, the rank of the low-rank matrix is r = k-1. 
As mentioned before, different singular values should 
be assigned different weights and it is desired that the 
weights do not need to be adjusted manually and re-
peatedly. Combined with the proposed low rank ma-
trix rank estimation algorithm, this paper proposes 
an adaptive weighted low rank matrix recovery model 
based on the rank estimation, i.e:
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Eq. 𝜌𝜌𝜌𝜌𝑚𝑚𝑚𝑚 = 𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚′𝐻𝐻𝐻𝐻𝑅𝑅𝑅𝑅. The eigenvalues of the Leigh Gerschgorin 
disk theory estimation matrix RT with the radius of the first 
(n- 1) Gerschgorin disks [2]: 
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Therefore, the radius 𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚of the ith Gerschgorin disk depends 
directly on the size of 𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚′𝐻𝐻𝐻𝐻𝑅𝑅𝑅𝑅 . If 𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚′  is an eigenvector of a 
sparse space, the radius of the ith Gerschgorin disk, i.e., the 
radius of the sparse disk, will decrease significantly and tend 
to zero. If 𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚′ is an eigenvector of the low-rank space, the i-
th Gerschgorin disk radius, i.e., the radius of the low-rank 
disk, will be non-zero and larger than the radius of the sparse 
disk. Therefore, the estimated rank by heuristic decision rule 
is: 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑘𝑘𝑘𝑘) = 𝑎𝑎𝑎𝑎𝑘𝑘𝑘𝑘 −
𝐷𝐷𝐷𝐷(𝑚𝑚𝑚𝑚)
𝑚𝑚𝑚𝑚−1

Ʃ𝑚𝑚𝑚𝑚=1𝑚𝑚𝑚𝑚−1𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚, (12) 
where k = 1, 2, n ... 2, and the adjustment factor D (m) is a 
constant with respect to n. The GDE (k) is computed from k 
= 1, 2, n ... 2. The GDE (k) is computed starting from k = 1, 
and when GDE (k) is negative for the first time, the rank of 
the low-rank matrix is r = k-1. As mentioned before, 
different singular values should be assigned different 
weights and it is desired that the weights do not need to be 
adjusted manually and repeatedly. Combined with the 
proposed low rank matrix rank estimation algorithm, this 
paper proposes an adaptive weighted low rank matrix 
recovery model based on the rank estimation, i.e: 
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previous methods of, this model uses a rank estimation 
algorithm to determine the weights and penalizes the 
singular values to varying degrees. In the iterative process, 
the low-rank matrix L, which is obtained by solving the soft-
threshold operator, is expected to have its rth singular value 
greater than zero and its r+1st singular value less than zero. 
At the same time, in order to minimize the interference to 
the low-rank matrix, the weights are chosen with this factor 
in mind. Combined with the rank estimation algorithm 

proposed in the previous section, if the estimated rank of the 
low-rank matrix in the last iteration is r, the weight WY is set 
to: 

𝜔𝜔𝜔𝜔𝑌𝑌𝑌𝑌,𝑚𝑚𝑚𝑚 = 𝜎𝜎𝜎𝜎𝑟𝑟𝑟𝑟+1(𝑋𝑋𝑋𝑋)2

𝜆𝜆𝜆𝜆𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖(𝑋𝑋𝑋𝑋)
. (14) 

Compared with the weighted kernel paradigm minimization 
algorithm [8], the model proposed in this paper is able to 
adaptively set the weights according to the observation 
matrix without manually adjusting the parameters. In 
addition, the model is able to ensure that the rank of the 
recovered low-rank matrix is equal to the target rank. 
 
2.2Adaptive Weighted Low-rank Matrix 
Recovery Image Denoising Algorithm 
The detailed steps for applying the above adaptive weighted 
low-rank matrix recovery model to the image denoising task 
are as follows [16]: 

(1) Divide the image X of size N × M into m image 
blocks xi of size Y × Y. A sliding window method can be 
used to partition the image into uniformly sized image 
blocks; (2) Search for the n image blocks that are most 
similar to the current image block xi in a search window of 
size Y × Y. The n image blocks that are most similar to the 
current image block xi can be searched for in the search 
window of size Y × Y. The n image blocks that are most 
similar to the current image block xi can be selected. 
Measures such as mean square deviation or correlation 
coefficient can be used to calculate the similarity and select 
the n most similar image blocks; (3) Stack each similar 
image block by column expansion into a similar block 
matrix Xj. Expand the pixel values of each image block by 
columns and then stack these column vectors into a similar 
block matrix; (4) Form a group of all the similar block 
matrices. Stack all the similar block matrices into one large 
matrix as the input matrix; (5) Solve the group of all similar 
matrices using the adaptive weighted low-rank matrix 
recovery model described above to recover the low-rank 
structure. A low-rank matrix recovery algorithm, such as the 
kernel-paradigm-based low-rank matrix recovery method, 
can be used to solve the input matrix to obtain the recovered 
low-rank structure; (6) After obtaining the recovered low-
rank structure, convert it back to the image block form and 
stitch all the image blocks together to obtain the denoised 
image. 

Through the above steps, the above adaptive weighted 
low-rank matrix recovery model can be applied to the image 
denoising task to realize the denoising process of the image. 
For each set of similar block matrix Xj solving then there is 
the following optimization problem: 

(13)
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eigenvalue matrix. Define a you change matrix [5] 𝑈𝑈𝑈𝑈 ∈
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disk theory estimation matrix RT with the radius of the first 
(n- 1) Gerschgorin disks [2]: 
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directly on the size of 𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚′𝐻𝐻𝐻𝐻𝑅𝑅𝑅𝑅 . If 𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚′  is an eigenvector of a 
sparse space, the radius of the ith Gerschgorin disk, i.e., the 
radius of the sparse disk, will decrease significantly and tend 
to zero. If 𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚′ is an eigenvector of the low-rank space, the i-
th Gerschgorin disk radius, i.e., the radius of the low-rank 
disk, will be non-zero and larger than the radius of the sparse 
disk. Therefore, the estimated rank by heuristic decision rule 
is: 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑘𝑘𝑘𝑘) = 𝑎𝑎𝑎𝑎𝑘𝑘𝑘𝑘 −
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where k = 1, 2, n ... 2, and the adjustment factor D (m) is a 
constant with respect to n. The GDE (k) is computed from k 
= 1, 2, n ... 2. The GDE (k) is computed starting from k = 1, 
and when GDE (k) is negative for the first time, the rank of 
the low-rank matrix is r = k-1. As mentioned before, 
different singular values should be assigned different 
weights and it is desired that the weights do not need to be 
adjusted manually and repeatedly. Combined with the 
proposed low rank matrix rank estimation algorithm, this 
paper proposes an adaptive weighted low rank matrix 
recovery model based on the rank estimation, i.e: 
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where ,𝑊𝑊𝑊𝑊𝑌𝑌𝑌𝑌 = diag ��𝜔𝜔𝜔𝜔𝑌𝑌𝑌𝑌,𝑚𝑚𝑚𝑚�1≤𝑚𝑚𝑚𝑚≤𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚)� . Unlike the 

previous methods of, this model uses a rank estimation 
algorithm to determine the weights and penalizes the 
singular values to varying degrees. In the iterative process, 
the low-rank matrix L, which is obtained by solving the soft-
threshold operator, is expected to have its rth singular value 
greater than zero and its r+1st singular value less than zero. 
At the same time, in order to minimize the interference to 
the low-rank matrix, the weights are chosen with this factor 
in mind. Combined with the rank estimation algorithm 

proposed in the previous section, if the estimated rank of the 
low-rank matrix in the last iteration is r, the weight WY is set 
to: 

𝜔𝜔𝜔𝜔𝑌𝑌𝑌𝑌,𝑚𝑚𝑚𝑚 = 𝜎𝜎𝜎𝜎𝑟𝑟𝑟𝑟+1(𝑋𝑋𝑋𝑋)2

𝜆𝜆𝜆𝜆𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖(𝑋𝑋𝑋𝑋)
. (14) 

Compared with the weighted kernel paradigm minimization 
algorithm [8], the model proposed in this paper is able to 
adaptively set the weights according to the observation 
matrix without manually adjusting the parameters. In 
addition, the model is able to ensure that the rank of the 
recovered low-rank matrix is equal to the target rank. 
 
2.2Adaptive Weighted Low-rank Matrix 
Recovery Image Denoising Algorithm 
The detailed steps for applying the above adaptive weighted 
low-rank matrix recovery model to the image denoising task 
are as follows [16]: 

(1) Divide the image X of size N × M into m image 
blocks xi of size Y × Y. A sliding window method can be 
used to partition the image into uniformly sized image 
blocks; (2) Search for the n image blocks that are most 
similar to the current image block xi in a search window of 
size Y × Y. The n image blocks that are most similar to the 
current image block xi can be searched for in the search 
window of size Y × Y. The n image blocks that are most 
similar to the current image block xi can be selected. 
Measures such as mean square deviation or correlation 
coefficient can be used to calculate the similarity and select 
the n most similar image blocks; (3) Stack each similar 
image block by column expansion into a similar block 
matrix Xj. Expand the pixel values of each image block by 
columns and then stack these column vectors into a similar 
block matrix; (4) Form a group of all the similar block 
matrices. Stack all the similar block matrices into one large 
matrix as the input matrix; (5) Solve the group of all similar 
matrices using the adaptive weighted low-rank matrix 
recovery model described above to recover the low-rank 
structure. A low-rank matrix recovery algorithm, such as the 
kernel-paradigm-based low-rank matrix recovery method, 
can be used to solve the input matrix to obtain the recovered 
low-rank structure; (6) After obtaining the recovered low-
rank structure, convert it back to the image block form and 
stitch all the image blocks together to obtain the denoised 
image. 

Through the above steps, the above adaptive weighted 
low-rank matrix recovery model can be applied to the image 
denoising task to realize the denoising process of the image. 
For each set of similar block matrix Xj solving then there is 
the following optimization problem: 

. Unlike the 
previous methods of, this model uses a rank esti-
mation algorithm to determine the weights and 
penalizes the singular values to varying degrees. In 
the iterative process, the low-rank matrix L, which 
is obtained by solving the soft-threshold operator, 
is expected to have its rth singular value greater 
than zero and its r+1st singular value less than zero. 
At the same time, in order to minimize the interfer-
ence to the low-rank matrix, the weights are chosen 
with this factor in mind. Combined with the rank 
estimation algorithm proposed in the previous sec-
tion, if the estimated rank of the low-rank matrix in 
the last iteration is r, the weight WY is set to:
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ℝ𝑚𝑚𝑚𝑚×𝑚𝑚𝑚𝑚(𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝐻𝐻𝐻𝐻 = 𝐼𝐼𝐼𝐼) as follows: 

𝑈𝑈𝑈𝑈 = �𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚1 0
0 1�. (9) 

Then the covariance matrix after you change is: 

𝑅𝑅𝑅𝑅𝑇𝑇𝑇𝑇 = 𝑈𝑈𝑈𝑈𝐻𝐻𝐻𝐻𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁𝑈𝑈𝑈𝑈 = � Ʃ1 𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁1𝐻𝐻𝐻𝐻 𝑅𝑅𝑅𝑅
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⎜
⎛
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(10) 

Eq. 𝜌𝜌𝜌𝜌𝑚𝑚𝑚𝑚 = 𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚′𝐻𝐻𝐻𝐻𝑅𝑅𝑅𝑅. The eigenvalues of the Leigh Gerschgorin 
disk theory estimation matrix RT with the radius of the first 
(n- 1) Gerschgorin disks [2]: 

𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 = |𝜌𝜌𝜌𝜌𝑚𝑚𝑚𝑚| = |𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚′𝐻𝐻𝐻𝐻𝑅𝑅𝑅𝑅|.    (11) 
Therefore, the radius 𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚of the ith Gerschgorin disk depends 
directly on the size of 𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚′𝐻𝐻𝐻𝐻𝑅𝑅𝑅𝑅 . If 𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚′  is an eigenvector of a 
sparse space, the radius of the ith Gerschgorin disk, i.e., the 
radius of the sparse disk, will decrease significantly and tend 
to zero. If 𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚′ is an eigenvector of the low-rank space, the i-
th Gerschgorin disk radius, i.e., the radius of the low-rank 
disk, will be non-zero and larger than the radius of the sparse 
disk. Therefore, the estimated rank by heuristic decision rule 
is: 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑘𝑘𝑘𝑘) = 𝑎𝑎𝑎𝑎𝑘𝑘𝑘𝑘 −
𝐷𝐷𝐷𝐷(𝑚𝑚𝑚𝑚)
𝑚𝑚𝑚𝑚−1

Ʃ𝑚𝑚𝑚𝑚=1𝑚𝑚𝑚𝑚−1𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚, (12) 
where k = 1, 2, n ... 2, and the adjustment factor D (m) is a 
constant with respect to n. The GDE (k) is computed from k 
= 1, 2, n ... 2. The GDE (k) is computed starting from k = 1, 
and when GDE (k) is negative for the first time, the rank of 
the low-rank matrix is r = k-1. As mentioned before, 
different singular values should be assigned different 
weights and it is desired that the weights do not need to be 
adjusted manually and repeatedly. Combined with the 
proposed low rank matrix rank estimation algorithm, this 
paper proposes an adaptive weighted low rank matrix 
recovery model based on the rank estimation, i.e: 

𝑌𝑌𝑌𝑌� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ||𝑋𝑋𝑋𝑋 − 𝑌𝑌𝑌𝑌||𝐸𝐸𝐸𝐸2 2⁄ + 𝜆𝜆𝜆𝜆||𝑌𝑌𝑌𝑌||𝑊𝑊𝑊𝑊𝑌𝑌𝑌𝑌
∗ , (13) 

where ,𝑊𝑊𝑊𝑊𝑌𝑌𝑌𝑌 = diag ��𝜔𝜔𝜔𝜔𝑌𝑌𝑌𝑌,𝑚𝑚𝑚𝑚�1≤𝑚𝑚𝑚𝑚≤𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚)� . Unlike the 

previous methods of, this model uses a rank estimation 
algorithm to determine the weights and penalizes the 
singular values to varying degrees. In the iterative process, 
the low-rank matrix L, which is obtained by solving the soft-
threshold operator, is expected to have its rth singular value 
greater than zero and its r+1st singular value less than zero. 
At the same time, in order to minimize the interference to 
the low-rank matrix, the weights are chosen with this factor 
in mind. Combined with the rank estimation algorithm 

proposed in the previous section, if the estimated rank of the 
low-rank matrix in the last iteration is r, the weight WY is set 
to: 

𝜔𝜔𝜔𝜔𝑌𝑌𝑌𝑌,𝑚𝑚𝑚𝑚 = 𝜎𝜎𝜎𝜎𝑟𝑟𝑟𝑟+1(𝑋𝑋𝑋𝑋)2

𝜆𝜆𝜆𝜆𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖(𝑋𝑋𝑋𝑋)
. (14) 

Compared with the weighted kernel paradigm minimization 
algorithm [8], the model proposed in this paper is able to 
adaptively set the weights according to the observation 
matrix without manually adjusting the parameters. In 
addition, the model is able to ensure that the rank of the 
recovered low-rank matrix is equal to the target rank. 
 
2.2Adaptive Weighted Low-rank Matrix 
Recovery Image Denoising Algorithm 
The detailed steps for applying the above adaptive weighted 
low-rank matrix recovery model to the image denoising task 
are as follows [16]: 

(1) Divide the image X of size N × M into m image 
blocks xi of size Y × Y. A sliding window method can be 
used to partition the image into uniformly sized image 
blocks; (2) Search for the n image blocks that are most 
similar to the current image block xi in a search window of 
size Y × Y. The n image blocks that are most similar to the 
current image block xi can be searched for in the search 
window of size Y × Y. The n image blocks that are most 
similar to the current image block xi can be selected. 
Measures such as mean square deviation or correlation 
coefficient can be used to calculate the similarity and select 
the n most similar image blocks; (3) Stack each similar 
image block by column expansion into a similar block 
matrix Xj. Expand the pixel values of each image block by 
columns and then stack these column vectors into a similar 
block matrix; (4) Form a group of all the similar block 
matrices. Stack all the similar block matrices into one large 
matrix as the input matrix; (5) Solve the group of all similar 
matrices using the adaptive weighted low-rank matrix 
recovery model described above to recover the low-rank 
structure. A low-rank matrix recovery algorithm, such as the 
kernel-paradigm-based low-rank matrix recovery method, 
can be used to solve the input matrix to obtain the recovered 
low-rank structure; (6) After obtaining the recovered low-
rank structure, convert it back to the image block form and 
stitch all the image blocks together to obtain the denoised 
image. 

Through the above steps, the above adaptive weighted 
low-rank matrix recovery model can be applied to the image 
denoising task to realize the denoising process of the image. 
For each set of similar block matrix Xj solving then there is 
the following optimization problem: 

(14)

Compared with the weighted kernel paradigm min-
imization algorithm [8], the model proposed in this 
paper is able to adaptively set the weights according 
to the observation matrix without manually adjusting 
the parameters. In addition, the model is able to en-
sure that the rank of the recovered low-rank matrix is 
equal to the target rank.

2.2. Adaptive Weighted Low-rank Matrix 
Recovery Image Denoising Algorithm
The detailed steps for applying the above adaptive 
weighted low-rank matrix recovery model to the im-
age denoising task are as follows [16]:
(1) Divide the image X of size N × M into m image 
blocks xi of size Y × Y. A sliding window method can 
be used to partition the image into uniformly sized 
image blocks; (2) Search for the n image blocks that 
are most similar to the current image block xi in a 
search window of size Y × Y. The n image blocks that 
are most similar to the current image block xi can be 
searched for in the search window of size Y × Y. The n 
image blocks that are most similar to the current im-
age block xi can be selected. Measures such as mean 
square deviation or correlation coefficient can be 
used to calculate the similarity and select the n most 
similar image blocks; (3) Stack each similar image 
block by column expansion into a similar block ma-
trix Xj. Expand the pixel values of each image block by 
columns and then stack these column vectors into a 
similar block matrix; (4) Form a group of all the sim-
ilar block matrices. Stack all the similar block matri-
ces into one large matrix as the input matrix; (5) Solve 
the group of all similar matrices using the adaptive 
weighted low-rank matrix recovery model described 
above to recover the low-rank structure. A low-rank 
matrix recovery algorithm, such as the kernel-para-
digm-based low-rank matrix recovery method, can be 
used to solve the input matrix to obtain the recovered 
low-rank structure; (6) After obtaining the recovered 
low-rank structure, convert it back to the image block 
form and stitch all the image blocks together to obtain 
the denoised image.
Through the above steps, the above adaptive weighted 
low-rank matrix recovery model can be applied to the 

image denoising task to realize the denoising process 
of the image. For each set of similar block matrix Xj 
solving then there is the following optimization prob-
lem:

𝑌𝑌𝑌𝑌�𝑗𝑗𝑗𝑗 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝑌𝑌𝑗𝑗𝑗𝑗
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 |�𝑋𝑋𝑋𝑋𝑗𝑗𝑗𝑗 − 𝑌𝑌𝑌𝑌𝑗𝑗𝑗𝑗�|𝐸𝐸𝐸𝐸2 2⁄ + 𝜆𝜆𝜆𝜆|�𝑌𝑌𝑌𝑌𝑗𝑗𝑗𝑗�|𝑊𝑊𝑊𝑊𝑌𝑌𝑌𝑌,∗

. (15) 
For the minimization problem (15), the closed-form 
solution can be derived by the weighted soft-thresholding 
algorithm as: 

𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚�𝑌𝑌𝑌𝑌�𝑗𝑗𝑗𝑗� = max�𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚�𝑋𝑋𝑋𝑋𝑗𝑗𝑗𝑗� − 𝜆𝜆𝜆𝜆𝜔𝜔𝜔𝜔𝑌𝑌𝑌𝑌,𝑚𝑚𝑚𝑚 , 0�. (16) 
From the weights given in Equation (14), combined with 
Eq. (16), the final singular value closed-form solution is 
given as: 

𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚�𝑌𝑌𝑌𝑌�𝑗𝑗𝑗𝑗� = �𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚�𝑋𝑋𝑋𝑋𝑗𝑗𝑗𝑗� −
𝜎𝜎𝜎𝜎𝑟𝑟𝑟𝑟+1�𝑋𝑋𝑋𝑋𝑗𝑗𝑗𝑗�

2

𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚�𝑋𝑋𝑋𝑋𝑗𝑗𝑗𝑗�
, 𝑖𝑖𝑖𝑖 ≤ 𝑎𝑎𝑎𝑎

0, 𝑖𝑖𝑖𝑖 > 𝑎𝑎𝑎𝑎
 (17) 

Equation (17) provides the solution to estimate the low 
rank matrix𝑌𝑌𝑌𝑌�𝑗𝑗𝑗𝑗 and finally the denoised image Y is obtained 

by combining all the group matrices �𝑌𝑌𝑌𝑌�𝑗𝑗𝑗𝑗�𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚 . In the actual 

denoising process, better image results can be obtained by 
performing multiple iterations of the above denoising 
process. The complete rank estimation based adaptive 
weighted low rank matrix recovery denoising algorithm is 
summarized in Algorithm 1. 
Algorithm 1: Denoising algorithm based on 
adaptive weighted low-rank matrix recovery 
Input: Noisy image Y 
Output: Denoised image Lk 
1. Initialize L0 = Y, Y0 = L 
2. For k = 1 to Max-Iter 
3. Iterative regularization: Yk=Lk-1+δ(Y- Lk-1) 
4. For each patch n in Yk 
5. Find similar patches to construct matrix Yj 
6. Estimate r using Eq. (12) 
7. Estimate Lj using Eq. (17) 
8. End loop 
9. Aggregate Lj to form the denoised image Lk 
10. End loop 

3. Experimental Results and Analysis 
In order to verify the effectiveness of the adaptive weighted 
low-rank matrix recovery algorithm proposed in this paper 
on image denoising tasks, we selected images from standard 
image libraries and the Berkeley dataset for experimental 
testing. We used two metrics, Peak Signal-to-Noise Ratio 
(PSNR) and Structural Similarity (SSIM), to quantitatively 
evaluate and analyze the algorithms against the same type of 
classical algorithms, BM3D, NNM, Weighted Kernel 
Paradigm Minimization, RRC, NLH and DNcnn. The codes 
of all compared algorithms are taken from those provided by 
the original authors. We first compare the performance of 
the adaptive weighted low-rank matrix recovery algorithm 
proposed in this paper with the BM3D algorithm on the 
denoising task. The experimental results show that our 
algorithm outperforms the BM3D algorithm in both PSNR 
and SSIM metrics. Next, we compare the algorithm 

proposed in this paper with the NNM algorithm. The 
experimental results show that our algorithm significantly 
outperforms the NNM algorithm in both PSNR and SSIM 
metrics. We also compared with classical algorithms such as 
weighted kernel paradigm minimization, RRC, NLH and 
DNcnn. The experimental results show that our algorithm 
achieves the best performance in both PSNR and SSIM 
metrics. In summary, our experimental results demonstrate 
the effectiveness of the adaptive weighted low-rank matrix 
recovery algorithm proposed in this paper on the task of 
image denoising. Compared with other classical algorithms, 
our algorithm has obvious advantages in both PSNR and 
SSIM metrics. The experimental parameters are set as 
follows, the search window L × L is 30 × 30. for the noise 
standard deviation ， Noisy images with  𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎 ≤ 30, 30 <
𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎 ≤ 50, 50 < 𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎 ≤ 75 , and 𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎 > 75 , the image  𝑦𝑦𝑦𝑦𝑚𝑚𝑚𝑚 
dimensions are set to 6×6, 7×7, 8×8, and 9×9, respectively, 
and the number of searching similar blocks m are 70, 90, 120 
and 140, and the number of iterations of the algorithm is 8, 
10, 12, and 14, respectively. 

It is well known that the more pronounced the image 
noise is, the worse the training phase will make the network 
recognition, and to some extent the network is more 
demanding. Figure 1 displays the test images from a 
standard database. We added Gaussian noise (mean 0, 
standard deviations 30, 50, 75, and 100) to these images to 
create noisy versions. Figure 2 presents the average PSNR 
and SSIM values for different noise levels, comparing 
various algorithms with the one presented in this paper. The 
exact PSNR and SSIM values are in Tables 1 and 2, with the 
best results in bold and the second best underlined. 

 
Figure 1 Test images used for comparison of denoising 

algorithms 

(15)

For the minimization problem (15), the closed-form 
solution can be derived by the weighted soft-thresh-
olding algorithm as:

𝑌𝑌𝑌𝑌�𝑗𝑗𝑗𝑗 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝑌𝑌𝑗𝑗𝑗𝑗
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. (15) 
For the minimization problem (15), the closed-form 
solution can be derived by the weighted soft-thresholding 
algorithm as: 

𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚�𝑌𝑌𝑌𝑌�𝑗𝑗𝑗𝑗� = max�𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚�𝑋𝑋𝑋𝑋𝑗𝑗𝑗𝑗� − 𝜆𝜆𝜆𝜆𝜔𝜔𝜔𝜔𝑌𝑌𝑌𝑌,𝑚𝑚𝑚𝑚 , 0�. (16) 
From the weights given in Equation (14), combined with 
Eq. (16), the final singular value closed-form solution is 
given as: 
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Equation (17) provides the solution to estimate the low 
rank matrix𝑌𝑌𝑌𝑌�𝑗𝑗𝑗𝑗 and finally the denoised image Y is obtained 
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denoising process, better image results can be obtained by 
performing multiple iterations of the above denoising 
process. The complete rank estimation based adaptive 
weighted low rank matrix recovery denoising algorithm is 
summarized in Algorithm 1. 
Algorithm 1: Denoising algorithm based on 
adaptive weighted low-rank matrix recovery 
Input: Noisy image Y 
Output: Denoised image Lk 
1. Initialize L0 = Y, Y0 = L 
2. For k = 1 to Max-Iter 
3. Iterative regularization: Yk=Lk-1+δ(Y- Lk-1) 
4. For each patch n in Yk 
5. Find similar patches to construct matrix Yj 
6. Estimate r using Eq. (12) 
7. Estimate Lj using Eq. (17) 
8. End loop 
9. Aggregate Lj to form the denoised image Lk 
10. End loop 

3. Experimental Results and Analysis 
In order to verify the effectiveness of the adaptive weighted 
low-rank matrix recovery algorithm proposed in this paper 
on image denoising tasks, we selected images from standard 
image libraries and the Berkeley dataset for experimental 
testing. We used two metrics, Peak Signal-to-Noise Ratio 
(PSNR) and Structural Similarity (SSIM), to quantitatively 
evaluate and analyze the algorithms against the same type of 
classical algorithms, BM3D, NNM, Weighted Kernel 
Paradigm Minimization, RRC, NLH and DNcnn. The codes 
of all compared algorithms are taken from those provided by 
the original authors. We first compare the performance of 
the adaptive weighted low-rank matrix recovery algorithm 
proposed in this paper with the BM3D algorithm on the 
denoising task. The experimental results show that our 
algorithm outperforms the BM3D algorithm in both PSNR 
and SSIM metrics. Next, we compare the algorithm 

proposed in this paper with the NNM algorithm. The 
experimental results show that our algorithm significantly 
outperforms the NNM algorithm in both PSNR and SSIM 
metrics. We also compared with classical algorithms such as 
weighted kernel paradigm minimization, RRC, NLH and 
DNcnn. The experimental results show that our algorithm 
achieves the best performance in both PSNR and SSIM 
metrics. In summary, our experimental results demonstrate 
the effectiveness of the adaptive weighted low-rank matrix 
recovery algorithm proposed in this paper on the task of 
image denoising. Compared with other classical algorithms, 
our algorithm has obvious advantages in both PSNR and 
SSIM metrics. The experimental parameters are set as 
follows, the search window L × L is 30 × 30. for the noise 
standard deviation ， Noisy images with  𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎 ≤ 30, 30 <
𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎 ≤ 50, 50 < 𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎 ≤ 75 , and 𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎 > 75 , the image  𝑦𝑦𝑦𝑦𝑚𝑚𝑚𝑚 
dimensions are set to 6×6, 7×7, 8×8, and 9×9, respectively, 
and the number of searching similar blocks m are 70, 90, 120 
and 140, and the number of iterations of the algorithm is 8, 
10, 12, and 14, respectively. 

It is well known that the more pronounced the image 
noise is, the worse the training phase will make the network 
recognition, and to some extent the network is more 
demanding. Figure 1 displays the test images from a 
standard database. We added Gaussian noise (mean 0, 
standard deviations 30, 50, 75, and 100) to these images to 
create noisy versions. Figure 2 presents the average PSNR 
and SSIM values for different noise levels, comparing 
various algorithms with the one presented in this paper. The 
exact PSNR and SSIM values are in Tables 1 and 2, with the 
best results in bold and the second best underlined. 
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SSIM metrics. The experimental parameters are set as 
follows, the search window L × L is 30 × 30. for the noise 
standard deviation ， Noisy images with  𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎 ≤ 30, 30 <
𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎 ≤ 50, 50 < 𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎 ≤ 75 , and 𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎 > 75 , the image  𝑦𝑦𝑦𝑦𝑚𝑚𝑚𝑚 
dimensions are set to 6×6, 7×7, 8×8, and 9×9, respectively, 
and the number of searching similar blocks m are 70, 90, 120 
and 140, and the number of iterations of the algorithm is 8, 
10, 12, and 14, respectively. 

It is well known that the more pronounced the image 
noise is, the worse the training phase will make the network 
recognition, and to some extent the network is more 
demanding. Figure 1 displays the test images from a 
standard database. We added Gaussian noise (mean 0, 
standard deviations 30, 50, 75, and 100) to these images to 
create noisy versions. Figure 2 presents the average PSNR 
and SSIM values for different noise levels, comparing 
various algorithms with the one presented in this paper. The 
exact PSNR and SSIM values are in Tables 1 and 2, with the 
best results in bold and the second best underlined. 

 
Figure 1 Test images used for comparison of denoising 

algorithms 

. In the actual denoising process, better image 
results can be obtained by performing multiple it-
erations of the above denoising process. The com-
plete rank estimation based adaptive weighted low 
rank matrix recovery denoising algorithm is sum-
marized in Algorithm 1.

Algorithm 1: Denoising algorithm based on adaptive 
weighted low-rank matrix recovery

Input: Noisy image Y
Output: Denoised image Lk

1. Initialize L0 = Y, Y0 = L
2. For k = 1 to Max-Iter
3. Iterative regularization: Yk=Lk-1+δ(Y- Lk-1)
4. For each patch n in Yk

5. Find similar patches to construct matrix Yj

6. Estimate r using Eq. (12)
7. Estimate Lj using Eq. (17)
8. End loop
9. Aggregate Lj to form the denoised image Lk

10. End loop
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3. Experimental Results and Analysis
In order to verify the effectiveness of the adap-
tive weighted low-rank matrix recovery algorithm 
proposed in this paper on image denoising tasks, 
we selected images from standard image libraries 
and the Berkeley dataset for experimental test-
ing. We used two metrics, Peak Signal-to-Noise 
Ratio (PSNR) and Structural Similarity (SSIM), 
to quantitatively evaluate and analyze the algo-
rithms against the same type of classical algo-
rithms, BM3D, NNM, Weighted Kernel Paradigm 
Minimization, RRC, NLH and DNcnn. The codes 
of all compared algorithms are taken from those 
provided by the original authors. We first compare 
the performance of the adaptive weighted low-rank 
matrix recovery algorithm proposed in this paper 
with the BM3D algorithm on the denoising task. 
The experimental results show that our algorithm 
outperforms the BM3D algorithm in both PSNR 
and SSIM metrics. Next, we compare the algorithm 
proposed in this paper with the NNM algorithm. 
The experimental results show that our algorithm 
significantly outperforms the NNM algorithm in 
both PSNR and SSIM metrics. We also compared 
with classical algorithms such as weighted kernel 

paradigm minimization, RRC, NLH and DNcnn. 
The experimental results show that our algorithm 
achieves the best performance in both PSNR and 
SSIM metrics. In summary, our experimental re-
sults demonstrate the effectiveness of the adaptive 
weighted low-rank matrix recovery algorithm pro-
posed in this paper on the task of image denoising. 
Compared with other classical algorithms, our al-
gorithm has obvious advantages in both PSNR and 
SSIM metrics. The experimental parameters are 
set as follows, the search window L × L is 30 × 30. 
for the noise standard deviation. Noisy images with 
σn ≤ 30, 30 < σn ≤ 50, 50 < σn ≤ 75 and σn > 75, 
the image yi dimensions are set to 6×6, 7×7, 8×8, and 
9×9, respectively, and the number of searching sim-
ilar blocks m are 70, 90, 120 and 140, and the num-
ber of iterations of the algorithm is 8, 10, 12, and 14, 
respectively.
It is well known that the more pronounced the im-
age noise is, the worse the training phase will make 
the network recognition, and to some extent the 
network is more demanding. Figure 1 displays the 
test images from a standard database. We added 
Gaussian noise (mean 0, standard deviations 30, 
50, 75, and 100) to these images to create noisy 
versions. Figure 2 presents the average PSNR and 

Figure 1
Test images used for comparison of denoising algorithms

a) Airplane b) Lena c) Barbara d) Hill e) Lake f ) Man g) Pepper

h) Cabin i) Beacon j) Bridge k) Couple l) Gorilla m) Boat
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Figure 2
Variation curves of the mean PSNR and SSIM values obtained from various algorithms with respect to the noise variance. 
(a) Comparison plot of PSNR values; (b) Comparison plot of SSIM values

SSIM values for different noise levels, comparing 
various algorithms with the one presented in this 
paper. The exact PSNR and SSIM values are in Ta-
bles 1 and 2, with the best results in bold and the 
second best underlined.

(a)

(b)

Based on the results presented in Tables 1 and 2, the 
following observations can be made: The NNM al-
gorithm exhibits non-significant performance in de-
noising due to its imposition of uniform penalties on 
singular values [3], leading to inaccurate recovery of 
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Table 1
Comparison of PSNR of different algorithms under different noise intensities

algorithm 𝜎𝑛 Lena/dB Boat/dB Beacon/dB Cabin/dB Gorilla/dB Lake/dB Average

NNM

30 30.25 27.92 31.33 26.87 21.37 26.26 27.33

50 27.84 25.49 28.34 24.62 20.84 23.36 25.08

75 26.03 23.95 25.26 22.32 19.59 20.64 22.96

100 24.51 22.58 23.05 20.68 19.04 19.34 21.53

BM3D

30 31.36 29.22 32.83 29.23 24.76 28.27 29.28

50 29.15 26.88 30.23 26.35 22.58 25.71 26.81

75 27.36 25.22 26.98 23.62 21.28 23.13 24.60

100 26.05 24.07 23.90 21.30 19.88 20.63 22.64

WNNM

30 31.53 29.34 32.92 29.64 24.85 28.44 29.45

50 29.22 27.07 30.62 27.68 22.70 26.23 27.25

75 27.72 25.83 29.09 26.34 21.48 24.52 25.83

100 26.30 24.20 27.82 25.24 20.59 23.29 24.57

RRC

30 31.77 29.79 32.68 29.59 24.69 28.38 29.48

50 29.48 27.30 30.62 27.54 22.63 26.27 27.30

75 27.62 25.71 29.09 26.04 21.11 24.44 25.65

100 26.41 24.60 27.82 25.02 20.27 23.20 24.55

NLH

30 31.55 29.55 32.84 29.60 24.80 28.32 29.44

50 28.38 27.45 30.65 27.64 22.26 25.98 27.23

75 27.73 25.85 27.22 26.34 20.96 24.42 25.42

100 26.52 24.77 27.98 25.32 20.38 23.36 24.72

DNcnm

30 31.83 30.08 32.93 29.78 24.92 28.45 29.66

50 29.35 27.33 30.69 27.63 22.79 26.18 27.32

75 18.83 18.62 19.41 19.48 17.46 18.86 18.78

100 14.05 14.12 14.47 14.71 13.74 14.44 14.25

Ours

30 31.74 29.47 32.85 29.61 24.83 28.41 29.45

50 29.33 27.35 30.71 27.66 22.70 26.21 27.32

75 27.74 25.83 29.24 26.30 21.49 24.60 25.87

100 26.53 24.71 28.02 25.26 20.64 23.38 24.76

low-rank matrices. The BM3D algorithm performs 
relatively averagely in denoising, with a noticeable 
decline in effectiveness as noise levels increase. The 
RRC algorithm demonstrates good denoising perfor-
mance in certain scenarios, but its effectiveness also 
decreases significantly with increasing noise levels. 
This is because the algorithm requires prior estima-
tion of the low-rank matrix, which becomes less accu-

rate when images are corrupted by substantial noise, 
rendering the denoising performance of the algorithm 
ineffective. The weighted nuclear norm minimiza-
tion algorithm performs better than other methods 
in denoising, but it requires adjustment of empirical 
parameters to adapt to different scenes. The NLH al-
gorithm exhibits good PSNR values in most test imag-
es, but its SSIM performance decreases significantly 
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algorithm 𝜎𝑛 Lena Boat Beaco Cabin Gorilla Lake Average

NNM

30 0.8060 0.8260 0.8919 0.8024 0.6374 0.8640 0.8046

50 0.7593 0.6988 0.8276 0.7035 0.5399 0.7552 0.7141

75 0.7527 0.6335 0.7656 0.6343 0.4129 0.6365 0.6392

100 0.6890 0.5984 0.7292 0.5937 0.3491 0.5859 0.5909

BM3D

30 0.9101 0.8871 0.8145 0.8610 0.8411 0.9033 0.8695

50 0.8651 0.8176 0.8674 0.7791 0.7064 0.8409 0.8127

75 0.8140 0.7466 0.8138 0.7026 0.5622 0.7664 0.7342

100 0.7669 0.6903 0.7645 0.6416 0.4566 0.6962 0.6693

WNNM

30 0.9172 0.9137 0.9174 0.8813 0.8463 0.9065 0.8970

50 0.8652 0.8494 0.8658 0.8080 0.7212 0.8490 0.8264

75 0.8321 0.7991 0.8330 0.7652 0.6303 0.7975 0.7762

100 0.7881 0.7519 0.7971 0.7173 0.5251 0.7437 0.7205

RRC

30 0.8749 0.8650 0.8618 0.7935 0.6877 0.7835 0.8110

50 0.8331 0.7730 0.8255 0.7284 0.5677 0.7289 0.7427

75 0.7922 0.7185 0.7972 0.6679 0.4261 0.6697 0.6786

100 0.7649 0.6841 0.7769 0.6355 0.3402 0.6289 0.6384

NLH

30 0.8678 0.8398 0.8628 0.8059 0.7080 0.7841 0.8114

50 0.8288 0.7734 0.8311 0.7377 0.5241 0.7158 0.7351

75 0.7926 0.7241 0.7994 0.6977 0.4047 0.6664 0.6808

100 0.7642 0.6875 0.7773 0.6519 0.3535 0.6310 0.6442

DNcnm

30 0.8770 0.8542 0.8703 0.8101 0.7371 0.7942 0.8238

50 0.8301 0.7894 0.8289 0.7402 0.6122 0.7363 0.7562

75 0.2151 0.3346 0.1802 0.2549 0.3346 0.2926 0.2686

100 0.0960 0.1261 0.0739 0.1198 0.2004 0.1520 0.1280

Ours

30 0.9133 0.9051 0.9159 0.8808 0.8474 0.9042 0.8944

50 0.8681 0.8695 0.8706 0.8152 0.7350 0.8480 0.8344

75 0.8302 0.7983 0.8364 0.7676 0.6371 0.7952 0.7775

100 0.7918 0.7545 0.8053 0.7235 0.5386 0.7472 0.7268

Table 2
Comparison of SSIM of different algorithms under different noise intensity

with increasing noise. Additionally, in some images, 
the NLH algorithm performs poorly and requires con-
tinuous adjustment of preset hyperparameters for 
optimization. The deep learning-based DNcnn algo-
rithm achieves high PSNR scores when noise inten-
sity is low. However, as noise intensity increases, both 
PSNR and SSIM metrics rapidly decline, falling short 
of other comparison methods, including the proposed 

algorithm in this paper. Furthermore, deep learning 
algorithms have a high dependence on training data, 
which is not a limitation of the algorithm presented 
in this paper. In most cases, the algorithm proposed 
in this paper achieves optimal evaluation metrics, 
and even when it does not reach the highest value, it 
often attains the second-best result. Additionally, as 
shown in Figure 2, as noise intensity increases, the 
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performance of other algorithms declines signifi-
cantly, while the proposed algorithm maintains good 
denoising effectiveness. At a noise level of 𝜎𝑛=100, 
the PSNR of the proposed algorithm is improved by 
an average of 3.22dB, 2.12dB, 0.18dB, 0.21dB, 0.04dB, 
and 10.51dB compared to the comparison algorithms, 
respectively. Therefore, it can be concluded that the 
algorithm proposed in this paper demonstrates good 
denoising performance across different noise levels.
Figures 3 and 4 display the denoising outcomes for 
the Starfish and House images [18] from the Berkeley 

(a) Original Image (b) Noise Image (c) WNNM

(d) RRC (e)NLH (f ) Ours

Figure 3
Comparison of Starfish image denoising effect

dataset, noisy with a variance of 𝜎𝑛=50, using various 
algorithms. The zoomed boxes highlight local details. 
The weighted kernel paradigm minimization and 
RRC combined with this paper’s algorithm perform 
well in noise removal. However, WNNM introduces 
detail and texture artifacts, and the weighted kernel 
method causes edge artifacts in the starfish and miss-
es details in the house image. RRC mitigates these 
issues but over-smooths some areas, losing detail. 
The NLH algorithm generally denoises well but blurs 
some local areas. In contrast, this paper’s algorithm 
effectively removes noise while preserving edges, tex-
tures, and other details.
In addition, we consider applying the proposed model 
to the task of image denoising containing real noise 
and verify the applicability of the algorithm of this 
paper to different types of noise through experiments. 
Since the noise level of the image in this case is un-
known, we use a method to estimate the noise level of 
the image in our experiments by estimating the noise 
standard deviation 𝜎𝑛 that to determine the relevant 
parameters of the proposed algorithm in this paper, 
including the image patch size of 

 
(d) RRC (e) NLH (f) ours 

Figure 4 Comparison of House image denoising 
effect 

In addition, we consider applying the proposed model 
to the task of image denoising containing real noise and 
verify the applicability of the algorithm of this paper to 
different types of noise through experiments. Since the noise 
level of the image in this case is unknown, we use a method 
to estimate the noise level of the image in our experiments 
by estimating the noise standard deviation 𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎 that to 
determine the relevant parameters of the proposed algorithm 
in this paper, including the image patch size of √𝑑𝑑𝑑𝑑 × √𝑑𝑑𝑑𝑑, the 
number of similar patches searched (m), and the number of 
iterations. Figure 5 demonstrates the denoising comparison 
effects for two typical images with real noise (Eyes and 
Plate). It can be observed that the classical BM3D algorithm 
still leaves some residual noise during the denoising process. 
On the other hand, the WNNM algorithm produces over-
smoothed results, leading to blurred images and the loss of 
some detailed information. In contrast, the NLH algorithm, 
specifically designed for denoising real noise images, 
exhibits good denoising performance. The proposed 
algorithm in this paper achieves comparable visual effects to 
the NLH algorithm.  

     

     

     
(a)Noise 
Image 

(b)BM3
D 

(c)WNN
M 

(d)NLH (e)Ours 

Figure 5 Comparison of denoising result images 
containing real noise images 

To provide a more objective comparison, Table 3 lists 
the PSNR and SSIM metrics of the denoised images 
obtained by different algorithms for these two images. It can 
be seen that the NLH algorithm performs the best for 
denoising images with real noise, while the PSNR and SSIM 
metrics of the proposed algorithm are second only to the 
NLH algorithm and are quite close to it.  In addition, in terms 

of inference time for a single image, the algorithm in this 
paper has the least inference time compared to the other 
algorithms, and the BM3D algorithm has the longest 
inference time. In summary, the proposed algorithm in this 
paper can effectively remove unknown real noise from 
images while preserving texture details well, achieving good 
visual effects. 

Table 3 PSNR/SSIM comparison of denoising results 
for images containing real noise 

Model Eyes Plate Time(s) 
BM3D 36.62dB/0.9765 37.80dB/0.9534 5.6 

WNNM 40.38dB/0.9861 34.66dB/0.9758 4.3 
NLH 40.57dB/0.9925 40.69dB/0.9912 3.6 
Ours 40.48dB/0.9872 40.66dB/0.9886 3.0 

 
The  algorithm of the paper can simply be extended to 

color images. This involves extracting and separately 
denoising the red, green, and blue channels from the image, 
then combining the denoised channels back into a color 
image. 

In order to further validate the complexity comparison 
of this paper's algorithm with others, we quantitatively 
compare the computation, parameter count and memory of 
all the algorithms and produce Table 4. As can be seen from 
Table 4, the overall network complexity of this paper's 
algorithm is lower, except in Memory compared to NLH, the 
rest of the evaluation indexes are the lowest and the best 
performance, which further indicates that this paper's 
algorithm has the best performance. 

Table 4 Comparison of network complexity 
Model FLOPs Params Memory 
BM3D 325.60G 153.07M 120.91M 

WNNM 457.02 98.33M 269.12M 
NLH 112.13G 101.39M 89.63M 
Ours 109.11G 78.99M 100.20M 

 
In order to further verify the performance of this paper's 

algorithm, we will experiment this paper's algorithm on 
randomly selected color images of two chapters, and the 
results are shown in Figure 6. As can be seen from Figure 6, 
the left side of the image is the image with noise, and the 
right side is the image after denoising, this paper's algorithm 
in the image with a variety of noise to a certain extent can 
improve the clarity of the image, denoising effect is better. 

 

  

, the num-
ber of similar patches searched (m), and the number 
of iterations. Figure 5 demonstrates the denoising 
comparison effects for two typical images with real 
noise (Eyes and Plate). It can be observed that the 
classical BM3D algorithm still leaves some residu-
al noise during the denoising process. On the other 
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Comparison of House image denoising effect
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hand, the WNNM algorithm produces over-smoothed 
results, leading to blurred images and the loss of some 
detailed information. In contrast, the NLH algorithm, 
specifically designed for denoising real noise images, 
exhibits good denoising performance. The proposed 
algorithm in this paper achieves comparable visual 
effects to the NLH algorithm. 
To provide a more objective comparison, Table 3 lists 
the PSNR and SSIM metrics of the denoised images 
obtained by different algorithms for these two images. 
It can be seen that the NLH algorithm performs the 
best for denoising images with real noise, while the 
PSNR and SSIM metrics of the proposed algorithm 
are second only to the NLH algorithm and are quite 
close to it. In addition, in terms of inference time for a 
single image, the algorithm in this paper has the least 
inference time compared to the other algorithms, and 
the BM3D algorithm has the longest inference time. 
In summary, the proposed algorithm in this paper can 
effectively remove unknown real noise from images 
while preserving texture details well, achieving good 
visual effects.

Table 3
PSNR/SSIM comparison of denoising results for images 
containing real noise

Model Eyes Plate Time(s)

BM3D 36.62dB/0.9765 37.80dB/0.9534 5.6

WNNM 40.38dB/0.9861 34.66dB/0.9758 4.3

NLH 40.57dB/0.9925 40.69dB/0.9912 3.6

Ours 40.48dB/0.9872 40.66dB/0.9886 3.0

Table 4
Comparison of network complexity

Model FLOPs Params Memory

BM3D 325.60G 153.07M 120.91M

WNNM 457.02 98.33M 269.12M

NLH 112.13G 101.39M 89.63M

Ours 109.11G 78.99M 100.20M

The algorithm of the paper can simply be extended to 
color images. This involves extracting and separately 
denoising the red, green, and blue channels from the 
image, then combining the denoised channels back 
into a color image.
In order to further validate the complexity compari-
son of this paper’s algorithm with others, we quanti-
tatively compare the computation, parameter count 
and memory of all the algorithms and produce Table 
4. As can be seen from Table 4, the overall network 
complexity of this paper’s algorithm is lower, except 
in Memory compared to NLH, the rest of the evalua-
tion indexes are the lowest and the best performance, 

which further indicates that this paper’s algorithm 
has the best performance.
In order to further verify the performance of this 
paper’s algorithm, we will experiment this paper’s 
algorithm on randomly selected color images of two 
chapters, and the results are shown in Figure 6. As can 
be seen from Figure 6, the left side of the image is the 
image with noise, and the right side is the image after 
denoising, this paper’s algorithm in the image with a 
variety of noise to a certain extent can improve the 
clarity of the image, denoising effect is better.

Figure 6
Color image denoising analysis

4. Conclusion
This paper introduces an adaptive weighted low-
rank matrix recovery algorithm for image denois-
ing, addressing the limitations of traditional meth-
ods that struggle with weak rank constraints and 
poor recovery, leading to ineffective noise removal. 
The new algorithm adapts its weighting based on 
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the data, effectively recovering the low-rank matrix. 
Tests on synthetic noisy images demonstrate that it 
surpasses established algorithms like NNM, BM3D, 
WNNM, RRC, NLH, and DNcnn. Notably, under high 
noise variance (100), it achieves an average PSNR 
of 24.66dB and SSIM of 0.7267, effectively removing 
noise while preserving original image details. The al-
gorithm also performs well on real-world noisy imag-
es and is applicable to color images.
In fact, the algorithm proposed in this paper is not 
specifically designed for a particular type of noise, but 
rather relies on the image data itself and incorporates 
the NSS prior information of the image for denoising. 
Therefore, in theory, this algorithm should still achieve 
good denoising results when dealing with images con-
taining a mixture of multiple types of noise. Future 
research can further expand experimental studies and 
validations. Currently, denoising algorithms based on 
deep learning are very popular, and they exhibit good 
denoising performance due to their extensive da-

ta-driven approach. However, a significant drawback 
of these algorithms is their excessive dependence on 
training data. Obtaining sufficient training data con-
taining different types of noise is often challenging, 
limiting their generalization capabilities. Future re-
search can explore combining low-rank priors with 
deep learning algorithms to reduce the algorithm’s re-
liance on training data through few-shot learning and 
improve its generalization capabilities.
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