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Cardiac magnetic resonance imaging (cardiac MRI) is a very powerful tool for the diagnosis of cardiovas-
cular disease. Accurate automated segmentation of cardiac MRI can enhance clinical diagnostic efficiency. 
While supervised cardiac MRI segmentation methods have achieved brilliant achievements, they mostly 
rely on an enormous quantity of labeled samples, which is extremely challenging and expensive to acquire. 
To alleviate the challenge of manual annotation, semi-supervised based methods offer an effective solution. 
Despite some progress in semi-supervised segmentation for cardiac MRI, there remains a gap in clinical ap-
plication and accuracy needs further improvement. This paper proposes MEMatch, a novel semi-supervised 
cardiac MRI segmentation method. MEMatch introduces multi-scale joint strong-weak consistency, which 
applies strong-weak consistency to the prediction results of multiple scales of the network, to more fully 
utilize the discrepancy between the outputs of different scales of the same network. Additionally, entropy 
minimization is applied to the average prediction of multiple scales, which enforces the average prediction 
to generate high-confidence predictions and further reduces the discrepancy among the prediction results 
from different scales. As demonstrated by the experimental results, utilizing only 3 labeled samples, the pro-
posal improves Dice and Jaccard scores by 1.48%/0.17% and 2.15%/0.25%, respectively, compared to optimal 
performances of other methods on the ACDC/LA dataset. The experimental results on 2D and 3D segmen-
tation illuminate the effectiveness and superiority of our method in various semi-supervised settings com-
pared to state-of-the-art techniques.  
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1. Introduction 
Cardiovascular disease (CVD) remains to be a lead-
ing cause of mortality in the global population [14, 
34]. In 2021 alone, approximately 20.5 million deaths 
were attributed to CVD, nearly one-third of all global 
deaths, according to the World Heart Report 2023 by 
the World Heart Foundation. Additionally, there has 
been an increasing trend of CVD affecting younger 
populations in recent years, attributed to unhealthy 
lifestyles and obesity. Early diagnosis and treatment 
of CVD can significantly increase patient survival 
rates. In the diagnosis of CVD, cardiac MRI [32, 35] 
have become a main auxiliary tool for assessing pa-
tient conditions due to its safety and reliability, and 
were considered as the golden standard for assessing 
the structure and function of the heart.
Accurate segmentation and identification of intrac-
ardiac structures from cardiac MRI data play a cru-
cial role in guiding the diagnosis of cardiovascular 
diseases (CVD) and serve as an important prepara-
tory step before cardiac surgery. In clinical practice, 
it is necessary for experts to manually delineate the 
contours of the left ventricle, right ventricle, and 
myocardium. However, due to the structural com-
plexity of cardiac MRI, the manual segmentation 
process can be time-intensive, laborious, and inef-
ficient. Therefore, there is an urgent need to devel-
op fast, accurate, reproducible, and fully automated 
cardiac magnetic resonance imaging segmentation 
methods using computer technology to improve 
clinical diagnostic efficiency and reduce cardiovas-
cular disease mortality.
In the field of medical image processing, the segmen-
tation of cardiac MRI images has been a prominent 
subject. Numerous algorithms have emerged over 
time [36]. However, traditional approaches such as 
threshold-based methods [22, 41], edge detection and 
active contour-based methods [30, 44, 28], cluster-
ing based methods [15, 7] and their hybrid algorithms 
[52, 39, 31] often necessitate prior knowledge of heart 
structure and shape information, along with manu-
al intervention. Despite theoretical advancements 
made by these methods, they still possess limitations 
when it comes to practical clinical applications.
Deep learning (DL) methodology has been extensively 
used for tasks in computer vision and the analysis and 
processing of cardiac MRI, achieving a succession of 

breakthroughs over the past several years. Simulta-
neously, deep learning-based approaches have also 
received widespread attention and achieved good re-
sults in solving cardiac MRI segmentation problems, 
especially after the proposal of U-Net. U-Net [33] was 
proposed and applied to the field of medical image 
segmentation in 2015, which significantly enhances 
the performance of cardiac MRI segmentation com-
pared to traditional algorithms. Furthermore, numer-
ous enhancements to the U-Net [11, 9, 27] have been 
studied to further enhance the accuracy of cardiac 
MRI segmentation.
Although these methods have achieved encouraging 
results, they all rely on an extensive quantity of pixel/
voxel-level expert labeling as training data. However, 
due to the complex structure of cardiac MRI images, 
it is inherently time-consuming for specialized physi-
cians to obtain their pixel-level labels. In addition, car-
diac MRI images present challenges such as the lack of 
clear tissue boundaries and variability in the size and 
location of individual hearts, which further compli-
cates the task of sample labels for segmentation. To re-
duce the burden of manual labeling, methods such as 
weakly supervised learning (WSL) [53, 19], semi-su-
pervised learning (SSL) [49], and unsupervised learn-
ing [26, 13] have been proposed successively. This 
paper focuses on the application of SSL to address 
the issue of cardiac MRI segmentation, aiming to in-
tegrate a small number of labeled images with a large 
number of unlabeled images to achieve the training of 
network models. Currently, the mainstream semi-su-
pervised cardiac MRI segmentation methods include: 
pseudo labels [8, 25], consistency regularization [51, 
21, 23, 46, 29, 24, 37], entropy minimization [18, 1], and 
so on. The basic concept behind consistency regular-
ization is that, for the same input, the predictions after 
applying different forms of perturbation to it should be 
as similar as possible. Currently, many methods con-
struct consistency by adding multiple decoders to the 
same encoder and constructing consistency between 
the predictions of the different decoders and do not 
focus on the consistency and similarity of the predic-
tions at different scales in a single decoder. For exam-
ple, MC-Net [47] improves accuracy by constraining 
mutual consistency between two different decoders 
with an identical encoder.
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In addition, Despite the remarkable achievements of 
these methods, there is still a certain gap to be bridged 
before its application in the diagnosis of CVD in clini-
cal practice. Based on the idea that predictions at dif-
ferent scales of the same input from the same network 
should be as similar as possible, this paper innova-
tively proposes MEMatch, a semi-supervised cardiac 
MRI segmentation model. Overall, the contributions 
of the paper can be summarized in three aspects:
1	 This paper proposes MEMatch, a novel semi-su-

pervised cardiac MRI segmentation method guid-
ed by multi-scale joint strong-weak consistency 
and entropy minimization.

2	 A multi-scale joint strong-weak consistency meth-
od is proposed to more fully utilize the discrepan-
cies between the outputs of different scales within 
the same network. This method is then combined 
with entropy minimization based on average pre-
diction to further enhance the model’s capabilities.

3	 Numerous experiments are conducted on our 
approach with different ratio labeled samples 
and make comparisons to several state-of-the-
art segmentation techniques on the ACDC and 
LA datasets.

The remaining sections mainly include the follow-
ing contents: Section 2 describes the current state 
of development of the research field and some of the 
best approaches. Section 3 presents the proposal 
MEMatch algorithm in detail. The semi-supervised 
experimental settings, comparative experimental 
results, and ablation studies of this paper are intro-
duced in Section 4. In Section 5, a summary of the 
proposed methodology is presented. 

2.  Related Work 
Medical image segmentation is an important assis-
tive technology for various clinical diagnoses such 
as radiotherapy and computer-aided diagnosis [40]. 
Cardiac MRI segmentation is a crucial stage in the di-
agnosis of CVD. As the research on deep learning con-
tinues, U-Net and its improved models have become 
the most popular models as well as in cardiac MRI 
segmentation. However, it still suffers from underuti-
lization of contextual information due to structural 
defects. Therefore, a series of variants of U-net were 
proposed and widely used. For example, Attention 

U-Net [11] introduces a novel Attention Gate module 
and applies it to the end of the skip connections of the 
U-Net network to enable the model to capture more 
useful information by suppressing the features of ir-
relevant regions.
However, because of the characteristics of convolu-
tion itself, the capability of convolution-based ap-
proaches to capture long-distance relationships does 
not meet the practical requirements. To address this 
limitation, people have attempted to use Transform-
er models [42], which are influenced by the natural 
language domain, to replace or combine with CNN. 
However, this approach still relies on the paradigm of 
fully supervised segmentation and remains restricted 
by the availability and quality of data annotation for 
dynamic cardiac MRI. 

2.1.  Deep Semi-Supervised Learning
 Deep semi-supervised learning (DSSL), which ef-
fectively leverages a large amount of unlabeled data 
in combination with a small amount of labeled data 
for learning, thereby reducing manual labeling costs 
and improving learning accuracy, is garnering in-
creasing attention and research [50]. When the num-
ber of labeled samples is limited, DSSL technology 
can enhance the learning ability by incorporating 
unlabeled instances. This distinguishes DSSL from 
supervised learning algorithms, which rely solely on 
labeled data.
The primary challenge in DSSL lies in devising ef-
ficacious and appropriate supervision signals for 
unlabeled samples. Over the years, numerous ap-
proaches have been introduced to address this issue 
in image segmentation. The mainstream methods 
can be roughly categorized into the following groups: 
proxy-label methods [8, 25], consistency regulariza-
tion [51, 21, 23, 46, 29, 24, 16], generative models 
[12, 20], graph-based methods [10, 38] and entropy 
minimization [17, 45]. Besides the main categories 
mentioned above, there are also some hybrid-based 
DSSL techniques that combine ideas from the afore-
mentioned approaches to enhance performance 
in learning [50]. For example, in the MixMatch [6], 
Berthelot et al. introduce a novel method of multiple 
predictions with sharpening to improve the quali-
ty of pseudo-labels. Furthermore, they innovative-
ly extend the mixup algorithm to semi-supervised 
learning by incorporating the generated labels. In 
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subsequent research, ReMixMatch [5] improves 
the MixMatch method by introducing Distribution 
Alignment (DA) and Augmentation Anchoring (AA). 
Distribution Alignment aims to align the marginal 
distribution of predictions for unlabeled samples 
with the marginal distribution of true labels, en-
couraging closer alignment between the two distri-
butions. On the other hand, Augmentation Anchor-
ing involves providing multiple strongly augmented 
versions  {xi}  of an input sample x  into the model and 
promoting each output yi to align closely with the 
prediction from weaker augmented version of x. As 
an effective and intuitive medical image segmenta-
tion algorithm based on SSL, Fixmatch [37] employs 
the combined strategy of consistency regularization 
and pseudo-labeling to enhance the segmentation 
performance. It first applies weak and strong aug-
mentations to an unlabeled sample and then uses 
the prediction of the weakly-augmented sample to 
generate a pseudo-label, that serves as a supervision 
signal for the prediction of the strongly-augmented 
sample to compute the consistency loss. 

2.2. DSSL Based Cardiac MRI Segmentation
 Due to its effectiveness in reducing the dependen-
cy on manual segmentation annotations, SSL is in-
creasingly becoming as a viable solution and has been 
widely applied in medical image segmentation, par-
ticularly in addressing the challenge in segmenting 
cardiac MRI images. A diverse range of algorithms 
has been proposed and implemented for cardiac MRI 
segmentationin recent years, including pseudo labels 
[25, 51], consistency regularization [51, 21, 23, 46, 29, 
16], and entropy minimization [18, 1, 47].
Pseudo-labeling methods are typically implemented 
iteratively, with the network first being trained us-
ing labeled samples. Then unlabeled samples are ap-
plied to the network after being trained to generate 
pseudo-labels. Subsequently, the network training 
is facilitated by employing pseudo-labels along with 
a small amount of ground truth labels. For exam-
ple, Chang et al. [8] introduce an effective dynamic 
computational algorithm for generating pseudo-la-
bels and regularized constraints on unlabeled data 
using a specific loss function. Ma et al. [25] perform 
Fourier transform enhancement on the image, then 
generate pseudo-labels based on the input image, 
and finally calculate the variance between the pre-

diction results and the pseudo-labels, and use this 
to optimize the network parameters. However, the 
pseudo-labeling approach is highly dependent on 
the suitable threshold, an unsuitable value can cause 
substantial training bias in the model.
Consistency regularization methods are founded 
on the straightforward assumption that the model's 
predictions should remain unchanged in response 
to perturbations of either the model or the imag-
es. They impose consistency constraints on one or 
more perturbed branches and show excellent ability 
in semi-supervised cardiac MRI segmentation. For 
example, SASSNet [21] introduces more flexible geo-
metric representations in the model to implement 
global shape constraints on the predicted results. 
SS-Net [46] introduces adversarial noise as a strong 
perturbation to encourage inter-class separation by 
shrinking each class distribution, thereby achiev-
ing better performance. UA-MT [51] extends the 
Mean-Teacher framework and introduces an uncer-
tainty-aware method that improves the utilization of 
valid information in the student model. Cross-ALD 
[29] proposes a Cross-ALD regularization that is dif-
ferent from other regularization methods to improve 
the smoothness assumption. Similar to our proposed 
method, UniMatch [49] also improves the Fixmatch 
model. It has been demonstrated by extensive exper-
iments that applying a strong perturbation to unla-
beled samples can significantly enhance the model's 
segmentation capabilities, and based on this, it pro-
poses a strong perturbation branch based on feature 
enhancement. Simultaneously, to make full use of the 
benefits of strong perturbation, it adds another strong 
perturbation branch to the network, which greatly 
enhances the performance of the model. Basak et al. 
[3] introduce a special interpolation-based regular-
ization algorithm that uses the interpolation of the 
predictions generated from two unlabeled samples as 
pseudo-labels to supervise the predictions they inter-
polate. CAML [16] further improves the model's abil-
ity to utilize labeled information by injecting labeled 
data information into unlabeled data.
Entropy minimization is also a kind of simple, effec-
tive, and very widely used semi-supervised method. 
LLUB [1] proposes a novel algorithm to reconstruct 
the segmentation mask and estimate the pixel-level 
uncertainty by this segmentation mask. LG-ER-MT 
[18] first introduces entropy minimization into the 
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student network of the Mean Teacher framework, to 
guide it to produce high-confidence predictions. Sec-
ond, it also proposes two different types of consisten-
cy losses, local and global, to obtain the local and glob-
al structural information. 

3.  Method
In this section, the overall workflow of our ME-
Match is first presented. After that, our proposed 
multi-scale joint strong-weak consistency and en-
tropy minimization based on average prediction are 
introduced in detail, respectively. Figure 3 displays 
the structure of MEMatch for cardiac MRI semi-su-
pervised segmentation.
	_ For labeled data, the process is shown in Region 

A in Figure 3. The labeled data are fed into the 
segmentation network, which utilizes the encoder 
and decoder to generate segmentation predictions. 
These predictions are then compared with the 

ground truth labels using cross-entropy loss and 
Dice loss, resulting in a supervised loss that is a 
linear combination of the two losses. 

	_ For unlabeled data, the process is shown in Region 
B in Figure 3. Randomized weak and strong 
augmentation are applied to unlabeled data, 
respectively.  
	▪ The segmentation network receives the weakly-

augmented unlabeled data and filters out the 
pseudo-labels based on a confidence threshold. 

	▪ For strongly-augmented unlabeled data, we add 
a segmentation head with different up-sampling 
strategies after the encoder output block and 
each decoder block of the segmentation network 
to obtain segmentation predictions at different 
scales. As shown in Region C in the Figure 
3, the strongly-augmented unlabeled data is 
incorporated into the segmentation network, 
passing through the encoder and decoder, 
and obtaining multi-scale segmentation 

Figure 1
The architecture of our proposed MEMatch. Encoder_i  (j=1,2,3,4) and Decoder_ j  (j=0,1,2,3) are the encoder block and 
decoder block of the network. xi denotes the labeled data. xuw  and xus represent the weakly-augmented unlabeled data and 
the strongly-augmented unlabeled data, respectively. psi (i=1,2,3,4)  denotes the segmentation predictions obtained after 
different segmentation heads.  psa denotes the average prediction.
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prediction results ps0, ps1, ps2, ps3, and ps4 from 
multiple segmentation heads with different 
upsampling strategies. Subsequently, the multi-
scale segmentation prediction results are 
used to calculate Dice loss with pseudo-labels, 
resulting in consistency loss and the so-called 
multi-scale Joint Strong-Weak Consistency 
loss. Furthermore, the average prediction 
result psa is derived based on the multi-scale 
segmentation prediction results, leading to 
entropy minimization loss. 

For strongly-augmented unlabeled data, we provide 
supervisory signals for predictions at multiple scales 
rather than for a single final output. This ensures 
that predictions at all scales are closer to the pseu-
do-labels, enabling the model to learn more diverse 
features. Based on this idea, we propose multi-scale 
joint strong-weak consistency, which uses the pseu-
do-labels filtered from the weakly-augmented un-
labeled data to supervise multi-scale segmentation 
predictions on the strongly-augmented unlabeled 
data. To further enhance the consistency between 
the predictions of different scales and make full use 
of the prediction information of multiple scales, we 
average the predictions of multiple scales to obtain 
the average prediction and introduce entropy mini-
mization as a regularization constraint for the aver-
age prediction. If the prediction results of multiple 
scales for a certain pixel deviation is large, the entro-
py minimization loss of the model will be large, and 
then the entropy minimization loss will constrain 
the prediction results of multiple scales to converge 
to 0 or 1 to minimize the entropy, and at the same 
time, reduce the uncertainty of the model and im-
prove the consistency of the prediction results of the 
multiple scales.
Our MEMatch consists of two core modules: multi-
scale joint strong-weak consistency and entropy min-
imization. To introduce our method in more detail, 
the meaning of some mathematical symbols is de-
scribed. Our training set consists of the vast majority 
of unlabeled samples Xu and a few labeled samples Xl , 
where  Xl= {(xi

l, yi)}N
i=1 (yi represents ground-truth an-

notations), Xu= {xi
u}i=N+1

N+M  (N = M). Let xi
u undergo weak 

augmentation and strong augmentation to obtain 
xi

uw and xi
us, respectively. In addition, we denote the 

cross-entropy and Dice loss between two probability 
distributions p and q as H(p,q) and C(p,q).

As a framework based on SSL, our approach is de-
signed to works with unlabeled samples as well as 
labeled samples. During the supervised training, the 
segmentation network F is applied to the labeled 
sample xl to obtain the segmentation prediction pl. pl 
is supervised by the ground-truth label y, then the su-
pervised loss can be expressed as: 

(1)

3.1.  Multi-scale Joint Strong-weak 
Consistency 
To more fully utilize the discrepancy between the out-
puts of different scales of the same network to obtain 
more consistency information, the multi-scale joint 
strong-weak consistency is proposed. Specifically, 
the unlabeled samples are divided into two branch-
es after undergoing weak and strong data augmenta-
tion, namely weakly-augmented unlabeled data and 
strongly-augmented unlabeled data.
For the weakly-augmented unlabeled data branch, the 
weakly-augmented unlabeled samples pass through 
the segmentation network F, producing segmenta-
tion predictions, and selecting pseudo-labels accord-
ing to the confidence threshold  τ.
For the branch of strongly-augmented unlabeled data, 
we implement our proposed multi-scale joint strong-
weak consistency. Specifically, a segmentation head 
with different upsampling strategies is added after 
the encoder output block and each decoder block of 
the segmentation network. Firstly, the strongly-aug-
mented unlabeled samples pass through the segmen-
tation network, producing segmentation predictions 
at different scales through the corresponding seg-
mentation heads. Subsequently, taking the pseudo-la-
bels output by the weakly-augmented unlabeled data 
branch as the true segmentation masks, consistency 
losses are calculated with each segmentation predic-
tion, respectively.
For unsupervised training, we use 

quently, taking the pseudo-labels output by the weakly-
augmented unlabeled data branch as the true segmenta-
tion masks, consistency losses are calculated with each
segmentation prediction, respectively.

For unsupervised training, we use

Puw = arg max(F(xuw))

as the pseudo-label for the unlabeled data xuw. As
shown in Fig.1, the strongly-augmented data xus passes
through Decoder_0 and its segmentation head to obtain
the segmentation prediction ps0. Then the consistency
loss Lcon can be expressed as:

Lcon =
1
Bu

∑
Γ(max(F(xuw) ≥ τ))C(Puw, ps0).

(2)

where Bu is the batchsize for unlabeled data, Γ denotes
the indicator function, τ is the threshold.

Let ps j ( j = 1, 2, 3) denote the segmentation predic-
tions at different scales obtained by applying Decoder_ j
( j = 1, 2, 3) and its segmentation head to xus. Let ps4 de-
note the segmentation prediction obtained by applying
Encoder_4 and its segmentation head to xus. Then the
multi-scale joint strong-weak consistency loss Lmc can
be written as:

Lmc =

4∑
j=1

1
Bu

∑
Γ(max(F(xuw) ≥ τ))C(Puw, ps j).

(3)

3.2. Entropy Minimization based on average prediction
Entropy[51] is a very important concept in the field

of SSL, which is used as a measure of a model’s
uncertainty about unlabeled samples. Entropy mini-
mization is an effective method for imposing consis-
tency constraints on unlabeled samples and is exten-
sively applied in the field of SSL-based cardiac MRI
segmentation[36, 34]. Entropy minimization can drive
the model to generate predictions with a high level of
confidence.

To further constrain multi-scale predictions of the
same network to converge to similarity, we propose
entropy minimization based on average prediction.
Specifically, we average the multi-scale segmentation
predictions obtained from multiple segmentation heads
to get the average prediction, and then apply an entropy
minimization constraint on it.

Let psa =

∑4
j=0 ps j

5 denote the average prediction, then
the entropy minimization loss can be written as:

Lem = −
1
M

M∑
i=1

C∑
c=1

log(pic
sa)pic

sa. (4)

Where M and C represent the number of pixels and
the number of classes for segmentation (including back-
ground), respectively, and pic

sa denotes the average pre-
diction probability of class c at pixel i. Our optimization
objective is to minimize the Lem. Observing Equation 4,
it is evident that in order to minimize the Lem, it is nec-
essary to drive each pic

sa towards convergence to 0.0 or
1.0. This will result in the average prediction of the mul-
tiple scales of our proposed method generating a high-
confidence prediction for class c or any other class.

3.3. The overall loss function
The proposed method aims to learn the model param-

eters by minimizing the total loss function Ltotal, which
consists of a linear combination of Lseg, Lcon, Lmc, and
Lem. Summarizing Sections 3.1 and 3.2, the unsuper-
vised loss of the proposed method can be expressed as:

Lun = αLcon + βLmc + γLem. (5)

Where Lcon, Lmc, Lem represent the consistency loss, the
multi-scale joint strong-weak consistency loss, and the
entropy minimization loss, respectively. α, β, γ rep-
resent the weight of Lcon, Lmc, Lem. To explore the
best loss weights, we conduct many ablation studies
on the ACDC dataset with different weights of our loss
function. If not specified, we set the hyperparameters
α = 0.5, β = 0.25, γ = 0.1, and τ = 0.95.

Finally, the total loss function of the proposed method
can be expressed as follows.

Ltotal = Lseg + Lun. (6)

4. Experimental

4.1. Implementation Details
4.1.1. Dataset

We evaluate our proposed method on the publicly
available medical image dataset ACDC and LA.

ACDC (Automatic Cardiac Diagnosis
Challenge)[52] dataset is a multi-category cardiac
3D MRI image dataset that is widely used for de-
veloping and evaluating automatic segmentation and
diagnosis methods in the field of cardiac imaging. It
contains 200 MRI scans of 100 patients with three
categories, left ventricle (LV), right ventricle (RV),
and myocardium (Myo). The ACDC dataset is utilized
for the purposes of training, validation, and testing by
employing scans from 70, 10, and 20 patients respec-
tively. The 3D MRI volumes are sliced into 2D images
during training, with 1312, 20, and 40 slices utilized for
training, validation, and testing respectively, and each

6

as the pseudo-label for the unlabeled data xuw. As 
shown in Figure3, the strongly-augmented data xus 

passes through Decoder_0 and its segmentation head 
to obtain the segmentation prediction ps0. Then the 
consistency loss Lcon can be expressed as: 
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M
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C∑
c=1
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sa. (4)

Where M and C represent the number of pixels and
the number of classes for segmentation (including back-
ground), respectively, and pic

sa denotes the average pre-
diction probability of class c at pixel i. Our optimization
objective is to minimize the Lem. Observing Equation 4,
it is evident that in order to minimize the Lem, it is nec-
essary to drive each pic

sa towards convergence to 0.0 or
1.0. This will result in the average prediction of the mul-
tiple scales of our proposed method generating a high-
confidence prediction for class c or any other class.

3.3. The overall loss function
The proposed method aims to learn the model param-
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vised loss of the proposed method can be expressed as:
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Where Lcon, Lmc, Lem represent the consistency loss, the
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resent the weight of Lcon, Lmc, Lem. To explore the
best loss weights, we conduct many ablation studies
on the ACDC dataset with different weights of our loss
function. If not specified, we set the hyperparameters
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Finally, the total loss function of the proposed method
can be expressed as follows.

Ltotal = Lseg + Lun. (6)
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We evaluate our proposed method on the publicly
available medical image dataset ACDC and LA.

ACDC (Automatic Cardiac Diagnosis
Challenge)[52] dataset is a multi-category cardiac
3D MRI image dataset that is widely used for de-
veloping and evaluating automatic segmentation and
diagnosis methods in the field of cardiac imaging. It
contains 200 MRI scans of 100 patients with three
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for the purposes of training, validation, and testing by
employing scans from 70, 10, and 20 patients respec-
tively. The 3D MRI volumes are sliced into 2D images
during training, with 1312, 20, and 40 slices utilized for
training, validation, and testing respectively, and each
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3.2. Entropy Minimization based on average prediction
Entropy[51] is a very important concept in the field

of SSL, which is used as a measure of a model’s
uncertainty about unlabeled samples. Entropy mini-
mization is an effective method for imposing consis-
tency constraints on unlabeled samples and is exten-
sively applied in the field of SSL-based cardiac MRI
segmentation[36, 34]. Entropy minimization can drive
the model to generate predictions with a high level of
confidence.

To further constrain multi-scale predictions of the
same network to converge to similarity, we propose
entropy minimization based on average prediction.
Specifically, we average the multi-scale segmentation
predictions obtained from multiple segmentation heads
to get the average prediction, and then apply an entropy
minimization constraint on it.

Let psa =
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5 denote the average prediction, then
the entropy minimization loss can be written as:
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Where M and C represent the number of pixels and
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ground), respectively, and pic

sa denotes the average pre-
diction probability of class c at pixel i. Our optimization
objective is to minimize the Lem. Observing Equation 4,
it is evident that in order to minimize the Lem, it is nec-
essary to drive each pic

sa towards convergence to 0.0 or
1.0. This will result in the average prediction of the mul-
tiple scales of our proposed method generating a high-
confidence prediction for class c or any other class.

3.3. The overall loss function
The proposed method aims to learn the model param-

eters by minimizing the total loss function Ltotal, which
consists of a linear combination of Lseg, Lcon, Lmc, and
Lem. Summarizing Sections 3.1 and 3.2, the unsuper-
vised loss of the proposed method can be expressed as:

Lun = αLcon + βLmc + γLem. (5)

Where Lcon, Lmc, Lem represent the consistency loss, the
multi-scale joint strong-weak consistency loss, and the
entropy minimization loss, respectively. α, β, γ rep-
resent the weight of Lcon, Lmc, Lem. To explore the
best loss weights, we conduct many ablation studies
on the ACDC dataset with different weights of our loss
function. If not specified, we set the hyperparameters
α = 0.5, β = 0.25, γ = 0.1, and τ = 0.95.

Finally, the total loss function of the proposed method
can be expressed as follows.

Ltotal = Lseg + Lun. (6)
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ing, with 1312, 20, and 40 slices utilized for training, 
validation, and testing respectively, and each image is 
randomly cropped to a size of 112x122x80 during the 
training process before input into the network.
LA (2018 Left Atrium Segmentation Challenge) data-
set [48] contains a total of 100 left atrium MRI images, 
of which 80 and 20 images are used for training and 
testing, respectively. In our experiment, 4, and 8 cases 
are used as labeled data, respectively. During the train-
ing process, 3D patches with dimensions of   are ran-
domly cropped to serve as the input for the network.
For the unlabeled samples in the ACDC and LA data-
sets, we apply strong and weak augmentation on them 
during training. Specifically, the strong augmenta-
tions include rotate, blur, and cutmix, while the weak 
augmentations include resize, crop, and flip. 

4.1.2.  Evaluation Metric
Four different metrics are used to evaluate our ap-
proach: Dice Similarity Coefficient (Dice), Jaccard 
Similarity Coefficient (Jaccard), Average Symmetric 
Distance (ASD), and Hausdorff Distance 95 (HD95). 
For two object regions, the Jaccard and Dice coeffi-
cients calculate the percentage of overlap between 
them, the Average Surface Distance (ASD) calculates 
the average distance between their boundaries, and 
the Hausdorff Distance 95% (HD95) measures the 
distance to the nearest point between them.
Let X denote the segmentation prediction result of the 
model and Y denote the segmentation mask. Then the 
mathematical definitions of the four metrics are ex-
pressed as follows: 
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Four different metrics are used to evaluate our ap-
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Similarity Coefficient (Jaccard), Average Symmetric
Distance (ASD), and Hausdorff Distance 95 (HD95).
For two object regions, the Jaccard and Dice coefficients
calculate the percentage of overlap between them, the
Average Surface Distance (ASD) calculates the aver-
age distance between their boundaries, and the Haus-
dorffDistance 95% (HD95) measures the distance to the
nearest point between them.

Let X denote the segmentation prediction result of
the model and Y denote the segmentation mask. Then
the mathematical definitions of the four metrics are ex-
pressed as follows:

Dice(Y, X) =
2 |Y ∩ X|
|X| + |Y | . (7)

Jaccard =
|Y ∩ X|
|Y ∪ X| . (8)
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1
2

(
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y∈Ȳ

d(x, y) + mean
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d(x, y)
)
.

(9)
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(
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x∈X̄

(
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lizing only 5% (3 labeled cases) and 10% (7 labeled
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pervised methods across all four metrics. For instance,
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d(x, y) + mean
y∈Ȳ
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d(x, y)
)
,max

y∈Ȳ
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Where X̄, Ȳ denote the surfaces of X, Y respectively.
d(x, y) denotes the Euclidean distance between the
points x and y.

4.1.3. Experimental Environment and Parameter Set-
tings

When training on the ACDC dataset, the hyperparam-
eters batch size, epochs, and the initial learning rate are
set to 8, 300, and 0.01 respectively. while on the LA
dataset, the hyperparameters batch size, iterations, and
the initial learning rate are set to 4, 9000, and 0.01, re-
spectively. On both ACDC and LA datasets, the pro-
posed network is trained to employ the Stochastic Gra-
dient Descent (SGD) optimizer, incorporating momen-
tum of 0.9 and weight decay of 0.0001. Throughout the
training process, the poly learning rate strategy is imple-
mented to facilitate learning rate decay. Specifically, the
initial learning rate of 0.01 is multiplied by (1.0 − t

tmax
)η

with η = 0.9.
We set the hyperparameters α, β, γ of the loss func-

tions Lcon, Lmc, and Lem to 0.5, 0.25, and 0.1, respec-
tively. In particular, for γ, since our entropy minimiza-
tion constraint is based on average prediction, when
epoch is less than 15, the prediction results generated
in the early stage of model training are not accurate
enough, and to prevent the model from deviating from
the right direction because of this entropy minimization
constraint, it is set to 0. When the epoch is greater than
15, the model training is stable and set to 0.1.

The U-net and V-net models are utilized as the seg-
mentation sub-networks for the ACDC and LA datasets,
respectively. The model is trained to utilize the PyTorch
framework (torch 1.10.0 + cu113), making use of a sin-
gle NVIDIA 3080 GPU with 10 GB of memory for the
training process.

4.2. Comparison with State-of-the-Art Methods

The experimental results of comparing different al-
gorithms on the ACDC dataset are presented in Table 1.
To demonstrate the effectiveness of the aforementioned
SSL-based methods compared to the fully supervised
methods, we present the experimental results obtained
from fully supervised training using only 5% (3 cases),
10% (7 cases), and 100% (full cases) of the total data as
training data with U-Net network. These results are then
compared with the performance of the aforementioned
semi-supervised methods with corresponding ratio la-
beled cases.

Table 1 shows the average metrics of three categories
(right ventricle, myocardium, left ventricle) obtained
by different methods on the ACDC test set. when uti-
lizing only 5% (3 labeled cases) and 10% (7 labeled
cases) of labeled data, most of the semi-supervised ap-
proaches exhibit a significant superiority over fully su-
pervised methods across all four metrics. For instance,

7

(10)
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1. To demonstrate the effectiveness of the aforemen-
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lizing only 5% (3 labeled cases) and 10% (7 labeled 
cases) of labeled data, most of the semi-supervised 
approaches exhibit a significant superiority over ful-
ly supervised methods across all four metrics. For 
instance, our proposed method demonstrates a sub-
stantial improvement over the fully supervised meth-
od when employing 5% labeled data, with enhance-
ments of 41.24%, 43.81%, 28.58%, and 11.87% for the 
Dice, Jaccard, HD95, and ASD evaluation metrics, 
respectively. These results suggest that the semi-su-
pervised methods have utilized the information con-
tained in the unlabeled samples to varying degrees. 

By further observing Table 1, it is evident that the pro-
posed method achieves the best performance across 
the four metrics compared to other semi-supervised 
methods under different semi-supervised settings. 
For 3 and 7 labeled cases, our method demonstrates 
superior performance compared to the second-best 
method in terms of Dice and Jaccard metrics, with im-
provements of 1.48% and 2.15%, as well as 0.66% and 
1.39%, respectively, which indicates that the two core 
modules proposed by our method, namely multi-scale 
joint strong-weak consistency and entropy minimiza-
tion, augment the model's capacity to apprehend and 

Method
Scans used Metrics

Labeled Unlabeled Dice(%)↑ Jaccard(%)↑ 95HD(voxel)↓ ASD(voxel)↓

U-Net 3(5%) 0  47.83  37.01  31.16  12.62 

U-Net 7(10%) 0  79.41  68.11  9.35  2.70 

U-Net 70(ALL) 0  91.44  84.59  4.30  0.99 

UA-MT [51] (MICCAI'19) 

3(5%)   67(95%)

 46.04  35.97  20.08  7.75 

SASSNet [21] (MICCAI'20)  57.77  46.14  20.05  6.06 

DTC [23] (AAAI'21)  56.90  45.67  23.36  7.39 

URPC [24] (MICCAI'21)  55.87  44.64  13.60  3.74 

MC-Net [47] (MICCAI'21)  62.85  52.29  7.62  2.33 

SS-Net [46] (MICCAI'22)  65.82  55.38  6.67  2.28 

Cross-ALD [29] (MICCAI'23)  80.60  69.08  5.96  1.9 

Fixmatch [37]  87.29  78.08  2.71  0.81 

BCP [2] (CVPR'23)  87.59  78.67  1.90  0.67 

Ours (MEMatch)  89.07  80.82  2.58  0.75 

UA-MT [51] (MICCAI'19)

7(10%) 63(90%)

 81.65  70.64  6.88  2.02 

SASSNet [21] (MICCAI'20)  84.50  74.34  5.43  1.86 

DTC [23] (AAAI'21)  84.29  73.96  12.81  4.01 

URPC [24] (MICCAI'21)  83.10  72.41  4.84  1.53 

MC-Net [47] (MICCAI'21)  86.44  77.04  5.50  1.84 

SS-Net [46] (MICCAI'22)  86.78  77.67  6.07  1.40 

Cross-ALD [29] (MICCAI'23)  87.52  78.62  4.81  1.6 

Fixmatch [37]  88.62  80.16  3.79  114 

BCP [2] (CVPR'23)  88.84  80.62  3.98  1.17 

Ours (MEMatch)  89.80  82.01  2.89  0.81

Table 1 
Comparisons with state-of-the-art semi-supervised segmentation methods on the ACDC dataset. The best results for each 
metric are bolded.
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 Method
Scans used Metrics

 Labeled  Unlabeled Dice(%)↑ Jaccard(%)↑ 95HD(voxel)↓ SD(voxel)↓

V-Net 4(5%) 0 52.55 39.60 47.05 9.87

V-Net 8(10%) 0 82.74 71.72 13.35 3.26

V-Net 80(ALL) 0 91.47 84.36 5.48 1.51

UA-MT [51] (MICCAI'19)

4(5%) 76(95%)

82.26 70.98 13.71 3.82

SASSNet [21] (MICCAI'20) 81.60 69.63 16.16 3.58

DTC [23] (AAAI'21) 81.25 69.33 14.90 3.99

URPC [24] (MICCAI'21) 82.48 71.35 14.65 3.65

MC-Net [47] (MICCAI'21) 83.59 72.36 14.07 2.70

SS-Net [46] (MICCAI'22) 86.33 76.15 9.97 2.31

Fixmatch [37] 85.63 75.12 10.61 2.14

UniMatch [49] (CVPR'23) 86.08 75.83 12.04 2.85

CAML [16] (MICCAI'23) 87.34 77.65 9.76 2.49

Ours (MEMatch) 87.51 77.93 8.74 2.31

UA-MT [51] (MICCAI'19)

8(10%) 72(90%)

81.65 87.79 78.39 8.68

SASSNet [21] (MICCAI'20) 87.54 78.05 9.84 2.59

DTC [23] (AAAI'21) 87.51 78.17 8.23 2.36

URPC [24] (MICCAI'21) 86.92 77.03 11.13 2.28

MC-Net [47] (MICCAI'21) 87.62 78.25 10.03 1.82

SS-Net [46] (MICCAI'22) 88.55 79.62 7.49 1.90

Fixmatch [37] 86.00 75.62 10.60 2.09

UniMatch [49] (CVPR'23) 89.09 80.47 12.50 3.59

CAML [16] (MICCAI'23) 89.62 81.28 8.76 2.02

Ours (MEMatch) 88.81 80.00 9.34 2.45

Table 2 
Comparisons with state-of-the-art semi-supervised segmentation methods on the LA dataset. The best results for each 
metric are bolded.

harness the information encompassed in the labeled 
and unlabeled data.
The results of the comparison experiments on the LA 
dataset are presented in Table 2. It can be found that 
although our method, MEMatch, exhibits slightly in-
ferior performance to both CAML and UniMatch in 
terms of the Dice and Jaccard coefficients when uti-
lizing 10% of the labeled data, it achieves the best re-
sults in terms of Dice, Jaccard, and 95HD when using 
only 5% of the labeled data. The comparative results 
on the LA dataset further substantiate the effective-
ness of our proposed MEMatch approach.

To illustrate the effectiveness of the proposed ME-
Match approach from multiple perspectives, Fig-
ures 2-3 show the qualitative comparison of the 
different methods on the ACDC dataset with 3 and 
7 labeled cases. Meanwhile, Figures 4-5 illustrate 
the qualitative comparison of the different meth-
ods on the LA dataset with 4 and 8 labeled cases. 
The figure shows that the segmentation results of 
the proposed MEMatch exhibit a greater degree of 
similarity to the ground truth labels. Meanwhile, 
in terms of segmentation edges and segmentation 
shapes, the segmentation results of the proposed 
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method in this paper are smoother and finer com-
pared to other methods.
Figure 6-7 illustrate the changes of train loss and dice 
metrics with epoch on the ACDC dataset. Analyzing 

the two figures, it is evident that each loss function 
of the proposed method keeps decreasing and finally 
stabilizes with the growth of epochs, while the dice 
metrics of each segmentation category are increasing 

Figure 3
Qualitative comparison of different approaches on ACDC dataset with 7 labeled cases. From left to right they represent: a) 
Ground truth, b) Ours, c) UA-MT [51], d) URPC [24], e)MC-Net [47], f ) SS-Net [46], and g) Fixmatch [37].

Figure 2
Qualitative comparison of different approaches on ACDC dataset with 3 labeled cases. From left to right they represent: a) 
Ground truth, b) Ours, c) UA-MT [51], d) URPC [24], e)MC-Net [47], f ) SS-Net [46], and g) Fixmatch [37].
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Figure 4
Qualitative comparison of different approaches on LA dataset with 4 labeled cases. From left to right they represent: a) 
Ground truth, b) Ours, c) DTC [23], d) MC-Net [47], e) SS-Net [46], f ) Fixmatch [37], and g) CAML [16].
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Figure 5
Qualitative comparison of different approaches on LA dataset with 8 labeled cases. From left to right they represent: a) 
Ground truth, b) Ours, c) DTC [23], d) MC-Net [47], e) SS-Net [46], f ) Fixmatch [37], and g) CAML [16].
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Figure 6 
Training loss when using 3 labeled cases. Lcon, Lmc, Lem are 
not multiplied by the weight values. Lcon, Lmc, Lem are the 
abbreviations for consistency loss, multi-scale joint strong-
weak consistency loss, and entropy minimization loss on 
unlabeled data, respectively.

! ! ! ! ! '
P6B5:1*+,*=#%01;%;1:(! 6.4B%318.&!.7!>177(3(&;!%BB3.%6+(8!.&! `S!>%;%8(;!R1;+!A! 0%U(0(>! 6%8(8F!
"3.4!0(7;!;.!31,+;!;+(<!3(B3(8(&;C!%Q!i3.#&>!;3#;+)!UQ!g#38)!6Q!YW/!b_Lc)!>Q!O/Xe(;!bAJc)!(Q!**Xe(;!
bA@c)!7Q!"1V4%;6+!bLJc)!%&>!,Q!/SO`!bH@cF'

! '

! ! ! '
P6B5:1*K,!=#%01;%;1:(! 6.4B%318.&!.7!>177(3(&;!%BB3.%6+(8!.&! `S!>%;%8(;!R1;+!M! 0%U(0(>! 6%8(8F!
"3.4!0(7;!;.!31,+;!;+(<!3(B3(8(&;C!%Q!i3.#&>!;3#;+)!UQ!g#38)!6Q!YW/!b_Lc)!>Q!O/Xe(;!bAJc)!(Q!**Xe(;!
bA@c)!7Q!"1V4%;6+!bLJc)!%&>!,Q!/SO`!bH@cF'

! ! '

! ! ! '
P6B5:1*H,!W3%1&1&,! 0.88!R+(&!#81&,!L! 0%U(0(>!6%8(8F! )! )! ! %3(!&.;!4#0;1B01(>!U<!;+(!
R(1,+;! :%0#(8F! )! )! ! %3(! ;+(! %UU3(:1%;1.&8! 7.3! 6.&818;(&6<! 0.88)! 4#0;1X86%0(! K.1&;!
8;3.&,XR(%[!6.&818;(&6<!0.88)!%&>!(&;3.B<!41&141\%;1.&!0.88!.&!#&0%U(0(>!>%;%)!3(8B(6;1:(0<F'

! ! '
! ! ! '

!"#$ !"# !"#

!"#$ !"# !"#

Figure 7
Dice metrics on the validation set when using 3 labeled 
cases. RV, Myo, and LV denote three different categories, 
and Mean denotes the average Dice metric for the three 
categories.
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and finally stabilizing. In addition, the standard devi-
ation of the Dice/Jaccard coefficients is 0.035/0.056 
for the samples in the test set of the ACDC dataset. 
This observation confirms the convergence and sta-
bility of our proposed approach.

4.3. Ablation Study
4.3.1.  Ablation Study on Different Components 
To assess the contribution of the different loss func-
tions of our proposed method to the model perfor-
mance, we conduct ablation studies using the ACDC 
dataset with 5% labeled data (3 labeled cases). The 
components under study include Lseg, Lcon, Lmc, and 
Lem. The evaluation metrics used are Dice and Jac-
card. We present the segmentation metrics results 
for three categories - RV (right ventricle), Myo 
(myocardium), and LV (left ventricle) with different 
combinations of loss functions to facilitate a more 
detailed comparison. Table 3 displays the results of 
the ablation studies, showcasing the efficacy of each 
component proposed in this paper by gradually in-
corporating the loss functions of each component 
multiplied by their corresponding weights into the 
total loss function.
As shown in the first row of Table 3, when utiliz-
ing only the linear combination of Lseg and Lcon as 
the loss function, our method achieves 87.29% and 
78.08% on the Dice and Jaccard metrics, respec-
tively. According to the second line of the table, 
after adding the Lmc with weight β to the total loss 
function, we observe that both metrics of the three 
categories have significant improvements, with an 
average increase of 1.35%, and 2.11%. This suggests 
that our multi-scale joint strong-weak consisten-
cy Lmc provides consistency on different scales, 
and captures more valuable information from the 

unlabeled data. In the third row of the table, it is 
evident that complete MEMatch with all compo-
nents achieves optimal performance on both eval-
uation metrics. This indicates that our Lem reduces 
discrepancies between outputs from different seg-
mentation heads. The above-mentioned findings 
emphasize the importance of each component in 
our proposed approach. 

4.3.2.  Value of the Weights of Loss β and γ
We perform ablation experiment on the weights β 
for   Lmc and γ for Lem to investigate their impact on the 
model performance. The experiment is conducted 
on the ACDC dataset with 5% labeled data (3 labeled 
cases). The results of the ablation studies for the hy-
per-parameters β and γ are shown in Table 4.
For the weight β, we set it to 0.05, 0.10, 0.25 (default), 
and 0.50, respectively, to investigate the effect of var-
ious weights of Lmc on the segmentation performance 
of the model. According to the results presented in 
Table 4, both the Dice and Jaccard metrics general-
ly increase as β increases from 0.05 to 0.25, reaching 
their highest values when β was set at 0.25, thus con-
firming the effectiveness of our proposed Lmc.

Table 3
Ablation studies of different loss combinations, when using 5% labeled data (3 labeled cases) on the ACDC. Lseg represents 
the supervision loss on the labeled data. Lcon, Lmc, Lem  are the abbreviations for consistency loss, multi-scale joint strong-weak 
consistency loss, and entropy minimization loss on unlabeled data, respectively.

Loss RV Myo LV Mean

Lseg Lcon Lmc Lem Dice(%) Jaccard(%) Dice(%) Jaccard(%) Dice(%) Jaccard(%) Dice(%) Jaccard(%)

  86.88 77.42 84.41 73.37 90.57 83.46 87.29 78.08

  87.84 78.95 86.33 76.21 91.76 85.42 88.64 80.19

    88.16 79.41 86.56 76.55 92.50 86.48 89.07 80.82

β 0.05 0.10 0.25(default) 0.50

Dice(%) 88.22 88.29 89.07 88.44

Jaccard(%) 79.52 79.66 80.82 79.89

γ 0.05 0.10 
(default) 0.25 0.50

Dice(%) 88.68 89.07 88.57 88.61

Table 4
Ablation studies on the Hyperparameter β and γ with 5% 
labeled data (3 labeled cases).
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Regarding the weight γ, we also set it to 0.05, 0.10 (de-
fault), 0.25, 0.50 respectively. Observing Table 4, we 
can see that both Dice and Jaccard achieve scores of 
89.07% and 80.82%, respectively, when γ=0.10, which 
are identified as the optimal scores obtained across 
the four different ablation values.

4.3.3. Value of the Confidence Threshold τ  
Figure 2 illustrates the results of the ablation study of 
our approach utilizing the Dice and Jaccard metrics 
to evaluate the impact of the hyperparametric confi-
dence threshold τ on the ACDC dataset. The ablation 
values for the confidence threshold τ are set to 0.90, 
0.95 (default), 0.98, and 0.99, respectively. From Fig-
ure 2, it is evident that the highest Jaccard score of 
80.82% and Dice index of 89.07% are achieved at a 
confidence threshold of 0.95 under semi-supervised 
settings with only 5% labeled data (3 labeled cases). 

4.4. Effectiveness of the Proposed Method on 
Lower Labeled Cases 
For evaluating the performance of the MEMatch on 
lower labeled data, we utilize only 1 labeled case from 
the ACDC and LA datasets as our labeled data. Table 
5 displays the results of the ablation experiments. 
For ACDC, our method achieved performance scores 
of 85.70%, 76.06%, 6.17, and 1.55 on the four metrics, 
respectively. For LA dataset, our method achieved 
performance scores of 81.31%, 69.10%, 17.25, and 3.52 
on the four metrics, respectively. Upon analyzing the 
experimental results and comparing them with those 
in Tables 1-2. Upon analysis of the tables, it is evi-
dent that our method on the ACDC dataset achieves 
segmentation results using only 1 labeled case that is 
even superior to those obtained by most methods us-
ing 3 labeled cases. Meanwhile, on the LA dataset, our 
method achieved comparable performance to DTC 
[23] using only 1 labeled case, whereas DTC utilized 4 
labeled cases to reach its metrics. These results illus-
trate the efficacy of the proposal approach in handling 
lower amounts of labeled samples.    

Dataset Dice Jaccard 95HD ASD

ACDC 85.70 76.06 6.17 1.55

LA 81.31 69.10 17.25 3.52

Table 5 
Experimental results on 1 labeled case

5. Conclusion 
In this paper, the MEMatch framework, utilized for the 
semi-supervised segmentation of cardiac MRI images, 
is presented. The main idea of MEMatch is to leverage 
the multi-scale predictions generated by strongly-aug-
mented unlabeled images and the pseudo-labels gen-
erated by weakly-augmented unlabeled images to con-
struct multi-scale consistency. To further constrain 
multi-scale predictions of the same network to con-
verge to similarity, we apply entropy minimization to 
the average prediction over multiple scales. The com-
parison results on the ACDC and LA datasets illustrate 
superior performance and reliability of the proposed 
MEMatch. This improvement has led to more precise 
cardiac diagnoses and more personalized treatment 
plans, resulting in significantly improved patient out-
comes in the field of cardiac care. However, our method 
does not specifically add different network perturba-
tions for different segmentation heads but simply uses 
different up-sampling strategies to enhance the vari-
ability of segmentation predictions at different scales. 
In subsequent work, we can further extend this vari-
ability by adding different attention mechanisms to dif-
ferent segmentation heads, or by using different types 
of convolution in different segmentation heads, or by 
constructing a loss of mutual consistency between the 
segmentation results of the individual segmentation 
heads to obtain stronger consistency constraints. In 
addition, this paper will further improve the network 
structure in future work to reduce the consumption of 
computational resources for model training. 

Figure 8
Ablation studies on the threshold τ with 5% labeled data (3 
labeled cases).
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